xref: /freebsd/sys/dev/vr/if_vr.c (revision e4c66ddabdb470bab319705c1834a4867c508a43)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Rhine fast ethernet PCI NIC driver
40  *
41  * Supports various network adapters based on the VIA Rhine
42  * and Rhine II PCI controllers, including the D-Link DFE530TX.
43  * Datasheets are available at http://www.via.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The VIA Rhine controllers are similar in some respects to the
52  * the DEC tulip chips, except less complicated. The controller
53  * uses an MII bus and an external physical layer interface. The
54  * receiver has a one entry perfect filter and a 64-bit hash table
55  * multicast filter. Transmit and receive descriptors are similar
56  * to the tulip.
57  *
58  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
59  * transmit buffers must be longword aligned. Unfortunately,
60  * FreeBSD doesn't guarantee that mbufs will be filled in starting
61  * at longword boundaries, so we have to do a buffer copy before
62  * transmission.
63  */
64 
65 #ifdef HAVE_KERNEL_OPTION_HEADERS
66 #include "opt_device_polling.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/module.h>
77 #include <sys/rman.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 #include <net/if_vlan_var.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include <machine/bus.h>
99 
100 #include <dev/vr/if_vrreg.h>
101 
102 /* "device miibus" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 MODULE_DEPEND(vr, pci, 1, 1, 1);
106 MODULE_DEPEND(vr, ether, 1, 1, 1);
107 MODULE_DEPEND(vr, miibus, 1, 1, 1);
108 
109 /* Define to show Rx/Tx error status. */
110 #undef	VR_SHOW_ERRORS
111 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
112 
113 /*
114  * Various supported device vendors/types, their names & quirks.
115  */
116 #define VR_Q_NEEDALIGN		(1<<0)
117 #define VR_Q_CSUM		(1<<1)
118 #define VR_Q_CAM		(1<<2)
119 
120 static const struct vr_type {
121 	u_int16_t		vr_vid;
122 	u_int16_t		vr_did;
123 	int			vr_quirks;
124 	const char		*vr_name;
125 } vr_devs[] = {
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT3043 Rhine I 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
130 	    VR_Q_NEEDALIGN,
131 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
133 	    0,
134 	    "VIA VT6102 Rhine II 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
136 	    0,
137 	    "VIA VT6105 Rhine III 10/100BaseTX" },
138 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
139 	    VR_Q_CSUM,
140 	    "VIA VT6105M Rhine III 10/100BaseTX" },
141 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Delta Electronics Rhine II 10/100BaseTX" },
144 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
145 	    VR_Q_NEEDALIGN,
146 	    "Addtron Technology Rhine II 10/100BaseTX" },
147 	{ 0, 0, 0, NULL }
148 };
149 
150 static int vr_probe(device_t);
151 static int vr_attach(device_t);
152 static int vr_detach(device_t);
153 static int vr_shutdown(device_t);
154 static int vr_suspend(device_t);
155 static int vr_resume(device_t);
156 
157 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
158 static int vr_dma_alloc(struct vr_softc *);
159 static void vr_dma_free(struct vr_softc *);
160 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
161 static int vr_newbuf(struct vr_softc *, int);
162 
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline void vr_fixup_rx(struct mbuf *);
165 #endif
166 static int vr_rxeof(struct vr_softc *);
167 static void vr_txeof(struct vr_softc *);
168 static void vr_tick(void *);
169 static int vr_error(struct vr_softc *, uint16_t);
170 static void vr_tx_underrun(struct vr_softc *);
171 static int vr_intr(void *);
172 static void vr_int_task(void *, int);
173 static void vr_start(struct ifnet *);
174 static void vr_start_locked(struct ifnet *);
175 static int vr_encap(struct vr_softc *, struct mbuf **);
176 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
177 static void vr_init(void *);
178 static void vr_init_locked(struct vr_softc *);
179 static void vr_tx_start(struct vr_softc *);
180 static void vr_rx_start(struct vr_softc *);
181 static int vr_tx_stop(struct vr_softc *);
182 static int vr_rx_stop(struct vr_softc *);
183 static void vr_stop(struct vr_softc *);
184 static void vr_watchdog(struct vr_softc *);
185 static int vr_ifmedia_upd(struct ifnet *);
186 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
187 
188 static int vr_miibus_readreg(device_t, int, int);
189 static int vr_miibus_writereg(device_t, int, int, int);
190 static void vr_miibus_statchg(device_t);
191 
192 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
193 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
194 static void vr_set_filter(struct vr_softc *);
195 static void vr_reset(const struct vr_softc *);
196 static int vr_tx_ring_init(struct vr_softc *);
197 static int vr_rx_ring_init(struct vr_softc *);
198 static void vr_setwol(struct vr_softc *);
199 static void vr_clrwol(struct vr_softc *);
200 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
201 
202 static const struct vr_tx_threshold_table {
203 	int tx_cfg;
204 	int bcr_cfg;
205 	int value;
206 } vr_tx_threshold_tables[] = {
207 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
208 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
209 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
210 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
211 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
212 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
213 };
214 
215 static device_method_t vr_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		vr_probe),
218 	DEVMETHOD(device_attach,	vr_attach),
219 	DEVMETHOD(device_detach, 	vr_detach),
220 	DEVMETHOD(device_shutdown,	vr_shutdown),
221 	DEVMETHOD(device_suspend,	vr_suspend),
222 	DEVMETHOD(device_resume,	vr_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	DEVMETHOD_END
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 static devclass_t vr_devclass;
239 
240 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
241 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
242 
243 static int
244 vr_miibus_readreg(device_t dev, int phy, int reg)
245 {
246 	struct vr_softc		*sc;
247 	int			i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* Set the register address. */
252 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
253 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
254 
255 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
256 		DELAY(1);
257 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
258 			break;
259 	}
260 	if (i == VR_MII_TIMEOUT)
261 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
262 
263 	return (CSR_READ_2(sc, VR_MIIDATA));
264 }
265 
266 static int
267 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
268 {
269 	struct vr_softc		*sc;
270 	int			i;
271 
272 	sc = device_get_softc(dev);
273 
274 	/* Set the register address and data to write. */
275 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
276 	CSR_WRITE_2(sc, VR_MIIDATA, data);
277 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
278 
279 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
280 		DELAY(1);
281 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
282 			break;
283 	}
284 	if (i == VR_MII_TIMEOUT)
285 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
286 		    reg);
287 
288 	return (0);
289 }
290 
291 /*
292  * In order to fiddle with the
293  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
294  * first have to put the transmit and/or receive logic in the idle state.
295  */
296 static void
297 vr_miibus_statchg(device_t dev)
298 {
299 	struct vr_softc		*sc;
300 	struct mii_data		*mii;
301 	struct ifnet		*ifp;
302 	int			lfdx, mfdx;
303 	uint8_t			cr0, cr1, fc;
304 
305 	sc = device_get_softc(dev);
306 	mii = device_get_softc(sc->vr_miibus);
307 	ifp = sc->vr_ifp;
308 	if (mii == NULL || ifp == NULL ||
309 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
310 		return;
311 
312 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
313 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
314 	    (IFM_ACTIVE | IFM_AVALID)) {
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_10_T:
317 		case IFM_100_TX:
318 			sc->vr_flags |= VR_F_LINK;
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 
325 	if ((sc->vr_flags & VR_F_LINK) != 0) {
326 		cr0 = CSR_READ_1(sc, VR_CR0);
327 		cr1 = CSR_READ_1(sc, VR_CR1);
328 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
329 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
330 		if (mfdx != lfdx) {
331 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
332 				if (vr_tx_stop(sc) != 0 ||
333 				    vr_rx_stop(sc) != 0) {
334 					device_printf(sc->vr_dev,
335 					    "%s: Tx/Rx shutdown error -- "
336 					    "resetting\n", __func__);
337 					sc->vr_flags |= VR_F_RESTART;
338 					VR_UNLOCK(sc);
339 					return;
340 				}
341 			}
342 			if (lfdx)
343 				cr1 |= VR_CR1_FULLDUPLEX;
344 			else
345 				cr1 &= ~VR_CR1_FULLDUPLEX;
346 			CSR_WRITE_1(sc, VR_CR1, cr1);
347 		}
348 		fc = 0;
349 		/* Configure flow-control. */
350 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
351 			fc = CSR_READ_1(sc, VR_FLOWCR1);
352 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
353 			if ((IFM_OPTIONS(mii->mii_media_active) &
354 			    IFM_ETH_RXPAUSE) != 0)
355 				fc |= VR_FLOWCR1_RXPAUSE;
356 			if ((IFM_OPTIONS(mii->mii_media_active) &
357 			    IFM_ETH_TXPAUSE) != 0) {
358 				fc |= VR_FLOWCR1_TXPAUSE;
359 				sc->vr_flags |= VR_F_TXPAUSE;
360 			}
361 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
362 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
363 			/* No Tx puase capability available for Rhine II. */
364 			fc = CSR_READ_1(sc, VR_MISC_CR0);
365 			fc &= ~VR_MISCCR0_RXPAUSE;
366 			if ((IFM_OPTIONS(mii->mii_media_active) &
367 			    IFM_ETH_RXPAUSE) != 0)
368 				fc |= VR_MISCCR0_RXPAUSE;
369 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
370 		}
371 		vr_rx_start(sc);
372 		vr_tx_start(sc);
373 	} else {
374 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
375 			device_printf(sc->vr_dev,
376 			    "%s: Tx/Rx shutdown error -- resetting\n",
377 			    __func__);
378 			sc->vr_flags |= VR_F_RESTART;
379 		}
380 	}
381 }
382 
383 
384 static void
385 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
386 {
387 
388 	if (type == VR_MCAST_CAM)
389 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
390 	else
391 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
392 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
393 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
394 }
395 
396 static int
397 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
398 {
399 	int	i;
400 
401 	if (type == VR_MCAST_CAM) {
402 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
403 			return (EINVAL);
404 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
405 	} else
406 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
407 
408 	/* Set CAM entry address. */
409 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
410 	/* Set CAM entry data. */
411 	if (type == VR_MCAST_CAM) {
412 		for (i = 0; i < ETHER_ADDR_LEN; i++)
413 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
414 	} else {
415 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
416 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
417 	}
418 	DELAY(10);
419 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
420 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
421 	for (i = 0; i < VR_TIMEOUT; i++) {
422 		DELAY(1);
423 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
424 			break;
425 	}
426 
427 	if (i == VR_TIMEOUT)
428 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
429 		    __func__);
430 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
431 
432 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
433 }
434 
435 /*
436  * Program the 64-bit multicast hash filter.
437  */
438 static void
439 vr_set_filter(struct vr_softc *sc)
440 {
441 	struct ifnet		*ifp;
442 	int			h;
443 	uint32_t		hashes[2] = { 0, 0 };
444 	struct ifmultiaddr	*ifma;
445 	uint8_t			rxfilt;
446 	int			error, mcnt;
447 	uint32_t		cam_mask;
448 
449 	VR_LOCK_ASSERT(sc);
450 
451 	ifp = sc->vr_ifp;
452 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
453 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
454 	    VR_RXCFG_RX_MULTI);
455 	if (ifp->if_flags & IFF_BROADCAST)
456 		rxfilt |= VR_RXCFG_RX_BROAD;
457 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
458 		rxfilt |= VR_RXCFG_RX_MULTI;
459 		if (ifp->if_flags & IFF_PROMISC)
460 			rxfilt |= VR_RXCFG_RX_PROMISC;
461 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
462 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
463 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
464 		return;
465 	}
466 
467 	/* Now program new ones. */
468 	error = 0;
469 	mcnt = 0;
470 	if_maddr_rlock(ifp);
471 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
472 		/*
473 		 * For hardwares that have CAM capability, use
474 		 * 32 entries multicast perfect filter.
475 		 */
476 		cam_mask = 0;
477 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
478 			if (ifma->ifma_addr->sa_family != AF_LINK)
479 				continue;
480 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
481 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
482 			if (error != 0) {
483 				cam_mask = 0;
484 				break;
485 			}
486 			cam_mask |= 1 << mcnt;
487 			mcnt++;
488 		}
489 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
490 	}
491 
492 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
493 		/*
494 		 * If there are too many multicast addresses or
495 		 * setting multicast CAM filter failed, use hash
496 		 * table based filtering.
497 		 */
498 		mcnt = 0;
499 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
500 			if (ifma->ifma_addr->sa_family != AF_LINK)
501 				continue;
502 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
503 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
504 			if (h < 32)
505 				hashes[0] |= (1 << h);
506 			else
507 				hashes[1] |= (1 << (h - 32));
508 			mcnt++;
509 		}
510 	}
511 	if_maddr_runlock(ifp);
512 
513 	if (mcnt > 0)
514 		rxfilt |= VR_RXCFG_RX_MULTI;
515 
516 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
517 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
518 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
519 }
520 
521 static void
522 vr_reset(const struct vr_softc *sc)
523 {
524 	int		i;
525 
526 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
527 
528 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
529 	if (sc->vr_revid < REV_ID_VT6102_A) {
530 		/* VT86C100A needs more delay after reset. */
531 		DELAY(100);
532 	}
533 	for (i = 0; i < VR_TIMEOUT; i++) {
534 		DELAY(10);
535 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
536 			break;
537 	}
538 	if (i == VR_TIMEOUT) {
539 		if (sc->vr_revid < REV_ID_VT6102_A)
540 			device_printf(sc->vr_dev, "reset never completed!\n");
541 		else {
542 			/* Use newer force reset command. */
543 			device_printf(sc->vr_dev,
544 			    "Using force reset command.\n");
545 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
546 			/*
547 			 * Wait a little while for the chip to get its brains
548 			 * in order.
549 			 */
550 			DELAY(2000);
551 		}
552 	}
553 
554 }
555 
556 /*
557  * Probe for a VIA Rhine chip. Check the PCI vendor and device
558  * IDs against our list and return a match or NULL
559  */
560 static const struct vr_type *
561 vr_match(device_t dev)
562 {
563 	const struct vr_type	*t = vr_devs;
564 
565 	for (t = vr_devs; t->vr_name != NULL; t++)
566 		if ((pci_get_vendor(dev) == t->vr_vid) &&
567 		    (pci_get_device(dev) == t->vr_did))
568 			return (t);
569 	return (NULL);
570 }
571 
572 /*
573  * Probe for a VIA Rhine chip. Check the PCI vendor and device
574  * IDs against our list and return a device name if we find a match.
575  */
576 static int
577 vr_probe(device_t dev)
578 {
579 	const struct vr_type	*t;
580 
581 	t = vr_match(dev);
582 	if (t != NULL) {
583 		device_set_desc(dev, t->vr_name);
584 		return (BUS_PROBE_DEFAULT);
585 	}
586 	return (ENXIO);
587 }
588 
589 /*
590  * Attach the interface. Allocate softc structures, do ifmedia
591  * setup and ethernet/BPF attach.
592  */
593 static int
594 vr_attach(device_t dev)
595 {
596 	struct vr_softc		*sc;
597 	struct ifnet		*ifp;
598 	const struct vr_type	*t;
599 	uint8_t			eaddr[ETHER_ADDR_LEN];
600 	int			error, rid;
601 	int			i, phy, pmc;
602 
603 	sc = device_get_softc(dev);
604 	sc->vr_dev = dev;
605 	t = vr_match(dev);
606 	KASSERT(t != NULL, ("Lost if_vr device match"));
607 	sc->vr_quirks = t->vr_quirks;
608 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
609 
610 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
611 	    MTX_DEF);
612 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
613 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
614 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
615 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
616 	    vr_sysctl_stats, "I", "Statistics");
617 
618 	error = 0;
619 
620 	/*
621 	 * Map control/status registers.
622 	 */
623 	pci_enable_busmaster(dev);
624 	sc->vr_revid = pci_get_revid(dev);
625 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
626 
627 	sc->vr_res_id = PCIR_BAR(0);
628 	sc->vr_res_type = SYS_RES_IOPORT;
629 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
630 	    &sc->vr_res_id, RF_ACTIVE);
631 	if (sc->vr_res == NULL) {
632 		device_printf(dev, "couldn't map ports\n");
633 		error = ENXIO;
634 		goto fail;
635 	}
636 
637 	/* Allocate interrupt. */
638 	rid = 0;
639 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
640 	    RF_SHAREABLE | RF_ACTIVE);
641 
642 	if (sc->vr_irq == NULL) {
643 		device_printf(dev, "couldn't map interrupt\n");
644 		error = ENXIO;
645 		goto fail;
646 	}
647 
648 	/* Allocate ifnet structure. */
649 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
650 	if (ifp == NULL) {
651 		device_printf(dev, "couldn't allocate ifnet structure\n");
652 		error = ENOSPC;
653 		goto fail;
654 	}
655 	ifp->if_softc = sc;
656 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 	ifp->if_ioctl = vr_ioctl;
659 	ifp->if_start = vr_start;
660 	ifp->if_init = vr_init;
661 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
662 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
663 	IFQ_SET_READY(&ifp->if_snd);
664 
665 	TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
666 
667 	/* Configure Tx FIFO threshold. */
668 	sc->vr_txthresh = VR_TXTHRESH_MIN;
669 	if (sc->vr_revid < REV_ID_VT6105_A0) {
670 		/*
671 		 * Use store and forward mode for Rhine I/II.
672 		 * Otherwise they produce a lot of Tx underruns and
673 		 * it would take a while to get working FIFO threshold
674 		 * value.
675 		 */
676 		sc->vr_txthresh = VR_TXTHRESH_MAX;
677 	}
678 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
679 		ifp->if_hwassist = VR_CSUM_FEATURES;
680 		ifp->if_capabilities |= IFCAP_HWCSUM;
681 		/*
682 		 * To update checksum field the hardware may need to
683 		 * store entire frames into FIFO before transmitting.
684 		 */
685 		sc->vr_txthresh = VR_TXTHRESH_MAX;
686 	}
687 
688 	if (sc->vr_revid >= REV_ID_VT6102_A &&
689 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
690 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
691 
692 	/* Rhine supports oversized VLAN frame. */
693 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
694 	ifp->if_capenable = ifp->if_capabilities;
695 #ifdef DEVICE_POLLING
696 	ifp->if_capabilities |= IFCAP_POLLING;
697 #endif
698 
699 	/*
700 	 * Windows may put the chip in suspend mode when it
701 	 * shuts down. Be sure to kick it in the head to wake it
702 	 * up again.
703 	 */
704 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
705 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
706 
707 	/*
708 	 * Get station address. The way the Rhine chips work,
709 	 * you're not allowed to directly access the EEPROM once
710 	 * they've been programmed a special way. Consequently,
711 	 * we need to read the node address from the PAR0 and PAR1
712 	 * registers.
713 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
714 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
715 	 * by driver is reset to default state.
716 	 */
717 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
718 	for (i = VR_TIMEOUT; i > 0; i--) {
719 		DELAY(1);
720 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
721 			break;
722 	}
723 	if (i == 0)
724 		device_printf(dev, "Reloading EEPROM timeout!\n");
725 	for (i = 0; i < ETHER_ADDR_LEN; i++)
726 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
727 
728 	/* Reset the adapter. */
729 	vr_reset(sc);
730 	/* Ack intr & disable further interrupts. */
731 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
732 	CSR_WRITE_2(sc, VR_IMR, 0);
733 	if (sc->vr_revid >= REV_ID_VT6102_A)
734 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
735 
736 	if (sc->vr_revid < REV_ID_VT6102_A) {
737 		pci_write_config(dev, VR_PCI_MODE2,
738 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
739 		    VR_MODE2_MODE10T, 1);
740 	} else {
741 		/* Report error instead of retrying forever. */
742 		pci_write_config(dev, VR_PCI_MODE2,
743 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
744 		    VR_MODE2_PCEROPT, 1);
745         	/* Detect MII coding error. */
746 		pci_write_config(dev, VR_PCI_MODE3,
747 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
748 		    VR_MODE3_MIION, 1);
749 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
750 		    sc->vr_revid < REV_ID_VT6105M_A0)
751 			pci_write_config(dev, VR_PCI_MODE2,
752 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
753 			    VR_MODE2_MODE10T, 1);
754 		/* Enable Memory-Read-Multiple. */
755 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
756 		    sc->vr_revid < REV_ID_VT6105M_A0)
757 			pci_write_config(dev, VR_PCI_MODE2,
758 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
759 			    VR_MODE2_MRDPL, 1);
760 	}
761 	/* Disable MII AUTOPOLL. */
762 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
763 
764 	if (vr_dma_alloc(sc) != 0) {
765 		error = ENXIO;
766 		goto fail;
767 	}
768 
769 	/* Do MII setup. */
770 	if (sc->vr_revid >= REV_ID_VT6105_A0)
771 		phy = 1;
772 	else
773 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
774 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
775 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
776 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
777 	if (error != 0) {
778 		device_printf(dev, "attaching PHYs failed\n");
779 		goto fail;
780 	}
781 
782 	/* Call MI attach routine. */
783 	ether_ifattach(ifp, eaddr);
784 	/*
785 	 * Tell the upper layer(s) we support long frames.
786 	 * Must appear after the call to ether_ifattach() because
787 	 * ether_ifattach() sets ifi_hdrlen to the default value.
788 	 */
789 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
790 
791 	/* Hook interrupt last to avoid having to lock softc. */
792 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
793 	    vr_intr, NULL, sc, &sc->vr_intrhand);
794 
795 	if (error) {
796 		device_printf(dev, "couldn't set up irq\n");
797 		ether_ifdetach(ifp);
798 		goto fail;
799 	}
800 
801 fail:
802 	if (error)
803 		vr_detach(dev);
804 
805 	return (error);
806 }
807 
808 /*
809  * Shutdown hardware and free up resources. This can be called any
810  * time after the mutex has been initialized. It is called in both
811  * the error case in attach and the normal detach case so it needs
812  * to be careful about only freeing resources that have actually been
813  * allocated.
814  */
815 static int
816 vr_detach(device_t dev)
817 {
818 	struct vr_softc		*sc = device_get_softc(dev);
819 	struct ifnet		*ifp = sc->vr_ifp;
820 
821 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
822 
823 #ifdef DEVICE_POLLING
824 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
825 		ether_poll_deregister(ifp);
826 #endif
827 
828 	/* These should only be active if attach succeeded. */
829 	if (device_is_attached(dev)) {
830 		VR_LOCK(sc);
831 		sc->vr_flags |= VR_F_DETACHED;
832 		vr_stop(sc);
833 		VR_UNLOCK(sc);
834 		callout_drain(&sc->vr_stat_callout);
835 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
836 		ether_ifdetach(ifp);
837 	}
838 	if (sc->vr_miibus)
839 		device_delete_child(dev, sc->vr_miibus);
840 	bus_generic_detach(dev);
841 
842 	if (sc->vr_intrhand)
843 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
844 	if (sc->vr_irq)
845 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
846 	if (sc->vr_res)
847 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
848 		    sc->vr_res);
849 
850 	if (ifp)
851 		if_free(ifp);
852 
853 	vr_dma_free(sc);
854 
855 	mtx_destroy(&sc->vr_mtx);
856 
857 	return (0);
858 }
859 
860 struct vr_dmamap_arg {
861 	bus_addr_t	vr_busaddr;
862 };
863 
864 static void
865 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
866 {
867 	struct vr_dmamap_arg	*ctx;
868 
869 	if (error != 0)
870 		return;
871 	ctx = arg;
872 	ctx->vr_busaddr = segs[0].ds_addr;
873 }
874 
875 static int
876 vr_dma_alloc(struct vr_softc *sc)
877 {
878 	struct vr_dmamap_arg	ctx;
879 	struct vr_txdesc	*txd;
880 	struct vr_rxdesc	*rxd;
881 	bus_size_t		tx_alignment;
882 	int			error, i;
883 
884 	/* Create parent DMA tag. */
885 	error = bus_dma_tag_create(
886 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
887 	    1, 0,			/* alignment, boundary */
888 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
889 	    BUS_SPACE_MAXADDR,		/* highaddr */
890 	    NULL, NULL,			/* filter, filterarg */
891 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
892 	    0,				/* nsegments */
893 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
894 	    0,				/* flags */
895 	    NULL, NULL,			/* lockfunc, lockarg */
896 	    &sc->vr_cdata.vr_parent_tag);
897 	if (error != 0) {
898 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
899 		goto fail;
900 	}
901 	/* Create tag for Tx ring. */
902 	error = bus_dma_tag_create(
903 	    sc->vr_cdata.vr_parent_tag,	/* parent */
904 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
905 	    BUS_SPACE_MAXADDR,		/* lowaddr */
906 	    BUS_SPACE_MAXADDR,		/* highaddr */
907 	    NULL, NULL,			/* filter, filterarg */
908 	    VR_TX_RING_SIZE,		/* maxsize */
909 	    1,				/* nsegments */
910 	    VR_TX_RING_SIZE,		/* maxsegsize */
911 	    0,				/* flags */
912 	    NULL, NULL,			/* lockfunc, lockarg */
913 	    &sc->vr_cdata.vr_tx_ring_tag);
914 	if (error != 0) {
915 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
916 		goto fail;
917 	}
918 
919 	/* Create tag for Rx ring. */
920 	error = bus_dma_tag_create(
921 	    sc->vr_cdata.vr_parent_tag,	/* parent */
922 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
923 	    BUS_SPACE_MAXADDR,		/* lowaddr */
924 	    BUS_SPACE_MAXADDR,		/* highaddr */
925 	    NULL, NULL,			/* filter, filterarg */
926 	    VR_RX_RING_SIZE,		/* maxsize */
927 	    1,				/* nsegments */
928 	    VR_RX_RING_SIZE,		/* maxsegsize */
929 	    0,				/* flags */
930 	    NULL, NULL,			/* lockfunc, lockarg */
931 	    &sc->vr_cdata.vr_rx_ring_tag);
932 	if (error != 0) {
933 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
934 		goto fail;
935 	}
936 
937 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
938 		tx_alignment = sizeof(uint32_t);
939 	else
940 		tx_alignment = 1;
941 	/* Create tag for Tx buffers. */
942 	error = bus_dma_tag_create(
943 	    sc->vr_cdata.vr_parent_tag,	/* parent */
944 	    tx_alignment, 0,		/* alignment, boundary */
945 	    BUS_SPACE_MAXADDR,		/* lowaddr */
946 	    BUS_SPACE_MAXADDR,		/* highaddr */
947 	    NULL, NULL,			/* filter, filterarg */
948 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
949 	    VR_MAXFRAGS,		/* nsegments */
950 	    MCLBYTES,			/* maxsegsize */
951 	    0,				/* flags */
952 	    NULL, NULL,			/* lockfunc, lockarg */
953 	    &sc->vr_cdata.vr_tx_tag);
954 	if (error != 0) {
955 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
956 		goto fail;
957 	}
958 
959 	/* Create tag for Rx buffers. */
960 	error = bus_dma_tag_create(
961 	    sc->vr_cdata.vr_parent_tag,	/* parent */
962 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
963 	    BUS_SPACE_MAXADDR,		/* lowaddr */
964 	    BUS_SPACE_MAXADDR,		/* highaddr */
965 	    NULL, NULL,			/* filter, filterarg */
966 	    MCLBYTES,			/* maxsize */
967 	    1,				/* nsegments */
968 	    MCLBYTES,			/* maxsegsize */
969 	    0,				/* flags */
970 	    NULL, NULL,			/* lockfunc, lockarg */
971 	    &sc->vr_cdata.vr_rx_tag);
972 	if (error != 0) {
973 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
974 		goto fail;
975 	}
976 
977 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
978 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
979 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
980 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
981 	if (error != 0) {
982 		device_printf(sc->vr_dev,
983 		    "failed to allocate DMA'able memory for Tx ring\n");
984 		goto fail;
985 	}
986 
987 	ctx.vr_busaddr = 0;
988 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
989 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
990 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
991 	if (error != 0 || ctx.vr_busaddr == 0) {
992 		device_printf(sc->vr_dev,
993 		    "failed to load DMA'able memory for Tx ring\n");
994 		goto fail;
995 	}
996 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
997 
998 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
999 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1000 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1001 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1002 	if (error != 0) {
1003 		device_printf(sc->vr_dev,
1004 		    "failed to allocate DMA'able memory for Rx ring\n");
1005 		goto fail;
1006 	}
1007 
1008 	ctx.vr_busaddr = 0;
1009 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1010 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1011 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1012 	if (error != 0 || ctx.vr_busaddr == 0) {
1013 		device_printf(sc->vr_dev,
1014 		    "failed to load DMA'able memory for Rx ring\n");
1015 		goto fail;
1016 	}
1017 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1018 
1019 	/* Create DMA maps for Tx buffers. */
1020 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1021 		txd = &sc->vr_cdata.vr_txdesc[i];
1022 		txd->tx_m = NULL;
1023 		txd->tx_dmamap = NULL;
1024 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1025 		    &txd->tx_dmamap);
1026 		if (error != 0) {
1027 			device_printf(sc->vr_dev,
1028 			    "failed to create Tx dmamap\n");
1029 			goto fail;
1030 		}
1031 	}
1032 	/* Create DMA maps for Rx buffers. */
1033 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1034 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1035 		device_printf(sc->vr_dev,
1036 		    "failed to create spare Rx dmamap\n");
1037 		goto fail;
1038 	}
1039 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1040 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1041 		rxd->rx_m = NULL;
1042 		rxd->rx_dmamap = NULL;
1043 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1044 		    &rxd->rx_dmamap);
1045 		if (error != 0) {
1046 			device_printf(sc->vr_dev,
1047 			    "failed to create Rx dmamap\n");
1048 			goto fail;
1049 		}
1050 	}
1051 
1052 fail:
1053 	return (error);
1054 }
1055 
1056 static void
1057 vr_dma_free(struct vr_softc *sc)
1058 {
1059 	struct vr_txdesc	*txd;
1060 	struct vr_rxdesc	*rxd;
1061 	int			i;
1062 
1063 	/* Tx ring. */
1064 	if (sc->vr_cdata.vr_tx_ring_tag) {
1065 		if (sc->vr_rdata.vr_tx_ring_paddr)
1066 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1067 			    sc->vr_cdata.vr_tx_ring_map);
1068 		if (sc->vr_rdata.vr_tx_ring)
1069 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1070 			    sc->vr_rdata.vr_tx_ring,
1071 			    sc->vr_cdata.vr_tx_ring_map);
1072 		sc->vr_rdata.vr_tx_ring = NULL;
1073 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1074 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1075 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1076 	}
1077 	/* Rx ring. */
1078 	if (sc->vr_cdata.vr_rx_ring_tag) {
1079 		if (sc->vr_rdata.vr_rx_ring_paddr)
1080 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1081 			    sc->vr_cdata.vr_rx_ring_map);
1082 		if (sc->vr_rdata.vr_rx_ring)
1083 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1084 			    sc->vr_rdata.vr_rx_ring,
1085 			    sc->vr_cdata.vr_rx_ring_map);
1086 		sc->vr_rdata.vr_rx_ring = NULL;
1087 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1088 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1089 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1090 	}
1091 	/* Tx buffers. */
1092 	if (sc->vr_cdata.vr_tx_tag) {
1093 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1094 			txd = &sc->vr_cdata.vr_txdesc[i];
1095 			if (txd->tx_dmamap) {
1096 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1097 				    txd->tx_dmamap);
1098 				txd->tx_dmamap = NULL;
1099 			}
1100 		}
1101 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1102 		sc->vr_cdata.vr_tx_tag = NULL;
1103 	}
1104 	/* Rx buffers. */
1105 	if (sc->vr_cdata.vr_rx_tag) {
1106 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1107 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1108 			if (rxd->rx_dmamap) {
1109 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1110 				    rxd->rx_dmamap);
1111 				rxd->rx_dmamap = NULL;
1112 			}
1113 		}
1114 		if (sc->vr_cdata.vr_rx_sparemap) {
1115 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1116 			    sc->vr_cdata.vr_rx_sparemap);
1117 			sc->vr_cdata.vr_rx_sparemap = 0;
1118 		}
1119 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1120 		sc->vr_cdata.vr_rx_tag = NULL;
1121 	}
1122 
1123 	if (sc->vr_cdata.vr_parent_tag) {
1124 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1125 		sc->vr_cdata.vr_parent_tag = NULL;
1126 	}
1127 }
1128 
1129 /*
1130  * Initialize the transmit descriptors.
1131  */
1132 static int
1133 vr_tx_ring_init(struct vr_softc *sc)
1134 {
1135 	struct vr_ring_data	*rd;
1136 	struct vr_txdesc	*txd;
1137 	bus_addr_t		addr;
1138 	int			i;
1139 
1140 	sc->vr_cdata.vr_tx_prod = 0;
1141 	sc->vr_cdata.vr_tx_cons = 0;
1142 	sc->vr_cdata.vr_tx_cnt = 0;
1143 	sc->vr_cdata.vr_tx_pkts = 0;
1144 
1145 	rd = &sc->vr_rdata;
1146 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1147 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1148 		if (i == VR_TX_RING_CNT - 1)
1149 			addr = VR_TX_RING_ADDR(sc, 0);
1150 		else
1151 			addr = VR_TX_RING_ADDR(sc, i + 1);
1152 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1153 		txd = &sc->vr_cdata.vr_txdesc[i];
1154 		txd->tx_m = NULL;
1155 	}
1156 
1157 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1158 	    sc->vr_cdata.vr_tx_ring_map,
1159 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1160 
1161 	return (0);
1162 }
1163 
1164 /*
1165  * Initialize the RX descriptors and allocate mbufs for them. Note that
1166  * we arrange the descriptors in a closed ring, so that the last descriptor
1167  * points back to the first.
1168  */
1169 static int
1170 vr_rx_ring_init(struct vr_softc *sc)
1171 {
1172 	struct vr_ring_data	*rd;
1173 	struct vr_rxdesc	*rxd;
1174 	bus_addr_t		addr;
1175 	int			i;
1176 
1177 	sc->vr_cdata.vr_rx_cons = 0;
1178 
1179 	rd = &sc->vr_rdata;
1180 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1181 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1182 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1183 		rxd->rx_m = NULL;
1184 		rxd->desc = &rd->vr_rx_ring[i];
1185 		if (i == VR_RX_RING_CNT - 1)
1186 			addr = VR_RX_RING_ADDR(sc, 0);
1187 		else
1188 			addr = VR_RX_RING_ADDR(sc, i + 1);
1189 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1190 		if (vr_newbuf(sc, i) != 0)
1191 			return (ENOBUFS);
1192 	}
1193 
1194 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1195 	    sc->vr_cdata.vr_rx_ring_map,
1196 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1197 
1198 	return (0);
1199 }
1200 
1201 static __inline void
1202 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1203 {
1204 	struct vr_desc	*desc;
1205 
1206 	desc = rxd->desc;
1207 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1208 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1209 }
1210 
1211 /*
1212  * Initialize an RX descriptor and attach an MBUF cluster.
1213  * Note: the length fields are only 11 bits wide, which means the
1214  * largest size we can specify is 2047. This is important because
1215  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1216  * overflow the field and make a mess.
1217  */
1218 static int
1219 vr_newbuf(struct vr_softc *sc, int idx)
1220 {
1221 	struct vr_desc		*desc;
1222 	struct vr_rxdesc	*rxd;
1223 	struct mbuf		*m;
1224 	bus_dma_segment_t	segs[1];
1225 	bus_dmamap_t		map;
1226 	int			nsegs;
1227 
1228 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1229 	if (m == NULL)
1230 		return (ENOBUFS);
1231 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1232 	m_adj(m, sizeof(uint64_t));
1233 
1234 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1235 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1236 		m_freem(m);
1237 		return (ENOBUFS);
1238 	}
1239 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1240 
1241 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1242 	if (rxd->rx_m != NULL) {
1243 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1244 		    BUS_DMASYNC_POSTREAD);
1245 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1246 	}
1247 	map = rxd->rx_dmamap;
1248 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1249 	sc->vr_cdata.vr_rx_sparemap = map;
1250 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1251 	    BUS_DMASYNC_PREREAD);
1252 	rxd->rx_m = m;
1253 	desc = rxd->desc;
1254 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1255 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1256 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1257 
1258 	return (0);
1259 }
1260 
1261 #ifndef __NO_STRICT_ALIGNMENT
1262 static __inline void
1263 vr_fixup_rx(struct mbuf *m)
1264 {
1265         uint16_t		*src, *dst;
1266         int			i;
1267 
1268 	src = mtod(m, uint16_t *);
1269 	dst = src - 1;
1270 
1271 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1272 		*dst++ = *src++;
1273 
1274 	m->m_data -= ETHER_ALIGN;
1275 }
1276 #endif
1277 
1278 /*
1279  * A frame has been uploaded: pass the resulting mbuf chain up to
1280  * the higher level protocols.
1281  */
1282 static int
1283 vr_rxeof(struct vr_softc *sc)
1284 {
1285 	struct vr_rxdesc	*rxd;
1286 	struct mbuf		*m;
1287 	struct ifnet		*ifp;
1288 	struct vr_desc		*cur_rx;
1289 	int			cons, prog, total_len, rx_npkts;
1290 	uint32_t		rxstat, rxctl;
1291 
1292 	VR_LOCK_ASSERT(sc);
1293 	ifp = sc->vr_ifp;
1294 	cons = sc->vr_cdata.vr_rx_cons;
1295 	rx_npkts = 0;
1296 
1297 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1298 	    sc->vr_cdata.vr_rx_ring_map,
1299 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1300 
1301 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1302 #ifdef DEVICE_POLLING
1303 		if (ifp->if_capenable & IFCAP_POLLING) {
1304 			if (sc->rxcycles <= 0)
1305 				break;
1306 			sc->rxcycles--;
1307 		}
1308 #endif
1309 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1310 		rxstat = le32toh(cur_rx->vr_status);
1311 		rxctl = le32toh(cur_rx->vr_ctl);
1312 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1313 			break;
1314 
1315 		prog++;
1316 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1317 		m = rxd->rx_m;
1318 
1319 		/*
1320 		 * If an error occurs, update stats, clear the
1321 		 * status word and leave the mbuf cluster in place:
1322 		 * it should simply get re-used next time this descriptor
1323 		 * comes up in the ring.
1324 		 * We don't support SG in Rx path yet, so discard
1325 		 * partial frame.
1326 		 */
1327 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1328 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1329 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1330 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1331 			sc->vr_stat.rx_errors++;
1332 			if (rxstat & VR_RXSTAT_CRCERR)
1333 				sc->vr_stat.rx_crc_errors++;
1334 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1335 				sc->vr_stat.rx_alignment++;
1336 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1337 				sc->vr_stat.rx_fifo_overflows++;
1338 			if (rxstat & VR_RXSTAT_GIANT)
1339 				sc->vr_stat.rx_giants++;
1340 			if (rxstat & VR_RXSTAT_RUNT)
1341 				sc->vr_stat.rx_runts++;
1342 			if (rxstat & VR_RXSTAT_BUFFERR)
1343 				sc->vr_stat.rx_no_buffers++;
1344 #ifdef	VR_SHOW_ERRORS
1345 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1346 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1347 #endif
1348 			vr_discard_rxbuf(rxd);
1349 			continue;
1350 		}
1351 
1352 		if (vr_newbuf(sc, cons) != 0) {
1353 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1354 			sc->vr_stat.rx_errors++;
1355 			sc->vr_stat.rx_no_mbufs++;
1356 			vr_discard_rxbuf(rxd);
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * XXX The VIA Rhine chip includes the CRC with every
1362 		 * received frame, and there's no way to turn this
1363 		 * behavior off (at least, I can't find anything in
1364 		 * the manual that explains how to do it) so we have
1365 		 * to trim off the CRC manually.
1366 		 */
1367 		total_len = VR_RXBYTES(rxstat);
1368 		total_len -= ETHER_CRC_LEN;
1369 		m->m_pkthdr.len = m->m_len = total_len;
1370 #ifndef	__NO_STRICT_ALIGNMENT
1371 		/*
1372 		 * RX buffers must be 32-bit aligned.
1373 		 * Ignore the alignment problems on the non-strict alignment
1374 		 * platform. The performance hit incurred due to unaligned
1375 		 * accesses is much smaller than the hit produced by forcing
1376 		 * buffer copies all the time.
1377 		 */
1378 		vr_fixup_rx(m);
1379 #endif
1380 		m->m_pkthdr.rcvif = ifp;
1381 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1382 		sc->vr_stat.rx_ok++;
1383 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1384 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1385 		    (rxctl & VR_RXCTL_IP) != 0) {
1386 			/* Checksum is valid for non-fragmented IP packets. */
1387 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1388 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1389 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1390 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1391 					m->m_pkthdr.csum_flags |=
1392 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1393 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1394 						m->m_pkthdr.csum_data = 0xffff;
1395 				}
1396 			}
1397 		}
1398 		VR_UNLOCK(sc);
1399 		(*ifp->if_input)(ifp, m);
1400 		VR_LOCK(sc);
1401 		rx_npkts++;
1402 	}
1403 
1404 	if (prog > 0) {
1405 		/*
1406 		 * Let controller know how many number of RX buffers
1407 		 * are posted but avoid expensive register access if
1408 		 * TX pause capability was not negotiated with link
1409 		 * partner.
1410 		 */
1411 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1412 			if (prog >= VR_RX_RING_CNT)
1413 				prog = VR_RX_RING_CNT - 1;
1414 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1415 		}
1416 		sc->vr_cdata.vr_rx_cons = cons;
1417 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1418 		    sc->vr_cdata.vr_rx_ring_map,
1419 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1420 	}
1421 	return (rx_npkts);
1422 }
1423 
1424 /*
1425  * A frame was downloaded to the chip. It's safe for us to clean up
1426  * the list buffers.
1427  */
1428 static void
1429 vr_txeof(struct vr_softc *sc)
1430 {
1431 	struct vr_txdesc	*txd;
1432 	struct vr_desc		*cur_tx;
1433 	struct ifnet		*ifp;
1434 	uint32_t		txctl, txstat;
1435 	int			cons, prod;
1436 
1437 	VR_LOCK_ASSERT(sc);
1438 
1439 	cons = sc->vr_cdata.vr_tx_cons;
1440 	prod = sc->vr_cdata.vr_tx_prod;
1441 	if (cons == prod)
1442 		return;
1443 
1444 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1445 	    sc->vr_cdata.vr_tx_ring_map,
1446 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447 
1448 	ifp = sc->vr_ifp;
1449 	/*
1450 	 * Go through our tx list and free mbufs for those
1451 	 * frames that have been transmitted.
1452 	 */
1453 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1454 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1455 		txctl = le32toh(cur_tx->vr_ctl);
1456 		txstat = le32toh(cur_tx->vr_status);
1457 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1458 			break;
1459 
1460 		sc->vr_cdata.vr_tx_cnt--;
1461 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1462 		/* Only the first descriptor in the chain is valid. */
1463 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1464 			continue;
1465 
1466 		txd = &sc->vr_cdata.vr_txdesc[cons];
1467 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1468 		    __func__));
1469 
1470 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1471 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1472 			sc->vr_stat.tx_errors++;
1473 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1474 				/* Give up and restart Tx. */
1475 				sc->vr_stat.tx_abort++;
1476 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1477 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1478 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1479 				    txd->tx_dmamap);
1480 				m_freem(txd->tx_m);
1481 				txd->tx_m = NULL;
1482 				VR_INC(cons, VR_TX_RING_CNT);
1483 				sc->vr_cdata.vr_tx_cons = cons;
1484 				if (vr_tx_stop(sc) != 0) {
1485 					device_printf(sc->vr_dev,
1486 					    "%s: Tx shutdown error -- "
1487 					    "resetting\n", __func__);
1488 					sc->vr_flags |= VR_F_RESTART;
1489 					return;
1490 				}
1491 				vr_tx_start(sc);
1492 				break;
1493 			}
1494 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1495 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1496 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1497 				sc->vr_stat.tx_underrun++;
1498 				/* Retry and restart Tx. */
1499 				sc->vr_cdata.vr_tx_cnt++;
1500 				sc->vr_cdata.vr_tx_cons = cons;
1501 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1502 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1503 				    sc->vr_cdata.vr_tx_ring_map,
1504 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1505 				vr_tx_underrun(sc);
1506 				return;
1507 			}
1508 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1509 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1510 				sc->vr_stat.tx_collisions++;
1511 			}
1512 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1513 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1514 				sc->vr_stat.tx_late_collisions++;
1515 			}
1516 		} else {
1517 			sc->vr_stat.tx_ok++;
1518 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1519 		}
1520 
1521 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1522 		    BUS_DMASYNC_POSTWRITE);
1523 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1524 		if (sc->vr_revid < REV_ID_VT3071_A) {
1525 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1526 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1527 			sc->vr_stat.tx_collisions +=
1528 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1529 		} else {
1530 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1531 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1532 		}
1533 		m_freem(txd->tx_m);
1534 		txd->tx_m = NULL;
1535 	}
1536 
1537 	sc->vr_cdata.vr_tx_cons = cons;
1538 	if (sc->vr_cdata.vr_tx_cnt == 0)
1539 		sc->vr_watchdog_timer = 0;
1540 }
1541 
1542 static void
1543 vr_tick(void *xsc)
1544 {
1545 	struct vr_softc		*sc;
1546 	struct mii_data		*mii;
1547 
1548 	sc = (struct vr_softc *)xsc;
1549 
1550 	VR_LOCK_ASSERT(sc);
1551 
1552 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1553 		device_printf(sc->vr_dev, "restarting\n");
1554 		sc->vr_stat.num_restart++;
1555 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1556 		vr_init_locked(sc);
1557 		sc->vr_flags &= ~VR_F_RESTART;
1558 	}
1559 
1560 	mii = device_get_softc(sc->vr_miibus);
1561 	mii_tick(mii);
1562 	if ((sc->vr_flags & VR_F_LINK) == 0)
1563 		vr_miibus_statchg(sc->vr_dev);
1564 	vr_watchdog(sc);
1565 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1566 }
1567 
1568 #ifdef DEVICE_POLLING
1569 static poll_handler_t vr_poll;
1570 static poll_handler_t vr_poll_locked;
1571 
1572 static int
1573 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1574 {
1575 	struct vr_softc *sc;
1576 	int rx_npkts;
1577 
1578 	sc = ifp->if_softc;
1579 	rx_npkts = 0;
1580 
1581 	VR_LOCK(sc);
1582 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1583 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1584 	VR_UNLOCK(sc);
1585 	return (rx_npkts);
1586 }
1587 
1588 static int
1589 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1590 {
1591 	struct vr_softc *sc;
1592 	int rx_npkts;
1593 
1594 	sc = ifp->if_softc;
1595 
1596 	VR_LOCK_ASSERT(sc);
1597 
1598 	sc->rxcycles = count;
1599 	rx_npkts = vr_rxeof(sc);
1600 	vr_txeof(sc);
1601 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602 		vr_start_locked(ifp);
1603 
1604 	if (cmd == POLL_AND_CHECK_STATUS) {
1605 		uint16_t status;
1606 
1607 		/* Also check status register. */
1608 		status = CSR_READ_2(sc, VR_ISR);
1609 		if (status)
1610 			CSR_WRITE_2(sc, VR_ISR, status);
1611 
1612 		if ((status & VR_INTRS) == 0)
1613 			return (rx_npkts);
1614 
1615 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1616 		    VR_ISR_STATSOFLOW)) != 0) {
1617 			if (vr_error(sc, status) != 0)
1618 				return (rx_npkts);
1619 		}
1620 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1621 #ifdef	VR_SHOW_ERRORS
1622 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1623 			    __func__, status, VR_ISR_ERR_BITS);
1624 #endif
1625 			vr_rx_start(sc);
1626 		}
1627 	}
1628 	return (rx_npkts);
1629 }
1630 #endif /* DEVICE_POLLING */
1631 
1632 /* Back off the transmit threshold. */
1633 static void
1634 vr_tx_underrun(struct vr_softc *sc)
1635 {
1636 	int	thresh;
1637 
1638 	device_printf(sc->vr_dev, "Tx underrun -- ");
1639 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1640 		thresh = sc->vr_txthresh;
1641 		sc->vr_txthresh++;
1642 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1643 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1644 			printf("using store and forward mode\n");
1645 		} else
1646 			printf("increasing Tx threshold(%d -> %d)\n",
1647 			    vr_tx_threshold_tables[thresh].value,
1648 			    vr_tx_threshold_tables[thresh + 1].value);
1649 	} else
1650 		printf("\n");
1651 	sc->vr_stat.tx_underrun++;
1652 	if (vr_tx_stop(sc) != 0) {
1653 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1654 		    "resetting\n", __func__);
1655 		sc->vr_flags |= VR_F_RESTART;
1656 		return;
1657 	}
1658 	vr_tx_start(sc);
1659 }
1660 
1661 static int
1662 vr_intr(void *arg)
1663 {
1664 	struct vr_softc		*sc;
1665 	uint16_t		status;
1666 
1667 	sc = (struct vr_softc *)arg;
1668 
1669 	status = CSR_READ_2(sc, VR_ISR);
1670 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1671 		return (FILTER_STRAY);
1672 
1673 	/* Disable interrupts. */
1674 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1675 
1676 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1677 
1678 	return (FILTER_HANDLED);
1679 }
1680 
1681 static void
1682 vr_int_task(void *arg, int npending)
1683 {
1684 	struct vr_softc		*sc;
1685 	struct ifnet		*ifp;
1686 	uint16_t		status;
1687 
1688 	sc = (struct vr_softc *)arg;
1689 
1690 	VR_LOCK(sc);
1691 
1692 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1693 		goto done_locked;
1694 
1695 	status = CSR_READ_2(sc, VR_ISR);
1696 	ifp = sc->vr_ifp;
1697 #ifdef DEVICE_POLLING
1698 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1699 		goto done_locked;
1700 #endif
1701 
1702 	/* Suppress unwanted interrupts. */
1703 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1704 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1705 		CSR_WRITE_2(sc, VR_IMR, 0);
1706 		CSR_WRITE_2(sc, VR_ISR, status);
1707 		goto done_locked;
1708 	}
1709 
1710 	for (; (status & VR_INTRS) != 0;) {
1711 		CSR_WRITE_2(sc, VR_ISR, status);
1712 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1713 		    VR_ISR_STATSOFLOW)) != 0) {
1714 			if (vr_error(sc, status) != 0) {
1715 				VR_UNLOCK(sc);
1716 				return;
1717 			}
1718 		}
1719 		vr_rxeof(sc);
1720 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1721 #ifdef	VR_SHOW_ERRORS
1722 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1723 			    __func__, status, VR_ISR_ERR_BITS);
1724 #endif
1725 			/* Restart Rx if RxDMA SM was stopped. */
1726 			vr_rx_start(sc);
1727 		}
1728 		vr_txeof(sc);
1729 
1730 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1731 			vr_start_locked(ifp);
1732 
1733 		status = CSR_READ_2(sc, VR_ISR);
1734 	}
1735 
1736 	/* Re-enable interrupts. */
1737 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1738 
1739 done_locked:
1740 	VR_UNLOCK(sc);
1741 }
1742 
1743 static int
1744 vr_error(struct vr_softc *sc, uint16_t status)
1745 {
1746 	uint16_t pcis;
1747 
1748 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1749 	if ((status & VR_ISR_BUSERR) != 0) {
1750 		status &= ~VR_ISR_BUSERR;
1751 		sc->vr_stat.bus_errors++;
1752 		/* Disable further interrupts. */
1753 		CSR_WRITE_2(sc, VR_IMR, 0);
1754 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1755 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1756 		    "resetting\n", pcis);
1757 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1758 		sc->vr_flags |= VR_F_RESTART;
1759 		return (EAGAIN);
1760 	}
1761 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1762 		/* Link state change, duplex changes etc. */
1763 		status &= ~VR_ISR_LINKSTAT2;
1764 	}
1765 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1766 		status &= ~VR_ISR_STATSOFLOW;
1767 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1768 			/* Update MIB counters. */
1769 		}
1770 	}
1771 
1772 	if (status != 0)
1773 		device_printf(sc->vr_dev,
1774 		    "unhandled interrupt, status = 0x%04x\n", status);
1775 	return (0);
1776 }
1777 
1778 /*
1779  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1780  * pointers to the fragment pointers.
1781  */
1782 static int
1783 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1784 {
1785 	struct vr_txdesc	*txd;
1786 	struct vr_desc		*desc;
1787 	struct mbuf		*m;
1788 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1789 	uint32_t		csum_flags, txctl;
1790 	int			error, i, nsegs, prod, si;
1791 	int			padlen;
1792 
1793 	VR_LOCK_ASSERT(sc);
1794 
1795 	M_ASSERTPKTHDR((*m_head));
1796 
1797 	/*
1798 	 * Some VIA Rhine wants packet buffers to be longword
1799 	 * aligned, but very often our mbufs aren't. Rather than
1800 	 * waste time trying to decide when to copy and when not
1801 	 * to copy, just do it all the time.
1802 	 */
1803 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1804 		m = m_defrag(*m_head, M_NOWAIT);
1805 		if (m == NULL) {
1806 			m_freem(*m_head);
1807 			*m_head = NULL;
1808 			return (ENOBUFS);
1809 		}
1810 		*m_head = m;
1811 	}
1812 
1813 	/*
1814 	 * The Rhine chip doesn't auto-pad, so we have to make
1815 	 * sure to pad short frames out to the minimum frame length
1816 	 * ourselves.
1817 	 */
1818 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1819 		m = *m_head;
1820 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1821 		if (M_WRITABLE(m) == 0) {
1822 			/* Get a writable copy. */
1823 			m = m_dup(*m_head, M_NOWAIT);
1824 			m_freem(*m_head);
1825 			if (m == NULL) {
1826 				*m_head = NULL;
1827 				return (ENOBUFS);
1828 			}
1829 			*m_head = m;
1830 		}
1831 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1832 			m = m_defrag(m, M_NOWAIT);
1833 			if (m == NULL) {
1834 				m_freem(*m_head);
1835 				*m_head = NULL;
1836 				return (ENOBUFS);
1837 			}
1838 		}
1839 		/*
1840 		 * Manually pad short frames, and zero the pad space
1841 		 * to avoid leaking data.
1842 		 */
1843 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1844 		m->m_pkthdr.len += padlen;
1845 		m->m_len = m->m_pkthdr.len;
1846 		*m_head = m;
1847 	}
1848 
1849 	prod = sc->vr_cdata.vr_tx_prod;
1850 	txd = &sc->vr_cdata.vr_txdesc[prod];
1851 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1852 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1853 	if (error == EFBIG) {
1854 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1855 		if (m == NULL) {
1856 			m_freem(*m_head);
1857 			*m_head = NULL;
1858 			return (ENOBUFS);
1859 		}
1860 		*m_head = m;
1861 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1862 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1863 		if (error != 0) {
1864 			m_freem(*m_head);
1865 			*m_head = NULL;
1866 			return (error);
1867 		}
1868 	} else if (error != 0)
1869 		return (error);
1870 	if (nsegs == 0) {
1871 		m_freem(*m_head);
1872 		*m_head = NULL;
1873 		return (EIO);
1874 	}
1875 
1876 	/* Check number of available descriptors. */
1877 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1878 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1879 		return (ENOBUFS);
1880 	}
1881 
1882 	txd->tx_m = *m_head;
1883 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1884 	    BUS_DMASYNC_PREWRITE);
1885 
1886 	/* Set checksum offload. */
1887 	csum_flags = 0;
1888 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1889 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1890 			csum_flags |= VR_TXCTL_IPCSUM;
1891 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1892 			csum_flags |= VR_TXCTL_TCPCSUM;
1893 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1894 			csum_flags |= VR_TXCTL_UDPCSUM;
1895 	}
1896 
1897 	/*
1898 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1899 	 * is required for all descriptors regardless of single or
1900 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1901 	 * the first descriptor for a multi-fragmented frames. Without
1902 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1903 	 * send any frames.
1904 	 */
1905 	si = prod;
1906 	for (i = 0; i < nsegs; i++) {
1907 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1908 		desc->vr_status = 0;
1909 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1910 		if (i == 0)
1911 			txctl |= VR_TXCTL_FIRSTFRAG;
1912 		desc->vr_ctl = htole32(txctl);
1913 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1914 		sc->vr_cdata.vr_tx_cnt++;
1915 		VR_INC(prod, VR_TX_RING_CNT);
1916 	}
1917 	/* Update producer index. */
1918 	sc->vr_cdata.vr_tx_prod = prod;
1919 
1920 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1921 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1922 
1923 	/*
1924 	 * Set EOP on the last desciptor and reuqest Tx completion
1925 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1926 	 */
1927 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1928 	if (sc->vr_cdata.vr_tx_pkts == 0)
1929 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1930 	else
1931 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1932 
1933 	/* Lastly turn the first descriptor ownership to hardware. */
1934 	desc = &sc->vr_rdata.vr_tx_ring[si];
1935 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1936 
1937 	/* Sync descriptors. */
1938 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1939 	    sc->vr_cdata.vr_tx_ring_map,
1940 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941 
1942 	return (0);
1943 }
1944 
1945 static void
1946 vr_start(struct ifnet *ifp)
1947 {
1948 	struct vr_softc		*sc;
1949 
1950 	sc = ifp->if_softc;
1951 	VR_LOCK(sc);
1952 	vr_start_locked(ifp);
1953 	VR_UNLOCK(sc);
1954 }
1955 
1956 static void
1957 vr_start_locked(struct ifnet *ifp)
1958 {
1959 	struct vr_softc		*sc;
1960 	struct mbuf		*m_head;
1961 	int			enq;
1962 
1963 	sc = ifp->if_softc;
1964 
1965 	VR_LOCK_ASSERT(sc);
1966 
1967 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1968 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1969 		return;
1970 
1971 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1972 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1973 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1974 		if (m_head == NULL)
1975 			break;
1976 		/*
1977 		 * Pack the data into the transmit ring. If we
1978 		 * don't have room, set the OACTIVE flag and wait
1979 		 * for the NIC to drain the ring.
1980 		 */
1981 		if (vr_encap(sc, &m_head)) {
1982 			if (m_head == NULL)
1983 				break;
1984 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1985 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1986 			break;
1987 		}
1988 
1989 		enq++;
1990 		/*
1991 		 * If there's a BPF listener, bounce a copy of this frame
1992 		 * to him.
1993 		 */
1994 		ETHER_BPF_MTAP(ifp, m_head);
1995 	}
1996 
1997 	if (enq > 0) {
1998 		/* Tell the chip to start transmitting. */
1999 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2000 		/* Set a timeout in case the chip goes out to lunch. */
2001 		sc->vr_watchdog_timer = 5;
2002 	}
2003 }
2004 
2005 static void
2006 vr_init(void *xsc)
2007 {
2008 	struct vr_softc		*sc;
2009 
2010 	sc = (struct vr_softc *)xsc;
2011 	VR_LOCK(sc);
2012 	vr_init_locked(sc);
2013 	VR_UNLOCK(sc);
2014 }
2015 
2016 static void
2017 vr_init_locked(struct vr_softc *sc)
2018 {
2019 	struct ifnet		*ifp;
2020 	struct mii_data		*mii;
2021 	bus_addr_t		addr;
2022 	int			i;
2023 
2024 	VR_LOCK_ASSERT(sc);
2025 
2026 	ifp = sc->vr_ifp;
2027 	mii = device_get_softc(sc->vr_miibus);
2028 
2029 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030 		return;
2031 
2032 	/* Cancel pending I/O and free all RX/TX buffers. */
2033 	vr_stop(sc);
2034 	vr_reset(sc);
2035 
2036 	/* Set our station address. */
2037 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2038 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2039 
2040 	/* Set DMA size. */
2041 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2042 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2043 
2044 	/*
2045 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2046 	 * so we must set both.
2047 	 */
2048 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2049 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2050 
2051 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2052 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2053 
2054 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2055 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2056 
2057 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2058 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2059 
2060 	/* Init circular RX list. */
2061 	if (vr_rx_ring_init(sc) != 0) {
2062 		device_printf(sc->vr_dev,
2063 		    "initialization failed: no memory for rx buffers\n");
2064 		vr_stop(sc);
2065 		return;
2066 	}
2067 
2068 	/* Init tx descriptors. */
2069 	vr_tx_ring_init(sc);
2070 
2071 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2072 		uint8_t vcam[2] = { 0, 0 };
2073 
2074 		/* Disable VLAN hardware tag insertion/stripping. */
2075 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2076 		/* Disable VLAN hardware filtering. */
2077 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2078 		/* Disable all CAM entries. */
2079 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2080 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2081 		/* Enable the first VLAN CAM. */
2082 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2083 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2084 	}
2085 
2086 	/*
2087 	 * Set up receive filter.
2088 	 */
2089 	vr_set_filter(sc);
2090 
2091 	/*
2092 	 * Load the address of the RX ring.
2093 	 */
2094 	addr = VR_RX_RING_ADDR(sc, 0);
2095 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2096 	/*
2097 	 * Load the address of the TX ring.
2098 	 */
2099 	addr = VR_TX_RING_ADDR(sc, 0);
2100 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2101 	/* Default : full-duplex, no Tx poll. */
2102 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2103 
2104 	/* Set flow-control parameters for Rhine III. */
2105 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2106 		/*
2107 		 * Configure Rx buffer count available for incoming
2108 		 * packet.
2109 		 * Even though data sheet says almost nothing about
2110 		 * this register, this register should be updated
2111 		 * whenever driver adds new RX buffers to controller.
2112 		 * Otherwise, XON frame is not sent to link partner
2113 		 * even if controller has enough RX buffers and you
2114 		 * would be isolated from network.
2115 		 * The controller is not smart enough to know number
2116 		 * of available RX buffers so driver have to let
2117 		 * controller know how many RX buffers are posted.
2118 		 * In other words, this register works like a residue
2119 		 * counter for RX buffers and should be initialized
2120 		 * to the number of total RX buffers  - 1 before
2121 		 * enabling RX MAC.  Note, this register is 8bits so
2122 		 * it effectively limits the maximum number of RX
2123 		 * buffer to be configured by controller is 255.
2124 		 */
2125 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2126 		/*
2127 		 * Tx pause low threshold : 8 free receive buffers
2128 		 * Tx pause XON high threshold : 24 free receive buffers
2129 		 */
2130 		CSR_WRITE_1(sc, VR_FLOWCR1,
2131 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2132 		/* Set Tx pause timer. */
2133 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2134 	}
2135 
2136 	/* Enable receiver and transmitter. */
2137 	CSR_WRITE_1(sc, VR_CR0,
2138 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2139 
2140 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2141 #ifdef DEVICE_POLLING
2142 	/*
2143 	 * Disable interrupts if we are polling.
2144 	 */
2145 	if (ifp->if_capenable & IFCAP_POLLING)
2146 		CSR_WRITE_2(sc, VR_IMR, 0);
2147 	else
2148 #endif
2149 	/*
2150 	 * Enable interrupts and disable MII intrs.
2151 	 */
2152 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2153 	if (sc->vr_revid > REV_ID_VT6102_A)
2154 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2155 
2156 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2157 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2158 
2159 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2160 	mii_mediachg(mii);
2161 
2162 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2163 }
2164 
2165 /*
2166  * Set media options.
2167  */
2168 static int
2169 vr_ifmedia_upd(struct ifnet *ifp)
2170 {
2171 	struct vr_softc		*sc;
2172 	struct mii_data		*mii;
2173 	struct mii_softc	*miisc;
2174 	int			error;
2175 
2176 	sc = ifp->if_softc;
2177 	VR_LOCK(sc);
2178 	mii = device_get_softc(sc->vr_miibus);
2179 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2180 		PHY_RESET(miisc);
2181 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2182 	error = mii_mediachg(mii);
2183 	VR_UNLOCK(sc);
2184 
2185 	return (error);
2186 }
2187 
2188 /*
2189  * Report current media status.
2190  */
2191 static void
2192 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2193 {
2194 	struct vr_softc		*sc;
2195 	struct mii_data		*mii;
2196 
2197 	sc = ifp->if_softc;
2198 	mii = device_get_softc(sc->vr_miibus);
2199 	VR_LOCK(sc);
2200 	if ((ifp->if_flags & IFF_UP) == 0) {
2201 		VR_UNLOCK(sc);
2202 		return;
2203 	}
2204 	mii_pollstat(mii);
2205 	ifmr->ifm_active = mii->mii_media_active;
2206 	ifmr->ifm_status = mii->mii_media_status;
2207 	VR_UNLOCK(sc);
2208 }
2209 
2210 static int
2211 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2212 {
2213 	struct vr_softc		*sc;
2214 	struct ifreq		*ifr;
2215 	struct mii_data		*mii;
2216 	int			error, mask;
2217 
2218 	sc = ifp->if_softc;
2219 	ifr = (struct ifreq *)data;
2220 	error = 0;
2221 
2222 	switch (command) {
2223 	case SIOCSIFFLAGS:
2224 		VR_LOCK(sc);
2225 		if (ifp->if_flags & IFF_UP) {
2226 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2227 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2228 				    (IFF_PROMISC | IFF_ALLMULTI))
2229 					vr_set_filter(sc);
2230 			} else {
2231 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2232 					vr_init_locked(sc);
2233 			}
2234 		} else {
2235 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2236 				vr_stop(sc);
2237 		}
2238 		sc->vr_if_flags = ifp->if_flags;
2239 		VR_UNLOCK(sc);
2240 		break;
2241 	case SIOCADDMULTI:
2242 	case SIOCDELMULTI:
2243 		VR_LOCK(sc);
2244 		vr_set_filter(sc);
2245 		VR_UNLOCK(sc);
2246 		break;
2247 	case SIOCGIFMEDIA:
2248 	case SIOCSIFMEDIA:
2249 		mii = device_get_softc(sc->vr_miibus);
2250 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2251 		break;
2252 	case SIOCSIFCAP:
2253 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2254 #ifdef DEVICE_POLLING
2255 		if (mask & IFCAP_POLLING) {
2256 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2257 				error = ether_poll_register(vr_poll, ifp);
2258 				if (error != 0)
2259 					break;
2260 				VR_LOCK(sc);
2261 				/* Disable interrupts. */
2262 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2263 				ifp->if_capenable |= IFCAP_POLLING;
2264 				VR_UNLOCK(sc);
2265 			} else {
2266 				error = ether_poll_deregister(ifp);
2267 				/* Enable interrupts. */
2268 				VR_LOCK(sc);
2269 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2270 				ifp->if_capenable &= ~IFCAP_POLLING;
2271 				VR_UNLOCK(sc);
2272 			}
2273 		}
2274 #endif /* DEVICE_POLLING */
2275 		if ((mask & IFCAP_TXCSUM) != 0 &&
2276 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2277 			ifp->if_capenable ^= IFCAP_TXCSUM;
2278 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2279 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2280 			else
2281 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2282 		}
2283 		if ((mask & IFCAP_RXCSUM) != 0 &&
2284 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2285 			ifp->if_capenable ^= IFCAP_RXCSUM;
2286 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2287 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2288 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2289 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2290 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2291 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2292 		break;
2293 	default:
2294 		error = ether_ioctl(ifp, command, data);
2295 		break;
2296 	}
2297 
2298 	return (error);
2299 }
2300 
2301 static void
2302 vr_watchdog(struct vr_softc *sc)
2303 {
2304 	struct ifnet		*ifp;
2305 
2306 	VR_LOCK_ASSERT(sc);
2307 
2308 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2309 		return;
2310 
2311 	ifp = sc->vr_ifp;
2312 	/*
2313 	 * Reclaim first as we don't request interrupt for every packets.
2314 	 */
2315 	vr_txeof(sc);
2316 	if (sc->vr_cdata.vr_tx_cnt == 0)
2317 		return;
2318 
2319 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2320 		if (bootverbose)
2321 			if_printf(sc->vr_ifp, "watchdog timeout "
2322 			   "(missed link)\n");
2323 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2324 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2325 		vr_init_locked(sc);
2326 		return;
2327 	}
2328 
2329 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2330 	if_printf(ifp, "watchdog timeout\n");
2331 
2332 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2333 	vr_init_locked(sc);
2334 
2335 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2336 		vr_start_locked(ifp);
2337 }
2338 
2339 static void
2340 vr_tx_start(struct vr_softc *sc)
2341 {
2342 	bus_addr_t	addr;
2343 	uint8_t		cmd;
2344 
2345 	cmd = CSR_READ_1(sc, VR_CR0);
2346 	if ((cmd & VR_CR0_TX_ON) == 0) {
2347 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2348 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2349 		cmd |= VR_CR0_TX_ON;
2350 		CSR_WRITE_1(sc, VR_CR0, cmd);
2351 	}
2352 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2353 		sc->vr_watchdog_timer = 5;
2354 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2355 	}
2356 }
2357 
2358 static void
2359 vr_rx_start(struct vr_softc *sc)
2360 {
2361 	bus_addr_t	addr;
2362 	uint8_t		cmd;
2363 
2364 	cmd = CSR_READ_1(sc, VR_CR0);
2365 	if ((cmd & VR_CR0_RX_ON) == 0) {
2366 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2367 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2368 		cmd |= VR_CR0_RX_ON;
2369 		CSR_WRITE_1(sc, VR_CR0, cmd);
2370 	}
2371 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2372 }
2373 
2374 static int
2375 vr_tx_stop(struct vr_softc *sc)
2376 {
2377 	int		i;
2378 	uint8_t		cmd;
2379 
2380 	cmd = CSR_READ_1(sc, VR_CR0);
2381 	if ((cmd & VR_CR0_TX_ON) != 0) {
2382 		cmd &= ~VR_CR0_TX_ON;
2383 		CSR_WRITE_1(sc, VR_CR0, cmd);
2384 		for (i = VR_TIMEOUT; i > 0; i--) {
2385 			DELAY(5);
2386 			cmd = CSR_READ_1(sc, VR_CR0);
2387 			if ((cmd & VR_CR0_TX_ON) == 0)
2388 				break;
2389 		}
2390 		if (i == 0)
2391 			return (ETIMEDOUT);
2392 	}
2393 	return (0);
2394 }
2395 
2396 static int
2397 vr_rx_stop(struct vr_softc *sc)
2398 {
2399 	int		i;
2400 	uint8_t		cmd;
2401 
2402 	cmd = CSR_READ_1(sc, VR_CR0);
2403 	if ((cmd & VR_CR0_RX_ON) != 0) {
2404 		cmd &= ~VR_CR0_RX_ON;
2405 		CSR_WRITE_1(sc, VR_CR0, cmd);
2406 		for (i = VR_TIMEOUT; i > 0; i--) {
2407 			DELAY(5);
2408 			cmd = CSR_READ_1(sc, VR_CR0);
2409 			if ((cmd & VR_CR0_RX_ON) == 0)
2410 				break;
2411 		}
2412 		if (i == 0)
2413 			return (ETIMEDOUT);
2414 	}
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Stop the adapter and free any mbufs allocated to the
2420  * RX and TX lists.
2421  */
2422 static void
2423 vr_stop(struct vr_softc *sc)
2424 {
2425 	struct vr_txdesc	*txd;
2426 	struct vr_rxdesc	*rxd;
2427 	struct ifnet		*ifp;
2428 	int			i;
2429 
2430 	VR_LOCK_ASSERT(sc);
2431 
2432 	ifp = sc->vr_ifp;
2433 	sc->vr_watchdog_timer = 0;
2434 
2435 	callout_stop(&sc->vr_stat_callout);
2436 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2437 
2438 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2439 	if (vr_rx_stop(sc) != 0)
2440 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2441 	if (vr_tx_stop(sc) != 0)
2442 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2443 	/* Clear pending interrupts. */
2444 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2445 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2446 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2447 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2448 
2449 	/*
2450 	 * Free RX and TX mbufs still in the queues.
2451 	 */
2452 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2453 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2454 		if (rxd->rx_m != NULL) {
2455 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2456 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2457 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2458 			    rxd->rx_dmamap);
2459 			m_freem(rxd->rx_m);
2460 			rxd->rx_m = NULL;
2461 		}
2462         }
2463 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2464 		txd = &sc->vr_cdata.vr_txdesc[i];
2465 		if (txd->tx_m != NULL) {
2466 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2467 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2468 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2469 			    txd->tx_dmamap);
2470 			m_freem(txd->tx_m);
2471 			txd->tx_m = NULL;
2472 		}
2473         }
2474 }
2475 
2476 /*
2477  * Stop all chip I/O so that the kernel's probe routines don't
2478  * get confused by errant DMAs when rebooting.
2479  */
2480 static int
2481 vr_shutdown(device_t dev)
2482 {
2483 
2484 	return (vr_suspend(dev));
2485 }
2486 
2487 static int
2488 vr_suspend(device_t dev)
2489 {
2490 	struct vr_softc		*sc;
2491 
2492 	sc = device_get_softc(dev);
2493 
2494 	VR_LOCK(sc);
2495 	vr_stop(sc);
2496 	vr_setwol(sc);
2497 	sc->vr_flags |= VR_F_SUSPENDED;
2498 	VR_UNLOCK(sc);
2499 
2500 	return (0);
2501 }
2502 
2503 static int
2504 vr_resume(device_t dev)
2505 {
2506 	struct vr_softc		*sc;
2507 	struct ifnet		*ifp;
2508 
2509 	sc = device_get_softc(dev);
2510 
2511 	VR_LOCK(sc);
2512 	ifp = sc->vr_ifp;
2513 	vr_clrwol(sc);
2514 	vr_reset(sc);
2515 	if (ifp->if_flags & IFF_UP)
2516 		vr_init_locked(sc);
2517 
2518 	sc->vr_flags &= ~VR_F_SUSPENDED;
2519 	VR_UNLOCK(sc);
2520 
2521 	return (0);
2522 }
2523 
2524 static void
2525 vr_setwol(struct vr_softc *sc)
2526 {
2527 	struct ifnet		*ifp;
2528 	int			pmc;
2529 	uint16_t		pmstat;
2530 	uint8_t			v;
2531 
2532 	VR_LOCK_ASSERT(sc);
2533 
2534 	if (sc->vr_revid < REV_ID_VT6102_A ||
2535 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2536 		return;
2537 
2538 	ifp = sc->vr_ifp;
2539 
2540 	/* Clear WOL configuration. */
2541 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2542 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2543 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2544 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2545 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2546 		/* Newer Rhine III supports two additional patterns. */
2547 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2548 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2549 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2550 	}
2551 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2552 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2553 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2554 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2555 	/*
2556 	 * It seems that multicast wakeup frames require programming pattern
2557 	 * registers and valid CRC as well as pattern mask for each pattern.
2558 	 * While it's possible to setup such a pattern it would complicate
2559 	 * WOL configuration so ignore multicast wakeup frames.
2560 	 */
2561 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2562 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2563 		v = CSR_READ_1(sc, VR_STICKHW);
2564 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2565 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2566 	}
2567 
2568 	/* Put hardware into sleep. */
2569 	v = CSR_READ_1(sc, VR_STICKHW);
2570 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2571 	CSR_WRITE_1(sc, VR_STICKHW, v);
2572 
2573 	/* Request PME if WOL is requested. */
2574 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2575 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2576 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2577 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2578 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2579 }
2580 
2581 static void
2582 vr_clrwol(struct vr_softc *sc)
2583 {
2584 	uint8_t			v;
2585 
2586 	VR_LOCK_ASSERT(sc);
2587 
2588 	if (sc->vr_revid < REV_ID_VT6102_A)
2589 		return;
2590 
2591 	/* Take hardware out of sleep. */
2592 	v = CSR_READ_1(sc, VR_STICKHW);
2593 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2594 	CSR_WRITE_1(sc, VR_STICKHW, v);
2595 
2596 	/* Clear WOL configuration as WOL may interfere normal operation. */
2597 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2598 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2599 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2600 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2601 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2602 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2603 		/* Newer Rhine III supports two additional patterns. */
2604 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2605 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2606 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2607 	}
2608 }
2609 
2610 static int
2611 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2612 {
2613 	struct vr_softc		*sc;
2614 	struct vr_statistics	*stat;
2615 	int			error;
2616 	int			result;
2617 
2618 	result = -1;
2619 	error = sysctl_handle_int(oidp, &result, 0, req);
2620 
2621 	if (error != 0 || req->newptr == NULL)
2622 		return (error);
2623 
2624 	if (result == 1) {
2625 		sc = (struct vr_softc *)arg1;
2626 		stat = &sc->vr_stat;
2627 
2628 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2629 		printf("Outbound good frames : %ju\n",
2630 		    (uintmax_t)stat->tx_ok);
2631 		printf("Inbound good frames : %ju\n",
2632 		    (uintmax_t)stat->rx_ok);
2633 		printf("Outbound errors : %u\n", stat->tx_errors);
2634 		printf("Inbound errors : %u\n", stat->rx_errors);
2635 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2636 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2637 		printf("Inbound FIFO overflows : %d\n",
2638 		    stat->rx_fifo_overflows);
2639 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2640 		printf("Inbound frame alignment errors : %u\n",
2641 		    stat->rx_alignment);
2642 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2643 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2644 		printf("Outbound aborted with excessive collisions : %u\n",
2645 		    stat->tx_abort);
2646 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2647 		printf("Outbound late collisions : %u\n",
2648 		    stat->tx_late_collisions);
2649 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2650 		printf("PCI bus errors : %u\n", stat->bus_errors);
2651 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2652 		    stat->num_restart);
2653 	}
2654 
2655 	return (error);
2656 }
2657