xref: /freebsd/sys/dev/vr/if_vr.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static const struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	const char		*vr_name;
122 } vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static int vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static int vr_intr(void *);
169 static void vr_int_task(void *, int);
170 static void vr_start(struct ifnet *);
171 static void vr_start_locked(struct ifnet *);
172 static int vr_encap(struct vr_softc *, struct mbuf **);
173 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
174 static void vr_init(void *);
175 static void vr_init_locked(struct vr_softc *);
176 static void vr_tx_start(struct vr_softc *);
177 static void vr_rx_start(struct vr_softc *);
178 static int vr_tx_stop(struct vr_softc *);
179 static int vr_rx_stop(struct vr_softc *);
180 static void vr_stop(struct vr_softc *);
181 static void vr_watchdog(struct vr_softc *);
182 static int vr_ifmedia_upd(struct ifnet *);
183 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
184 
185 static int vr_miibus_readreg(device_t, int, int);
186 static int vr_miibus_writereg(device_t, int, int, int);
187 static void vr_miibus_statchg(device_t);
188 
189 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
190 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
191 static void vr_set_filter(struct vr_softc *);
192 static void vr_reset(const struct vr_softc *);
193 static int vr_tx_ring_init(struct vr_softc *);
194 static int vr_rx_ring_init(struct vr_softc *);
195 static void vr_setwol(struct vr_softc *);
196 static void vr_clrwol(struct vr_softc *);
197 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
198 
199 static const struct vr_tx_threshold_table {
200 	int tx_cfg;
201 	int bcr_cfg;
202 	int value;
203 } vr_tx_threshold_tables[] = {
204 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
205 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
206 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
207 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
208 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
209 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
210 };
211 
212 static device_method_t vr_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		vr_probe),
215 	DEVMETHOD(device_attach,	vr_attach),
216 	DEVMETHOD(device_detach, 	vr_detach),
217 	DEVMETHOD(device_shutdown,	vr_shutdown),
218 	DEVMETHOD(device_suspend,	vr_suspend),
219 	DEVMETHOD(device_resume,	vr_resume),
220 
221 	/* MII interface */
222 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
225 
226 	DEVMETHOD_END
227 };
228 
229 static driver_t vr_driver = {
230 	"vr",
231 	vr_methods,
232 	sizeof(struct vr_softc)
233 };
234 
235 static devclass_t vr_devclass;
236 
237 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
238 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
239 
240 static int
241 vr_miibus_readreg(device_t dev, int phy, int reg)
242 {
243 	struct vr_softc		*sc;
244 	int			i;
245 
246 	sc = device_get_softc(dev);
247 
248 	/* Set the register address. */
249 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
250 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
251 
252 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
253 		DELAY(1);
254 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
255 			break;
256 	}
257 	if (i == VR_MII_TIMEOUT)
258 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
259 
260 	return (CSR_READ_2(sc, VR_MIIDATA));
261 }
262 
263 static int
264 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
265 {
266 	struct vr_softc		*sc;
267 	int			i;
268 
269 	sc = device_get_softc(dev);
270 
271 	/* Set the register address and data to write. */
272 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
273 	CSR_WRITE_2(sc, VR_MIIDATA, data);
274 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
275 
276 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
277 		DELAY(1);
278 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
279 			break;
280 	}
281 	if (i == VR_MII_TIMEOUT)
282 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
283 		    reg);
284 
285 	return (0);
286 }
287 
288 /*
289  * In order to fiddle with the
290  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
291  * first have to put the transmit and/or receive logic in the idle state.
292  */
293 static void
294 vr_miibus_statchg(device_t dev)
295 {
296 	struct vr_softc		*sc;
297 	struct mii_data		*mii;
298 	struct ifnet		*ifp;
299 	int			lfdx, mfdx;
300 	uint8_t			cr0, cr1, fc;
301 
302 	sc = device_get_softc(dev);
303 	mii = device_get_softc(sc->vr_miibus);
304 	ifp = sc->vr_ifp;
305 	if (mii == NULL || ifp == NULL ||
306 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
307 		return;
308 
309 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
310 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
311 	    (IFM_ACTIVE | IFM_AVALID)) {
312 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
313 		case IFM_10_T:
314 		case IFM_100_TX:
315 			sc->vr_flags |= VR_F_LINK;
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 
322 	if ((sc->vr_flags & VR_F_LINK) != 0) {
323 		cr0 = CSR_READ_1(sc, VR_CR0);
324 		cr1 = CSR_READ_1(sc, VR_CR1);
325 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
326 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
327 		if (mfdx != lfdx) {
328 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
329 				if (vr_tx_stop(sc) != 0 ||
330 				    vr_rx_stop(sc) != 0) {
331 					device_printf(sc->vr_dev,
332 					    "%s: Tx/Rx shutdown error -- "
333 					    "resetting\n", __func__);
334 					sc->vr_flags |= VR_F_RESTART;
335 					VR_UNLOCK(sc);
336 					return;
337 				}
338 			}
339 			if (lfdx)
340 				cr1 |= VR_CR1_FULLDUPLEX;
341 			else
342 				cr1 &= ~VR_CR1_FULLDUPLEX;
343 			CSR_WRITE_1(sc, VR_CR1, cr1);
344 		}
345 		fc = 0;
346 		/* Configure flow-control. */
347 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
348 			fc = CSR_READ_1(sc, VR_FLOWCR1);
349 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
350 			if ((IFM_OPTIONS(mii->mii_media_active) &
351 			    IFM_ETH_RXPAUSE) != 0)
352 				fc |= VR_FLOWCR1_RXPAUSE;
353 			if ((IFM_OPTIONS(mii->mii_media_active) &
354 			    IFM_ETH_TXPAUSE) != 0) {
355 				fc |= VR_FLOWCR1_TXPAUSE;
356 				sc->vr_flags |= VR_F_TXPAUSE;
357 			}
358 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
359 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
360 			/* No Tx puase capability available for Rhine II. */
361 			fc = CSR_READ_1(sc, VR_MISC_CR0);
362 			fc &= ~VR_MISCCR0_RXPAUSE;
363 			if ((IFM_OPTIONS(mii->mii_media_active) &
364 			    IFM_ETH_RXPAUSE) != 0)
365 				fc |= VR_MISCCR0_RXPAUSE;
366 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
367 		}
368 		vr_rx_start(sc);
369 		vr_tx_start(sc);
370 	} else {
371 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
372 			device_printf(sc->vr_dev,
373 			    "%s: Tx/Rx shutdown error -- resetting\n",
374 			    __func__);
375 			sc->vr_flags |= VR_F_RESTART;
376 		}
377 	}
378 }
379 
380 
381 static void
382 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
383 {
384 
385 	if (type == VR_MCAST_CAM)
386 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
387 	else
388 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
389 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
390 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
391 }
392 
393 static int
394 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
395 {
396 	int	i;
397 
398 	if (type == VR_MCAST_CAM) {
399 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
400 			return (EINVAL);
401 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
402 	} else
403 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
404 
405 	/* Set CAM entry address. */
406 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
407 	/* Set CAM entry data. */
408 	if (type == VR_MCAST_CAM) {
409 		for (i = 0; i < ETHER_ADDR_LEN; i++)
410 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
411 	} else {
412 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
413 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
414 	}
415 	DELAY(10);
416 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
417 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
418 	for (i = 0; i < VR_TIMEOUT; i++) {
419 		DELAY(1);
420 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
421 			break;
422 	}
423 
424 	if (i == VR_TIMEOUT)
425 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
426 		    __func__);
427 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
428 
429 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
430 }
431 
432 /*
433  * Program the 64-bit multicast hash filter.
434  */
435 static void
436 vr_set_filter(struct vr_softc *sc)
437 {
438 	struct ifnet		*ifp;
439 	int			h;
440 	uint32_t		hashes[2] = { 0, 0 };
441 	struct ifmultiaddr	*ifma;
442 	uint8_t			rxfilt;
443 	int			error, mcnt;
444 	uint32_t		cam_mask;
445 
446 	VR_LOCK_ASSERT(sc);
447 
448 	ifp = sc->vr_ifp;
449 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
450 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
451 	    VR_RXCFG_RX_MULTI);
452 	if (ifp->if_flags & IFF_BROADCAST)
453 		rxfilt |= VR_RXCFG_RX_BROAD;
454 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
455 		rxfilt |= VR_RXCFG_RX_MULTI;
456 		if (ifp->if_flags & IFF_PROMISC)
457 			rxfilt |= VR_RXCFG_RX_PROMISC;
458 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
459 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
460 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
461 		return;
462 	}
463 
464 	/* Now program new ones. */
465 	error = 0;
466 	mcnt = 0;
467 	if_maddr_rlock(ifp);
468 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
469 		/*
470 		 * For hardwares that have CAM capability, use
471 		 * 32 entries multicast perfect filter.
472 		 */
473 		cam_mask = 0;
474 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
475 			if (ifma->ifma_addr->sa_family != AF_LINK)
476 				continue;
477 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
478 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
479 			if (error != 0) {
480 				cam_mask = 0;
481 				break;
482 			}
483 			cam_mask |= 1 << mcnt;
484 			mcnt++;
485 		}
486 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
487 	}
488 
489 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
490 		/*
491 		 * If there are too many multicast addresses or
492 		 * setting multicast CAM filter failed, use hash
493 		 * table based filtering.
494 		 */
495 		mcnt = 0;
496 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
497 			if (ifma->ifma_addr->sa_family != AF_LINK)
498 				continue;
499 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
500 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
501 			if (h < 32)
502 				hashes[0] |= (1 << h);
503 			else
504 				hashes[1] |= (1 << (h - 32));
505 			mcnt++;
506 		}
507 	}
508 	if_maddr_runlock(ifp);
509 
510 	if (mcnt > 0)
511 		rxfilt |= VR_RXCFG_RX_MULTI;
512 
513 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
514 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
515 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
516 }
517 
518 static void
519 vr_reset(const struct vr_softc *sc)
520 {
521 	int		i;
522 
523 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
524 
525 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
526 	if (sc->vr_revid < REV_ID_VT6102_A) {
527 		/* VT86C100A needs more delay after reset. */
528 		DELAY(100);
529 	}
530 	for (i = 0; i < VR_TIMEOUT; i++) {
531 		DELAY(10);
532 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
533 			break;
534 	}
535 	if (i == VR_TIMEOUT) {
536 		if (sc->vr_revid < REV_ID_VT6102_A)
537 			device_printf(sc->vr_dev, "reset never completed!\n");
538 		else {
539 			/* Use newer force reset command. */
540 			device_printf(sc->vr_dev,
541 			    "Using force reset command.\n");
542 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
543 			/*
544 			 * Wait a little while for the chip to get its brains
545 			 * in order.
546 			 */
547 			DELAY(2000);
548 		}
549 	}
550 
551 }
552 
553 /*
554  * Probe for a VIA Rhine chip. Check the PCI vendor and device
555  * IDs against our list and return a match or NULL
556  */
557 static const struct vr_type *
558 vr_match(device_t dev)
559 {
560 	const struct vr_type	*t = vr_devs;
561 
562 	for (t = vr_devs; t->vr_name != NULL; t++)
563 		if ((pci_get_vendor(dev) == t->vr_vid) &&
564 		    (pci_get_device(dev) == t->vr_did))
565 			return (t);
566 	return (NULL);
567 }
568 
569 /*
570  * Probe for a VIA Rhine chip. Check the PCI vendor and device
571  * IDs against our list and return a device name if we find a match.
572  */
573 static int
574 vr_probe(device_t dev)
575 {
576 	const struct vr_type	*t;
577 
578 	t = vr_match(dev);
579 	if (t != NULL) {
580 		device_set_desc(dev, t->vr_name);
581 		return (BUS_PROBE_DEFAULT);
582 	}
583 	return (ENXIO);
584 }
585 
586 /*
587  * Attach the interface. Allocate softc structures, do ifmedia
588  * setup and ethernet/BPF attach.
589  */
590 static int
591 vr_attach(device_t dev)
592 {
593 	struct vr_softc		*sc;
594 	struct ifnet		*ifp;
595 	const struct vr_type	*t;
596 	uint8_t			eaddr[ETHER_ADDR_LEN];
597 	int			error, rid;
598 	int			i, phy, pmc;
599 
600 	sc = device_get_softc(dev);
601 	sc->vr_dev = dev;
602 	t = vr_match(dev);
603 	KASSERT(t != NULL, ("Lost if_vr device match"));
604 	sc->vr_quirks = t->vr_quirks;
605 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
606 
607 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
608 	    MTX_DEF);
609 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
610 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
611 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
612 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
613 	    vr_sysctl_stats, "I", "Statistics");
614 
615 	error = 0;
616 
617 	/*
618 	 * Map control/status registers.
619 	 */
620 	pci_enable_busmaster(dev);
621 	sc->vr_revid = pci_get_revid(dev);
622 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
623 
624 	sc->vr_res_id = PCIR_BAR(0);
625 	sc->vr_res_type = SYS_RES_IOPORT;
626 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
627 	    &sc->vr_res_id, RF_ACTIVE);
628 	if (sc->vr_res == NULL) {
629 		device_printf(dev, "couldn't map ports\n");
630 		error = ENXIO;
631 		goto fail;
632 	}
633 
634 	/* Allocate interrupt. */
635 	rid = 0;
636 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
637 	    RF_SHAREABLE | RF_ACTIVE);
638 
639 	if (sc->vr_irq == NULL) {
640 		device_printf(dev, "couldn't map interrupt\n");
641 		error = ENXIO;
642 		goto fail;
643 	}
644 
645 	/* Allocate ifnet structure. */
646 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
647 	if (ifp == NULL) {
648 		device_printf(dev, "couldn't allocate ifnet structure\n");
649 		error = ENOSPC;
650 		goto fail;
651 	}
652 	ifp->if_softc = sc;
653 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655 	ifp->if_ioctl = vr_ioctl;
656 	ifp->if_start = vr_start;
657 	ifp->if_init = vr_init;
658 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
659 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
660 	IFQ_SET_READY(&ifp->if_snd);
661 
662 	TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
663 
664 	/* Configure Tx FIFO threshold. */
665 	sc->vr_txthresh = VR_TXTHRESH_MIN;
666 	if (sc->vr_revid < REV_ID_VT6105_A0) {
667 		/*
668 		 * Use store and forward mode for Rhine I/II.
669 		 * Otherwise they produce a lot of Tx underruns and
670 		 * it would take a while to get working FIFO threshold
671 		 * value.
672 		 */
673 		sc->vr_txthresh = VR_TXTHRESH_MAX;
674 	}
675 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
676 		ifp->if_hwassist = VR_CSUM_FEATURES;
677 		ifp->if_capabilities |= IFCAP_HWCSUM;
678 		/*
679 		 * To update checksum field the hardware may need to
680 		 * store entire frames into FIFO before transmitting.
681 		 */
682 		sc->vr_txthresh = VR_TXTHRESH_MAX;
683 	}
684 
685 	if (sc->vr_revid >= REV_ID_VT6102_A &&
686 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
687 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
688 
689 	/* Rhine supports oversized VLAN frame. */
690 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
691 	ifp->if_capenable = ifp->if_capabilities;
692 #ifdef DEVICE_POLLING
693 	ifp->if_capabilities |= IFCAP_POLLING;
694 #endif
695 
696 	/*
697 	 * Windows may put the chip in suspend mode when it
698 	 * shuts down. Be sure to kick it in the head to wake it
699 	 * up again.
700 	 */
701 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
702 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
703 
704 	/*
705 	 * Get station address. The way the Rhine chips work,
706 	 * you're not allowed to directly access the EEPROM once
707 	 * they've been programmed a special way. Consequently,
708 	 * we need to read the node address from the PAR0 and PAR1
709 	 * registers.
710 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
711 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
712 	 * by driver is reset to default state.
713 	 */
714 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
715 	for (i = VR_TIMEOUT; i > 0; i--) {
716 		DELAY(1);
717 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
718 			break;
719 	}
720 	if (i == 0)
721 		device_printf(dev, "Reloading EEPROM timeout!\n");
722 	for (i = 0; i < ETHER_ADDR_LEN; i++)
723 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
724 
725 	/* Reset the adapter. */
726 	vr_reset(sc);
727 	/* Ack intr & disable further interrupts. */
728 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
729 	CSR_WRITE_2(sc, VR_IMR, 0);
730 	if (sc->vr_revid >= REV_ID_VT6102_A)
731 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
732 
733 	if (sc->vr_revid < REV_ID_VT6102_A) {
734 		pci_write_config(dev, VR_PCI_MODE2,
735 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
736 		    VR_MODE2_MODE10T, 1);
737 	} else {
738 		/* Report error instead of retrying forever. */
739 		pci_write_config(dev, VR_PCI_MODE2,
740 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
741 		    VR_MODE2_PCEROPT, 1);
742         	/* Detect MII coding error. */
743 		pci_write_config(dev, VR_PCI_MODE3,
744 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
745 		    VR_MODE3_MIION, 1);
746 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
747 		    sc->vr_revid < REV_ID_VT6105M_A0)
748 			pci_write_config(dev, VR_PCI_MODE2,
749 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
750 			    VR_MODE2_MODE10T, 1);
751 		/* Enable Memory-Read-Multiple. */
752 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
753 		    sc->vr_revid < REV_ID_VT6105M_A0)
754 			pci_write_config(dev, VR_PCI_MODE2,
755 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
756 			    VR_MODE2_MRDPL, 1);
757 	}
758 	/* Disable MII AUTOPOLL. */
759 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
760 
761 	if (vr_dma_alloc(sc) != 0) {
762 		error = ENXIO;
763 		goto fail;
764 	}
765 
766 	/* Do MII setup. */
767 	if (sc->vr_revid >= REV_ID_VT6105_A0)
768 		phy = 1;
769 	else
770 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
771 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
772 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
773 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
774 	if (error != 0) {
775 		device_printf(dev, "attaching PHYs failed\n");
776 		goto fail;
777 	}
778 
779 	/* Call MI attach routine. */
780 	ether_ifattach(ifp, eaddr);
781 	/*
782 	 * Tell the upper layer(s) we support long frames.
783 	 * Must appear after the call to ether_ifattach() because
784 	 * ether_ifattach() sets ifi_hdrlen to the default value.
785 	 */
786 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
787 
788 	/* Hook interrupt last to avoid having to lock softc. */
789 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
790 	    vr_intr, NULL, sc, &sc->vr_intrhand);
791 
792 	if (error) {
793 		device_printf(dev, "couldn't set up irq\n");
794 		ether_ifdetach(ifp);
795 		goto fail;
796 	}
797 
798 fail:
799 	if (error)
800 		vr_detach(dev);
801 
802 	return (error);
803 }
804 
805 /*
806  * Shutdown hardware and free up resources. This can be called any
807  * time after the mutex has been initialized. It is called in both
808  * the error case in attach and the normal detach case so it needs
809  * to be careful about only freeing resources that have actually been
810  * allocated.
811  */
812 static int
813 vr_detach(device_t dev)
814 {
815 	struct vr_softc		*sc = device_get_softc(dev);
816 	struct ifnet		*ifp = sc->vr_ifp;
817 
818 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
819 
820 #ifdef DEVICE_POLLING
821 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
822 		ether_poll_deregister(ifp);
823 #endif
824 
825 	/* These should only be active if attach succeeded. */
826 	if (device_is_attached(dev)) {
827 		VR_LOCK(sc);
828 		sc->vr_flags |= VR_F_DETACHED;
829 		vr_stop(sc);
830 		VR_UNLOCK(sc);
831 		callout_drain(&sc->vr_stat_callout);
832 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
833 		ether_ifdetach(ifp);
834 	}
835 	if (sc->vr_miibus)
836 		device_delete_child(dev, sc->vr_miibus);
837 	bus_generic_detach(dev);
838 
839 	if (sc->vr_intrhand)
840 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
841 	if (sc->vr_irq)
842 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
843 	if (sc->vr_res)
844 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
845 		    sc->vr_res);
846 
847 	if (ifp)
848 		if_free(ifp);
849 
850 	vr_dma_free(sc);
851 
852 	mtx_destroy(&sc->vr_mtx);
853 
854 	return (0);
855 }
856 
857 struct vr_dmamap_arg {
858 	bus_addr_t	vr_busaddr;
859 };
860 
861 static void
862 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
863 {
864 	struct vr_dmamap_arg	*ctx;
865 
866 	if (error != 0)
867 		return;
868 	ctx = arg;
869 	ctx->vr_busaddr = segs[0].ds_addr;
870 }
871 
872 static int
873 vr_dma_alloc(struct vr_softc *sc)
874 {
875 	struct vr_dmamap_arg	ctx;
876 	struct vr_txdesc	*txd;
877 	struct vr_rxdesc	*rxd;
878 	bus_size_t		tx_alignment;
879 	int			error, i;
880 
881 	/* Create parent DMA tag. */
882 	error = bus_dma_tag_create(
883 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
884 	    1, 0,			/* alignment, boundary */
885 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
886 	    BUS_SPACE_MAXADDR,		/* highaddr */
887 	    NULL, NULL,			/* filter, filterarg */
888 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
889 	    0,				/* nsegments */
890 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
891 	    0,				/* flags */
892 	    NULL, NULL,			/* lockfunc, lockarg */
893 	    &sc->vr_cdata.vr_parent_tag);
894 	if (error != 0) {
895 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
896 		goto fail;
897 	}
898 	/* Create tag for Tx ring. */
899 	error = bus_dma_tag_create(
900 	    sc->vr_cdata.vr_parent_tag,	/* parent */
901 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
902 	    BUS_SPACE_MAXADDR,		/* lowaddr */
903 	    BUS_SPACE_MAXADDR,		/* highaddr */
904 	    NULL, NULL,			/* filter, filterarg */
905 	    VR_TX_RING_SIZE,		/* maxsize */
906 	    1,				/* nsegments */
907 	    VR_TX_RING_SIZE,		/* maxsegsize */
908 	    0,				/* flags */
909 	    NULL, NULL,			/* lockfunc, lockarg */
910 	    &sc->vr_cdata.vr_tx_ring_tag);
911 	if (error != 0) {
912 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
913 		goto fail;
914 	}
915 
916 	/* Create tag for Rx ring. */
917 	error = bus_dma_tag_create(
918 	    sc->vr_cdata.vr_parent_tag,	/* parent */
919 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
920 	    BUS_SPACE_MAXADDR,		/* lowaddr */
921 	    BUS_SPACE_MAXADDR,		/* highaddr */
922 	    NULL, NULL,			/* filter, filterarg */
923 	    VR_RX_RING_SIZE,		/* maxsize */
924 	    1,				/* nsegments */
925 	    VR_RX_RING_SIZE,		/* maxsegsize */
926 	    0,				/* flags */
927 	    NULL, NULL,			/* lockfunc, lockarg */
928 	    &sc->vr_cdata.vr_rx_ring_tag);
929 	if (error != 0) {
930 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
931 		goto fail;
932 	}
933 
934 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
935 		tx_alignment = sizeof(uint32_t);
936 	else
937 		tx_alignment = 1;
938 	/* Create tag for Tx buffers. */
939 	error = bus_dma_tag_create(
940 	    sc->vr_cdata.vr_parent_tag,	/* parent */
941 	    tx_alignment, 0,		/* alignment, boundary */
942 	    BUS_SPACE_MAXADDR,		/* lowaddr */
943 	    BUS_SPACE_MAXADDR,		/* highaddr */
944 	    NULL, NULL,			/* filter, filterarg */
945 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
946 	    VR_MAXFRAGS,		/* nsegments */
947 	    MCLBYTES,			/* maxsegsize */
948 	    0,				/* flags */
949 	    NULL, NULL,			/* lockfunc, lockarg */
950 	    &sc->vr_cdata.vr_tx_tag);
951 	if (error != 0) {
952 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
953 		goto fail;
954 	}
955 
956 	/* Create tag for Rx buffers. */
957 	error = bus_dma_tag_create(
958 	    sc->vr_cdata.vr_parent_tag,	/* parent */
959 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
960 	    BUS_SPACE_MAXADDR,		/* lowaddr */
961 	    BUS_SPACE_MAXADDR,		/* highaddr */
962 	    NULL, NULL,			/* filter, filterarg */
963 	    MCLBYTES,			/* maxsize */
964 	    1,				/* nsegments */
965 	    MCLBYTES,			/* maxsegsize */
966 	    0,				/* flags */
967 	    NULL, NULL,			/* lockfunc, lockarg */
968 	    &sc->vr_cdata.vr_rx_tag);
969 	if (error != 0) {
970 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
971 		goto fail;
972 	}
973 
974 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
975 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
976 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
977 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
978 	if (error != 0) {
979 		device_printf(sc->vr_dev,
980 		    "failed to allocate DMA'able memory for Tx ring\n");
981 		goto fail;
982 	}
983 
984 	ctx.vr_busaddr = 0;
985 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
986 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
987 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
988 	if (error != 0 || ctx.vr_busaddr == 0) {
989 		device_printf(sc->vr_dev,
990 		    "failed to load DMA'able memory for Tx ring\n");
991 		goto fail;
992 	}
993 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
994 
995 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
996 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
997 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
998 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
999 	if (error != 0) {
1000 		device_printf(sc->vr_dev,
1001 		    "failed to allocate DMA'able memory for Rx ring\n");
1002 		goto fail;
1003 	}
1004 
1005 	ctx.vr_busaddr = 0;
1006 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1007 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1008 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1009 	if (error != 0 || ctx.vr_busaddr == 0) {
1010 		device_printf(sc->vr_dev,
1011 		    "failed to load DMA'able memory for Rx ring\n");
1012 		goto fail;
1013 	}
1014 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1015 
1016 	/* Create DMA maps for Tx buffers. */
1017 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1018 		txd = &sc->vr_cdata.vr_txdesc[i];
1019 		txd->tx_m = NULL;
1020 		txd->tx_dmamap = NULL;
1021 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1022 		    &txd->tx_dmamap);
1023 		if (error != 0) {
1024 			device_printf(sc->vr_dev,
1025 			    "failed to create Tx dmamap\n");
1026 			goto fail;
1027 		}
1028 	}
1029 	/* Create DMA maps for Rx buffers. */
1030 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1031 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1032 		device_printf(sc->vr_dev,
1033 		    "failed to create spare Rx dmamap\n");
1034 		goto fail;
1035 	}
1036 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1037 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1038 		rxd->rx_m = NULL;
1039 		rxd->rx_dmamap = NULL;
1040 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1041 		    &rxd->rx_dmamap);
1042 		if (error != 0) {
1043 			device_printf(sc->vr_dev,
1044 			    "failed to create Rx dmamap\n");
1045 			goto fail;
1046 		}
1047 	}
1048 
1049 fail:
1050 	return (error);
1051 }
1052 
1053 static void
1054 vr_dma_free(struct vr_softc *sc)
1055 {
1056 	struct vr_txdesc	*txd;
1057 	struct vr_rxdesc	*rxd;
1058 	int			i;
1059 
1060 	/* Tx ring. */
1061 	if (sc->vr_cdata.vr_tx_ring_tag) {
1062 		if (sc->vr_cdata.vr_tx_ring_map)
1063 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1064 			    sc->vr_cdata.vr_tx_ring_map);
1065 		if (sc->vr_cdata.vr_tx_ring_map &&
1066 		    sc->vr_rdata.vr_tx_ring)
1067 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1068 			    sc->vr_rdata.vr_tx_ring,
1069 			    sc->vr_cdata.vr_tx_ring_map);
1070 		sc->vr_rdata.vr_tx_ring = NULL;
1071 		sc->vr_cdata.vr_tx_ring_map = NULL;
1072 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1073 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1074 	}
1075 	/* Rx ring. */
1076 	if (sc->vr_cdata.vr_rx_ring_tag) {
1077 		if (sc->vr_cdata.vr_rx_ring_map)
1078 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1079 			    sc->vr_cdata.vr_rx_ring_map);
1080 		if (sc->vr_cdata.vr_rx_ring_map &&
1081 		    sc->vr_rdata.vr_rx_ring)
1082 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1083 			    sc->vr_rdata.vr_rx_ring,
1084 			    sc->vr_cdata.vr_rx_ring_map);
1085 		sc->vr_rdata.vr_rx_ring = NULL;
1086 		sc->vr_cdata.vr_rx_ring_map = NULL;
1087 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1088 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1089 	}
1090 	/* Tx buffers. */
1091 	if (sc->vr_cdata.vr_tx_tag) {
1092 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1093 			txd = &sc->vr_cdata.vr_txdesc[i];
1094 			if (txd->tx_dmamap) {
1095 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1096 				    txd->tx_dmamap);
1097 				txd->tx_dmamap = NULL;
1098 			}
1099 		}
1100 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1101 		sc->vr_cdata.vr_tx_tag = NULL;
1102 	}
1103 	/* Rx buffers. */
1104 	if (sc->vr_cdata.vr_rx_tag) {
1105 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1106 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1107 			if (rxd->rx_dmamap) {
1108 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1109 				    rxd->rx_dmamap);
1110 				rxd->rx_dmamap = NULL;
1111 			}
1112 		}
1113 		if (sc->vr_cdata.vr_rx_sparemap) {
1114 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1115 			    sc->vr_cdata.vr_rx_sparemap);
1116 			sc->vr_cdata.vr_rx_sparemap = 0;
1117 		}
1118 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1119 		sc->vr_cdata.vr_rx_tag = NULL;
1120 	}
1121 
1122 	if (sc->vr_cdata.vr_parent_tag) {
1123 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1124 		sc->vr_cdata.vr_parent_tag = NULL;
1125 	}
1126 }
1127 
1128 /*
1129  * Initialize the transmit descriptors.
1130  */
1131 static int
1132 vr_tx_ring_init(struct vr_softc *sc)
1133 {
1134 	struct vr_ring_data	*rd;
1135 	struct vr_txdesc	*txd;
1136 	bus_addr_t		addr;
1137 	int			i;
1138 
1139 	sc->vr_cdata.vr_tx_prod = 0;
1140 	sc->vr_cdata.vr_tx_cons = 0;
1141 	sc->vr_cdata.vr_tx_cnt = 0;
1142 	sc->vr_cdata.vr_tx_pkts = 0;
1143 
1144 	rd = &sc->vr_rdata;
1145 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1146 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1147 		if (i == VR_TX_RING_CNT - 1)
1148 			addr = VR_TX_RING_ADDR(sc, 0);
1149 		else
1150 			addr = VR_TX_RING_ADDR(sc, i + 1);
1151 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1152 		txd = &sc->vr_cdata.vr_txdesc[i];
1153 		txd->tx_m = NULL;
1154 	}
1155 
1156 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1157 	    sc->vr_cdata.vr_tx_ring_map,
1158 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1159 
1160 	return (0);
1161 }
1162 
1163 /*
1164  * Initialize the RX descriptors and allocate mbufs for them. Note that
1165  * we arrange the descriptors in a closed ring, so that the last descriptor
1166  * points back to the first.
1167  */
1168 static int
1169 vr_rx_ring_init(struct vr_softc *sc)
1170 {
1171 	struct vr_ring_data	*rd;
1172 	struct vr_rxdesc	*rxd;
1173 	bus_addr_t		addr;
1174 	int			i;
1175 
1176 	sc->vr_cdata.vr_rx_cons = 0;
1177 
1178 	rd = &sc->vr_rdata;
1179 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1180 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1181 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1182 		rxd->rx_m = NULL;
1183 		rxd->desc = &rd->vr_rx_ring[i];
1184 		if (i == VR_RX_RING_CNT - 1)
1185 			addr = VR_RX_RING_ADDR(sc, 0);
1186 		else
1187 			addr = VR_RX_RING_ADDR(sc, i + 1);
1188 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1189 		if (vr_newbuf(sc, i) != 0)
1190 			return (ENOBUFS);
1191 	}
1192 
1193 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1194 	    sc->vr_cdata.vr_rx_ring_map,
1195 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1196 
1197 	return (0);
1198 }
1199 
1200 static __inline void
1201 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1202 {
1203 	struct vr_desc	*desc;
1204 
1205 	desc = rxd->desc;
1206 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1207 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1208 }
1209 
1210 /*
1211  * Initialize an RX descriptor and attach an MBUF cluster.
1212  * Note: the length fields are only 11 bits wide, which means the
1213  * largest size we can specify is 2047. This is important because
1214  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1215  * overflow the field and make a mess.
1216  */
1217 static int
1218 vr_newbuf(struct vr_softc *sc, int idx)
1219 {
1220 	struct vr_desc		*desc;
1221 	struct vr_rxdesc	*rxd;
1222 	struct mbuf		*m;
1223 	bus_dma_segment_t	segs[1];
1224 	bus_dmamap_t		map;
1225 	int			nsegs;
1226 
1227 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1228 	if (m == NULL)
1229 		return (ENOBUFS);
1230 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1231 	m_adj(m, sizeof(uint64_t));
1232 
1233 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1234 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1235 		m_freem(m);
1236 		return (ENOBUFS);
1237 	}
1238 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1239 
1240 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1241 	if (rxd->rx_m != NULL) {
1242 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1243 		    BUS_DMASYNC_POSTREAD);
1244 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1245 	}
1246 	map = rxd->rx_dmamap;
1247 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1248 	sc->vr_cdata.vr_rx_sparemap = map;
1249 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1250 	    BUS_DMASYNC_PREREAD);
1251 	rxd->rx_m = m;
1252 	desc = rxd->desc;
1253 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1254 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1255 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1256 
1257 	return (0);
1258 }
1259 
1260 #ifndef __NO_STRICT_ALIGNMENT
1261 static __inline void
1262 vr_fixup_rx(struct mbuf *m)
1263 {
1264         uint16_t		*src, *dst;
1265         int			i;
1266 
1267 	src = mtod(m, uint16_t *);
1268 	dst = src - 1;
1269 
1270 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1271 		*dst++ = *src++;
1272 
1273 	m->m_data -= ETHER_ALIGN;
1274 }
1275 #endif
1276 
1277 /*
1278  * A frame has been uploaded: pass the resulting mbuf chain up to
1279  * the higher level protocols.
1280  */
1281 static int
1282 vr_rxeof(struct vr_softc *sc)
1283 {
1284 	struct vr_rxdesc	*rxd;
1285 	struct mbuf		*m;
1286 	struct ifnet		*ifp;
1287 	struct vr_desc		*cur_rx;
1288 	int			cons, prog, total_len, rx_npkts;
1289 	uint32_t		rxstat, rxctl;
1290 
1291 	VR_LOCK_ASSERT(sc);
1292 	ifp = sc->vr_ifp;
1293 	cons = sc->vr_cdata.vr_rx_cons;
1294 	rx_npkts = 0;
1295 
1296 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1297 	    sc->vr_cdata.vr_rx_ring_map,
1298 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1299 
1300 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1301 #ifdef DEVICE_POLLING
1302 		if (ifp->if_capenable & IFCAP_POLLING) {
1303 			if (sc->rxcycles <= 0)
1304 				break;
1305 			sc->rxcycles--;
1306 		}
1307 #endif
1308 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1309 		rxstat = le32toh(cur_rx->vr_status);
1310 		rxctl = le32toh(cur_rx->vr_ctl);
1311 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1312 			break;
1313 
1314 		prog++;
1315 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1316 		m = rxd->rx_m;
1317 
1318 		/*
1319 		 * If an error occurs, update stats, clear the
1320 		 * status word and leave the mbuf cluster in place:
1321 		 * it should simply get re-used next time this descriptor
1322 		 * comes up in the ring.
1323 		 * We don't support SG in Rx path yet, so discard
1324 		 * partial frame.
1325 		 */
1326 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1327 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1328 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1329 			ifp->if_ierrors++;
1330 			sc->vr_stat.rx_errors++;
1331 			if (rxstat & VR_RXSTAT_CRCERR)
1332 				sc->vr_stat.rx_crc_errors++;
1333 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1334 				sc->vr_stat.rx_alignment++;
1335 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1336 				sc->vr_stat.rx_fifo_overflows++;
1337 			if (rxstat & VR_RXSTAT_GIANT)
1338 				sc->vr_stat.rx_giants++;
1339 			if (rxstat & VR_RXSTAT_RUNT)
1340 				sc->vr_stat.rx_runts++;
1341 			if (rxstat & VR_RXSTAT_BUFFERR)
1342 				sc->vr_stat.rx_no_buffers++;
1343 #ifdef	VR_SHOW_ERRORS
1344 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1345 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1346 #endif
1347 			vr_discard_rxbuf(rxd);
1348 			continue;
1349 		}
1350 
1351 		if (vr_newbuf(sc, cons) != 0) {
1352 			ifp->if_iqdrops++;
1353 			sc->vr_stat.rx_errors++;
1354 			sc->vr_stat.rx_no_mbufs++;
1355 			vr_discard_rxbuf(rxd);
1356 			continue;
1357 		}
1358 
1359 		/*
1360 		 * XXX The VIA Rhine chip includes the CRC with every
1361 		 * received frame, and there's no way to turn this
1362 		 * behavior off (at least, I can't find anything in
1363 		 * the manual that explains how to do it) so we have
1364 		 * to trim off the CRC manually.
1365 		 */
1366 		total_len = VR_RXBYTES(rxstat);
1367 		total_len -= ETHER_CRC_LEN;
1368 		m->m_pkthdr.len = m->m_len = total_len;
1369 #ifndef	__NO_STRICT_ALIGNMENT
1370 		/*
1371 		 * RX buffers must be 32-bit aligned.
1372 		 * Ignore the alignment problems on the non-strict alignment
1373 		 * platform. The performance hit incurred due to unaligned
1374 		 * accesses is much smaller than the hit produced by forcing
1375 		 * buffer copies all the time.
1376 		 */
1377 		vr_fixup_rx(m);
1378 #endif
1379 		m->m_pkthdr.rcvif = ifp;
1380 		ifp->if_ipackets++;
1381 		sc->vr_stat.rx_ok++;
1382 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1383 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1384 		    (rxctl & VR_RXCTL_IP) != 0) {
1385 			/* Checksum is valid for non-fragmented IP packets. */
1386 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1387 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1388 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1389 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1390 					m->m_pkthdr.csum_flags |=
1391 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1392 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1393 						m->m_pkthdr.csum_data = 0xffff;
1394 				}
1395 			}
1396 		}
1397 		VR_UNLOCK(sc);
1398 		(*ifp->if_input)(ifp, m);
1399 		VR_LOCK(sc);
1400 		rx_npkts++;
1401 	}
1402 
1403 	if (prog > 0) {
1404 		/*
1405 		 * Let controller know how many number of RX buffers
1406 		 * are posted but avoid expensive register access if
1407 		 * TX pause capability was not negotiated with link
1408 		 * partner.
1409 		 */
1410 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1411 			if (prog >= VR_RX_RING_CNT)
1412 				prog = VR_RX_RING_CNT - 1;
1413 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1414 		}
1415 		sc->vr_cdata.vr_rx_cons = cons;
1416 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1417 		    sc->vr_cdata.vr_rx_ring_map,
1418 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1419 	}
1420 	return (rx_npkts);
1421 }
1422 
1423 /*
1424  * A frame was downloaded to the chip. It's safe for us to clean up
1425  * the list buffers.
1426  */
1427 static void
1428 vr_txeof(struct vr_softc *sc)
1429 {
1430 	struct vr_txdesc	*txd;
1431 	struct vr_desc		*cur_tx;
1432 	struct ifnet		*ifp;
1433 	uint32_t		txctl, txstat;
1434 	int			cons, prod;
1435 
1436 	VR_LOCK_ASSERT(sc);
1437 
1438 	cons = sc->vr_cdata.vr_tx_cons;
1439 	prod = sc->vr_cdata.vr_tx_prod;
1440 	if (cons == prod)
1441 		return;
1442 
1443 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1444 	    sc->vr_cdata.vr_tx_ring_map,
1445 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1446 
1447 	ifp = sc->vr_ifp;
1448 	/*
1449 	 * Go through our tx list and free mbufs for those
1450 	 * frames that have been transmitted.
1451 	 */
1452 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1453 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1454 		txctl = le32toh(cur_tx->vr_ctl);
1455 		txstat = le32toh(cur_tx->vr_status);
1456 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1457 			break;
1458 
1459 		sc->vr_cdata.vr_tx_cnt--;
1460 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1461 		/* Only the first descriptor in the chain is valid. */
1462 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1463 			continue;
1464 
1465 		txd = &sc->vr_cdata.vr_txdesc[cons];
1466 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1467 		    __func__));
1468 
1469 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1470 			ifp->if_oerrors++;
1471 			sc->vr_stat.tx_errors++;
1472 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1473 				/* Give up and restart Tx. */
1474 				sc->vr_stat.tx_abort++;
1475 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1476 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1477 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1478 				    txd->tx_dmamap);
1479 				m_freem(txd->tx_m);
1480 				txd->tx_m = NULL;
1481 				VR_INC(cons, VR_TX_RING_CNT);
1482 				sc->vr_cdata.vr_tx_cons = cons;
1483 				if (vr_tx_stop(sc) != 0) {
1484 					device_printf(sc->vr_dev,
1485 					    "%s: Tx shutdown error -- "
1486 					    "resetting\n", __func__);
1487 					sc->vr_flags |= VR_F_RESTART;
1488 					return;
1489 				}
1490 				vr_tx_start(sc);
1491 				break;
1492 			}
1493 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1494 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1495 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1496 				sc->vr_stat.tx_underrun++;
1497 				/* Retry and restart Tx. */
1498 				sc->vr_cdata.vr_tx_cnt++;
1499 				sc->vr_cdata.vr_tx_cons = cons;
1500 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1501 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1502 				    sc->vr_cdata.vr_tx_ring_map,
1503 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1504 				vr_tx_underrun(sc);
1505 				return;
1506 			}
1507 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1508 				ifp->if_collisions++;
1509 				sc->vr_stat.tx_collisions++;
1510 			}
1511 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1512 				ifp->if_collisions++;
1513 				sc->vr_stat.tx_late_collisions++;
1514 			}
1515 		} else {
1516 			sc->vr_stat.tx_ok++;
1517 			ifp->if_opackets++;
1518 		}
1519 
1520 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1521 		    BUS_DMASYNC_POSTWRITE);
1522 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1523 		if (sc->vr_revid < REV_ID_VT3071_A) {
1524 			ifp->if_collisions +=
1525 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1526 			sc->vr_stat.tx_collisions +=
1527 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1528 		} else {
1529 			ifp->if_collisions += (txstat & 0x0f);
1530 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1531 		}
1532 		m_freem(txd->tx_m);
1533 		txd->tx_m = NULL;
1534 	}
1535 
1536 	sc->vr_cdata.vr_tx_cons = cons;
1537 	if (sc->vr_cdata.vr_tx_cnt == 0)
1538 		sc->vr_watchdog_timer = 0;
1539 }
1540 
1541 static void
1542 vr_tick(void *xsc)
1543 {
1544 	struct vr_softc		*sc;
1545 	struct mii_data		*mii;
1546 
1547 	sc = (struct vr_softc *)xsc;
1548 
1549 	VR_LOCK_ASSERT(sc);
1550 
1551 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1552 		device_printf(sc->vr_dev, "restarting\n");
1553 		sc->vr_stat.num_restart++;
1554 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1555 		vr_init_locked(sc);
1556 		sc->vr_flags &= ~VR_F_RESTART;
1557 	}
1558 
1559 	mii = device_get_softc(sc->vr_miibus);
1560 	mii_tick(mii);
1561 	if ((sc->vr_flags & VR_F_LINK) == 0)
1562 		vr_miibus_statchg(sc->vr_dev);
1563 	vr_watchdog(sc);
1564 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1565 }
1566 
1567 #ifdef DEVICE_POLLING
1568 static poll_handler_t vr_poll;
1569 static poll_handler_t vr_poll_locked;
1570 
1571 static int
1572 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1573 {
1574 	struct vr_softc *sc;
1575 	int rx_npkts;
1576 
1577 	sc = ifp->if_softc;
1578 	rx_npkts = 0;
1579 
1580 	VR_LOCK(sc);
1581 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1582 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1583 	VR_UNLOCK(sc);
1584 	return (rx_npkts);
1585 }
1586 
1587 static int
1588 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1589 {
1590 	struct vr_softc *sc;
1591 	int rx_npkts;
1592 
1593 	sc = ifp->if_softc;
1594 
1595 	VR_LOCK_ASSERT(sc);
1596 
1597 	sc->rxcycles = count;
1598 	rx_npkts = vr_rxeof(sc);
1599 	vr_txeof(sc);
1600 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1601 		vr_start_locked(ifp);
1602 
1603 	if (cmd == POLL_AND_CHECK_STATUS) {
1604 		uint16_t status;
1605 
1606 		/* Also check status register. */
1607 		status = CSR_READ_2(sc, VR_ISR);
1608 		if (status)
1609 			CSR_WRITE_2(sc, VR_ISR, status);
1610 
1611 		if ((status & VR_INTRS) == 0)
1612 			return (rx_npkts);
1613 
1614 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1615 		    VR_ISR_STATSOFLOW)) != 0) {
1616 			if (vr_error(sc, status) != 0)
1617 				return (rx_npkts);
1618 		}
1619 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1620 #ifdef	VR_SHOW_ERRORS
1621 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1622 			    __func__, status, VR_ISR_ERR_BITS);
1623 #endif
1624 			vr_rx_start(sc);
1625 		}
1626 	}
1627 	return (rx_npkts);
1628 }
1629 #endif /* DEVICE_POLLING */
1630 
1631 /* Back off the transmit threshold. */
1632 static void
1633 vr_tx_underrun(struct vr_softc *sc)
1634 {
1635 	int	thresh;
1636 
1637 	device_printf(sc->vr_dev, "Tx underrun -- ");
1638 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1639 		thresh = sc->vr_txthresh;
1640 		sc->vr_txthresh++;
1641 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1642 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1643 			printf("using store and forward mode\n");
1644 		} else
1645 			printf("increasing Tx threshold(%d -> %d)\n",
1646 			    vr_tx_threshold_tables[thresh].value,
1647 			    vr_tx_threshold_tables[thresh + 1].value);
1648 	} else
1649 		printf("\n");
1650 	sc->vr_stat.tx_underrun++;
1651 	if (vr_tx_stop(sc) != 0) {
1652 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1653 		    "resetting\n", __func__);
1654 		sc->vr_flags |= VR_F_RESTART;
1655 		return;
1656 	}
1657 	vr_tx_start(sc);
1658 }
1659 
1660 static int
1661 vr_intr(void *arg)
1662 {
1663 	struct vr_softc		*sc;
1664 	uint16_t		status;
1665 
1666 	sc = (struct vr_softc *)arg;
1667 
1668 	status = CSR_READ_2(sc, VR_ISR);
1669 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1670 		return (FILTER_STRAY);
1671 
1672 	/* Disable interrupts. */
1673 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1674 
1675 	taskqueue_enqueue_fast(taskqueue_fast, &sc->vr_inttask);
1676 
1677 	return (FILTER_HANDLED);
1678 }
1679 
1680 static void
1681 vr_int_task(void *arg, int npending)
1682 {
1683 	struct vr_softc		*sc;
1684 	struct ifnet		*ifp;
1685 	uint16_t		status;
1686 
1687 	sc = (struct vr_softc *)arg;
1688 
1689 	VR_LOCK(sc);
1690 
1691 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1692 		goto done_locked;
1693 
1694 	status = CSR_READ_2(sc, VR_ISR);
1695 	ifp = sc->vr_ifp;
1696 #ifdef DEVICE_POLLING
1697 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1698 		goto done_locked;
1699 #endif
1700 
1701 	/* Suppress unwanted interrupts. */
1702 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1703 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1704 		CSR_WRITE_2(sc, VR_IMR, 0);
1705 		CSR_WRITE_2(sc, VR_ISR, status);
1706 		goto done_locked;
1707 	}
1708 
1709 	for (; (status & VR_INTRS) != 0;) {
1710 		CSR_WRITE_2(sc, VR_ISR, status);
1711 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1712 		    VR_ISR_STATSOFLOW)) != 0) {
1713 			if (vr_error(sc, status) != 0) {
1714 				VR_UNLOCK(sc);
1715 				return;
1716 			}
1717 		}
1718 		vr_rxeof(sc);
1719 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1720 #ifdef	VR_SHOW_ERRORS
1721 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1722 			    __func__, status, VR_ISR_ERR_BITS);
1723 #endif
1724 			/* Restart Rx if RxDMA SM was stopped. */
1725 			vr_rx_start(sc);
1726 		}
1727 		vr_txeof(sc);
1728 
1729 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1730 			vr_start_locked(ifp);
1731 
1732 		status = CSR_READ_2(sc, VR_ISR);
1733 	}
1734 
1735 	/* Re-enable interrupts. */
1736 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1737 
1738 done_locked:
1739 	VR_UNLOCK(sc);
1740 }
1741 
1742 static int
1743 vr_error(struct vr_softc *sc, uint16_t status)
1744 {
1745 	uint16_t pcis;
1746 
1747 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1748 	if ((status & VR_ISR_BUSERR) != 0) {
1749 		status &= ~VR_ISR_BUSERR;
1750 		sc->vr_stat.bus_errors++;
1751 		/* Disable further interrupts. */
1752 		CSR_WRITE_2(sc, VR_IMR, 0);
1753 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1754 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1755 		    "resetting\n", pcis);
1756 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1757 		sc->vr_flags |= VR_F_RESTART;
1758 		return (EAGAIN);
1759 	}
1760 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1761 		/* Link state change, duplex changes etc. */
1762 		status &= ~VR_ISR_LINKSTAT2;
1763 	}
1764 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1765 		status &= ~VR_ISR_STATSOFLOW;
1766 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1767 			/* Update MIB counters. */
1768 		}
1769 	}
1770 
1771 	if (status != 0)
1772 		device_printf(sc->vr_dev,
1773 		    "unhandled interrupt, status = 0x%04x\n", status);
1774 	return (0);
1775 }
1776 
1777 /*
1778  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1779  * pointers to the fragment pointers.
1780  */
1781 static int
1782 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1783 {
1784 	struct vr_txdesc	*txd;
1785 	struct vr_desc		*desc;
1786 	struct mbuf		*m;
1787 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1788 	uint32_t		csum_flags, txctl;
1789 	int			error, i, nsegs, prod, si;
1790 	int			padlen;
1791 
1792 	VR_LOCK_ASSERT(sc);
1793 
1794 	M_ASSERTPKTHDR((*m_head));
1795 
1796 	/*
1797 	 * Some VIA Rhine wants packet buffers to be longword
1798 	 * aligned, but very often our mbufs aren't. Rather than
1799 	 * waste time trying to decide when to copy and when not
1800 	 * to copy, just do it all the time.
1801 	 */
1802 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1803 		m = m_defrag(*m_head, M_NOWAIT);
1804 		if (m == NULL) {
1805 			m_freem(*m_head);
1806 			*m_head = NULL;
1807 			return (ENOBUFS);
1808 		}
1809 		*m_head = m;
1810 	}
1811 
1812 	/*
1813 	 * The Rhine chip doesn't auto-pad, so we have to make
1814 	 * sure to pad short frames out to the minimum frame length
1815 	 * ourselves.
1816 	 */
1817 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1818 		m = *m_head;
1819 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1820 		if (M_WRITABLE(m) == 0) {
1821 			/* Get a writable copy. */
1822 			m = m_dup(*m_head, M_NOWAIT);
1823 			m_freem(*m_head);
1824 			if (m == NULL) {
1825 				*m_head = NULL;
1826 				return (ENOBUFS);
1827 			}
1828 			*m_head = m;
1829 		}
1830 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1831 			m = m_defrag(m, M_NOWAIT);
1832 			if (m == NULL) {
1833 				m_freem(*m_head);
1834 				*m_head = NULL;
1835 				return (ENOBUFS);
1836 			}
1837 		}
1838 		/*
1839 		 * Manually pad short frames, and zero the pad space
1840 		 * to avoid leaking data.
1841 		 */
1842 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1843 		m->m_pkthdr.len += padlen;
1844 		m->m_len = m->m_pkthdr.len;
1845 		*m_head = m;
1846 	}
1847 
1848 	prod = sc->vr_cdata.vr_tx_prod;
1849 	txd = &sc->vr_cdata.vr_txdesc[prod];
1850 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1851 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1852 	if (error == EFBIG) {
1853 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1854 		if (m == NULL) {
1855 			m_freem(*m_head);
1856 			*m_head = NULL;
1857 			return (ENOBUFS);
1858 		}
1859 		*m_head = m;
1860 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1861 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1862 		if (error != 0) {
1863 			m_freem(*m_head);
1864 			*m_head = NULL;
1865 			return (error);
1866 		}
1867 	} else if (error != 0)
1868 		return (error);
1869 	if (nsegs == 0) {
1870 		m_freem(*m_head);
1871 		*m_head = NULL;
1872 		return (EIO);
1873 	}
1874 
1875 	/* Check number of available descriptors. */
1876 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1877 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1878 		return (ENOBUFS);
1879 	}
1880 
1881 	txd->tx_m = *m_head;
1882 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1883 	    BUS_DMASYNC_PREWRITE);
1884 
1885 	/* Set checksum offload. */
1886 	csum_flags = 0;
1887 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1888 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1889 			csum_flags |= VR_TXCTL_IPCSUM;
1890 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1891 			csum_flags |= VR_TXCTL_TCPCSUM;
1892 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1893 			csum_flags |= VR_TXCTL_UDPCSUM;
1894 	}
1895 
1896 	/*
1897 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1898 	 * is required for all descriptors regardless of single or
1899 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1900 	 * the first descriptor for a multi-fragmented frames. Without
1901 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1902 	 * send any frames.
1903 	 */
1904 	si = prod;
1905 	for (i = 0; i < nsegs; i++) {
1906 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1907 		desc->vr_status = 0;
1908 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1909 		if (i == 0)
1910 			txctl |= VR_TXCTL_FIRSTFRAG;
1911 		desc->vr_ctl = htole32(txctl);
1912 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1913 		sc->vr_cdata.vr_tx_cnt++;
1914 		VR_INC(prod, VR_TX_RING_CNT);
1915 	}
1916 	/* Update producer index. */
1917 	sc->vr_cdata.vr_tx_prod = prod;
1918 
1919 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1920 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1921 
1922 	/*
1923 	 * Set EOP on the last desciptor and reuqest Tx completion
1924 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1925 	 */
1926 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1927 	if (sc->vr_cdata.vr_tx_pkts == 0)
1928 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1929 	else
1930 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1931 
1932 	/* Lastly turn the first descriptor ownership to hardware. */
1933 	desc = &sc->vr_rdata.vr_tx_ring[si];
1934 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1935 
1936 	/* Sync descriptors. */
1937 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1938 	    sc->vr_cdata.vr_tx_ring_map,
1939 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1940 
1941 	return (0);
1942 }
1943 
1944 static void
1945 vr_start(struct ifnet *ifp)
1946 {
1947 	struct vr_softc		*sc;
1948 
1949 	sc = ifp->if_softc;
1950 	VR_LOCK(sc);
1951 	vr_start_locked(ifp);
1952 	VR_UNLOCK(sc);
1953 }
1954 
1955 static void
1956 vr_start_locked(struct ifnet *ifp)
1957 {
1958 	struct vr_softc		*sc;
1959 	struct mbuf		*m_head;
1960 	int			enq;
1961 
1962 	sc = ifp->if_softc;
1963 
1964 	VR_LOCK_ASSERT(sc);
1965 
1966 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1967 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1968 		return;
1969 
1970 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1971 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1972 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1973 		if (m_head == NULL)
1974 			break;
1975 		/*
1976 		 * Pack the data into the transmit ring. If we
1977 		 * don't have room, set the OACTIVE flag and wait
1978 		 * for the NIC to drain the ring.
1979 		 */
1980 		if (vr_encap(sc, &m_head)) {
1981 			if (m_head == NULL)
1982 				break;
1983 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1984 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1985 			break;
1986 		}
1987 
1988 		enq++;
1989 		/*
1990 		 * If there's a BPF listener, bounce a copy of this frame
1991 		 * to him.
1992 		 */
1993 		ETHER_BPF_MTAP(ifp, m_head);
1994 	}
1995 
1996 	if (enq > 0) {
1997 		/* Tell the chip to start transmitting. */
1998 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1999 		/* Set a timeout in case the chip goes out to lunch. */
2000 		sc->vr_watchdog_timer = 5;
2001 	}
2002 }
2003 
2004 static void
2005 vr_init(void *xsc)
2006 {
2007 	struct vr_softc		*sc;
2008 
2009 	sc = (struct vr_softc *)xsc;
2010 	VR_LOCK(sc);
2011 	vr_init_locked(sc);
2012 	VR_UNLOCK(sc);
2013 }
2014 
2015 static void
2016 vr_init_locked(struct vr_softc *sc)
2017 {
2018 	struct ifnet		*ifp;
2019 	struct mii_data		*mii;
2020 	bus_addr_t		addr;
2021 	int			i;
2022 
2023 	VR_LOCK_ASSERT(sc);
2024 
2025 	ifp = sc->vr_ifp;
2026 	mii = device_get_softc(sc->vr_miibus);
2027 
2028 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029 		return;
2030 
2031 	/* Cancel pending I/O and free all RX/TX buffers. */
2032 	vr_stop(sc);
2033 	vr_reset(sc);
2034 
2035 	/* Set our station address. */
2036 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2037 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2038 
2039 	/* Set DMA size. */
2040 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2041 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2042 
2043 	/*
2044 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2045 	 * so we must set both.
2046 	 */
2047 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2048 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2049 
2050 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2051 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2052 
2053 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2054 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2055 
2056 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2057 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2058 
2059 	/* Init circular RX list. */
2060 	if (vr_rx_ring_init(sc) != 0) {
2061 		device_printf(sc->vr_dev,
2062 		    "initialization failed: no memory for rx buffers\n");
2063 		vr_stop(sc);
2064 		return;
2065 	}
2066 
2067 	/* Init tx descriptors. */
2068 	vr_tx_ring_init(sc);
2069 
2070 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2071 		uint8_t vcam[2] = { 0, 0 };
2072 
2073 		/* Disable VLAN hardware tag insertion/stripping. */
2074 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2075 		/* Disable VLAN hardware filtering. */
2076 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2077 		/* Disable all CAM entries. */
2078 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2079 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2080 		/* Enable the first VLAN CAM. */
2081 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2082 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2083 	}
2084 
2085 	/*
2086 	 * Set up receive filter.
2087 	 */
2088 	vr_set_filter(sc);
2089 
2090 	/*
2091 	 * Load the address of the RX ring.
2092 	 */
2093 	addr = VR_RX_RING_ADDR(sc, 0);
2094 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2095 	/*
2096 	 * Load the address of the TX ring.
2097 	 */
2098 	addr = VR_TX_RING_ADDR(sc, 0);
2099 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2100 	/* Default : full-duplex, no Tx poll. */
2101 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2102 
2103 	/* Set flow-control parameters for Rhine III. */
2104 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2105 		/*
2106 		 * Configure Rx buffer count available for incoming
2107 		 * packet.
2108 		 * Even though data sheet says almost nothing about
2109 		 * this register, this register should be updated
2110 		 * whenever driver adds new RX buffers to controller.
2111 		 * Otherwise, XON frame is not sent to link partner
2112 		 * even if controller has enough RX buffers and you
2113 		 * would be isolated from network.
2114 		 * The controller is not smart enough to know number
2115 		 * of available RX buffers so driver have to let
2116 		 * controller know how many RX buffers are posted.
2117 		 * In other words, this register works like a residue
2118 		 * counter for RX buffers and should be initialized
2119 		 * to the number of total RX buffers  - 1 before
2120 		 * enabling RX MAC.  Note, this register is 8bits so
2121 		 * it effectively limits the maximum number of RX
2122 		 * buffer to be configured by controller is 255.
2123 		 */
2124 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2125 		/*
2126 		 * Tx pause low threshold : 8 free receive buffers
2127 		 * Tx pause XON high threshold : 24 free receive buffers
2128 		 */
2129 		CSR_WRITE_1(sc, VR_FLOWCR1,
2130 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2131 		/* Set Tx pause timer. */
2132 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2133 	}
2134 
2135 	/* Enable receiver and transmitter. */
2136 	CSR_WRITE_1(sc, VR_CR0,
2137 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2138 
2139 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2140 #ifdef DEVICE_POLLING
2141 	/*
2142 	 * Disable interrupts if we are polling.
2143 	 */
2144 	if (ifp->if_capenable & IFCAP_POLLING)
2145 		CSR_WRITE_2(sc, VR_IMR, 0);
2146 	else
2147 #endif
2148 	/*
2149 	 * Enable interrupts and disable MII intrs.
2150 	 */
2151 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2152 	if (sc->vr_revid > REV_ID_VT6102_A)
2153 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2154 
2155 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2156 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2157 
2158 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2159 	mii_mediachg(mii);
2160 
2161 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2162 }
2163 
2164 /*
2165  * Set media options.
2166  */
2167 static int
2168 vr_ifmedia_upd(struct ifnet *ifp)
2169 {
2170 	struct vr_softc		*sc;
2171 	struct mii_data		*mii;
2172 	struct mii_softc	*miisc;
2173 	int			error;
2174 
2175 	sc = ifp->if_softc;
2176 	VR_LOCK(sc);
2177 	mii = device_get_softc(sc->vr_miibus);
2178 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2179 		PHY_RESET(miisc);
2180 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2181 	error = mii_mediachg(mii);
2182 	VR_UNLOCK(sc);
2183 
2184 	return (error);
2185 }
2186 
2187 /*
2188  * Report current media status.
2189  */
2190 static void
2191 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2192 {
2193 	struct vr_softc		*sc;
2194 	struct mii_data		*mii;
2195 
2196 	sc = ifp->if_softc;
2197 	mii = device_get_softc(sc->vr_miibus);
2198 	VR_LOCK(sc);
2199 	if ((ifp->if_flags & IFF_UP) == 0) {
2200 		VR_UNLOCK(sc);
2201 		return;
2202 	}
2203 	mii_pollstat(mii);
2204 	ifmr->ifm_active = mii->mii_media_active;
2205 	ifmr->ifm_status = mii->mii_media_status;
2206 	VR_UNLOCK(sc);
2207 }
2208 
2209 static int
2210 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2211 {
2212 	struct vr_softc		*sc;
2213 	struct ifreq		*ifr;
2214 	struct mii_data		*mii;
2215 	int			error, mask;
2216 
2217 	sc = ifp->if_softc;
2218 	ifr = (struct ifreq *)data;
2219 	error = 0;
2220 
2221 	switch (command) {
2222 	case SIOCSIFFLAGS:
2223 		VR_LOCK(sc);
2224 		if (ifp->if_flags & IFF_UP) {
2225 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2226 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2227 				    (IFF_PROMISC | IFF_ALLMULTI))
2228 					vr_set_filter(sc);
2229 			} else {
2230 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2231 					vr_init_locked(sc);
2232 			}
2233 		} else {
2234 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2235 				vr_stop(sc);
2236 		}
2237 		sc->vr_if_flags = ifp->if_flags;
2238 		VR_UNLOCK(sc);
2239 		break;
2240 	case SIOCADDMULTI:
2241 	case SIOCDELMULTI:
2242 		VR_LOCK(sc);
2243 		vr_set_filter(sc);
2244 		VR_UNLOCK(sc);
2245 		break;
2246 	case SIOCGIFMEDIA:
2247 	case SIOCSIFMEDIA:
2248 		mii = device_get_softc(sc->vr_miibus);
2249 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2250 		break;
2251 	case SIOCSIFCAP:
2252 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2253 #ifdef DEVICE_POLLING
2254 		if (mask & IFCAP_POLLING) {
2255 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2256 				error = ether_poll_register(vr_poll, ifp);
2257 				if (error != 0)
2258 					break;
2259 				VR_LOCK(sc);
2260 				/* Disable interrupts. */
2261 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2262 				ifp->if_capenable |= IFCAP_POLLING;
2263 				VR_UNLOCK(sc);
2264 			} else {
2265 				error = ether_poll_deregister(ifp);
2266 				/* Enable interrupts. */
2267 				VR_LOCK(sc);
2268 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2269 				ifp->if_capenable &= ~IFCAP_POLLING;
2270 				VR_UNLOCK(sc);
2271 			}
2272 		}
2273 #endif /* DEVICE_POLLING */
2274 		if ((mask & IFCAP_TXCSUM) != 0 &&
2275 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2276 			ifp->if_capenable ^= IFCAP_TXCSUM;
2277 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2278 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2279 			else
2280 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2281 		}
2282 		if ((mask & IFCAP_RXCSUM) != 0 &&
2283 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2284 			ifp->if_capenable ^= IFCAP_RXCSUM;
2285 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2286 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2287 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2288 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2289 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2290 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2291 		break;
2292 	default:
2293 		error = ether_ioctl(ifp, command, data);
2294 		break;
2295 	}
2296 
2297 	return (error);
2298 }
2299 
2300 static void
2301 vr_watchdog(struct vr_softc *sc)
2302 {
2303 	struct ifnet		*ifp;
2304 
2305 	VR_LOCK_ASSERT(sc);
2306 
2307 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2308 		return;
2309 
2310 	ifp = sc->vr_ifp;
2311 	/*
2312 	 * Reclaim first as we don't request interrupt for every packets.
2313 	 */
2314 	vr_txeof(sc);
2315 	if (sc->vr_cdata.vr_tx_cnt == 0)
2316 		return;
2317 
2318 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2319 		if (bootverbose)
2320 			if_printf(sc->vr_ifp, "watchdog timeout "
2321 			   "(missed link)\n");
2322 		ifp->if_oerrors++;
2323 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2324 		vr_init_locked(sc);
2325 		return;
2326 	}
2327 
2328 	ifp->if_oerrors++;
2329 	if_printf(ifp, "watchdog timeout\n");
2330 
2331 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2332 	vr_init_locked(sc);
2333 
2334 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2335 		vr_start_locked(ifp);
2336 }
2337 
2338 static void
2339 vr_tx_start(struct vr_softc *sc)
2340 {
2341 	bus_addr_t	addr;
2342 	uint8_t		cmd;
2343 
2344 	cmd = CSR_READ_1(sc, VR_CR0);
2345 	if ((cmd & VR_CR0_TX_ON) == 0) {
2346 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2347 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2348 		cmd |= VR_CR0_TX_ON;
2349 		CSR_WRITE_1(sc, VR_CR0, cmd);
2350 	}
2351 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2352 		sc->vr_watchdog_timer = 5;
2353 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2354 	}
2355 }
2356 
2357 static void
2358 vr_rx_start(struct vr_softc *sc)
2359 {
2360 	bus_addr_t	addr;
2361 	uint8_t		cmd;
2362 
2363 	cmd = CSR_READ_1(sc, VR_CR0);
2364 	if ((cmd & VR_CR0_RX_ON) == 0) {
2365 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2366 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2367 		cmd |= VR_CR0_RX_ON;
2368 		CSR_WRITE_1(sc, VR_CR0, cmd);
2369 	}
2370 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2371 }
2372 
2373 static int
2374 vr_tx_stop(struct vr_softc *sc)
2375 {
2376 	int		i;
2377 	uint8_t		cmd;
2378 
2379 	cmd = CSR_READ_1(sc, VR_CR0);
2380 	if ((cmd & VR_CR0_TX_ON) != 0) {
2381 		cmd &= ~VR_CR0_TX_ON;
2382 		CSR_WRITE_1(sc, VR_CR0, cmd);
2383 		for (i = VR_TIMEOUT; i > 0; i--) {
2384 			DELAY(5);
2385 			cmd = CSR_READ_1(sc, VR_CR0);
2386 			if ((cmd & VR_CR0_TX_ON) == 0)
2387 				break;
2388 		}
2389 		if (i == 0)
2390 			return (ETIMEDOUT);
2391 	}
2392 	return (0);
2393 }
2394 
2395 static int
2396 vr_rx_stop(struct vr_softc *sc)
2397 {
2398 	int		i;
2399 	uint8_t		cmd;
2400 
2401 	cmd = CSR_READ_1(sc, VR_CR0);
2402 	if ((cmd & VR_CR0_RX_ON) != 0) {
2403 		cmd &= ~VR_CR0_RX_ON;
2404 		CSR_WRITE_1(sc, VR_CR0, cmd);
2405 		for (i = VR_TIMEOUT; i > 0; i--) {
2406 			DELAY(5);
2407 			cmd = CSR_READ_1(sc, VR_CR0);
2408 			if ((cmd & VR_CR0_RX_ON) == 0)
2409 				break;
2410 		}
2411 		if (i == 0)
2412 			return (ETIMEDOUT);
2413 	}
2414 	return (0);
2415 }
2416 
2417 /*
2418  * Stop the adapter and free any mbufs allocated to the
2419  * RX and TX lists.
2420  */
2421 static void
2422 vr_stop(struct vr_softc *sc)
2423 {
2424 	struct vr_txdesc	*txd;
2425 	struct vr_rxdesc	*rxd;
2426 	struct ifnet		*ifp;
2427 	int			i;
2428 
2429 	VR_LOCK_ASSERT(sc);
2430 
2431 	ifp = sc->vr_ifp;
2432 	sc->vr_watchdog_timer = 0;
2433 
2434 	callout_stop(&sc->vr_stat_callout);
2435 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2436 
2437 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2438 	if (vr_rx_stop(sc) != 0)
2439 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2440 	if (vr_tx_stop(sc) != 0)
2441 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2442 	/* Clear pending interrupts. */
2443 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2444 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2445 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2446 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2447 
2448 	/*
2449 	 * Free RX and TX mbufs still in the queues.
2450 	 */
2451 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2452 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2453 		if (rxd->rx_m != NULL) {
2454 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2455 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2456 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2457 			    rxd->rx_dmamap);
2458 			m_freem(rxd->rx_m);
2459 			rxd->rx_m = NULL;
2460 		}
2461         }
2462 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2463 		txd = &sc->vr_cdata.vr_txdesc[i];
2464 		if (txd->tx_m != NULL) {
2465 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2466 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2467 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2468 			    txd->tx_dmamap);
2469 			m_freem(txd->tx_m);
2470 			txd->tx_m = NULL;
2471 		}
2472         }
2473 }
2474 
2475 /*
2476  * Stop all chip I/O so that the kernel's probe routines don't
2477  * get confused by errant DMAs when rebooting.
2478  */
2479 static int
2480 vr_shutdown(device_t dev)
2481 {
2482 
2483 	return (vr_suspend(dev));
2484 }
2485 
2486 static int
2487 vr_suspend(device_t dev)
2488 {
2489 	struct vr_softc		*sc;
2490 
2491 	sc = device_get_softc(dev);
2492 
2493 	VR_LOCK(sc);
2494 	vr_stop(sc);
2495 	vr_setwol(sc);
2496 	sc->vr_flags |= VR_F_SUSPENDED;
2497 	VR_UNLOCK(sc);
2498 
2499 	return (0);
2500 }
2501 
2502 static int
2503 vr_resume(device_t dev)
2504 {
2505 	struct vr_softc		*sc;
2506 	struct ifnet		*ifp;
2507 
2508 	sc = device_get_softc(dev);
2509 
2510 	VR_LOCK(sc);
2511 	ifp = sc->vr_ifp;
2512 	vr_clrwol(sc);
2513 	vr_reset(sc);
2514 	if (ifp->if_flags & IFF_UP)
2515 		vr_init_locked(sc);
2516 
2517 	sc->vr_flags &= ~VR_F_SUSPENDED;
2518 	VR_UNLOCK(sc);
2519 
2520 	return (0);
2521 }
2522 
2523 static void
2524 vr_setwol(struct vr_softc *sc)
2525 {
2526 	struct ifnet		*ifp;
2527 	int			pmc;
2528 	uint16_t		pmstat;
2529 	uint8_t			v;
2530 
2531 	VR_LOCK_ASSERT(sc);
2532 
2533 	if (sc->vr_revid < REV_ID_VT6102_A ||
2534 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2535 		return;
2536 
2537 	ifp = sc->vr_ifp;
2538 
2539 	/* Clear WOL configuration. */
2540 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2541 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2542 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2543 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2544 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2545 		/* Newer Rhine III supports two additional patterns. */
2546 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2547 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2548 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2549 	}
2550 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2551 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2552 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2553 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2554 	/*
2555 	 * It seems that multicast wakeup frames require programming pattern
2556 	 * registers and valid CRC as well as pattern mask for each pattern.
2557 	 * While it's possible to setup such a pattern it would complicate
2558 	 * WOL configuration so ignore multicast wakeup frames.
2559 	 */
2560 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2561 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2562 		v = CSR_READ_1(sc, VR_STICKHW);
2563 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2564 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2565 	}
2566 
2567 	/* Put hardware into sleep. */
2568 	v = CSR_READ_1(sc, VR_STICKHW);
2569 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2570 	CSR_WRITE_1(sc, VR_STICKHW, v);
2571 
2572 	/* Request PME if WOL is requested. */
2573 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2574 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2575 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2576 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2577 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2578 }
2579 
2580 static void
2581 vr_clrwol(struct vr_softc *sc)
2582 {
2583 	uint8_t			v;
2584 
2585 	VR_LOCK_ASSERT(sc);
2586 
2587 	if (sc->vr_revid < REV_ID_VT6102_A)
2588 		return;
2589 
2590 	/* Take hardware out of sleep. */
2591 	v = CSR_READ_1(sc, VR_STICKHW);
2592 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2593 	CSR_WRITE_1(sc, VR_STICKHW, v);
2594 
2595 	/* Clear WOL configuration as WOL may interfere normal operation. */
2596 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2597 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2598 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2599 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2600 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2601 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2602 		/* Newer Rhine III supports two additional patterns. */
2603 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2604 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2605 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2606 	}
2607 }
2608 
2609 static int
2610 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2611 {
2612 	struct vr_softc		*sc;
2613 	struct vr_statistics	*stat;
2614 	int			error;
2615 	int			result;
2616 
2617 	result = -1;
2618 	error = sysctl_handle_int(oidp, &result, 0, req);
2619 
2620 	if (error != 0 || req->newptr == NULL)
2621 		return (error);
2622 
2623 	if (result == 1) {
2624 		sc = (struct vr_softc *)arg1;
2625 		stat = &sc->vr_stat;
2626 
2627 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2628 		printf("Outbound good frames : %ju\n",
2629 		    (uintmax_t)stat->tx_ok);
2630 		printf("Inbound good frames : %ju\n",
2631 		    (uintmax_t)stat->rx_ok);
2632 		printf("Outbound errors : %u\n", stat->tx_errors);
2633 		printf("Inbound errors : %u\n", stat->rx_errors);
2634 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2635 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2636 		printf("Inbound FIFO overflows : %d\n",
2637 		    stat->rx_fifo_overflows);
2638 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2639 		printf("Inbound frame alignment errors : %u\n",
2640 		    stat->rx_alignment);
2641 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2642 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2643 		printf("Outbound aborted with excessive collisions : %u\n",
2644 		    stat->tx_abort);
2645 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2646 		printf("Outbound late collisions : %u\n",
2647 		    stat->tx_late_collisions);
2648 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2649 		printf("PCI bus errors : %u\n", stat->bus_errors);
2650 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2651 		    stat->num_restart);
2652 	}
2653 
2654 	return (error);
2655 }
2656