xref: /freebsd/sys/dev/vr/if_vr.c (revision bfcc09ddd422c95a1a2e4e794b63ee54c4902398)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Rhine fast ethernet PCI NIC driver
40  *
41  * Supports various network adapters based on the VIA Rhine
42  * and Rhine II PCI controllers, including the D-Link DFE530TX.
43  * Datasheets are available at http://www.via.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The VIA Rhine controllers are similar in some respects to the
52  * the DEC tulip chips, except less complicated. The controller
53  * uses an MII bus and an external physical layer interface. The
54  * receiver has a one entry perfect filter and a 64-bit hash table
55  * multicast filter. Transmit and receive descriptors are similar
56  * to the tulip.
57  *
58  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
59  * transmit buffers must be longword aligned. Unfortunately,
60  * FreeBSD doesn't guarantee that mbufs will be filled in starting
61  * at longword boundaries, so we have to do a buffer copy before
62  * transmission.
63  */
64 
65 #ifdef HAVE_KERNEL_OPTION_HEADERS
66 #include "opt_device_polling.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/module.h>
77 #include <sys/rman.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 #include <net/if_vlan_var.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include <machine/bus.h>
99 
100 #include <dev/vr/if_vrreg.h>
101 
102 /* "device miibus" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 MODULE_DEPEND(vr, pci, 1, 1, 1);
106 MODULE_DEPEND(vr, ether, 1, 1, 1);
107 MODULE_DEPEND(vr, miibus, 1, 1, 1);
108 
109 /* Define to show Rx/Tx error status. */
110 #undef	VR_SHOW_ERRORS
111 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
112 
113 /*
114  * Various supported device vendors/types, their names & quirks.
115  */
116 #define VR_Q_NEEDALIGN		(1<<0)
117 #define VR_Q_CSUM		(1<<1)
118 #define VR_Q_CAM		(1<<2)
119 
120 static const struct vr_type {
121 	u_int16_t		vr_vid;
122 	u_int16_t		vr_did;
123 	int			vr_quirks;
124 	const char		*vr_name;
125 } vr_devs[] = {
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT3043 Rhine I 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
130 	    VR_Q_NEEDALIGN,
131 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
133 	    0,
134 	    "VIA VT6102 Rhine II 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
136 	    0,
137 	    "VIA VT6105 Rhine III 10/100BaseTX" },
138 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
139 	    VR_Q_CSUM,
140 	    "VIA VT6105M Rhine III 10/100BaseTX" },
141 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Delta Electronics Rhine II 10/100BaseTX" },
144 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
145 	    VR_Q_NEEDALIGN,
146 	    "Addtron Technology Rhine II 10/100BaseTX" },
147 	{ 0, 0, 0, NULL }
148 };
149 
150 static int vr_probe(device_t);
151 static int vr_attach(device_t);
152 static int vr_detach(device_t);
153 static int vr_shutdown(device_t);
154 static int vr_suspend(device_t);
155 static int vr_resume(device_t);
156 
157 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
158 static int vr_dma_alloc(struct vr_softc *);
159 static void vr_dma_free(struct vr_softc *);
160 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
161 static int vr_newbuf(struct vr_softc *, int);
162 
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline void vr_fixup_rx(struct mbuf *);
165 #endif
166 static int vr_rxeof(struct vr_softc *);
167 static void vr_txeof(struct vr_softc *);
168 static void vr_tick(void *);
169 static int vr_error(struct vr_softc *, uint16_t);
170 static void vr_tx_underrun(struct vr_softc *);
171 static int vr_intr(void *);
172 static void vr_int_task(void *, int);
173 static void vr_start(struct ifnet *);
174 static void vr_start_locked(struct ifnet *);
175 static int vr_encap(struct vr_softc *, struct mbuf **);
176 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
177 static void vr_init(void *);
178 static void vr_init_locked(struct vr_softc *);
179 static void vr_tx_start(struct vr_softc *);
180 static void vr_rx_start(struct vr_softc *);
181 static int vr_tx_stop(struct vr_softc *);
182 static int vr_rx_stop(struct vr_softc *);
183 static void vr_stop(struct vr_softc *);
184 static void vr_watchdog(struct vr_softc *);
185 static int vr_ifmedia_upd(struct ifnet *);
186 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
187 
188 static int vr_miibus_readreg(device_t, int, int);
189 static int vr_miibus_writereg(device_t, int, int, int);
190 static void vr_miibus_statchg(device_t);
191 
192 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
193 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
194 static void vr_set_filter(struct vr_softc *);
195 static void vr_reset(const struct vr_softc *);
196 static int vr_tx_ring_init(struct vr_softc *);
197 static int vr_rx_ring_init(struct vr_softc *);
198 static void vr_setwol(struct vr_softc *);
199 static void vr_clrwol(struct vr_softc *);
200 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
201 
202 static const struct vr_tx_threshold_table {
203 	int tx_cfg;
204 	int bcr_cfg;
205 	int value;
206 } vr_tx_threshold_tables[] = {
207 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
208 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
209 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
210 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
211 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
212 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
213 };
214 
215 static device_method_t vr_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		vr_probe),
218 	DEVMETHOD(device_attach,	vr_attach),
219 	DEVMETHOD(device_detach, 	vr_detach),
220 	DEVMETHOD(device_shutdown,	vr_shutdown),
221 	DEVMETHOD(device_suspend,	vr_suspend),
222 	DEVMETHOD(device_resume,	vr_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	DEVMETHOD_END
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 static devclass_t vr_devclass;
239 
240 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
241 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
242 
243 static int
244 vr_miibus_readreg(device_t dev, int phy, int reg)
245 {
246 	struct vr_softc		*sc;
247 	int			i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* Set the register address. */
252 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
253 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
254 
255 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
256 		DELAY(1);
257 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
258 			break;
259 	}
260 	if (i == VR_MII_TIMEOUT)
261 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
262 
263 	return (CSR_READ_2(sc, VR_MIIDATA));
264 }
265 
266 static int
267 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
268 {
269 	struct vr_softc		*sc;
270 	int			i;
271 
272 	sc = device_get_softc(dev);
273 
274 	/* Set the register address and data to write. */
275 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
276 	CSR_WRITE_2(sc, VR_MIIDATA, data);
277 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
278 
279 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
280 		DELAY(1);
281 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
282 			break;
283 	}
284 	if (i == VR_MII_TIMEOUT)
285 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
286 		    reg);
287 
288 	return (0);
289 }
290 
291 /*
292  * In order to fiddle with the
293  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
294  * first have to put the transmit and/or receive logic in the idle state.
295  */
296 static void
297 vr_miibus_statchg(device_t dev)
298 {
299 	struct vr_softc		*sc;
300 	struct mii_data		*mii;
301 	struct ifnet		*ifp;
302 	int			lfdx, mfdx;
303 	uint8_t			cr0, cr1, fc;
304 
305 	sc = device_get_softc(dev);
306 	mii = device_get_softc(sc->vr_miibus);
307 	ifp = sc->vr_ifp;
308 	if (mii == NULL || ifp == NULL ||
309 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
310 		return;
311 
312 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
313 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
314 	    (IFM_ACTIVE | IFM_AVALID)) {
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_10_T:
317 		case IFM_100_TX:
318 			sc->vr_flags |= VR_F_LINK;
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 
325 	if ((sc->vr_flags & VR_F_LINK) != 0) {
326 		cr0 = CSR_READ_1(sc, VR_CR0);
327 		cr1 = CSR_READ_1(sc, VR_CR1);
328 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
329 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
330 		if (mfdx != lfdx) {
331 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
332 				if (vr_tx_stop(sc) != 0 ||
333 				    vr_rx_stop(sc) != 0) {
334 					device_printf(sc->vr_dev,
335 					    "%s: Tx/Rx shutdown error -- "
336 					    "resetting\n", __func__);
337 					sc->vr_flags |= VR_F_RESTART;
338 					VR_UNLOCK(sc);
339 					return;
340 				}
341 			}
342 			if (lfdx)
343 				cr1 |= VR_CR1_FULLDUPLEX;
344 			else
345 				cr1 &= ~VR_CR1_FULLDUPLEX;
346 			CSR_WRITE_1(sc, VR_CR1, cr1);
347 		}
348 		fc = 0;
349 		/* Configure flow-control. */
350 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
351 			fc = CSR_READ_1(sc, VR_FLOWCR1);
352 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
353 			if ((IFM_OPTIONS(mii->mii_media_active) &
354 			    IFM_ETH_RXPAUSE) != 0)
355 				fc |= VR_FLOWCR1_RXPAUSE;
356 			if ((IFM_OPTIONS(mii->mii_media_active) &
357 			    IFM_ETH_TXPAUSE) != 0) {
358 				fc |= VR_FLOWCR1_TXPAUSE;
359 				sc->vr_flags |= VR_F_TXPAUSE;
360 			}
361 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
362 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
363 			/* No Tx puase capability available for Rhine II. */
364 			fc = CSR_READ_1(sc, VR_MISC_CR0);
365 			fc &= ~VR_MISCCR0_RXPAUSE;
366 			if ((IFM_OPTIONS(mii->mii_media_active) &
367 			    IFM_ETH_RXPAUSE) != 0)
368 				fc |= VR_MISCCR0_RXPAUSE;
369 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
370 		}
371 		vr_rx_start(sc);
372 		vr_tx_start(sc);
373 	} else {
374 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
375 			device_printf(sc->vr_dev,
376 			    "%s: Tx/Rx shutdown error -- resetting\n",
377 			    __func__);
378 			sc->vr_flags |= VR_F_RESTART;
379 		}
380 	}
381 }
382 
383 static void
384 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
385 {
386 
387 	if (type == VR_MCAST_CAM)
388 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
389 	else
390 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
391 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
392 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
393 }
394 
395 static int
396 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
397 {
398 	int	i;
399 
400 	if (type == VR_MCAST_CAM) {
401 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
402 			return (EINVAL);
403 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
404 	} else
405 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
406 
407 	/* Set CAM entry address. */
408 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
409 	/* Set CAM entry data. */
410 	if (type == VR_MCAST_CAM) {
411 		for (i = 0; i < ETHER_ADDR_LEN; i++)
412 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
413 	} else {
414 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
415 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
416 	}
417 	DELAY(10);
418 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
419 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
420 	for (i = 0; i < VR_TIMEOUT; i++) {
421 		DELAY(1);
422 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
423 			break;
424 	}
425 
426 	if (i == VR_TIMEOUT)
427 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
428 		    __func__);
429 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
430 
431 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
432 }
433 
434 struct vr_hash_maddr_cam_ctx {
435 	struct vr_softc *sc;
436 	uint32_t mask;
437 	int error;
438 };
439 
440 static u_int
441 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
442 {
443 	struct vr_hash_maddr_cam_ctx *ctx = arg;
444 
445 	if (ctx->error != 0)
446 		return (0);
447 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
448 	if (ctx->error != 0) {
449 		ctx->mask = 0;
450 		return (0);
451 	}
452 	ctx->mask |= 1 << mcnt;
453 
454 	return (1);
455 }
456 
457 static u_int
458 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
459 {
460 	uint32_t *hashes = arg;
461 	int h;
462 
463 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
464 	if (h < 32)
465 		hashes[0] |= (1 << h);
466 	else
467 		hashes[1] |= (1 << (h - 32));
468 
469 	return (1);
470 }
471 
472 /*
473  * Program the 64-bit multicast hash filter.
474  */
475 static void
476 vr_set_filter(struct vr_softc *sc)
477 {
478 	struct ifnet		*ifp;
479 	uint32_t		hashes[2] = { 0, 0 };
480 	uint8_t			rxfilt;
481 	int			error, mcnt;
482 
483 	VR_LOCK_ASSERT(sc);
484 
485 	ifp = sc->vr_ifp;
486 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
487 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
488 	    VR_RXCFG_RX_MULTI);
489 	if (ifp->if_flags & IFF_BROADCAST)
490 		rxfilt |= VR_RXCFG_RX_BROAD;
491 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
492 		rxfilt |= VR_RXCFG_RX_MULTI;
493 		if (ifp->if_flags & IFF_PROMISC)
494 			rxfilt |= VR_RXCFG_RX_PROMISC;
495 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
496 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
497 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
498 		return;
499 	}
500 
501 	/* Now program new ones. */
502 	error = 0;
503 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
504 		struct vr_hash_maddr_cam_ctx ctx;
505 
506 		/*
507 		 * For hardwares that have CAM capability, use
508 		 * 32 entries multicast perfect filter.
509 		 */
510 		ctx.sc = sc;
511 		ctx.mask = 0;
512 		ctx.error = 0;
513 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
514 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
515 	}
516 
517 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
518 		/*
519 		 * If there are too many multicast addresses or
520 		 * setting multicast CAM filter failed, use hash
521 		 * table based filtering.
522 		 */
523 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
524 	}
525 
526 	if (mcnt > 0)
527 		rxfilt |= VR_RXCFG_RX_MULTI;
528 
529 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
530 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
531 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
532 }
533 
534 static void
535 vr_reset(const struct vr_softc *sc)
536 {
537 	int		i;
538 
539 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
540 
541 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
542 	if (sc->vr_revid < REV_ID_VT6102_A) {
543 		/* VT86C100A needs more delay after reset. */
544 		DELAY(100);
545 	}
546 	for (i = 0; i < VR_TIMEOUT; i++) {
547 		DELAY(10);
548 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
549 			break;
550 	}
551 	if (i == VR_TIMEOUT) {
552 		if (sc->vr_revid < REV_ID_VT6102_A)
553 			device_printf(sc->vr_dev, "reset never completed!\n");
554 		else {
555 			/* Use newer force reset command. */
556 			device_printf(sc->vr_dev,
557 			    "Using force reset command.\n");
558 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
559 			/*
560 			 * Wait a little while for the chip to get its brains
561 			 * in order.
562 			 */
563 			DELAY(2000);
564 		}
565 	}
566 
567 }
568 
569 /*
570  * Probe for a VIA Rhine chip. Check the PCI vendor and device
571  * IDs against our list and return a match or NULL
572  */
573 static const struct vr_type *
574 vr_match(device_t dev)
575 {
576 	const struct vr_type	*t = vr_devs;
577 
578 	for (t = vr_devs; t->vr_name != NULL; t++)
579 		if ((pci_get_vendor(dev) == t->vr_vid) &&
580 		    (pci_get_device(dev) == t->vr_did))
581 			return (t);
582 	return (NULL);
583 }
584 
585 /*
586  * Probe for a VIA Rhine chip. Check the PCI vendor and device
587  * IDs against our list and return a device name if we find a match.
588  */
589 static int
590 vr_probe(device_t dev)
591 {
592 	const struct vr_type	*t;
593 
594 	t = vr_match(dev);
595 	if (t != NULL) {
596 		device_set_desc(dev, t->vr_name);
597 		return (BUS_PROBE_DEFAULT);
598 	}
599 	return (ENXIO);
600 }
601 
602 /*
603  * Attach the interface. Allocate softc structures, do ifmedia
604  * setup and ethernet/BPF attach.
605  */
606 static int
607 vr_attach(device_t dev)
608 {
609 	struct vr_softc		*sc;
610 	struct ifnet		*ifp;
611 	const struct vr_type	*t;
612 	uint8_t			eaddr[ETHER_ADDR_LEN];
613 	int			error, rid;
614 	int			i, phy, pmc;
615 
616 	sc = device_get_softc(dev);
617 	sc->vr_dev = dev;
618 	t = vr_match(dev);
619 	KASSERT(t != NULL, ("Lost if_vr device match"));
620 	sc->vr_quirks = t->vr_quirks;
621 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
622 
623 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
624 	    MTX_DEF);
625 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
626 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
627 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
628 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
629 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
630 
631 	error = 0;
632 
633 	/*
634 	 * Map control/status registers.
635 	 */
636 	pci_enable_busmaster(dev);
637 	sc->vr_revid = pci_get_revid(dev);
638 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
639 
640 	sc->vr_res_id = PCIR_BAR(0);
641 	sc->vr_res_type = SYS_RES_IOPORT;
642 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
643 	    &sc->vr_res_id, RF_ACTIVE);
644 	if (sc->vr_res == NULL) {
645 		device_printf(dev, "couldn't map ports\n");
646 		error = ENXIO;
647 		goto fail;
648 	}
649 
650 	/* Allocate interrupt. */
651 	rid = 0;
652 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
653 	    RF_SHAREABLE | RF_ACTIVE);
654 
655 	if (sc->vr_irq == NULL) {
656 		device_printf(dev, "couldn't map interrupt\n");
657 		error = ENXIO;
658 		goto fail;
659 	}
660 
661 	/* Allocate ifnet structure. */
662 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
663 	if (ifp == NULL) {
664 		device_printf(dev, "couldn't allocate ifnet structure\n");
665 		error = ENOSPC;
666 		goto fail;
667 	}
668 	ifp->if_softc = sc;
669 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671 	ifp->if_ioctl = vr_ioctl;
672 	ifp->if_start = vr_start;
673 	ifp->if_init = vr_init;
674 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
675 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
676 	IFQ_SET_READY(&ifp->if_snd);
677 
678 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
679 
680 	/* Configure Tx FIFO threshold. */
681 	sc->vr_txthresh = VR_TXTHRESH_MIN;
682 	if (sc->vr_revid < REV_ID_VT6105_A0) {
683 		/*
684 		 * Use store and forward mode for Rhine I/II.
685 		 * Otherwise they produce a lot of Tx underruns and
686 		 * it would take a while to get working FIFO threshold
687 		 * value.
688 		 */
689 		sc->vr_txthresh = VR_TXTHRESH_MAX;
690 	}
691 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
692 		ifp->if_hwassist = VR_CSUM_FEATURES;
693 		ifp->if_capabilities |= IFCAP_HWCSUM;
694 		/*
695 		 * To update checksum field the hardware may need to
696 		 * store entire frames into FIFO before transmitting.
697 		 */
698 		sc->vr_txthresh = VR_TXTHRESH_MAX;
699 	}
700 
701 	if (sc->vr_revid >= REV_ID_VT6102_A &&
702 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
703 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
704 
705 	/* Rhine supports oversized VLAN frame. */
706 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
707 	ifp->if_capenable = ifp->if_capabilities;
708 #ifdef DEVICE_POLLING
709 	ifp->if_capabilities |= IFCAP_POLLING;
710 #endif
711 
712 	/*
713 	 * Windows may put the chip in suspend mode when it
714 	 * shuts down. Be sure to kick it in the head to wake it
715 	 * up again.
716 	 */
717 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
718 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
719 
720 	/*
721 	 * Get station address. The way the Rhine chips work,
722 	 * you're not allowed to directly access the EEPROM once
723 	 * they've been programmed a special way. Consequently,
724 	 * we need to read the node address from the PAR0 and PAR1
725 	 * registers.
726 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
727 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
728 	 * by driver is reset to default state.
729 	 */
730 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
731 	for (i = VR_TIMEOUT; i > 0; i--) {
732 		DELAY(1);
733 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
734 			break;
735 	}
736 	if (i == 0)
737 		device_printf(dev, "Reloading EEPROM timeout!\n");
738 	for (i = 0; i < ETHER_ADDR_LEN; i++)
739 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
740 
741 	/* Reset the adapter. */
742 	vr_reset(sc);
743 	/* Ack intr & disable further interrupts. */
744 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
745 	CSR_WRITE_2(sc, VR_IMR, 0);
746 	if (sc->vr_revid >= REV_ID_VT6102_A)
747 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
748 
749 	if (sc->vr_revid < REV_ID_VT6102_A) {
750 		pci_write_config(dev, VR_PCI_MODE2,
751 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
752 		    VR_MODE2_MODE10T, 1);
753 	} else {
754 		/* Report error instead of retrying forever. */
755 		pci_write_config(dev, VR_PCI_MODE2,
756 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
757 		    VR_MODE2_PCEROPT, 1);
758         	/* Detect MII coding error. */
759 		pci_write_config(dev, VR_PCI_MODE3,
760 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
761 		    VR_MODE3_MIION, 1);
762 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
763 		    sc->vr_revid < REV_ID_VT6105M_A0)
764 			pci_write_config(dev, VR_PCI_MODE2,
765 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
766 			    VR_MODE2_MODE10T, 1);
767 		/* Enable Memory-Read-Multiple. */
768 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
769 		    sc->vr_revid < REV_ID_VT6105M_A0)
770 			pci_write_config(dev, VR_PCI_MODE2,
771 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
772 			    VR_MODE2_MRDPL, 1);
773 	}
774 	/* Disable MII AUTOPOLL. */
775 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
776 
777 	if (vr_dma_alloc(sc) != 0) {
778 		error = ENXIO;
779 		goto fail;
780 	}
781 
782 	/* Do MII setup. */
783 	if (sc->vr_revid >= REV_ID_VT6105_A0)
784 		phy = 1;
785 	else
786 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
787 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
788 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
789 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
790 	if (error != 0) {
791 		device_printf(dev, "attaching PHYs failed\n");
792 		goto fail;
793 	}
794 
795 	/* Call MI attach routine. */
796 	ether_ifattach(ifp, eaddr);
797 	/*
798 	 * Tell the upper layer(s) we support long frames.
799 	 * Must appear after the call to ether_ifattach() because
800 	 * ether_ifattach() sets ifi_hdrlen to the default value.
801 	 */
802 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
803 
804 	/* Hook interrupt last to avoid having to lock softc. */
805 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
806 	    vr_intr, NULL, sc, &sc->vr_intrhand);
807 
808 	if (error) {
809 		device_printf(dev, "couldn't set up irq\n");
810 		ether_ifdetach(ifp);
811 		goto fail;
812 	}
813 
814 fail:
815 	if (error)
816 		vr_detach(dev);
817 
818 	return (error);
819 }
820 
821 /*
822  * Shutdown hardware and free up resources. This can be called any
823  * time after the mutex has been initialized. It is called in both
824  * the error case in attach and the normal detach case so it needs
825  * to be careful about only freeing resources that have actually been
826  * allocated.
827  */
828 static int
829 vr_detach(device_t dev)
830 {
831 	struct vr_softc		*sc = device_get_softc(dev);
832 	struct ifnet		*ifp = sc->vr_ifp;
833 
834 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
835 
836 #ifdef DEVICE_POLLING
837 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
838 		ether_poll_deregister(ifp);
839 #endif
840 
841 	/* These should only be active if attach succeeded. */
842 	if (device_is_attached(dev)) {
843 		VR_LOCK(sc);
844 		sc->vr_flags |= VR_F_DETACHED;
845 		vr_stop(sc);
846 		VR_UNLOCK(sc);
847 		callout_drain(&sc->vr_stat_callout);
848 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
849 		ether_ifdetach(ifp);
850 	}
851 	if (sc->vr_miibus)
852 		device_delete_child(dev, sc->vr_miibus);
853 	bus_generic_detach(dev);
854 
855 	if (sc->vr_intrhand)
856 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
857 	if (sc->vr_irq)
858 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
859 	if (sc->vr_res)
860 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
861 		    sc->vr_res);
862 
863 	if (ifp)
864 		if_free(ifp);
865 
866 	vr_dma_free(sc);
867 
868 	mtx_destroy(&sc->vr_mtx);
869 
870 	return (0);
871 }
872 
873 struct vr_dmamap_arg {
874 	bus_addr_t	vr_busaddr;
875 };
876 
877 static void
878 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
879 {
880 	struct vr_dmamap_arg	*ctx;
881 
882 	if (error != 0)
883 		return;
884 	ctx = arg;
885 	ctx->vr_busaddr = segs[0].ds_addr;
886 }
887 
888 static int
889 vr_dma_alloc(struct vr_softc *sc)
890 {
891 	struct vr_dmamap_arg	ctx;
892 	struct vr_txdesc	*txd;
893 	struct vr_rxdesc	*rxd;
894 	bus_size_t		tx_alignment;
895 	int			error, i;
896 
897 	/* Create parent DMA tag. */
898 	error = bus_dma_tag_create(
899 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
900 	    1, 0,			/* alignment, boundary */
901 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
902 	    BUS_SPACE_MAXADDR,		/* highaddr */
903 	    NULL, NULL,			/* filter, filterarg */
904 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
905 	    0,				/* nsegments */
906 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
907 	    0,				/* flags */
908 	    NULL, NULL,			/* lockfunc, lockarg */
909 	    &sc->vr_cdata.vr_parent_tag);
910 	if (error != 0) {
911 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
912 		goto fail;
913 	}
914 	/* Create tag for Tx ring. */
915 	error = bus_dma_tag_create(
916 	    sc->vr_cdata.vr_parent_tag,	/* parent */
917 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
918 	    BUS_SPACE_MAXADDR,		/* lowaddr */
919 	    BUS_SPACE_MAXADDR,		/* highaddr */
920 	    NULL, NULL,			/* filter, filterarg */
921 	    VR_TX_RING_SIZE,		/* maxsize */
922 	    1,				/* nsegments */
923 	    VR_TX_RING_SIZE,		/* maxsegsize */
924 	    0,				/* flags */
925 	    NULL, NULL,			/* lockfunc, lockarg */
926 	    &sc->vr_cdata.vr_tx_ring_tag);
927 	if (error != 0) {
928 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
929 		goto fail;
930 	}
931 
932 	/* Create tag for Rx ring. */
933 	error = bus_dma_tag_create(
934 	    sc->vr_cdata.vr_parent_tag,	/* parent */
935 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
936 	    BUS_SPACE_MAXADDR,		/* lowaddr */
937 	    BUS_SPACE_MAXADDR,		/* highaddr */
938 	    NULL, NULL,			/* filter, filterarg */
939 	    VR_RX_RING_SIZE,		/* maxsize */
940 	    1,				/* nsegments */
941 	    VR_RX_RING_SIZE,		/* maxsegsize */
942 	    0,				/* flags */
943 	    NULL, NULL,			/* lockfunc, lockarg */
944 	    &sc->vr_cdata.vr_rx_ring_tag);
945 	if (error != 0) {
946 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
947 		goto fail;
948 	}
949 
950 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
951 		tx_alignment = sizeof(uint32_t);
952 	else
953 		tx_alignment = 1;
954 	/* Create tag for Tx buffers. */
955 	error = bus_dma_tag_create(
956 	    sc->vr_cdata.vr_parent_tag,	/* parent */
957 	    tx_alignment, 0,		/* alignment, boundary */
958 	    BUS_SPACE_MAXADDR,		/* lowaddr */
959 	    BUS_SPACE_MAXADDR,		/* highaddr */
960 	    NULL, NULL,			/* filter, filterarg */
961 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
962 	    VR_MAXFRAGS,		/* nsegments */
963 	    MCLBYTES,			/* maxsegsize */
964 	    0,				/* flags */
965 	    NULL, NULL,			/* lockfunc, lockarg */
966 	    &sc->vr_cdata.vr_tx_tag);
967 	if (error != 0) {
968 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
969 		goto fail;
970 	}
971 
972 	/* Create tag for Rx buffers. */
973 	error = bus_dma_tag_create(
974 	    sc->vr_cdata.vr_parent_tag,	/* parent */
975 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
976 	    BUS_SPACE_MAXADDR,		/* lowaddr */
977 	    BUS_SPACE_MAXADDR,		/* highaddr */
978 	    NULL, NULL,			/* filter, filterarg */
979 	    MCLBYTES,			/* maxsize */
980 	    1,				/* nsegments */
981 	    MCLBYTES,			/* maxsegsize */
982 	    0,				/* flags */
983 	    NULL, NULL,			/* lockfunc, lockarg */
984 	    &sc->vr_cdata.vr_rx_tag);
985 	if (error != 0) {
986 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
987 		goto fail;
988 	}
989 
990 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
991 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
992 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
993 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
994 	if (error != 0) {
995 		device_printf(sc->vr_dev,
996 		    "failed to allocate DMA'able memory for Tx ring\n");
997 		goto fail;
998 	}
999 
1000 	ctx.vr_busaddr = 0;
1001 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
1002 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
1003 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1004 	if (error != 0 || ctx.vr_busaddr == 0) {
1005 		device_printf(sc->vr_dev,
1006 		    "failed to load DMA'able memory for Tx ring\n");
1007 		goto fail;
1008 	}
1009 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1010 
1011 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1012 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1013 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1014 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1015 	if (error != 0) {
1016 		device_printf(sc->vr_dev,
1017 		    "failed to allocate DMA'able memory for Rx ring\n");
1018 		goto fail;
1019 	}
1020 
1021 	ctx.vr_busaddr = 0;
1022 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1023 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1024 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1025 	if (error != 0 || ctx.vr_busaddr == 0) {
1026 		device_printf(sc->vr_dev,
1027 		    "failed to load DMA'able memory for Rx ring\n");
1028 		goto fail;
1029 	}
1030 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1031 
1032 	/* Create DMA maps for Tx buffers. */
1033 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1034 		txd = &sc->vr_cdata.vr_txdesc[i];
1035 		txd->tx_m = NULL;
1036 		txd->tx_dmamap = NULL;
1037 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1038 		    &txd->tx_dmamap);
1039 		if (error != 0) {
1040 			device_printf(sc->vr_dev,
1041 			    "failed to create Tx dmamap\n");
1042 			goto fail;
1043 		}
1044 	}
1045 	/* Create DMA maps for Rx buffers. */
1046 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1047 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1048 		device_printf(sc->vr_dev,
1049 		    "failed to create spare Rx dmamap\n");
1050 		goto fail;
1051 	}
1052 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1053 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1054 		rxd->rx_m = NULL;
1055 		rxd->rx_dmamap = NULL;
1056 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1057 		    &rxd->rx_dmamap);
1058 		if (error != 0) {
1059 			device_printf(sc->vr_dev,
1060 			    "failed to create Rx dmamap\n");
1061 			goto fail;
1062 		}
1063 	}
1064 
1065 fail:
1066 	return (error);
1067 }
1068 
1069 static void
1070 vr_dma_free(struct vr_softc *sc)
1071 {
1072 	struct vr_txdesc	*txd;
1073 	struct vr_rxdesc	*rxd;
1074 	int			i;
1075 
1076 	/* Tx ring. */
1077 	if (sc->vr_cdata.vr_tx_ring_tag) {
1078 		if (sc->vr_rdata.vr_tx_ring_paddr)
1079 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1080 			    sc->vr_cdata.vr_tx_ring_map);
1081 		if (sc->vr_rdata.vr_tx_ring)
1082 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1083 			    sc->vr_rdata.vr_tx_ring,
1084 			    sc->vr_cdata.vr_tx_ring_map);
1085 		sc->vr_rdata.vr_tx_ring = NULL;
1086 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1087 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1088 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1089 	}
1090 	/* Rx ring. */
1091 	if (sc->vr_cdata.vr_rx_ring_tag) {
1092 		if (sc->vr_rdata.vr_rx_ring_paddr)
1093 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1094 			    sc->vr_cdata.vr_rx_ring_map);
1095 		if (sc->vr_rdata.vr_rx_ring)
1096 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1097 			    sc->vr_rdata.vr_rx_ring,
1098 			    sc->vr_cdata.vr_rx_ring_map);
1099 		sc->vr_rdata.vr_rx_ring = NULL;
1100 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1101 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1102 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1103 	}
1104 	/* Tx buffers. */
1105 	if (sc->vr_cdata.vr_tx_tag) {
1106 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1107 			txd = &sc->vr_cdata.vr_txdesc[i];
1108 			if (txd->tx_dmamap) {
1109 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1110 				    txd->tx_dmamap);
1111 				txd->tx_dmamap = NULL;
1112 			}
1113 		}
1114 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1115 		sc->vr_cdata.vr_tx_tag = NULL;
1116 	}
1117 	/* Rx buffers. */
1118 	if (sc->vr_cdata.vr_rx_tag) {
1119 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1120 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1121 			if (rxd->rx_dmamap) {
1122 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1123 				    rxd->rx_dmamap);
1124 				rxd->rx_dmamap = NULL;
1125 			}
1126 		}
1127 		if (sc->vr_cdata.vr_rx_sparemap) {
1128 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1129 			    sc->vr_cdata.vr_rx_sparemap);
1130 			sc->vr_cdata.vr_rx_sparemap = 0;
1131 		}
1132 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1133 		sc->vr_cdata.vr_rx_tag = NULL;
1134 	}
1135 
1136 	if (sc->vr_cdata.vr_parent_tag) {
1137 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1138 		sc->vr_cdata.vr_parent_tag = NULL;
1139 	}
1140 }
1141 
1142 /*
1143  * Initialize the transmit descriptors.
1144  */
1145 static int
1146 vr_tx_ring_init(struct vr_softc *sc)
1147 {
1148 	struct vr_ring_data	*rd;
1149 	struct vr_txdesc	*txd;
1150 	bus_addr_t		addr;
1151 	int			i;
1152 
1153 	sc->vr_cdata.vr_tx_prod = 0;
1154 	sc->vr_cdata.vr_tx_cons = 0;
1155 	sc->vr_cdata.vr_tx_cnt = 0;
1156 	sc->vr_cdata.vr_tx_pkts = 0;
1157 
1158 	rd = &sc->vr_rdata;
1159 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1160 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1161 		if (i == VR_TX_RING_CNT - 1)
1162 			addr = VR_TX_RING_ADDR(sc, 0);
1163 		else
1164 			addr = VR_TX_RING_ADDR(sc, i + 1);
1165 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1166 		txd = &sc->vr_cdata.vr_txdesc[i];
1167 		txd->tx_m = NULL;
1168 	}
1169 
1170 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1171 	    sc->vr_cdata.vr_tx_ring_map,
1172 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Initialize the RX descriptors and allocate mbufs for them. Note that
1179  * we arrange the descriptors in a closed ring, so that the last descriptor
1180  * points back to the first.
1181  */
1182 static int
1183 vr_rx_ring_init(struct vr_softc *sc)
1184 {
1185 	struct vr_ring_data	*rd;
1186 	struct vr_rxdesc	*rxd;
1187 	bus_addr_t		addr;
1188 	int			i;
1189 
1190 	sc->vr_cdata.vr_rx_cons = 0;
1191 
1192 	rd = &sc->vr_rdata;
1193 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1194 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1195 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1196 		rxd->rx_m = NULL;
1197 		rxd->desc = &rd->vr_rx_ring[i];
1198 		if (i == VR_RX_RING_CNT - 1)
1199 			addr = VR_RX_RING_ADDR(sc, 0);
1200 		else
1201 			addr = VR_RX_RING_ADDR(sc, i + 1);
1202 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1203 		if (vr_newbuf(sc, i) != 0)
1204 			return (ENOBUFS);
1205 	}
1206 
1207 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1208 	    sc->vr_cdata.vr_rx_ring_map,
1209 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1210 
1211 	return (0);
1212 }
1213 
1214 static __inline void
1215 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1216 {
1217 	struct vr_desc	*desc;
1218 
1219 	desc = rxd->desc;
1220 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1221 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1222 }
1223 
1224 /*
1225  * Initialize an RX descriptor and attach an MBUF cluster.
1226  * Note: the length fields are only 11 bits wide, which means the
1227  * largest size we can specify is 2047. This is important because
1228  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1229  * overflow the field and make a mess.
1230  */
1231 static int
1232 vr_newbuf(struct vr_softc *sc, int idx)
1233 {
1234 	struct vr_desc		*desc;
1235 	struct vr_rxdesc	*rxd;
1236 	struct mbuf		*m;
1237 	bus_dma_segment_t	segs[1];
1238 	bus_dmamap_t		map;
1239 	int			nsegs;
1240 
1241 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1242 	if (m == NULL)
1243 		return (ENOBUFS);
1244 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1245 	m_adj(m, sizeof(uint64_t));
1246 
1247 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1248 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1249 		m_freem(m);
1250 		return (ENOBUFS);
1251 	}
1252 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1253 
1254 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1255 	if (rxd->rx_m != NULL) {
1256 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1257 		    BUS_DMASYNC_POSTREAD);
1258 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1259 	}
1260 	map = rxd->rx_dmamap;
1261 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1262 	sc->vr_cdata.vr_rx_sparemap = map;
1263 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1264 	    BUS_DMASYNC_PREREAD);
1265 	rxd->rx_m = m;
1266 	desc = rxd->desc;
1267 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1268 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1269 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1270 
1271 	return (0);
1272 }
1273 
1274 #ifndef __NO_STRICT_ALIGNMENT
1275 static __inline void
1276 vr_fixup_rx(struct mbuf *m)
1277 {
1278         uint16_t		*src, *dst;
1279         int			i;
1280 
1281 	src = mtod(m, uint16_t *);
1282 	dst = src - 1;
1283 
1284 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1285 		*dst++ = *src++;
1286 
1287 	m->m_data -= ETHER_ALIGN;
1288 }
1289 #endif
1290 
1291 /*
1292  * A frame has been uploaded: pass the resulting mbuf chain up to
1293  * the higher level protocols.
1294  */
1295 static int
1296 vr_rxeof(struct vr_softc *sc)
1297 {
1298 	struct vr_rxdesc	*rxd;
1299 	struct mbuf		*m;
1300 	struct ifnet		*ifp;
1301 	struct vr_desc		*cur_rx;
1302 	int			cons, prog, total_len, rx_npkts;
1303 	uint32_t		rxstat, rxctl;
1304 
1305 	VR_LOCK_ASSERT(sc);
1306 	ifp = sc->vr_ifp;
1307 	cons = sc->vr_cdata.vr_rx_cons;
1308 	rx_npkts = 0;
1309 
1310 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1311 	    sc->vr_cdata.vr_rx_ring_map,
1312 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1313 
1314 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1315 #ifdef DEVICE_POLLING
1316 		if (ifp->if_capenable & IFCAP_POLLING) {
1317 			if (sc->rxcycles <= 0)
1318 				break;
1319 			sc->rxcycles--;
1320 		}
1321 #endif
1322 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1323 		rxstat = le32toh(cur_rx->vr_status);
1324 		rxctl = le32toh(cur_rx->vr_ctl);
1325 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1326 			break;
1327 
1328 		prog++;
1329 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1330 		m = rxd->rx_m;
1331 
1332 		/*
1333 		 * If an error occurs, update stats, clear the
1334 		 * status word and leave the mbuf cluster in place:
1335 		 * it should simply get re-used next time this descriptor
1336 		 * comes up in the ring.
1337 		 * We don't support SG in Rx path yet, so discard
1338 		 * partial frame.
1339 		 */
1340 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1341 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1342 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1343 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1344 			sc->vr_stat.rx_errors++;
1345 			if (rxstat & VR_RXSTAT_CRCERR)
1346 				sc->vr_stat.rx_crc_errors++;
1347 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1348 				sc->vr_stat.rx_alignment++;
1349 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1350 				sc->vr_stat.rx_fifo_overflows++;
1351 			if (rxstat & VR_RXSTAT_GIANT)
1352 				sc->vr_stat.rx_giants++;
1353 			if (rxstat & VR_RXSTAT_RUNT)
1354 				sc->vr_stat.rx_runts++;
1355 			if (rxstat & VR_RXSTAT_BUFFERR)
1356 				sc->vr_stat.rx_no_buffers++;
1357 #ifdef	VR_SHOW_ERRORS
1358 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1359 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1360 #endif
1361 			vr_discard_rxbuf(rxd);
1362 			continue;
1363 		}
1364 
1365 		if (vr_newbuf(sc, cons) != 0) {
1366 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1367 			sc->vr_stat.rx_errors++;
1368 			sc->vr_stat.rx_no_mbufs++;
1369 			vr_discard_rxbuf(rxd);
1370 			continue;
1371 		}
1372 
1373 		/*
1374 		 * XXX The VIA Rhine chip includes the CRC with every
1375 		 * received frame, and there's no way to turn this
1376 		 * behavior off (at least, I can't find anything in
1377 		 * the manual that explains how to do it) so we have
1378 		 * to trim off the CRC manually.
1379 		 */
1380 		total_len = VR_RXBYTES(rxstat);
1381 		total_len -= ETHER_CRC_LEN;
1382 		m->m_pkthdr.len = m->m_len = total_len;
1383 #ifndef	__NO_STRICT_ALIGNMENT
1384 		/*
1385 		 * RX buffers must be 32-bit aligned.
1386 		 * Ignore the alignment problems on the non-strict alignment
1387 		 * platform. The performance hit incurred due to unaligned
1388 		 * accesses is much smaller than the hit produced by forcing
1389 		 * buffer copies all the time.
1390 		 */
1391 		vr_fixup_rx(m);
1392 #endif
1393 		m->m_pkthdr.rcvif = ifp;
1394 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1395 		sc->vr_stat.rx_ok++;
1396 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1397 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1398 		    (rxctl & VR_RXCTL_IP) != 0) {
1399 			/* Checksum is valid for non-fragmented IP packets. */
1400 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1401 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1402 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1403 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1404 					m->m_pkthdr.csum_flags |=
1405 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1406 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1407 						m->m_pkthdr.csum_data = 0xffff;
1408 				}
1409 			}
1410 		}
1411 		VR_UNLOCK(sc);
1412 		(*ifp->if_input)(ifp, m);
1413 		VR_LOCK(sc);
1414 		rx_npkts++;
1415 	}
1416 
1417 	if (prog > 0) {
1418 		/*
1419 		 * Let controller know how many number of RX buffers
1420 		 * are posted but avoid expensive register access if
1421 		 * TX pause capability was not negotiated with link
1422 		 * partner.
1423 		 */
1424 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1425 			if (prog >= VR_RX_RING_CNT)
1426 				prog = VR_RX_RING_CNT - 1;
1427 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1428 		}
1429 		sc->vr_cdata.vr_rx_cons = cons;
1430 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1431 		    sc->vr_cdata.vr_rx_ring_map,
1432 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1433 	}
1434 	return (rx_npkts);
1435 }
1436 
1437 /*
1438  * A frame was downloaded to the chip. It's safe for us to clean up
1439  * the list buffers.
1440  */
1441 static void
1442 vr_txeof(struct vr_softc *sc)
1443 {
1444 	struct vr_txdesc	*txd;
1445 	struct vr_desc		*cur_tx;
1446 	struct ifnet		*ifp;
1447 	uint32_t		txctl, txstat;
1448 	int			cons, prod;
1449 
1450 	VR_LOCK_ASSERT(sc);
1451 
1452 	cons = sc->vr_cdata.vr_tx_cons;
1453 	prod = sc->vr_cdata.vr_tx_prod;
1454 	if (cons == prod)
1455 		return;
1456 
1457 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1458 	    sc->vr_cdata.vr_tx_ring_map,
1459 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1460 
1461 	ifp = sc->vr_ifp;
1462 	/*
1463 	 * Go through our tx list and free mbufs for those
1464 	 * frames that have been transmitted.
1465 	 */
1466 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1467 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1468 		txctl = le32toh(cur_tx->vr_ctl);
1469 		txstat = le32toh(cur_tx->vr_status);
1470 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1471 			break;
1472 
1473 		sc->vr_cdata.vr_tx_cnt--;
1474 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1475 		/* Only the first descriptor in the chain is valid. */
1476 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1477 			continue;
1478 
1479 		txd = &sc->vr_cdata.vr_txdesc[cons];
1480 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1481 		    __func__));
1482 
1483 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1484 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1485 			sc->vr_stat.tx_errors++;
1486 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1487 				/* Give up and restart Tx. */
1488 				sc->vr_stat.tx_abort++;
1489 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1490 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1491 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1492 				    txd->tx_dmamap);
1493 				m_freem(txd->tx_m);
1494 				txd->tx_m = NULL;
1495 				VR_INC(cons, VR_TX_RING_CNT);
1496 				sc->vr_cdata.vr_tx_cons = cons;
1497 				if (vr_tx_stop(sc) != 0) {
1498 					device_printf(sc->vr_dev,
1499 					    "%s: Tx shutdown error -- "
1500 					    "resetting\n", __func__);
1501 					sc->vr_flags |= VR_F_RESTART;
1502 					return;
1503 				}
1504 				vr_tx_start(sc);
1505 				break;
1506 			}
1507 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1508 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1509 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1510 				sc->vr_stat.tx_underrun++;
1511 				/* Retry and restart Tx. */
1512 				sc->vr_cdata.vr_tx_cnt++;
1513 				sc->vr_cdata.vr_tx_cons = cons;
1514 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1515 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1516 				    sc->vr_cdata.vr_tx_ring_map,
1517 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1518 				vr_tx_underrun(sc);
1519 				return;
1520 			}
1521 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1522 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1523 				sc->vr_stat.tx_collisions++;
1524 			}
1525 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1526 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1527 				sc->vr_stat.tx_late_collisions++;
1528 			}
1529 		} else {
1530 			sc->vr_stat.tx_ok++;
1531 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1532 		}
1533 
1534 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1535 		    BUS_DMASYNC_POSTWRITE);
1536 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1537 		if (sc->vr_revid < REV_ID_VT3071_A) {
1538 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1539 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1540 			sc->vr_stat.tx_collisions +=
1541 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1542 		} else {
1543 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1544 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1545 		}
1546 		m_freem(txd->tx_m);
1547 		txd->tx_m = NULL;
1548 	}
1549 
1550 	sc->vr_cdata.vr_tx_cons = cons;
1551 	if (sc->vr_cdata.vr_tx_cnt == 0)
1552 		sc->vr_watchdog_timer = 0;
1553 }
1554 
1555 static void
1556 vr_tick(void *xsc)
1557 {
1558 	struct vr_softc		*sc;
1559 	struct mii_data		*mii;
1560 
1561 	sc = (struct vr_softc *)xsc;
1562 
1563 	VR_LOCK_ASSERT(sc);
1564 
1565 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1566 		device_printf(sc->vr_dev, "restarting\n");
1567 		sc->vr_stat.num_restart++;
1568 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1569 		vr_init_locked(sc);
1570 		sc->vr_flags &= ~VR_F_RESTART;
1571 	}
1572 
1573 	mii = device_get_softc(sc->vr_miibus);
1574 	mii_tick(mii);
1575 	if ((sc->vr_flags & VR_F_LINK) == 0)
1576 		vr_miibus_statchg(sc->vr_dev);
1577 	vr_watchdog(sc);
1578 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1579 }
1580 
1581 #ifdef DEVICE_POLLING
1582 static poll_handler_t vr_poll;
1583 static poll_handler_t vr_poll_locked;
1584 
1585 static int
1586 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1587 {
1588 	struct vr_softc *sc;
1589 	int rx_npkts;
1590 
1591 	sc = ifp->if_softc;
1592 	rx_npkts = 0;
1593 
1594 	VR_LOCK(sc);
1595 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1596 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1597 	VR_UNLOCK(sc);
1598 	return (rx_npkts);
1599 }
1600 
1601 static int
1602 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1603 {
1604 	struct vr_softc *sc;
1605 	int rx_npkts;
1606 
1607 	sc = ifp->if_softc;
1608 
1609 	VR_LOCK_ASSERT(sc);
1610 
1611 	sc->rxcycles = count;
1612 	rx_npkts = vr_rxeof(sc);
1613 	vr_txeof(sc);
1614 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1615 		vr_start_locked(ifp);
1616 
1617 	if (cmd == POLL_AND_CHECK_STATUS) {
1618 		uint16_t status;
1619 
1620 		/* Also check status register. */
1621 		status = CSR_READ_2(sc, VR_ISR);
1622 		if (status)
1623 			CSR_WRITE_2(sc, VR_ISR, status);
1624 
1625 		if ((status & VR_INTRS) == 0)
1626 			return (rx_npkts);
1627 
1628 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1629 		    VR_ISR_STATSOFLOW)) != 0) {
1630 			if (vr_error(sc, status) != 0)
1631 				return (rx_npkts);
1632 		}
1633 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1634 #ifdef	VR_SHOW_ERRORS
1635 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1636 			    __func__, status, VR_ISR_ERR_BITS);
1637 #endif
1638 			vr_rx_start(sc);
1639 		}
1640 	}
1641 	return (rx_npkts);
1642 }
1643 #endif /* DEVICE_POLLING */
1644 
1645 /* Back off the transmit threshold. */
1646 static void
1647 vr_tx_underrun(struct vr_softc *sc)
1648 {
1649 	int	thresh;
1650 
1651 	device_printf(sc->vr_dev, "Tx underrun -- ");
1652 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1653 		thresh = sc->vr_txthresh;
1654 		sc->vr_txthresh++;
1655 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1656 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1657 			printf("using store and forward mode\n");
1658 		} else
1659 			printf("increasing Tx threshold(%d -> %d)\n",
1660 			    vr_tx_threshold_tables[thresh].value,
1661 			    vr_tx_threshold_tables[thresh + 1].value);
1662 	} else
1663 		printf("\n");
1664 	sc->vr_stat.tx_underrun++;
1665 	if (vr_tx_stop(sc) != 0) {
1666 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1667 		    "resetting\n", __func__);
1668 		sc->vr_flags |= VR_F_RESTART;
1669 		return;
1670 	}
1671 	vr_tx_start(sc);
1672 }
1673 
1674 static int
1675 vr_intr(void *arg)
1676 {
1677 	struct vr_softc		*sc;
1678 	uint16_t		status;
1679 
1680 	sc = (struct vr_softc *)arg;
1681 
1682 	status = CSR_READ_2(sc, VR_ISR);
1683 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1684 		return (FILTER_STRAY);
1685 
1686 	/* Disable interrupts. */
1687 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1688 
1689 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1690 
1691 	return (FILTER_HANDLED);
1692 }
1693 
1694 static void
1695 vr_int_task(void *arg, int npending)
1696 {
1697 	struct vr_softc		*sc;
1698 	struct ifnet		*ifp;
1699 	uint16_t		status;
1700 
1701 	sc = (struct vr_softc *)arg;
1702 
1703 	VR_LOCK(sc);
1704 
1705 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1706 		goto done_locked;
1707 
1708 	status = CSR_READ_2(sc, VR_ISR);
1709 	ifp = sc->vr_ifp;
1710 #ifdef DEVICE_POLLING
1711 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1712 		goto done_locked;
1713 #endif
1714 
1715 	/* Suppress unwanted interrupts. */
1716 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1717 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1718 		CSR_WRITE_2(sc, VR_IMR, 0);
1719 		CSR_WRITE_2(sc, VR_ISR, status);
1720 		goto done_locked;
1721 	}
1722 
1723 	for (; (status & VR_INTRS) != 0;) {
1724 		CSR_WRITE_2(sc, VR_ISR, status);
1725 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1726 		    VR_ISR_STATSOFLOW)) != 0) {
1727 			if (vr_error(sc, status) != 0) {
1728 				VR_UNLOCK(sc);
1729 				return;
1730 			}
1731 		}
1732 		vr_rxeof(sc);
1733 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1734 #ifdef	VR_SHOW_ERRORS
1735 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1736 			    __func__, status, VR_ISR_ERR_BITS);
1737 #endif
1738 			/* Restart Rx if RxDMA SM was stopped. */
1739 			vr_rx_start(sc);
1740 		}
1741 		vr_txeof(sc);
1742 
1743 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1744 			vr_start_locked(ifp);
1745 
1746 		status = CSR_READ_2(sc, VR_ISR);
1747 	}
1748 
1749 	/* Re-enable interrupts. */
1750 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1751 
1752 done_locked:
1753 	VR_UNLOCK(sc);
1754 }
1755 
1756 static int
1757 vr_error(struct vr_softc *sc, uint16_t status)
1758 {
1759 	uint16_t pcis;
1760 
1761 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1762 	if ((status & VR_ISR_BUSERR) != 0) {
1763 		status &= ~VR_ISR_BUSERR;
1764 		sc->vr_stat.bus_errors++;
1765 		/* Disable further interrupts. */
1766 		CSR_WRITE_2(sc, VR_IMR, 0);
1767 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1768 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1769 		    "resetting\n", pcis);
1770 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1771 		sc->vr_flags |= VR_F_RESTART;
1772 		return (EAGAIN);
1773 	}
1774 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1775 		/* Link state change, duplex changes etc. */
1776 		status &= ~VR_ISR_LINKSTAT2;
1777 	}
1778 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1779 		status &= ~VR_ISR_STATSOFLOW;
1780 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1781 			/* Update MIB counters. */
1782 		}
1783 	}
1784 
1785 	if (status != 0)
1786 		device_printf(sc->vr_dev,
1787 		    "unhandled interrupt, status = 0x%04x\n", status);
1788 	return (0);
1789 }
1790 
1791 /*
1792  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1793  * pointers to the fragment pointers.
1794  */
1795 static int
1796 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1797 {
1798 	struct vr_txdesc	*txd;
1799 	struct vr_desc		*desc;
1800 	struct mbuf		*m;
1801 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1802 	uint32_t		csum_flags, txctl;
1803 	int			error, i, nsegs, prod, si;
1804 	int			padlen;
1805 
1806 	VR_LOCK_ASSERT(sc);
1807 
1808 	M_ASSERTPKTHDR((*m_head));
1809 
1810 	/*
1811 	 * Some VIA Rhine wants packet buffers to be longword
1812 	 * aligned, but very often our mbufs aren't. Rather than
1813 	 * waste time trying to decide when to copy and when not
1814 	 * to copy, just do it all the time.
1815 	 */
1816 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1817 		m = m_defrag(*m_head, M_NOWAIT);
1818 		if (m == NULL) {
1819 			m_freem(*m_head);
1820 			*m_head = NULL;
1821 			return (ENOBUFS);
1822 		}
1823 		*m_head = m;
1824 	}
1825 
1826 	/*
1827 	 * The Rhine chip doesn't auto-pad, so we have to make
1828 	 * sure to pad short frames out to the minimum frame length
1829 	 * ourselves.
1830 	 */
1831 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1832 		m = *m_head;
1833 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1834 		if (M_WRITABLE(m) == 0) {
1835 			/* Get a writable copy. */
1836 			m = m_dup(*m_head, M_NOWAIT);
1837 			m_freem(*m_head);
1838 			if (m == NULL) {
1839 				*m_head = NULL;
1840 				return (ENOBUFS);
1841 			}
1842 			*m_head = m;
1843 		}
1844 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1845 			m = m_defrag(m, M_NOWAIT);
1846 			if (m == NULL) {
1847 				m_freem(*m_head);
1848 				*m_head = NULL;
1849 				return (ENOBUFS);
1850 			}
1851 		}
1852 		/*
1853 		 * Manually pad short frames, and zero the pad space
1854 		 * to avoid leaking data.
1855 		 */
1856 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1857 		m->m_pkthdr.len += padlen;
1858 		m->m_len = m->m_pkthdr.len;
1859 		*m_head = m;
1860 	}
1861 
1862 	prod = sc->vr_cdata.vr_tx_prod;
1863 	txd = &sc->vr_cdata.vr_txdesc[prod];
1864 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1865 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1866 	if (error == EFBIG) {
1867 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1868 		if (m == NULL) {
1869 			m_freem(*m_head);
1870 			*m_head = NULL;
1871 			return (ENOBUFS);
1872 		}
1873 		*m_head = m;
1874 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1875 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1876 		if (error != 0) {
1877 			m_freem(*m_head);
1878 			*m_head = NULL;
1879 			return (error);
1880 		}
1881 	} else if (error != 0)
1882 		return (error);
1883 	if (nsegs == 0) {
1884 		m_freem(*m_head);
1885 		*m_head = NULL;
1886 		return (EIO);
1887 	}
1888 
1889 	/* Check number of available descriptors. */
1890 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1891 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1892 		return (ENOBUFS);
1893 	}
1894 
1895 	txd->tx_m = *m_head;
1896 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1897 	    BUS_DMASYNC_PREWRITE);
1898 
1899 	/* Set checksum offload. */
1900 	csum_flags = 0;
1901 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1902 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1903 			csum_flags |= VR_TXCTL_IPCSUM;
1904 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1905 			csum_flags |= VR_TXCTL_TCPCSUM;
1906 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1907 			csum_flags |= VR_TXCTL_UDPCSUM;
1908 	}
1909 
1910 	/*
1911 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1912 	 * is required for all descriptors regardless of single or
1913 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1914 	 * the first descriptor for a multi-fragmented frames. Without
1915 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1916 	 * send any frames.
1917 	 */
1918 	si = prod;
1919 	for (i = 0; i < nsegs; i++) {
1920 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1921 		desc->vr_status = 0;
1922 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1923 		if (i == 0)
1924 			txctl |= VR_TXCTL_FIRSTFRAG;
1925 		desc->vr_ctl = htole32(txctl);
1926 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1927 		sc->vr_cdata.vr_tx_cnt++;
1928 		VR_INC(prod, VR_TX_RING_CNT);
1929 	}
1930 	/* Update producer index. */
1931 	sc->vr_cdata.vr_tx_prod = prod;
1932 
1933 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1934 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1935 
1936 	/*
1937 	 * Set EOP on the last descriptor and reuqest Tx completion
1938 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1939 	 */
1940 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1941 	if (sc->vr_cdata.vr_tx_pkts == 0)
1942 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1943 	else
1944 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1945 
1946 	/* Lastly turn the first descriptor ownership to hardware. */
1947 	desc = &sc->vr_rdata.vr_tx_ring[si];
1948 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1949 
1950 	/* Sync descriptors. */
1951 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1952 	    sc->vr_cdata.vr_tx_ring_map,
1953 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1954 
1955 	return (0);
1956 }
1957 
1958 static void
1959 vr_start(struct ifnet *ifp)
1960 {
1961 	struct vr_softc		*sc;
1962 
1963 	sc = ifp->if_softc;
1964 	VR_LOCK(sc);
1965 	vr_start_locked(ifp);
1966 	VR_UNLOCK(sc);
1967 }
1968 
1969 static void
1970 vr_start_locked(struct ifnet *ifp)
1971 {
1972 	struct vr_softc		*sc;
1973 	struct mbuf		*m_head;
1974 	int			enq;
1975 
1976 	sc = ifp->if_softc;
1977 
1978 	VR_LOCK_ASSERT(sc);
1979 
1980 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1981 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1982 		return;
1983 
1984 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1985 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1986 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1987 		if (m_head == NULL)
1988 			break;
1989 		/*
1990 		 * Pack the data into the transmit ring. If we
1991 		 * don't have room, set the OACTIVE flag and wait
1992 		 * for the NIC to drain the ring.
1993 		 */
1994 		if (vr_encap(sc, &m_head)) {
1995 			if (m_head == NULL)
1996 				break;
1997 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1998 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1999 			break;
2000 		}
2001 
2002 		enq++;
2003 		/*
2004 		 * If there's a BPF listener, bounce a copy of this frame
2005 		 * to him.
2006 		 */
2007 		ETHER_BPF_MTAP(ifp, m_head);
2008 	}
2009 
2010 	if (enq > 0) {
2011 		/* Tell the chip to start transmitting. */
2012 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2013 		/* Set a timeout in case the chip goes out to lunch. */
2014 		sc->vr_watchdog_timer = 5;
2015 	}
2016 }
2017 
2018 static void
2019 vr_init(void *xsc)
2020 {
2021 	struct vr_softc		*sc;
2022 
2023 	sc = (struct vr_softc *)xsc;
2024 	VR_LOCK(sc);
2025 	vr_init_locked(sc);
2026 	VR_UNLOCK(sc);
2027 }
2028 
2029 static void
2030 vr_init_locked(struct vr_softc *sc)
2031 {
2032 	struct ifnet		*ifp;
2033 	struct mii_data		*mii;
2034 	bus_addr_t		addr;
2035 	int			i;
2036 
2037 	VR_LOCK_ASSERT(sc);
2038 
2039 	ifp = sc->vr_ifp;
2040 	mii = device_get_softc(sc->vr_miibus);
2041 
2042 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2043 		return;
2044 
2045 	/* Cancel pending I/O and free all RX/TX buffers. */
2046 	vr_stop(sc);
2047 	vr_reset(sc);
2048 
2049 	/* Set our station address. */
2050 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2051 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2052 
2053 	/* Set DMA size. */
2054 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2055 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2056 
2057 	/*
2058 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2059 	 * so we must set both.
2060 	 */
2061 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2062 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2063 
2064 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2065 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2066 
2067 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2068 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2069 
2070 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2071 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2072 
2073 	/* Init circular RX list. */
2074 	if (vr_rx_ring_init(sc) != 0) {
2075 		device_printf(sc->vr_dev,
2076 		    "initialization failed: no memory for rx buffers\n");
2077 		vr_stop(sc);
2078 		return;
2079 	}
2080 
2081 	/* Init tx descriptors. */
2082 	vr_tx_ring_init(sc);
2083 
2084 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2085 		uint8_t vcam[2] = { 0, 0 };
2086 
2087 		/* Disable VLAN hardware tag insertion/stripping. */
2088 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2089 		/* Disable VLAN hardware filtering. */
2090 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2091 		/* Disable all CAM entries. */
2092 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2093 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2094 		/* Enable the first VLAN CAM. */
2095 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2096 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2097 	}
2098 
2099 	/*
2100 	 * Set up receive filter.
2101 	 */
2102 	vr_set_filter(sc);
2103 
2104 	/*
2105 	 * Load the address of the RX ring.
2106 	 */
2107 	addr = VR_RX_RING_ADDR(sc, 0);
2108 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2109 	/*
2110 	 * Load the address of the TX ring.
2111 	 */
2112 	addr = VR_TX_RING_ADDR(sc, 0);
2113 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2114 	/* Default : full-duplex, no Tx poll. */
2115 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2116 
2117 	/* Set flow-control parameters for Rhine III. */
2118 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2119 		/*
2120 		 * Configure Rx buffer count available for incoming
2121 		 * packet.
2122 		 * Even though data sheet says almost nothing about
2123 		 * this register, this register should be updated
2124 		 * whenever driver adds new RX buffers to controller.
2125 		 * Otherwise, XON frame is not sent to link partner
2126 		 * even if controller has enough RX buffers and you
2127 		 * would be isolated from network.
2128 		 * The controller is not smart enough to know number
2129 		 * of available RX buffers so driver have to let
2130 		 * controller know how many RX buffers are posted.
2131 		 * In other words, this register works like a residue
2132 		 * counter for RX buffers and should be initialized
2133 		 * to the number of total RX buffers  - 1 before
2134 		 * enabling RX MAC.  Note, this register is 8bits so
2135 		 * it effectively limits the maximum number of RX
2136 		 * buffer to be configured by controller is 255.
2137 		 */
2138 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2139 		/*
2140 		 * Tx pause low threshold : 8 free receive buffers
2141 		 * Tx pause XON high threshold : 24 free receive buffers
2142 		 */
2143 		CSR_WRITE_1(sc, VR_FLOWCR1,
2144 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2145 		/* Set Tx pause timer. */
2146 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2147 	}
2148 
2149 	/* Enable receiver and transmitter. */
2150 	CSR_WRITE_1(sc, VR_CR0,
2151 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2152 
2153 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2154 #ifdef DEVICE_POLLING
2155 	/*
2156 	 * Disable interrupts if we are polling.
2157 	 */
2158 	if (ifp->if_capenable & IFCAP_POLLING)
2159 		CSR_WRITE_2(sc, VR_IMR, 0);
2160 	else
2161 #endif
2162 	/*
2163 	 * Enable interrupts and disable MII intrs.
2164 	 */
2165 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2166 	if (sc->vr_revid > REV_ID_VT6102_A)
2167 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2168 
2169 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2170 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2171 
2172 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2173 	mii_mediachg(mii);
2174 
2175 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2176 }
2177 
2178 /*
2179  * Set media options.
2180  */
2181 static int
2182 vr_ifmedia_upd(struct ifnet *ifp)
2183 {
2184 	struct vr_softc		*sc;
2185 	struct mii_data		*mii;
2186 	struct mii_softc	*miisc;
2187 	int			error;
2188 
2189 	sc = ifp->if_softc;
2190 	VR_LOCK(sc);
2191 	mii = device_get_softc(sc->vr_miibus);
2192 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2193 		PHY_RESET(miisc);
2194 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2195 	error = mii_mediachg(mii);
2196 	VR_UNLOCK(sc);
2197 
2198 	return (error);
2199 }
2200 
2201 /*
2202  * Report current media status.
2203  */
2204 static void
2205 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2206 {
2207 	struct vr_softc		*sc;
2208 	struct mii_data		*mii;
2209 
2210 	sc = ifp->if_softc;
2211 	mii = device_get_softc(sc->vr_miibus);
2212 	VR_LOCK(sc);
2213 	if ((ifp->if_flags & IFF_UP) == 0) {
2214 		VR_UNLOCK(sc);
2215 		return;
2216 	}
2217 	mii_pollstat(mii);
2218 	ifmr->ifm_active = mii->mii_media_active;
2219 	ifmr->ifm_status = mii->mii_media_status;
2220 	VR_UNLOCK(sc);
2221 }
2222 
2223 static int
2224 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2225 {
2226 	struct vr_softc		*sc;
2227 	struct ifreq		*ifr;
2228 	struct mii_data		*mii;
2229 	int			error, mask;
2230 
2231 	sc = ifp->if_softc;
2232 	ifr = (struct ifreq *)data;
2233 	error = 0;
2234 
2235 	switch (command) {
2236 	case SIOCSIFFLAGS:
2237 		VR_LOCK(sc);
2238 		if (ifp->if_flags & IFF_UP) {
2239 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2240 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2241 				    (IFF_PROMISC | IFF_ALLMULTI))
2242 					vr_set_filter(sc);
2243 			} else {
2244 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2245 					vr_init_locked(sc);
2246 			}
2247 		} else {
2248 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2249 				vr_stop(sc);
2250 		}
2251 		sc->vr_if_flags = ifp->if_flags;
2252 		VR_UNLOCK(sc);
2253 		break;
2254 	case SIOCADDMULTI:
2255 	case SIOCDELMULTI:
2256 		VR_LOCK(sc);
2257 		vr_set_filter(sc);
2258 		VR_UNLOCK(sc);
2259 		break;
2260 	case SIOCGIFMEDIA:
2261 	case SIOCSIFMEDIA:
2262 		mii = device_get_softc(sc->vr_miibus);
2263 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2264 		break;
2265 	case SIOCSIFCAP:
2266 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2267 #ifdef DEVICE_POLLING
2268 		if (mask & IFCAP_POLLING) {
2269 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2270 				error = ether_poll_register(vr_poll, ifp);
2271 				if (error != 0)
2272 					break;
2273 				VR_LOCK(sc);
2274 				/* Disable interrupts. */
2275 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2276 				ifp->if_capenable |= IFCAP_POLLING;
2277 				VR_UNLOCK(sc);
2278 			} else {
2279 				error = ether_poll_deregister(ifp);
2280 				/* Enable interrupts. */
2281 				VR_LOCK(sc);
2282 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2283 				ifp->if_capenable &= ~IFCAP_POLLING;
2284 				VR_UNLOCK(sc);
2285 			}
2286 		}
2287 #endif /* DEVICE_POLLING */
2288 		if ((mask & IFCAP_TXCSUM) != 0 &&
2289 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2290 			ifp->if_capenable ^= IFCAP_TXCSUM;
2291 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2292 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2293 			else
2294 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2295 		}
2296 		if ((mask & IFCAP_RXCSUM) != 0 &&
2297 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2298 			ifp->if_capenable ^= IFCAP_RXCSUM;
2299 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2300 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2301 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2302 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2303 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2304 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2305 		break;
2306 	default:
2307 		error = ether_ioctl(ifp, command, data);
2308 		break;
2309 	}
2310 
2311 	return (error);
2312 }
2313 
2314 static void
2315 vr_watchdog(struct vr_softc *sc)
2316 {
2317 	struct ifnet		*ifp;
2318 
2319 	VR_LOCK_ASSERT(sc);
2320 
2321 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2322 		return;
2323 
2324 	ifp = sc->vr_ifp;
2325 	/*
2326 	 * Reclaim first as we don't request interrupt for every packets.
2327 	 */
2328 	vr_txeof(sc);
2329 	if (sc->vr_cdata.vr_tx_cnt == 0)
2330 		return;
2331 
2332 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2333 		if (bootverbose)
2334 			if_printf(sc->vr_ifp, "watchdog timeout "
2335 			   "(missed link)\n");
2336 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2337 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2338 		vr_init_locked(sc);
2339 		return;
2340 	}
2341 
2342 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2343 	if_printf(ifp, "watchdog timeout\n");
2344 
2345 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2346 	vr_init_locked(sc);
2347 
2348 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2349 		vr_start_locked(ifp);
2350 }
2351 
2352 static void
2353 vr_tx_start(struct vr_softc *sc)
2354 {
2355 	bus_addr_t	addr;
2356 	uint8_t		cmd;
2357 
2358 	cmd = CSR_READ_1(sc, VR_CR0);
2359 	if ((cmd & VR_CR0_TX_ON) == 0) {
2360 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2361 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2362 		cmd |= VR_CR0_TX_ON;
2363 		CSR_WRITE_1(sc, VR_CR0, cmd);
2364 	}
2365 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2366 		sc->vr_watchdog_timer = 5;
2367 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2368 	}
2369 }
2370 
2371 static void
2372 vr_rx_start(struct vr_softc *sc)
2373 {
2374 	bus_addr_t	addr;
2375 	uint8_t		cmd;
2376 
2377 	cmd = CSR_READ_1(sc, VR_CR0);
2378 	if ((cmd & VR_CR0_RX_ON) == 0) {
2379 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2380 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2381 		cmd |= VR_CR0_RX_ON;
2382 		CSR_WRITE_1(sc, VR_CR0, cmd);
2383 	}
2384 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2385 }
2386 
2387 static int
2388 vr_tx_stop(struct vr_softc *sc)
2389 {
2390 	int		i;
2391 	uint8_t		cmd;
2392 
2393 	cmd = CSR_READ_1(sc, VR_CR0);
2394 	if ((cmd & VR_CR0_TX_ON) != 0) {
2395 		cmd &= ~VR_CR0_TX_ON;
2396 		CSR_WRITE_1(sc, VR_CR0, cmd);
2397 		for (i = VR_TIMEOUT; i > 0; i--) {
2398 			DELAY(5);
2399 			cmd = CSR_READ_1(sc, VR_CR0);
2400 			if ((cmd & VR_CR0_TX_ON) == 0)
2401 				break;
2402 		}
2403 		if (i == 0)
2404 			return (ETIMEDOUT);
2405 	}
2406 	return (0);
2407 }
2408 
2409 static int
2410 vr_rx_stop(struct vr_softc *sc)
2411 {
2412 	int		i;
2413 	uint8_t		cmd;
2414 
2415 	cmd = CSR_READ_1(sc, VR_CR0);
2416 	if ((cmd & VR_CR0_RX_ON) != 0) {
2417 		cmd &= ~VR_CR0_RX_ON;
2418 		CSR_WRITE_1(sc, VR_CR0, cmd);
2419 		for (i = VR_TIMEOUT; i > 0; i--) {
2420 			DELAY(5);
2421 			cmd = CSR_READ_1(sc, VR_CR0);
2422 			if ((cmd & VR_CR0_RX_ON) == 0)
2423 				break;
2424 		}
2425 		if (i == 0)
2426 			return (ETIMEDOUT);
2427 	}
2428 	return (0);
2429 }
2430 
2431 /*
2432  * Stop the adapter and free any mbufs allocated to the
2433  * RX and TX lists.
2434  */
2435 static void
2436 vr_stop(struct vr_softc *sc)
2437 {
2438 	struct vr_txdesc	*txd;
2439 	struct vr_rxdesc	*rxd;
2440 	struct ifnet		*ifp;
2441 	int			i;
2442 
2443 	VR_LOCK_ASSERT(sc);
2444 
2445 	ifp = sc->vr_ifp;
2446 	sc->vr_watchdog_timer = 0;
2447 
2448 	callout_stop(&sc->vr_stat_callout);
2449 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2450 
2451 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2452 	if (vr_rx_stop(sc) != 0)
2453 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2454 	if (vr_tx_stop(sc) != 0)
2455 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2456 	/* Clear pending interrupts. */
2457 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2458 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2459 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2460 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2461 
2462 	/*
2463 	 * Free RX and TX mbufs still in the queues.
2464 	 */
2465 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2466 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2467 		if (rxd->rx_m != NULL) {
2468 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2469 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2470 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2471 			    rxd->rx_dmamap);
2472 			m_freem(rxd->rx_m);
2473 			rxd->rx_m = NULL;
2474 		}
2475         }
2476 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2477 		txd = &sc->vr_cdata.vr_txdesc[i];
2478 		if (txd->tx_m != NULL) {
2479 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2480 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2481 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2482 			    txd->tx_dmamap);
2483 			m_freem(txd->tx_m);
2484 			txd->tx_m = NULL;
2485 		}
2486         }
2487 }
2488 
2489 /*
2490  * Stop all chip I/O so that the kernel's probe routines don't
2491  * get confused by errant DMAs when rebooting.
2492  */
2493 static int
2494 vr_shutdown(device_t dev)
2495 {
2496 
2497 	return (vr_suspend(dev));
2498 }
2499 
2500 static int
2501 vr_suspend(device_t dev)
2502 {
2503 	struct vr_softc		*sc;
2504 
2505 	sc = device_get_softc(dev);
2506 
2507 	VR_LOCK(sc);
2508 	vr_stop(sc);
2509 	vr_setwol(sc);
2510 	sc->vr_flags |= VR_F_SUSPENDED;
2511 	VR_UNLOCK(sc);
2512 
2513 	return (0);
2514 }
2515 
2516 static int
2517 vr_resume(device_t dev)
2518 {
2519 	struct vr_softc		*sc;
2520 	struct ifnet		*ifp;
2521 
2522 	sc = device_get_softc(dev);
2523 
2524 	VR_LOCK(sc);
2525 	ifp = sc->vr_ifp;
2526 	vr_clrwol(sc);
2527 	vr_reset(sc);
2528 	if (ifp->if_flags & IFF_UP)
2529 		vr_init_locked(sc);
2530 
2531 	sc->vr_flags &= ~VR_F_SUSPENDED;
2532 	VR_UNLOCK(sc);
2533 
2534 	return (0);
2535 }
2536 
2537 static void
2538 vr_setwol(struct vr_softc *sc)
2539 {
2540 	struct ifnet		*ifp;
2541 	int			pmc;
2542 	uint16_t		pmstat;
2543 	uint8_t			v;
2544 
2545 	VR_LOCK_ASSERT(sc);
2546 
2547 	if (sc->vr_revid < REV_ID_VT6102_A ||
2548 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2549 		return;
2550 
2551 	ifp = sc->vr_ifp;
2552 
2553 	/* Clear WOL configuration. */
2554 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2555 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2556 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2557 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2558 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2559 		/* Newer Rhine III supports two additional patterns. */
2560 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2561 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2562 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2563 	}
2564 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2565 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2566 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2567 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2568 	/*
2569 	 * It seems that multicast wakeup frames require programming pattern
2570 	 * registers and valid CRC as well as pattern mask for each pattern.
2571 	 * While it's possible to setup such a pattern it would complicate
2572 	 * WOL configuration so ignore multicast wakeup frames.
2573 	 */
2574 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2575 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2576 		v = CSR_READ_1(sc, VR_STICKHW);
2577 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2578 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2579 	}
2580 
2581 	/* Put hardware into sleep. */
2582 	v = CSR_READ_1(sc, VR_STICKHW);
2583 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2584 	CSR_WRITE_1(sc, VR_STICKHW, v);
2585 
2586 	/* Request PME if WOL is requested. */
2587 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2588 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2589 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2590 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2591 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2592 }
2593 
2594 static void
2595 vr_clrwol(struct vr_softc *sc)
2596 {
2597 	uint8_t			v;
2598 
2599 	VR_LOCK_ASSERT(sc);
2600 
2601 	if (sc->vr_revid < REV_ID_VT6102_A)
2602 		return;
2603 
2604 	/* Take hardware out of sleep. */
2605 	v = CSR_READ_1(sc, VR_STICKHW);
2606 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2607 	CSR_WRITE_1(sc, VR_STICKHW, v);
2608 
2609 	/* Clear WOL configuration as WOL may interfere normal operation. */
2610 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2611 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2612 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2613 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2614 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2615 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2616 		/* Newer Rhine III supports two additional patterns. */
2617 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2618 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2619 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2620 	}
2621 }
2622 
2623 static int
2624 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2625 {
2626 	struct vr_softc		*sc;
2627 	struct vr_statistics	*stat;
2628 	int			error;
2629 	int			result;
2630 
2631 	result = -1;
2632 	error = sysctl_handle_int(oidp, &result, 0, req);
2633 
2634 	if (error != 0 || req->newptr == NULL)
2635 		return (error);
2636 
2637 	if (result == 1) {
2638 		sc = (struct vr_softc *)arg1;
2639 		stat = &sc->vr_stat;
2640 
2641 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2642 		printf("Outbound good frames : %ju\n",
2643 		    (uintmax_t)stat->tx_ok);
2644 		printf("Inbound good frames : %ju\n",
2645 		    (uintmax_t)stat->rx_ok);
2646 		printf("Outbound errors : %u\n", stat->tx_errors);
2647 		printf("Inbound errors : %u\n", stat->rx_errors);
2648 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2649 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2650 		printf("Inbound FIFO overflows : %d\n",
2651 		    stat->rx_fifo_overflows);
2652 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2653 		printf("Inbound frame alignment errors : %u\n",
2654 		    stat->rx_alignment);
2655 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2656 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2657 		printf("Outbound aborted with excessive collisions : %u\n",
2658 		    stat->tx_abort);
2659 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2660 		printf("Outbound late collisions : %u\n",
2661 		    stat->tx_late_collisions);
2662 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2663 		printf("PCI bus errors : %u\n", stat->bus_errors);
2664 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2665 		    stat->num_restart);
2666 	}
2667 
2668 	return (error);
2669 }
2670