xref: /freebsd/sys/dev/vr/if_vr.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_var.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_types.h>
88 #include <net/if_vlan_var.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcivar.h>
95 
96 #include <machine/bus.h>
97 
98 #include <dev/vr/if_vrreg.h>
99 
100 /* "device miibus" required.  See GENERIC if you get errors here. */
101 #include "miibus_if.h"
102 
103 MODULE_DEPEND(vr, pci, 1, 1, 1);
104 MODULE_DEPEND(vr, ether, 1, 1, 1);
105 MODULE_DEPEND(vr, miibus, 1, 1, 1);
106 
107 /* Define to show Rx/Tx error status. */
108 #undef	VR_SHOW_ERRORS
109 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
110 
111 /*
112  * Various supported device vendors/types, their names & quirks.
113  */
114 #define VR_Q_NEEDALIGN		(1<<0)
115 #define VR_Q_CSUM		(1<<1)
116 #define VR_Q_CAM		(1<<2)
117 
118 static const struct vr_type {
119 	u_int16_t		vr_vid;
120 	u_int16_t		vr_did;
121 	int			vr_quirks;
122 	const char		*vr_name;
123 } vr_devs[] = {
124 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
125 	    VR_Q_NEEDALIGN,
126 	    "VIA VT3043 Rhine I 10/100BaseTX" },
127 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
128 	    VR_Q_NEEDALIGN,
129 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
130 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
131 	    0,
132 	    "VIA VT6102 Rhine II 10/100BaseTX" },
133 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
134 	    0,
135 	    "VIA VT6105 Rhine III 10/100BaseTX" },
136 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
137 	    VR_Q_CSUM,
138 	    "VIA VT6105M Rhine III 10/100BaseTX" },
139 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
140 	    VR_Q_NEEDALIGN,
141 	    "Delta Electronics Rhine II 10/100BaseTX" },
142 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
143 	    VR_Q_NEEDALIGN,
144 	    "Addtron Technology Rhine II 10/100BaseTX" },
145 	{ 0, 0, 0, NULL }
146 };
147 
148 static int vr_probe(device_t);
149 static int vr_attach(device_t);
150 static int vr_detach(device_t);
151 static int vr_shutdown(device_t);
152 static int vr_suspend(device_t);
153 static int vr_resume(device_t);
154 
155 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
156 static int vr_dma_alloc(struct vr_softc *);
157 static void vr_dma_free(struct vr_softc *);
158 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
159 static int vr_newbuf(struct vr_softc *, int);
160 
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void vr_fixup_rx(struct mbuf *);
163 #endif
164 static int vr_rxeof(struct vr_softc *);
165 static void vr_txeof(struct vr_softc *);
166 static void vr_tick(void *);
167 static int vr_error(struct vr_softc *, uint16_t);
168 static void vr_tx_underrun(struct vr_softc *);
169 static int vr_intr(void *);
170 static void vr_int_task(void *, int);
171 static void vr_start(if_t);
172 static void vr_start_locked(if_t);
173 static int vr_encap(struct vr_softc *, struct mbuf **);
174 static int vr_ioctl(if_t, u_long, caddr_t);
175 static void vr_init(void *);
176 static void vr_init_locked(struct vr_softc *);
177 static void vr_tx_start(struct vr_softc *);
178 static void vr_rx_start(struct vr_softc *);
179 static int vr_tx_stop(struct vr_softc *);
180 static int vr_rx_stop(struct vr_softc *);
181 static void vr_stop(struct vr_softc *);
182 static void vr_watchdog(struct vr_softc *);
183 static int vr_ifmedia_upd(if_t);
184 static void vr_ifmedia_sts(if_t, struct ifmediareq *);
185 
186 static int vr_miibus_readreg(device_t, int, int);
187 static int vr_miibus_writereg(device_t, int, int, int);
188 static void vr_miibus_statchg(device_t);
189 
190 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
191 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
192 static void vr_set_filter(struct vr_softc *);
193 static void vr_reset(const struct vr_softc *);
194 static int vr_tx_ring_init(struct vr_softc *);
195 static int vr_rx_ring_init(struct vr_softc *);
196 static void vr_setwol(struct vr_softc *);
197 static void vr_clrwol(struct vr_softc *);
198 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
199 
200 static const struct vr_tx_threshold_table {
201 	int tx_cfg;
202 	int bcr_cfg;
203 	int value;
204 } vr_tx_threshold_tables[] = {
205 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
206 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
207 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
208 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
209 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
210 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
211 };
212 
213 static device_method_t vr_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		vr_probe),
216 	DEVMETHOD(device_attach,	vr_attach),
217 	DEVMETHOD(device_detach, 	vr_detach),
218 	DEVMETHOD(device_shutdown,	vr_shutdown),
219 	DEVMETHOD(device_suspend,	vr_suspend),
220 	DEVMETHOD(device_resume,	vr_resume),
221 
222 	/* MII interface */
223 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
224 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
225 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
226 
227 	DEVMETHOD_END
228 };
229 
230 static driver_t vr_driver = {
231 	"vr",
232 	vr_methods,
233 	sizeof(struct vr_softc)
234 };
235 
236 DRIVER_MODULE(vr, pci, vr_driver, 0, 0);
237 DRIVER_MODULE(miibus, vr, miibus_driver, 0, 0);
238 
239 static int
240 vr_miibus_readreg(device_t dev, int phy, int reg)
241 {
242 	struct vr_softc		*sc;
243 	int			i;
244 
245 	sc = device_get_softc(dev);
246 
247 	/* Set the register address. */
248 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
249 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
250 
251 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
252 		DELAY(1);
253 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
254 			break;
255 	}
256 	if (i == VR_MII_TIMEOUT)
257 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
258 
259 	return (CSR_READ_2(sc, VR_MIIDATA));
260 }
261 
262 static int
263 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
264 {
265 	struct vr_softc		*sc;
266 	int			i;
267 
268 	sc = device_get_softc(dev);
269 
270 	/* Set the register address and data to write. */
271 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
272 	CSR_WRITE_2(sc, VR_MIIDATA, data);
273 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
274 
275 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
276 		DELAY(1);
277 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
278 			break;
279 	}
280 	if (i == VR_MII_TIMEOUT)
281 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
282 		    reg);
283 
284 	return (0);
285 }
286 
287 /*
288  * In order to fiddle with the
289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
290  * first have to put the transmit and/or receive logic in the idle state.
291  */
292 static void
293 vr_miibus_statchg(device_t dev)
294 {
295 	struct vr_softc		*sc;
296 	struct mii_data		*mii;
297 	if_t			ifp;
298 	int			lfdx, mfdx;
299 	uint8_t			cr0, cr1, fc;
300 
301 	sc = device_get_softc(dev);
302 	mii = device_get_softc(sc->vr_miibus);
303 	ifp = sc->vr_ifp;
304 	if (mii == NULL || ifp == NULL ||
305 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
306 		return;
307 
308 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
309 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
310 	    (IFM_ACTIVE | IFM_AVALID)) {
311 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
312 		case IFM_10_T:
313 		case IFM_100_TX:
314 			sc->vr_flags |= VR_F_LINK;
315 			break;
316 		default:
317 			break;
318 		}
319 	}
320 
321 	if ((sc->vr_flags & VR_F_LINK) != 0) {
322 		cr0 = CSR_READ_1(sc, VR_CR0);
323 		cr1 = CSR_READ_1(sc, VR_CR1);
324 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
325 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
326 		if (mfdx != lfdx) {
327 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
328 				if (vr_tx_stop(sc) != 0 ||
329 				    vr_rx_stop(sc) != 0) {
330 					device_printf(sc->vr_dev,
331 					    "%s: Tx/Rx shutdown error -- "
332 					    "resetting\n", __func__);
333 					sc->vr_flags |= VR_F_RESTART;
334 					VR_UNLOCK(sc);
335 					return;
336 				}
337 			}
338 			if (lfdx)
339 				cr1 |= VR_CR1_FULLDUPLEX;
340 			else
341 				cr1 &= ~VR_CR1_FULLDUPLEX;
342 			CSR_WRITE_1(sc, VR_CR1, cr1);
343 		}
344 		fc = 0;
345 		/* Configure flow-control. */
346 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
347 			fc = CSR_READ_1(sc, VR_FLOWCR1);
348 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
349 			if ((IFM_OPTIONS(mii->mii_media_active) &
350 			    IFM_ETH_RXPAUSE) != 0)
351 				fc |= VR_FLOWCR1_RXPAUSE;
352 			if ((IFM_OPTIONS(mii->mii_media_active) &
353 			    IFM_ETH_TXPAUSE) != 0) {
354 				fc |= VR_FLOWCR1_TXPAUSE;
355 				sc->vr_flags |= VR_F_TXPAUSE;
356 			}
357 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
358 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
359 			/* No Tx puase capability available for Rhine II. */
360 			fc = CSR_READ_1(sc, VR_MISC_CR0);
361 			fc &= ~VR_MISCCR0_RXPAUSE;
362 			if ((IFM_OPTIONS(mii->mii_media_active) &
363 			    IFM_ETH_RXPAUSE) != 0)
364 				fc |= VR_MISCCR0_RXPAUSE;
365 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
366 		}
367 		vr_rx_start(sc);
368 		vr_tx_start(sc);
369 	} else {
370 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
371 			device_printf(sc->vr_dev,
372 			    "%s: Tx/Rx shutdown error -- resetting\n",
373 			    __func__);
374 			sc->vr_flags |= VR_F_RESTART;
375 		}
376 	}
377 }
378 
379 static void
380 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
381 {
382 
383 	if (type == VR_MCAST_CAM)
384 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
385 	else
386 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
387 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
388 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
389 }
390 
391 static int
392 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
393 {
394 	int	i;
395 
396 	if (type == VR_MCAST_CAM) {
397 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
398 			return (EINVAL);
399 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
400 	} else
401 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
402 
403 	/* Set CAM entry address. */
404 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
405 	/* Set CAM entry data. */
406 	if (type == VR_MCAST_CAM) {
407 		for (i = 0; i < ETHER_ADDR_LEN; i++)
408 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
409 	} else {
410 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
411 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
412 	}
413 	DELAY(10);
414 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
415 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
416 	for (i = 0; i < VR_TIMEOUT; i++) {
417 		DELAY(1);
418 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
419 			break;
420 	}
421 
422 	if (i == VR_TIMEOUT)
423 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
424 		    __func__);
425 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
426 
427 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
428 }
429 
430 struct vr_hash_maddr_cam_ctx {
431 	struct vr_softc *sc;
432 	uint32_t mask;
433 	int error;
434 };
435 
436 static u_int
437 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
438 {
439 	struct vr_hash_maddr_cam_ctx *ctx = arg;
440 
441 	if (ctx->error != 0)
442 		return (0);
443 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
444 	if (ctx->error != 0) {
445 		ctx->mask = 0;
446 		return (0);
447 	}
448 	ctx->mask |= 1 << mcnt;
449 
450 	return (1);
451 }
452 
453 static u_int
454 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
455 {
456 	uint32_t *hashes = arg;
457 	int h;
458 
459 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
460 	if (h < 32)
461 		hashes[0] |= (1 << h);
462 	else
463 		hashes[1] |= (1 << (h - 32));
464 
465 	return (1);
466 }
467 
468 /*
469  * Program the 64-bit multicast hash filter.
470  */
471 static void
472 vr_set_filter(struct vr_softc *sc)
473 {
474 	if_t			ifp;
475 	uint32_t		hashes[2] = { 0, 0 };
476 	uint8_t			rxfilt;
477 	int			error, mcnt;
478 
479 	VR_LOCK_ASSERT(sc);
480 
481 	ifp = sc->vr_ifp;
482 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
483 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
484 	    VR_RXCFG_RX_MULTI);
485 	if (if_getflags(ifp) & IFF_BROADCAST)
486 		rxfilt |= VR_RXCFG_RX_BROAD;
487 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
488 		rxfilt |= VR_RXCFG_RX_MULTI;
489 		if (if_getflags(ifp) & IFF_PROMISC)
490 			rxfilt |= VR_RXCFG_RX_PROMISC;
491 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
492 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
493 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
494 		return;
495 	}
496 
497 	/* Now program new ones. */
498 	error = 0;
499 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
500 		struct vr_hash_maddr_cam_ctx ctx;
501 
502 		/*
503 		 * For hardwares that have CAM capability, use
504 		 * 32 entries multicast perfect filter.
505 		 */
506 		ctx.sc = sc;
507 		ctx.mask = 0;
508 		ctx.error = 0;
509 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
510 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
511 	}
512 
513 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
514 		/*
515 		 * If there are too many multicast addresses or
516 		 * setting multicast CAM filter failed, use hash
517 		 * table based filtering.
518 		 */
519 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
520 	}
521 
522 	if (mcnt > 0)
523 		rxfilt |= VR_RXCFG_RX_MULTI;
524 
525 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
526 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
527 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
528 }
529 
530 static void
531 vr_reset(const struct vr_softc *sc)
532 {
533 	int		i;
534 
535 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
536 
537 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
538 	if (sc->vr_revid < REV_ID_VT6102_A) {
539 		/* VT86C100A needs more delay after reset. */
540 		DELAY(100);
541 	}
542 	for (i = 0; i < VR_TIMEOUT; i++) {
543 		DELAY(10);
544 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
545 			break;
546 	}
547 	if (i == VR_TIMEOUT) {
548 		if (sc->vr_revid < REV_ID_VT6102_A)
549 			device_printf(sc->vr_dev, "reset never completed!\n");
550 		else {
551 			/* Use newer force reset command. */
552 			device_printf(sc->vr_dev,
553 			    "Using force reset command.\n");
554 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
555 			/*
556 			 * Wait a little while for the chip to get its brains
557 			 * in order.
558 			 */
559 			DELAY(2000);
560 		}
561 	}
562 
563 }
564 
565 /*
566  * Probe for a VIA Rhine chip. Check the PCI vendor and device
567  * IDs against our list and return a match or NULL
568  */
569 static const struct vr_type *
570 vr_match(device_t dev)
571 {
572 	const struct vr_type	*t = vr_devs;
573 
574 	for (t = vr_devs; t->vr_name != NULL; t++)
575 		if ((pci_get_vendor(dev) == t->vr_vid) &&
576 		    (pci_get_device(dev) == t->vr_did))
577 			return (t);
578 	return (NULL);
579 }
580 
581 /*
582  * Probe for a VIA Rhine chip. Check the PCI vendor and device
583  * IDs against our list and return a device name if we find a match.
584  */
585 static int
586 vr_probe(device_t dev)
587 {
588 	const struct vr_type	*t;
589 
590 	t = vr_match(dev);
591 	if (t != NULL) {
592 		device_set_desc(dev, t->vr_name);
593 		return (BUS_PROBE_DEFAULT);
594 	}
595 	return (ENXIO);
596 }
597 
598 /*
599  * Attach the interface. Allocate softc structures, do ifmedia
600  * setup and ethernet/BPF attach.
601  */
602 static int
603 vr_attach(device_t dev)
604 {
605 	struct vr_softc		*sc;
606 	if_t			ifp;
607 	const struct vr_type	*t;
608 	uint8_t			eaddr[ETHER_ADDR_LEN];
609 	int			error, rid;
610 	int			i, phy, pmc;
611 
612 	sc = device_get_softc(dev);
613 	sc->vr_dev = dev;
614 	t = vr_match(dev);
615 	KASSERT(t != NULL, ("Lost if_vr device match"));
616 	sc->vr_quirks = t->vr_quirks;
617 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
618 
619 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
620 	    MTX_DEF);
621 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
622 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
623 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
624 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
625 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
626 
627 	error = 0;
628 
629 	/*
630 	 * Map control/status registers.
631 	 */
632 	pci_enable_busmaster(dev);
633 	sc->vr_revid = pci_get_revid(dev);
634 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
635 
636 	sc->vr_res_id = PCIR_BAR(0);
637 	sc->vr_res_type = SYS_RES_IOPORT;
638 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
639 	    &sc->vr_res_id, RF_ACTIVE);
640 	if (sc->vr_res == NULL) {
641 		device_printf(dev, "couldn't map ports\n");
642 		error = ENXIO;
643 		goto fail;
644 	}
645 
646 	/* Allocate interrupt. */
647 	rid = 0;
648 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
649 	    RF_SHAREABLE | RF_ACTIVE);
650 
651 	if (sc->vr_irq == NULL) {
652 		device_printf(dev, "couldn't map interrupt\n");
653 		error = ENXIO;
654 		goto fail;
655 	}
656 
657 	/* Allocate ifnet structure. */
658 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
659 	if_setsoftc(ifp, sc);
660 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
661 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
662 	if_setioctlfn(ifp, vr_ioctl);
663 	if_setstartfn(ifp, vr_start);
664 	if_setinitfn(ifp, vr_init);
665 	if_setsendqlen(ifp, VR_TX_RING_CNT - 1);
666 	if_setsendqready(ifp);
667 
668 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
669 
670 	/* Configure Tx FIFO threshold. */
671 	sc->vr_txthresh = VR_TXTHRESH_MIN;
672 	if (sc->vr_revid < REV_ID_VT6105_A0) {
673 		/*
674 		 * Use store and forward mode for Rhine I/II.
675 		 * Otherwise they produce a lot of Tx underruns and
676 		 * it would take a while to get working FIFO threshold
677 		 * value.
678 		 */
679 		sc->vr_txthresh = VR_TXTHRESH_MAX;
680 	}
681 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
682 		if_sethwassist(ifp, VR_CSUM_FEATURES);
683 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
684 		/*
685 		 * To update checksum field the hardware may need to
686 		 * store entire frames into FIFO before transmitting.
687 		 */
688 		sc->vr_txthresh = VR_TXTHRESH_MAX;
689 	}
690 
691 	if (sc->vr_revid >= REV_ID_VT6102_A &&
692 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
693 		if_setcapabilitiesbit(ifp, IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC, 0);
694 
695 	/* Rhine supports oversized VLAN frame. */
696 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
697 	if_setcapenable(ifp, if_getcapabilities(ifp));
698 #ifdef DEVICE_POLLING
699 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
700 #endif
701 
702 	/*
703 	 * Windows may put the chip in suspend mode when it
704 	 * shuts down. Be sure to kick it in the head to wake it
705 	 * up again.
706 	 */
707 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
708 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
709 
710 	/*
711 	 * Get station address. The way the Rhine chips work,
712 	 * you're not allowed to directly access the EEPROM once
713 	 * they've been programmed a special way. Consequently,
714 	 * we need to read the node address from the PAR0 and PAR1
715 	 * registers.
716 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
717 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
718 	 * by driver is reset to default state.
719 	 */
720 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
721 	for (i = VR_TIMEOUT; i > 0; i--) {
722 		DELAY(1);
723 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
724 			break;
725 	}
726 	if (i == 0)
727 		device_printf(dev, "Reloading EEPROM timeout!\n");
728 	for (i = 0; i < ETHER_ADDR_LEN; i++)
729 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
730 
731 	/* Reset the adapter. */
732 	vr_reset(sc);
733 	/* Ack intr & disable further interrupts. */
734 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
735 	CSR_WRITE_2(sc, VR_IMR, 0);
736 	if (sc->vr_revid >= REV_ID_VT6102_A)
737 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
738 
739 	if (sc->vr_revid < REV_ID_VT6102_A) {
740 		pci_write_config(dev, VR_PCI_MODE2,
741 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
742 		    VR_MODE2_MODE10T, 1);
743 	} else {
744 		/* Report error instead of retrying forever. */
745 		pci_write_config(dev, VR_PCI_MODE2,
746 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
747 		    VR_MODE2_PCEROPT, 1);
748         	/* Detect MII coding error. */
749 		pci_write_config(dev, VR_PCI_MODE3,
750 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
751 		    VR_MODE3_MIION, 1);
752 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
753 		    sc->vr_revid < REV_ID_VT6105M_A0)
754 			pci_write_config(dev, VR_PCI_MODE2,
755 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
756 			    VR_MODE2_MODE10T, 1);
757 		/* Enable Memory-Read-Multiple. */
758 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
759 		    sc->vr_revid < REV_ID_VT6105M_A0)
760 			pci_write_config(dev, VR_PCI_MODE2,
761 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
762 			    VR_MODE2_MRDPL, 1);
763 	}
764 	/* Disable MII AUTOPOLL. */
765 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
766 
767 	if (vr_dma_alloc(sc) != 0) {
768 		error = ENXIO;
769 		goto fail;
770 	}
771 
772 	/* Do MII setup. */
773 	if (sc->vr_revid >= REV_ID_VT6105_A0)
774 		phy = 1;
775 	else
776 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
777 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
778 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
779 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
780 	if (error != 0) {
781 		device_printf(dev, "attaching PHYs failed\n");
782 		goto fail;
783 	}
784 
785 	/* Call MI attach routine. */
786 	ether_ifattach(ifp, eaddr);
787 	/*
788 	 * Tell the upper layer(s) we support long frames.
789 	 * Must appear after the call to ether_ifattach() because
790 	 * ether_ifattach() sets ifi_hdrlen to the default value.
791 	 */
792 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
793 
794 	/* Hook interrupt last to avoid having to lock softc. */
795 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
796 	    vr_intr, NULL, sc, &sc->vr_intrhand);
797 
798 	if (error) {
799 		device_printf(dev, "couldn't set up irq\n");
800 		ether_ifdetach(ifp);
801 		goto fail;
802 	}
803 
804 fail:
805 	if (error)
806 		vr_detach(dev);
807 
808 	return (error);
809 }
810 
811 /*
812  * Shutdown hardware and free up resources. This can be called any
813  * time after the mutex has been initialized. It is called in both
814  * the error case in attach and the normal detach case so it needs
815  * to be careful about only freeing resources that have actually been
816  * allocated.
817  */
818 static int
819 vr_detach(device_t dev)
820 {
821 	struct vr_softc		*sc = device_get_softc(dev);
822 	if_t			ifp = sc->vr_ifp;
823 
824 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
825 
826 #ifdef DEVICE_POLLING
827 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
828 		ether_poll_deregister(ifp);
829 #endif
830 
831 	/* These should only be active if attach succeeded. */
832 	if (device_is_attached(dev)) {
833 		VR_LOCK(sc);
834 		sc->vr_flags |= VR_F_DETACHED;
835 		vr_stop(sc);
836 		VR_UNLOCK(sc);
837 		callout_drain(&sc->vr_stat_callout);
838 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
839 		ether_ifdetach(ifp);
840 	}
841 	if (sc->vr_miibus)
842 		device_delete_child(dev, sc->vr_miibus);
843 	bus_generic_detach(dev);
844 
845 	if (sc->vr_intrhand)
846 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
847 	if (sc->vr_irq)
848 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
849 	if (sc->vr_res)
850 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
851 		    sc->vr_res);
852 
853 	if (ifp)
854 		if_free(ifp);
855 
856 	vr_dma_free(sc);
857 
858 	mtx_destroy(&sc->vr_mtx);
859 
860 	return (0);
861 }
862 
863 struct vr_dmamap_arg {
864 	bus_addr_t	vr_busaddr;
865 };
866 
867 static void
868 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
869 {
870 	struct vr_dmamap_arg	*ctx;
871 
872 	if (error != 0)
873 		return;
874 	ctx = arg;
875 	ctx->vr_busaddr = segs[0].ds_addr;
876 }
877 
878 static int
879 vr_dma_alloc(struct vr_softc *sc)
880 {
881 	struct vr_dmamap_arg	ctx;
882 	struct vr_txdesc	*txd;
883 	struct vr_rxdesc	*rxd;
884 	bus_size_t		tx_alignment;
885 	int			error, i;
886 
887 	/* Create parent DMA tag. */
888 	error = bus_dma_tag_create(
889 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
890 	    1, 0,			/* alignment, boundary */
891 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
892 	    BUS_SPACE_MAXADDR,		/* highaddr */
893 	    NULL, NULL,			/* filter, filterarg */
894 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
895 	    0,				/* nsegments */
896 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
897 	    0,				/* flags */
898 	    NULL, NULL,			/* lockfunc, lockarg */
899 	    &sc->vr_cdata.vr_parent_tag);
900 	if (error != 0) {
901 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
902 		goto fail;
903 	}
904 	/* Create tag for Tx ring. */
905 	error = bus_dma_tag_create(
906 	    sc->vr_cdata.vr_parent_tag,	/* parent */
907 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
908 	    BUS_SPACE_MAXADDR,		/* lowaddr */
909 	    BUS_SPACE_MAXADDR,		/* highaddr */
910 	    NULL, NULL,			/* filter, filterarg */
911 	    VR_TX_RING_SIZE,		/* maxsize */
912 	    1,				/* nsegments */
913 	    VR_TX_RING_SIZE,		/* maxsegsize */
914 	    0,				/* flags */
915 	    NULL, NULL,			/* lockfunc, lockarg */
916 	    &sc->vr_cdata.vr_tx_ring_tag);
917 	if (error != 0) {
918 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
919 		goto fail;
920 	}
921 
922 	/* Create tag for Rx ring. */
923 	error = bus_dma_tag_create(
924 	    sc->vr_cdata.vr_parent_tag,	/* parent */
925 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
926 	    BUS_SPACE_MAXADDR,		/* lowaddr */
927 	    BUS_SPACE_MAXADDR,		/* highaddr */
928 	    NULL, NULL,			/* filter, filterarg */
929 	    VR_RX_RING_SIZE,		/* maxsize */
930 	    1,				/* nsegments */
931 	    VR_RX_RING_SIZE,		/* maxsegsize */
932 	    0,				/* flags */
933 	    NULL, NULL,			/* lockfunc, lockarg */
934 	    &sc->vr_cdata.vr_rx_ring_tag);
935 	if (error != 0) {
936 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
937 		goto fail;
938 	}
939 
940 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
941 		tx_alignment = sizeof(uint32_t);
942 	else
943 		tx_alignment = 1;
944 	/* Create tag for Tx buffers. */
945 	error = bus_dma_tag_create(
946 	    sc->vr_cdata.vr_parent_tag,	/* parent */
947 	    tx_alignment, 0,		/* alignment, boundary */
948 	    BUS_SPACE_MAXADDR,		/* lowaddr */
949 	    BUS_SPACE_MAXADDR,		/* highaddr */
950 	    NULL, NULL,			/* filter, filterarg */
951 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
952 	    VR_MAXFRAGS,		/* nsegments */
953 	    MCLBYTES,			/* maxsegsize */
954 	    0,				/* flags */
955 	    NULL, NULL,			/* lockfunc, lockarg */
956 	    &sc->vr_cdata.vr_tx_tag);
957 	if (error != 0) {
958 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
959 		goto fail;
960 	}
961 
962 	/* Create tag for Rx buffers. */
963 	error = bus_dma_tag_create(
964 	    sc->vr_cdata.vr_parent_tag,	/* parent */
965 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
966 	    BUS_SPACE_MAXADDR,		/* lowaddr */
967 	    BUS_SPACE_MAXADDR,		/* highaddr */
968 	    NULL, NULL,			/* filter, filterarg */
969 	    MCLBYTES,			/* maxsize */
970 	    1,				/* nsegments */
971 	    MCLBYTES,			/* maxsegsize */
972 	    0,				/* flags */
973 	    NULL, NULL,			/* lockfunc, lockarg */
974 	    &sc->vr_cdata.vr_rx_tag);
975 	if (error != 0) {
976 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
977 		goto fail;
978 	}
979 
980 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
981 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
982 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
983 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
984 	if (error != 0) {
985 		device_printf(sc->vr_dev,
986 		    "failed to allocate DMA'able memory for Tx ring\n");
987 		goto fail;
988 	}
989 
990 	ctx.vr_busaddr = 0;
991 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
992 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
993 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
994 	if (error != 0 || ctx.vr_busaddr == 0) {
995 		device_printf(sc->vr_dev,
996 		    "failed to load DMA'able memory for Tx ring\n");
997 		goto fail;
998 	}
999 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1000 
1001 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1002 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1003 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1004 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1005 	if (error != 0) {
1006 		device_printf(sc->vr_dev,
1007 		    "failed to allocate DMA'able memory for Rx ring\n");
1008 		goto fail;
1009 	}
1010 
1011 	ctx.vr_busaddr = 0;
1012 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1013 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1014 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1015 	if (error != 0 || ctx.vr_busaddr == 0) {
1016 		device_printf(sc->vr_dev,
1017 		    "failed to load DMA'able memory for Rx ring\n");
1018 		goto fail;
1019 	}
1020 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1021 
1022 	/* Create DMA maps for Tx buffers. */
1023 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1024 		txd = &sc->vr_cdata.vr_txdesc[i];
1025 		txd->tx_m = NULL;
1026 		txd->tx_dmamap = NULL;
1027 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1028 		    &txd->tx_dmamap);
1029 		if (error != 0) {
1030 			device_printf(sc->vr_dev,
1031 			    "failed to create Tx dmamap\n");
1032 			goto fail;
1033 		}
1034 	}
1035 	/* Create DMA maps for Rx buffers. */
1036 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1037 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1038 		device_printf(sc->vr_dev,
1039 		    "failed to create spare Rx dmamap\n");
1040 		goto fail;
1041 	}
1042 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1043 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1044 		rxd->rx_m = NULL;
1045 		rxd->rx_dmamap = NULL;
1046 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1047 		    &rxd->rx_dmamap);
1048 		if (error != 0) {
1049 			device_printf(sc->vr_dev,
1050 			    "failed to create Rx dmamap\n");
1051 			goto fail;
1052 		}
1053 	}
1054 
1055 fail:
1056 	return (error);
1057 }
1058 
1059 static void
1060 vr_dma_free(struct vr_softc *sc)
1061 {
1062 	struct vr_txdesc	*txd;
1063 	struct vr_rxdesc	*rxd;
1064 	int			i;
1065 
1066 	/* Tx ring. */
1067 	if (sc->vr_cdata.vr_tx_ring_tag) {
1068 		if (sc->vr_rdata.vr_tx_ring_paddr)
1069 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1070 			    sc->vr_cdata.vr_tx_ring_map);
1071 		if (sc->vr_rdata.vr_tx_ring)
1072 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1073 			    sc->vr_rdata.vr_tx_ring,
1074 			    sc->vr_cdata.vr_tx_ring_map);
1075 		sc->vr_rdata.vr_tx_ring = NULL;
1076 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1077 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1078 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1079 	}
1080 	/* Rx ring. */
1081 	if (sc->vr_cdata.vr_rx_ring_tag) {
1082 		if (sc->vr_rdata.vr_rx_ring_paddr)
1083 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1084 			    sc->vr_cdata.vr_rx_ring_map);
1085 		if (sc->vr_rdata.vr_rx_ring)
1086 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1087 			    sc->vr_rdata.vr_rx_ring,
1088 			    sc->vr_cdata.vr_rx_ring_map);
1089 		sc->vr_rdata.vr_rx_ring = NULL;
1090 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1091 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1092 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1093 	}
1094 	/* Tx buffers. */
1095 	if (sc->vr_cdata.vr_tx_tag) {
1096 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1097 			txd = &sc->vr_cdata.vr_txdesc[i];
1098 			if (txd->tx_dmamap) {
1099 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1100 				    txd->tx_dmamap);
1101 				txd->tx_dmamap = NULL;
1102 			}
1103 		}
1104 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1105 		sc->vr_cdata.vr_tx_tag = NULL;
1106 	}
1107 	/* Rx buffers. */
1108 	if (sc->vr_cdata.vr_rx_tag) {
1109 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1110 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1111 			if (rxd->rx_dmamap) {
1112 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1113 				    rxd->rx_dmamap);
1114 				rxd->rx_dmamap = NULL;
1115 			}
1116 		}
1117 		if (sc->vr_cdata.vr_rx_sparemap) {
1118 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1119 			    sc->vr_cdata.vr_rx_sparemap);
1120 			sc->vr_cdata.vr_rx_sparemap = 0;
1121 		}
1122 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1123 		sc->vr_cdata.vr_rx_tag = NULL;
1124 	}
1125 
1126 	if (sc->vr_cdata.vr_parent_tag) {
1127 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1128 		sc->vr_cdata.vr_parent_tag = NULL;
1129 	}
1130 }
1131 
1132 /*
1133  * Initialize the transmit descriptors.
1134  */
1135 static int
1136 vr_tx_ring_init(struct vr_softc *sc)
1137 {
1138 	struct vr_ring_data	*rd;
1139 	struct vr_txdesc	*txd;
1140 	bus_addr_t		addr;
1141 	int			i;
1142 
1143 	sc->vr_cdata.vr_tx_prod = 0;
1144 	sc->vr_cdata.vr_tx_cons = 0;
1145 	sc->vr_cdata.vr_tx_cnt = 0;
1146 	sc->vr_cdata.vr_tx_pkts = 0;
1147 
1148 	rd = &sc->vr_rdata;
1149 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1150 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1151 		if (i == VR_TX_RING_CNT - 1)
1152 			addr = VR_TX_RING_ADDR(sc, 0);
1153 		else
1154 			addr = VR_TX_RING_ADDR(sc, i + 1);
1155 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1156 		txd = &sc->vr_cdata.vr_txdesc[i];
1157 		txd->tx_m = NULL;
1158 	}
1159 
1160 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1161 	    sc->vr_cdata.vr_tx_ring_map,
1162 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1163 
1164 	return (0);
1165 }
1166 
1167 /*
1168  * Initialize the RX descriptors and allocate mbufs for them. Note that
1169  * we arrange the descriptors in a closed ring, so that the last descriptor
1170  * points back to the first.
1171  */
1172 static int
1173 vr_rx_ring_init(struct vr_softc *sc)
1174 {
1175 	struct vr_ring_data	*rd;
1176 	struct vr_rxdesc	*rxd;
1177 	bus_addr_t		addr;
1178 	int			i;
1179 
1180 	sc->vr_cdata.vr_rx_cons = 0;
1181 
1182 	rd = &sc->vr_rdata;
1183 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1184 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1185 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1186 		rxd->rx_m = NULL;
1187 		rxd->desc = &rd->vr_rx_ring[i];
1188 		if (i == VR_RX_RING_CNT - 1)
1189 			addr = VR_RX_RING_ADDR(sc, 0);
1190 		else
1191 			addr = VR_RX_RING_ADDR(sc, i + 1);
1192 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1193 		if (vr_newbuf(sc, i) != 0)
1194 			return (ENOBUFS);
1195 	}
1196 
1197 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1198 	    sc->vr_cdata.vr_rx_ring_map,
1199 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1200 
1201 	return (0);
1202 }
1203 
1204 static __inline void
1205 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1206 {
1207 	struct vr_desc	*desc;
1208 
1209 	desc = rxd->desc;
1210 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1211 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1212 }
1213 
1214 /*
1215  * Initialize an RX descriptor and attach an MBUF cluster.
1216  * Note: the length fields are only 11 bits wide, which means the
1217  * largest size we can specify is 2047. This is important because
1218  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1219  * overflow the field and make a mess.
1220  */
1221 static int
1222 vr_newbuf(struct vr_softc *sc, int idx)
1223 {
1224 	struct vr_desc		*desc;
1225 	struct vr_rxdesc	*rxd;
1226 	struct mbuf		*m;
1227 	bus_dma_segment_t	segs[1];
1228 	bus_dmamap_t		map;
1229 	int			nsegs;
1230 
1231 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1232 	if (m == NULL)
1233 		return (ENOBUFS);
1234 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1235 	m_adj(m, sizeof(uint64_t));
1236 
1237 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1238 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1239 		m_freem(m);
1240 		return (ENOBUFS);
1241 	}
1242 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1243 
1244 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1245 	if (rxd->rx_m != NULL) {
1246 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1247 		    BUS_DMASYNC_POSTREAD);
1248 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1249 	}
1250 	map = rxd->rx_dmamap;
1251 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1252 	sc->vr_cdata.vr_rx_sparemap = map;
1253 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1254 	    BUS_DMASYNC_PREREAD);
1255 	rxd->rx_m = m;
1256 	desc = rxd->desc;
1257 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1258 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1259 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1260 
1261 	return (0);
1262 }
1263 
1264 #ifndef __NO_STRICT_ALIGNMENT
1265 static __inline void
1266 vr_fixup_rx(struct mbuf *m)
1267 {
1268         uint16_t		*src, *dst;
1269         int			i;
1270 
1271 	src = mtod(m, uint16_t *);
1272 	dst = src - 1;
1273 
1274 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1275 		*dst++ = *src++;
1276 
1277 	m->m_data -= ETHER_ALIGN;
1278 }
1279 #endif
1280 
1281 /*
1282  * A frame has been uploaded: pass the resulting mbuf chain up to
1283  * the higher level protocols.
1284  */
1285 static int
1286 vr_rxeof(struct vr_softc *sc)
1287 {
1288 	struct vr_rxdesc	*rxd;
1289 	struct mbuf		*m;
1290 	if_t			ifp;
1291 	struct vr_desc		*cur_rx;
1292 	int			cons, prog, total_len, rx_npkts;
1293 	uint32_t		rxstat, rxctl;
1294 
1295 	VR_LOCK_ASSERT(sc);
1296 	ifp = sc->vr_ifp;
1297 	cons = sc->vr_cdata.vr_rx_cons;
1298 	rx_npkts = 0;
1299 
1300 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1301 	    sc->vr_cdata.vr_rx_ring_map,
1302 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1303 
1304 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1305 #ifdef DEVICE_POLLING
1306 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1307 			if (sc->rxcycles <= 0)
1308 				break;
1309 			sc->rxcycles--;
1310 		}
1311 #endif
1312 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1313 		rxstat = le32toh(cur_rx->vr_status);
1314 		rxctl = le32toh(cur_rx->vr_ctl);
1315 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1316 			break;
1317 
1318 		prog++;
1319 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1320 		m = rxd->rx_m;
1321 
1322 		/*
1323 		 * If an error occurs, update stats, clear the
1324 		 * status word and leave the mbuf cluster in place:
1325 		 * it should simply get re-used next time this descriptor
1326 		 * comes up in the ring.
1327 		 * We don't support SG in Rx path yet, so discard
1328 		 * partial frame.
1329 		 */
1330 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1331 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1332 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1333 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1334 			sc->vr_stat.rx_errors++;
1335 			if (rxstat & VR_RXSTAT_CRCERR)
1336 				sc->vr_stat.rx_crc_errors++;
1337 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1338 				sc->vr_stat.rx_alignment++;
1339 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1340 				sc->vr_stat.rx_fifo_overflows++;
1341 			if (rxstat & VR_RXSTAT_GIANT)
1342 				sc->vr_stat.rx_giants++;
1343 			if (rxstat & VR_RXSTAT_RUNT)
1344 				sc->vr_stat.rx_runts++;
1345 			if (rxstat & VR_RXSTAT_BUFFERR)
1346 				sc->vr_stat.rx_no_buffers++;
1347 #ifdef	VR_SHOW_ERRORS
1348 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1349 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1350 #endif
1351 			vr_discard_rxbuf(rxd);
1352 			continue;
1353 		}
1354 
1355 		if (vr_newbuf(sc, cons) != 0) {
1356 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1357 			sc->vr_stat.rx_errors++;
1358 			sc->vr_stat.rx_no_mbufs++;
1359 			vr_discard_rxbuf(rxd);
1360 			continue;
1361 		}
1362 
1363 		/*
1364 		 * XXX The VIA Rhine chip includes the CRC with every
1365 		 * received frame, and there's no way to turn this
1366 		 * behavior off (at least, I can't find anything in
1367 		 * the manual that explains how to do it) so we have
1368 		 * to trim off the CRC manually.
1369 		 */
1370 		total_len = VR_RXBYTES(rxstat);
1371 		total_len -= ETHER_CRC_LEN;
1372 		m->m_pkthdr.len = m->m_len = total_len;
1373 #ifndef	__NO_STRICT_ALIGNMENT
1374 		/*
1375 		 * RX buffers must be 32-bit aligned.
1376 		 * Ignore the alignment problems on the non-strict alignment
1377 		 * platform. The performance hit incurred due to unaligned
1378 		 * accesses is much smaller than the hit produced by forcing
1379 		 * buffer copies all the time.
1380 		 */
1381 		vr_fixup_rx(m);
1382 #endif
1383 		m->m_pkthdr.rcvif = ifp;
1384 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1385 		sc->vr_stat.rx_ok++;
1386 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1387 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1388 		    (rxctl & VR_RXCTL_IP) != 0) {
1389 			/* Checksum is valid for non-fragmented IP packets. */
1390 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1391 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1392 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1393 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1394 					m->m_pkthdr.csum_flags |=
1395 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1396 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1397 						m->m_pkthdr.csum_data = 0xffff;
1398 				}
1399 			}
1400 		}
1401 		VR_UNLOCK(sc);
1402 		if_input(ifp, m);
1403 		VR_LOCK(sc);
1404 		rx_npkts++;
1405 	}
1406 
1407 	if (prog > 0) {
1408 		/*
1409 		 * Let controller know how many number of RX buffers
1410 		 * are posted but avoid expensive register access if
1411 		 * TX pause capability was not negotiated with link
1412 		 * partner.
1413 		 */
1414 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1415 			if (prog >= VR_RX_RING_CNT)
1416 				prog = VR_RX_RING_CNT - 1;
1417 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1418 		}
1419 		sc->vr_cdata.vr_rx_cons = cons;
1420 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1421 		    sc->vr_cdata.vr_rx_ring_map,
1422 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1423 	}
1424 	return (rx_npkts);
1425 }
1426 
1427 /*
1428  * A frame was downloaded to the chip. It's safe for us to clean up
1429  * the list buffers.
1430  */
1431 static void
1432 vr_txeof(struct vr_softc *sc)
1433 {
1434 	struct vr_txdesc	*txd;
1435 	struct vr_desc		*cur_tx;
1436 	if_t			ifp;
1437 	uint32_t		txctl, txstat;
1438 	int			cons, prod;
1439 
1440 	VR_LOCK_ASSERT(sc);
1441 
1442 	cons = sc->vr_cdata.vr_tx_cons;
1443 	prod = sc->vr_cdata.vr_tx_prod;
1444 	if (cons == prod)
1445 		return;
1446 
1447 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1448 	    sc->vr_cdata.vr_tx_ring_map,
1449 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450 
1451 	ifp = sc->vr_ifp;
1452 	/*
1453 	 * Go through our tx list and free mbufs for those
1454 	 * frames that have been transmitted.
1455 	 */
1456 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1457 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1458 		txctl = le32toh(cur_tx->vr_ctl);
1459 		txstat = le32toh(cur_tx->vr_status);
1460 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1461 			break;
1462 
1463 		sc->vr_cdata.vr_tx_cnt--;
1464 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1465 		/* Only the first descriptor in the chain is valid. */
1466 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1467 			continue;
1468 
1469 		txd = &sc->vr_cdata.vr_txdesc[cons];
1470 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1471 		    __func__));
1472 
1473 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1474 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1475 			sc->vr_stat.tx_errors++;
1476 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1477 				/* Give up and restart Tx. */
1478 				sc->vr_stat.tx_abort++;
1479 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1480 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1481 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1482 				    txd->tx_dmamap);
1483 				m_freem(txd->tx_m);
1484 				txd->tx_m = NULL;
1485 				VR_INC(cons, VR_TX_RING_CNT);
1486 				sc->vr_cdata.vr_tx_cons = cons;
1487 				if (vr_tx_stop(sc) != 0) {
1488 					device_printf(sc->vr_dev,
1489 					    "%s: Tx shutdown error -- "
1490 					    "resetting\n", __func__);
1491 					sc->vr_flags |= VR_F_RESTART;
1492 					return;
1493 				}
1494 				vr_tx_start(sc);
1495 				break;
1496 			}
1497 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1498 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1499 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1500 				sc->vr_stat.tx_underrun++;
1501 				/* Retry and restart Tx. */
1502 				sc->vr_cdata.vr_tx_cnt++;
1503 				sc->vr_cdata.vr_tx_cons = cons;
1504 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1505 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1506 				    sc->vr_cdata.vr_tx_ring_map,
1507 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1508 				vr_tx_underrun(sc);
1509 				return;
1510 			}
1511 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1512 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1513 				sc->vr_stat.tx_collisions++;
1514 			}
1515 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1516 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1517 				sc->vr_stat.tx_late_collisions++;
1518 			}
1519 		} else {
1520 			sc->vr_stat.tx_ok++;
1521 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1522 		}
1523 
1524 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1525 		    BUS_DMASYNC_POSTWRITE);
1526 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1527 		if (sc->vr_revid < REV_ID_VT3071_A) {
1528 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1529 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1530 			sc->vr_stat.tx_collisions +=
1531 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1532 		} else {
1533 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1534 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1535 		}
1536 		m_freem(txd->tx_m);
1537 		txd->tx_m = NULL;
1538 	}
1539 
1540 	sc->vr_cdata.vr_tx_cons = cons;
1541 	if (sc->vr_cdata.vr_tx_cnt == 0)
1542 		sc->vr_watchdog_timer = 0;
1543 }
1544 
1545 static void
1546 vr_tick(void *xsc)
1547 {
1548 	struct vr_softc		*sc;
1549 	struct mii_data		*mii;
1550 
1551 	sc = (struct vr_softc *)xsc;
1552 
1553 	VR_LOCK_ASSERT(sc);
1554 
1555 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1556 		device_printf(sc->vr_dev, "restarting\n");
1557 		sc->vr_stat.num_restart++;
1558 		if_setdrvflagbits(sc->vr_ifp, 0, IFF_DRV_RUNNING);
1559 		vr_init_locked(sc);
1560 		sc->vr_flags &= ~VR_F_RESTART;
1561 	}
1562 
1563 	mii = device_get_softc(sc->vr_miibus);
1564 	mii_tick(mii);
1565 	if ((sc->vr_flags & VR_F_LINK) == 0)
1566 		vr_miibus_statchg(sc->vr_dev);
1567 	vr_watchdog(sc);
1568 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1569 }
1570 
1571 #ifdef DEVICE_POLLING
1572 static poll_handler_t vr_poll;
1573 static poll_handler_t vr_poll_locked;
1574 
1575 static int
1576 vr_poll(if_t ifp, enum poll_cmd cmd, int count)
1577 {
1578 	struct vr_softc *sc;
1579 	int rx_npkts;
1580 
1581 	sc = if_getsoftc(ifp);
1582 	rx_npkts = 0;
1583 
1584 	VR_LOCK(sc);
1585 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1586 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1587 	VR_UNLOCK(sc);
1588 	return (rx_npkts);
1589 }
1590 
1591 static int
1592 vr_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
1593 {
1594 	struct vr_softc *sc;
1595 	int rx_npkts;
1596 
1597 	sc = if_getsoftc(ifp);
1598 
1599 	VR_LOCK_ASSERT(sc);
1600 
1601 	sc->rxcycles = count;
1602 	rx_npkts = vr_rxeof(sc);
1603 	vr_txeof(sc);
1604 	if (!if_sendq_empty(ifp))
1605 		vr_start_locked(ifp);
1606 
1607 	if (cmd == POLL_AND_CHECK_STATUS) {
1608 		uint16_t status;
1609 
1610 		/* Also check status register. */
1611 		status = CSR_READ_2(sc, VR_ISR);
1612 		if (status)
1613 			CSR_WRITE_2(sc, VR_ISR, status);
1614 
1615 		if ((status & VR_INTRS) == 0)
1616 			return (rx_npkts);
1617 
1618 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1619 		    VR_ISR_STATSOFLOW)) != 0) {
1620 			if (vr_error(sc, status) != 0)
1621 				return (rx_npkts);
1622 		}
1623 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1624 #ifdef	VR_SHOW_ERRORS
1625 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1626 			    __func__, status, VR_ISR_ERR_BITS);
1627 #endif
1628 			vr_rx_start(sc);
1629 		}
1630 	}
1631 	return (rx_npkts);
1632 }
1633 #endif /* DEVICE_POLLING */
1634 
1635 /* Back off the transmit threshold. */
1636 static void
1637 vr_tx_underrun(struct vr_softc *sc)
1638 {
1639 	int	thresh;
1640 
1641 	device_printf(sc->vr_dev, "Tx underrun -- ");
1642 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1643 		thresh = sc->vr_txthresh;
1644 		sc->vr_txthresh++;
1645 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1646 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1647 			printf("using store and forward mode\n");
1648 		} else
1649 			printf("increasing Tx threshold(%d -> %d)\n",
1650 			    vr_tx_threshold_tables[thresh].value,
1651 			    vr_tx_threshold_tables[thresh + 1].value);
1652 	} else
1653 		printf("\n");
1654 	sc->vr_stat.tx_underrun++;
1655 	if (vr_tx_stop(sc) != 0) {
1656 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1657 		    "resetting\n", __func__);
1658 		sc->vr_flags |= VR_F_RESTART;
1659 		return;
1660 	}
1661 	vr_tx_start(sc);
1662 }
1663 
1664 static int
1665 vr_intr(void *arg)
1666 {
1667 	struct vr_softc		*sc;
1668 	uint16_t		status;
1669 
1670 	sc = (struct vr_softc *)arg;
1671 
1672 	status = CSR_READ_2(sc, VR_ISR);
1673 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1674 		return (FILTER_STRAY);
1675 
1676 	/* Disable interrupts. */
1677 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1678 
1679 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1680 
1681 	return (FILTER_HANDLED);
1682 }
1683 
1684 static void
1685 vr_int_task(void *arg, int npending)
1686 {
1687 	struct vr_softc		*sc;
1688 	if_t			ifp;
1689 	uint16_t		status;
1690 
1691 	sc = (struct vr_softc *)arg;
1692 
1693 	VR_LOCK(sc);
1694 
1695 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1696 		goto done_locked;
1697 
1698 	status = CSR_READ_2(sc, VR_ISR);
1699 	ifp = sc->vr_ifp;
1700 #ifdef DEVICE_POLLING
1701 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1702 		goto done_locked;
1703 #endif
1704 
1705 	/* Suppress unwanted interrupts. */
1706 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1707 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1708 		CSR_WRITE_2(sc, VR_IMR, 0);
1709 		CSR_WRITE_2(sc, VR_ISR, status);
1710 		goto done_locked;
1711 	}
1712 
1713 	for (; (status & VR_INTRS) != 0;) {
1714 		CSR_WRITE_2(sc, VR_ISR, status);
1715 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1716 		    VR_ISR_STATSOFLOW)) != 0) {
1717 			if (vr_error(sc, status) != 0) {
1718 				VR_UNLOCK(sc);
1719 				return;
1720 			}
1721 		}
1722 		vr_rxeof(sc);
1723 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1724 #ifdef	VR_SHOW_ERRORS
1725 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1726 			    __func__, status, VR_ISR_ERR_BITS);
1727 #endif
1728 			/* Restart Rx if RxDMA SM was stopped. */
1729 			vr_rx_start(sc);
1730 		}
1731 		vr_txeof(sc);
1732 
1733 		if (!if_sendq_empty(ifp))
1734 			vr_start_locked(ifp);
1735 
1736 		status = CSR_READ_2(sc, VR_ISR);
1737 	}
1738 
1739 	/* Re-enable interrupts. */
1740 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1741 
1742 done_locked:
1743 	VR_UNLOCK(sc);
1744 }
1745 
1746 static int
1747 vr_error(struct vr_softc *sc, uint16_t status)
1748 {
1749 	uint16_t pcis;
1750 
1751 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1752 	if ((status & VR_ISR_BUSERR) != 0) {
1753 		status &= ~VR_ISR_BUSERR;
1754 		sc->vr_stat.bus_errors++;
1755 		/* Disable further interrupts. */
1756 		CSR_WRITE_2(sc, VR_IMR, 0);
1757 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1758 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1759 		    "resetting\n", pcis);
1760 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1761 		sc->vr_flags |= VR_F_RESTART;
1762 		return (EAGAIN);
1763 	}
1764 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1765 		/* Link state change, duplex changes etc. */
1766 		status &= ~VR_ISR_LINKSTAT2;
1767 	}
1768 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1769 		status &= ~VR_ISR_STATSOFLOW;
1770 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1771 			/* Update MIB counters. */
1772 		}
1773 	}
1774 
1775 	if (status != 0)
1776 		device_printf(sc->vr_dev,
1777 		    "unhandled interrupt, status = 0x%04x\n", status);
1778 	return (0);
1779 }
1780 
1781 /*
1782  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1783  * pointers to the fragment pointers.
1784  */
1785 static int
1786 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1787 {
1788 	struct vr_txdesc	*txd;
1789 	struct vr_desc		*desc;
1790 	struct mbuf		*m;
1791 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1792 	uint32_t		csum_flags, txctl;
1793 	int			error, i, nsegs, prod, si;
1794 	int			padlen;
1795 
1796 	VR_LOCK_ASSERT(sc);
1797 
1798 	M_ASSERTPKTHDR((*m_head));
1799 
1800 	/*
1801 	 * Some VIA Rhine wants packet buffers to be longword
1802 	 * aligned, but very often our mbufs aren't. Rather than
1803 	 * waste time trying to decide when to copy and when not
1804 	 * to copy, just do it all the time.
1805 	 */
1806 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1807 		m = m_defrag(*m_head, M_NOWAIT);
1808 		if (m == NULL) {
1809 			m_freem(*m_head);
1810 			*m_head = NULL;
1811 			return (ENOBUFS);
1812 		}
1813 		*m_head = m;
1814 	}
1815 
1816 	/*
1817 	 * The Rhine chip doesn't auto-pad, so we have to make
1818 	 * sure to pad short frames out to the minimum frame length
1819 	 * ourselves.
1820 	 */
1821 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1822 		m = *m_head;
1823 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1824 		if (M_WRITABLE(m) == 0) {
1825 			/* Get a writable copy. */
1826 			m = m_dup(*m_head, M_NOWAIT);
1827 			m_freem(*m_head);
1828 			if (m == NULL) {
1829 				*m_head = NULL;
1830 				return (ENOBUFS);
1831 			}
1832 			*m_head = m;
1833 		}
1834 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1835 			m = m_defrag(m, M_NOWAIT);
1836 			if (m == NULL) {
1837 				m_freem(*m_head);
1838 				*m_head = NULL;
1839 				return (ENOBUFS);
1840 			}
1841 		}
1842 		/*
1843 		 * Manually pad short frames, and zero the pad space
1844 		 * to avoid leaking data.
1845 		 */
1846 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1847 		m->m_pkthdr.len += padlen;
1848 		m->m_len = m->m_pkthdr.len;
1849 		*m_head = m;
1850 	}
1851 
1852 	prod = sc->vr_cdata.vr_tx_prod;
1853 	txd = &sc->vr_cdata.vr_txdesc[prod];
1854 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1855 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1856 	if (error == EFBIG) {
1857 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1858 		if (m == NULL) {
1859 			m_freem(*m_head);
1860 			*m_head = NULL;
1861 			return (ENOBUFS);
1862 		}
1863 		*m_head = m;
1864 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1865 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1866 		if (error != 0) {
1867 			m_freem(*m_head);
1868 			*m_head = NULL;
1869 			return (error);
1870 		}
1871 	} else if (error != 0)
1872 		return (error);
1873 	if (nsegs == 0) {
1874 		m_freem(*m_head);
1875 		*m_head = NULL;
1876 		return (EIO);
1877 	}
1878 
1879 	/* Check number of available descriptors. */
1880 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1881 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1882 		return (ENOBUFS);
1883 	}
1884 
1885 	txd->tx_m = *m_head;
1886 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1887 	    BUS_DMASYNC_PREWRITE);
1888 
1889 	/* Set checksum offload. */
1890 	csum_flags = 0;
1891 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1892 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1893 			csum_flags |= VR_TXCTL_IPCSUM;
1894 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1895 			csum_flags |= VR_TXCTL_TCPCSUM;
1896 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1897 			csum_flags |= VR_TXCTL_UDPCSUM;
1898 	}
1899 
1900 	/*
1901 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1902 	 * is required for all descriptors regardless of single or
1903 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1904 	 * the first descriptor for a multi-fragmented frames. Without
1905 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1906 	 * send any frames.
1907 	 */
1908 	si = prod;
1909 	for (i = 0; i < nsegs; i++) {
1910 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1911 		desc->vr_status = 0;
1912 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1913 		if (i == 0)
1914 			txctl |= VR_TXCTL_FIRSTFRAG;
1915 		desc->vr_ctl = htole32(txctl);
1916 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1917 		sc->vr_cdata.vr_tx_cnt++;
1918 		VR_INC(prod, VR_TX_RING_CNT);
1919 	}
1920 	/* Update producer index. */
1921 	sc->vr_cdata.vr_tx_prod = prod;
1922 
1923 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1924 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1925 
1926 	/*
1927 	 * Set EOP on the last descriptor and request Tx completion
1928 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1929 	 */
1930 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1931 	if (sc->vr_cdata.vr_tx_pkts == 0)
1932 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1933 	else
1934 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1935 
1936 	/* Lastly turn the first descriptor ownership to hardware. */
1937 	desc = &sc->vr_rdata.vr_tx_ring[si];
1938 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1939 
1940 	/* Sync descriptors. */
1941 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1942 	    sc->vr_cdata.vr_tx_ring_map,
1943 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1944 
1945 	return (0);
1946 }
1947 
1948 static void
1949 vr_start(if_t ifp)
1950 {
1951 	struct vr_softc		*sc;
1952 
1953 	sc = if_getsoftc(ifp);
1954 	VR_LOCK(sc);
1955 	vr_start_locked(ifp);
1956 	VR_UNLOCK(sc);
1957 }
1958 
1959 static void
1960 vr_start_locked(if_t ifp)
1961 {
1962 	struct vr_softc		*sc;
1963 	struct mbuf		*m_head;
1964 	int			enq;
1965 
1966 	sc = if_getsoftc(ifp);
1967 
1968 	VR_LOCK_ASSERT(sc);
1969 
1970 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1971 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1972 		return;
1973 
1974 	for (enq = 0; !if_sendq_empty(ifp) &&
1975 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1976 		m_head = if_dequeue(ifp);
1977 		if (m_head == NULL)
1978 			break;
1979 		/*
1980 		 * Pack the data into the transmit ring. If we
1981 		 * don't have room, set the OACTIVE flag and wait
1982 		 * for the NIC to drain the ring.
1983 		 */
1984 		if (vr_encap(sc, &m_head)) {
1985 			if (m_head == NULL)
1986 				break;
1987 			if_sendq_prepend(ifp, m_head);
1988 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1989 			break;
1990 		}
1991 
1992 		enq++;
1993 		/*
1994 		 * If there's a BPF listener, bounce a copy of this frame
1995 		 * to him.
1996 		 */
1997 		ETHER_BPF_MTAP(ifp, m_head);
1998 	}
1999 
2000 	if (enq > 0) {
2001 		/* Tell the chip to start transmitting. */
2002 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2003 		/* Set a timeout in case the chip goes out to lunch. */
2004 		sc->vr_watchdog_timer = 5;
2005 	}
2006 }
2007 
2008 static void
2009 vr_init(void *xsc)
2010 {
2011 	struct vr_softc		*sc;
2012 
2013 	sc = (struct vr_softc *)xsc;
2014 	VR_LOCK(sc);
2015 	vr_init_locked(sc);
2016 	VR_UNLOCK(sc);
2017 }
2018 
2019 static void
2020 vr_init_locked(struct vr_softc *sc)
2021 {
2022 	if_t			ifp;
2023 	struct mii_data		*mii;
2024 	bus_addr_t		addr;
2025 	int			i;
2026 
2027 	VR_LOCK_ASSERT(sc);
2028 
2029 	ifp = sc->vr_ifp;
2030 	mii = device_get_softc(sc->vr_miibus);
2031 
2032 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2033 		return;
2034 
2035 	/* Cancel pending I/O and free all RX/TX buffers. */
2036 	vr_stop(sc);
2037 	vr_reset(sc);
2038 
2039 	/* Set our station address. */
2040 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2041 		CSR_WRITE_1(sc, VR_PAR0 + i, if_getlladdr(sc->vr_ifp)[i]);
2042 
2043 	/* Set DMA size. */
2044 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2045 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2046 
2047 	/*
2048 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2049 	 * so we must set both.
2050 	 */
2051 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2052 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2053 
2054 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2055 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2056 
2057 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2058 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2059 
2060 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2061 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2062 
2063 	/* Init circular RX list. */
2064 	if (vr_rx_ring_init(sc) != 0) {
2065 		device_printf(sc->vr_dev,
2066 		    "initialization failed: no memory for rx buffers\n");
2067 		vr_stop(sc);
2068 		return;
2069 	}
2070 
2071 	/* Init tx descriptors. */
2072 	vr_tx_ring_init(sc);
2073 
2074 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2075 		uint8_t vcam[2] = { 0, 0 };
2076 
2077 		/* Disable VLAN hardware tag insertion/stripping. */
2078 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2079 		/* Disable VLAN hardware filtering. */
2080 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2081 		/* Disable all CAM entries. */
2082 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2083 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2084 		/* Enable the first VLAN CAM. */
2085 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2086 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2087 	}
2088 
2089 	/*
2090 	 * Set up receive filter.
2091 	 */
2092 	vr_set_filter(sc);
2093 
2094 	/*
2095 	 * Load the address of the RX ring.
2096 	 */
2097 	addr = VR_RX_RING_ADDR(sc, 0);
2098 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2099 	/*
2100 	 * Load the address of the TX ring.
2101 	 */
2102 	addr = VR_TX_RING_ADDR(sc, 0);
2103 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2104 	/* Default : full-duplex, no Tx poll. */
2105 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2106 
2107 	/* Set flow-control parameters for Rhine III. */
2108 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2109 		/*
2110 		 * Configure Rx buffer count available for incoming
2111 		 * packet.
2112 		 * Even though data sheet says almost nothing about
2113 		 * this register, this register should be updated
2114 		 * whenever driver adds new RX buffers to controller.
2115 		 * Otherwise, XON frame is not sent to link partner
2116 		 * even if controller has enough RX buffers and you
2117 		 * would be isolated from network.
2118 		 * The controller is not smart enough to know number
2119 		 * of available RX buffers so driver have to let
2120 		 * controller know how many RX buffers are posted.
2121 		 * In other words, this register works like a residue
2122 		 * counter for RX buffers and should be initialized
2123 		 * to the number of total RX buffers  - 1 before
2124 		 * enabling RX MAC.  Note, this register is 8bits so
2125 		 * it effectively limits the maximum number of RX
2126 		 * buffer to be configured by controller is 255.
2127 		 */
2128 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2129 		/*
2130 		 * Tx pause low threshold : 8 free receive buffers
2131 		 * Tx pause XON high threshold : 24 free receive buffers
2132 		 */
2133 		CSR_WRITE_1(sc, VR_FLOWCR1,
2134 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2135 		/* Set Tx pause timer. */
2136 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2137 	}
2138 
2139 	/* Enable receiver and transmitter. */
2140 	CSR_WRITE_1(sc, VR_CR0,
2141 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2142 
2143 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2144 #ifdef DEVICE_POLLING
2145 	/*
2146 	 * Disable interrupts if we are polling.
2147 	 */
2148 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2149 		CSR_WRITE_2(sc, VR_IMR, 0);
2150 	else
2151 #endif
2152 	/*
2153 	 * Enable interrupts and disable MII intrs.
2154 	 */
2155 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2156 	if (sc->vr_revid > REV_ID_VT6102_A)
2157 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2158 
2159 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2160 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2161 
2162 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2163 	mii_mediachg(mii);
2164 
2165 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2166 }
2167 
2168 /*
2169  * Set media options.
2170  */
2171 static int
2172 vr_ifmedia_upd(if_t ifp)
2173 {
2174 	struct vr_softc		*sc;
2175 	struct mii_data		*mii;
2176 	struct mii_softc	*miisc;
2177 	int			error;
2178 
2179 	sc = if_getsoftc(ifp);
2180 	VR_LOCK(sc);
2181 	mii = device_get_softc(sc->vr_miibus);
2182 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2183 		PHY_RESET(miisc);
2184 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2185 	error = mii_mediachg(mii);
2186 	VR_UNLOCK(sc);
2187 
2188 	return (error);
2189 }
2190 
2191 /*
2192  * Report current media status.
2193  */
2194 static void
2195 vr_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2196 {
2197 	struct vr_softc		*sc;
2198 	struct mii_data		*mii;
2199 
2200 	sc = if_getsoftc(ifp);
2201 	mii = device_get_softc(sc->vr_miibus);
2202 	VR_LOCK(sc);
2203 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2204 		VR_UNLOCK(sc);
2205 		return;
2206 	}
2207 	mii_pollstat(mii);
2208 	ifmr->ifm_active = mii->mii_media_active;
2209 	ifmr->ifm_status = mii->mii_media_status;
2210 	VR_UNLOCK(sc);
2211 }
2212 
2213 static int
2214 vr_ioctl(if_t ifp, u_long command, caddr_t data)
2215 {
2216 	struct vr_softc		*sc;
2217 	struct ifreq		*ifr;
2218 	struct mii_data		*mii;
2219 	int			error, mask;
2220 
2221 	sc = if_getsoftc(ifp);
2222 	ifr = (struct ifreq *)data;
2223 	error = 0;
2224 
2225 	switch (command) {
2226 	case SIOCSIFFLAGS:
2227 		VR_LOCK(sc);
2228 		if (if_getflags(ifp) & IFF_UP) {
2229 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2230 				if ((if_getflags(ifp) ^ sc->vr_if_flags) &
2231 				    (IFF_PROMISC | IFF_ALLMULTI))
2232 					vr_set_filter(sc);
2233 			} else {
2234 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2235 					vr_init_locked(sc);
2236 			}
2237 		} else {
2238 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2239 				vr_stop(sc);
2240 		}
2241 		sc->vr_if_flags = if_getflags(ifp);
2242 		VR_UNLOCK(sc);
2243 		break;
2244 	case SIOCADDMULTI:
2245 	case SIOCDELMULTI:
2246 		VR_LOCK(sc);
2247 		vr_set_filter(sc);
2248 		VR_UNLOCK(sc);
2249 		break;
2250 	case SIOCGIFMEDIA:
2251 	case SIOCSIFMEDIA:
2252 		mii = device_get_softc(sc->vr_miibus);
2253 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2254 		break;
2255 	case SIOCSIFCAP:
2256 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2257 #ifdef DEVICE_POLLING
2258 		if (mask & IFCAP_POLLING) {
2259 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2260 				error = ether_poll_register(vr_poll, ifp);
2261 				if (error != 0)
2262 					break;
2263 				VR_LOCK(sc);
2264 				/* Disable interrupts. */
2265 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2266 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2267 				VR_UNLOCK(sc);
2268 			} else {
2269 				error = ether_poll_deregister(ifp);
2270 				/* Enable interrupts. */
2271 				VR_LOCK(sc);
2272 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2273 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2274 				VR_UNLOCK(sc);
2275 			}
2276 		}
2277 #endif /* DEVICE_POLLING */
2278 		if ((mask & IFCAP_TXCSUM) != 0 &&
2279 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2280 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2281 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2282 				if_sethwassistbits(ifp, VR_CSUM_FEATURES, 0);
2283 			else
2284 				if_sethwassistbits(ifp, 0, VR_CSUM_FEATURES);
2285 		}
2286 		if ((mask & IFCAP_RXCSUM) != 0 &&
2287 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2288 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2289 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2290 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2291 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2292 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2293 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2294 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2295 		break;
2296 	default:
2297 		error = ether_ioctl(ifp, command, data);
2298 		break;
2299 	}
2300 
2301 	return (error);
2302 }
2303 
2304 static void
2305 vr_watchdog(struct vr_softc *sc)
2306 {
2307 	if_t			ifp;
2308 
2309 	VR_LOCK_ASSERT(sc);
2310 
2311 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2312 		return;
2313 
2314 	ifp = sc->vr_ifp;
2315 	/*
2316 	 * Reclaim first as we don't request interrupt for every packets.
2317 	 */
2318 	vr_txeof(sc);
2319 	if (sc->vr_cdata.vr_tx_cnt == 0)
2320 		return;
2321 
2322 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2323 		if (bootverbose)
2324 			if_printf(sc->vr_ifp, "watchdog timeout "
2325 			   "(missed link)\n");
2326 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2327 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2328 		vr_init_locked(sc);
2329 		return;
2330 	}
2331 
2332 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2333 	if_printf(ifp, "watchdog timeout\n");
2334 
2335 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2336 	vr_init_locked(sc);
2337 
2338 	if (!if_sendq_empty(ifp))
2339 		vr_start_locked(ifp);
2340 }
2341 
2342 static void
2343 vr_tx_start(struct vr_softc *sc)
2344 {
2345 	bus_addr_t	addr;
2346 	uint8_t		cmd;
2347 
2348 	cmd = CSR_READ_1(sc, VR_CR0);
2349 	if ((cmd & VR_CR0_TX_ON) == 0) {
2350 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2351 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2352 		cmd |= VR_CR0_TX_ON;
2353 		CSR_WRITE_1(sc, VR_CR0, cmd);
2354 	}
2355 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2356 		sc->vr_watchdog_timer = 5;
2357 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2358 	}
2359 }
2360 
2361 static void
2362 vr_rx_start(struct vr_softc *sc)
2363 {
2364 	bus_addr_t	addr;
2365 	uint8_t		cmd;
2366 
2367 	cmd = CSR_READ_1(sc, VR_CR0);
2368 	if ((cmd & VR_CR0_RX_ON) == 0) {
2369 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2370 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2371 		cmd |= VR_CR0_RX_ON;
2372 		CSR_WRITE_1(sc, VR_CR0, cmd);
2373 	}
2374 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2375 }
2376 
2377 static int
2378 vr_tx_stop(struct vr_softc *sc)
2379 {
2380 	int		i;
2381 	uint8_t		cmd;
2382 
2383 	cmd = CSR_READ_1(sc, VR_CR0);
2384 	if ((cmd & VR_CR0_TX_ON) != 0) {
2385 		cmd &= ~VR_CR0_TX_ON;
2386 		CSR_WRITE_1(sc, VR_CR0, cmd);
2387 		for (i = VR_TIMEOUT; i > 0; i--) {
2388 			DELAY(5);
2389 			cmd = CSR_READ_1(sc, VR_CR0);
2390 			if ((cmd & VR_CR0_TX_ON) == 0)
2391 				break;
2392 		}
2393 		if (i == 0)
2394 			return (ETIMEDOUT);
2395 	}
2396 	return (0);
2397 }
2398 
2399 static int
2400 vr_rx_stop(struct vr_softc *sc)
2401 {
2402 	int		i;
2403 	uint8_t		cmd;
2404 
2405 	cmd = CSR_READ_1(sc, VR_CR0);
2406 	if ((cmd & VR_CR0_RX_ON) != 0) {
2407 		cmd &= ~VR_CR0_RX_ON;
2408 		CSR_WRITE_1(sc, VR_CR0, cmd);
2409 		for (i = VR_TIMEOUT; i > 0; i--) {
2410 			DELAY(5);
2411 			cmd = CSR_READ_1(sc, VR_CR0);
2412 			if ((cmd & VR_CR0_RX_ON) == 0)
2413 				break;
2414 		}
2415 		if (i == 0)
2416 			return (ETIMEDOUT);
2417 	}
2418 	return (0);
2419 }
2420 
2421 /*
2422  * Stop the adapter and free any mbufs allocated to the
2423  * RX and TX lists.
2424  */
2425 static void
2426 vr_stop(struct vr_softc *sc)
2427 {
2428 	struct vr_txdesc	*txd;
2429 	struct vr_rxdesc	*rxd;
2430 	if_t			ifp;
2431 	int			i;
2432 
2433 	VR_LOCK_ASSERT(sc);
2434 
2435 	ifp = sc->vr_ifp;
2436 	sc->vr_watchdog_timer = 0;
2437 
2438 	callout_stop(&sc->vr_stat_callout);
2439 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2440 
2441 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2442 	if (vr_rx_stop(sc) != 0)
2443 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2444 	if (vr_tx_stop(sc) != 0)
2445 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2446 	/* Clear pending interrupts. */
2447 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2448 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2449 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2450 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2451 
2452 	/*
2453 	 * Free RX and TX mbufs still in the queues.
2454 	 */
2455 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2456 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2457 		if (rxd->rx_m != NULL) {
2458 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2459 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2460 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2461 			    rxd->rx_dmamap);
2462 			m_freem(rxd->rx_m);
2463 			rxd->rx_m = NULL;
2464 		}
2465         }
2466 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2467 		txd = &sc->vr_cdata.vr_txdesc[i];
2468 		if (txd->tx_m != NULL) {
2469 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2470 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2471 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2472 			    txd->tx_dmamap);
2473 			m_freem(txd->tx_m);
2474 			txd->tx_m = NULL;
2475 		}
2476         }
2477 }
2478 
2479 /*
2480  * Stop all chip I/O so that the kernel's probe routines don't
2481  * get confused by errant DMAs when rebooting.
2482  */
2483 static int
2484 vr_shutdown(device_t dev)
2485 {
2486 
2487 	return (vr_suspend(dev));
2488 }
2489 
2490 static int
2491 vr_suspend(device_t dev)
2492 {
2493 	struct vr_softc		*sc;
2494 
2495 	sc = device_get_softc(dev);
2496 
2497 	VR_LOCK(sc);
2498 	vr_stop(sc);
2499 	vr_setwol(sc);
2500 	sc->vr_flags |= VR_F_SUSPENDED;
2501 	VR_UNLOCK(sc);
2502 
2503 	return (0);
2504 }
2505 
2506 static int
2507 vr_resume(device_t dev)
2508 {
2509 	struct vr_softc		*sc;
2510 	if_t			ifp;
2511 
2512 	sc = device_get_softc(dev);
2513 
2514 	VR_LOCK(sc);
2515 	ifp = sc->vr_ifp;
2516 	vr_clrwol(sc);
2517 	vr_reset(sc);
2518 	if (if_getflags(ifp) & IFF_UP)
2519 		vr_init_locked(sc);
2520 
2521 	sc->vr_flags &= ~VR_F_SUSPENDED;
2522 	VR_UNLOCK(sc);
2523 
2524 	return (0);
2525 }
2526 
2527 static void
2528 vr_setwol(struct vr_softc *sc)
2529 {
2530 	if_t			ifp;
2531 	int			pmc;
2532 	uint16_t		pmstat;
2533 	uint8_t			v;
2534 
2535 	VR_LOCK_ASSERT(sc);
2536 
2537 	if (sc->vr_revid < REV_ID_VT6102_A ||
2538 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2539 		return;
2540 
2541 	ifp = sc->vr_ifp;
2542 
2543 	/* Clear WOL configuration. */
2544 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2545 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2546 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2547 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2548 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2549 		/* Newer Rhine III supports two additional patterns. */
2550 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2551 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2552 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2553 	}
2554 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2555 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2556 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2557 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2558 	/*
2559 	 * It seems that multicast wakeup frames require programming pattern
2560 	 * registers and valid CRC as well as pattern mask for each pattern.
2561 	 * While it's possible to setup such a pattern it would complicate
2562 	 * WOL configuration so ignore multicast wakeup frames.
2563 	 */
2564 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2565 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2566 		v = CSR_READ_1(sc, VR_STICKHW);
2567 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2568 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2569 	}
2570 
2571 	/* Put hardware into sleep. */
2572 	v = CSR_READ_1(sc, VR_STICKHW);
2573 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2574 	CSR_WRITE_1(sc, VR_STICKHW, v);
2575 
2576 	/* Request PME if WOL is requested. */
2577 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2578 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2579 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2580 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2581 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2582 }
2583 
2584 static void
2585 vr_clrwol(struct vr_softc *sc)
2586 {
2587 	uint8_t			v;
2588 
2589 	VR_LOCK_ASSERT(sc);
2590 
2591 	if (sc->vr_revid < REV_ID_VT6102_A)
2592 		return;
2593 
2594 	/* Take hardware out of sleep. */
2595 	v = CSR_READ_1(sc, VR_STICKHW);
2596 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2597 	CSR_WRITE_1(sc, VR_STICKHW, v);
2598 
2599 	/* Clear WOL configuration as WOL may interfere normal operation. */
2600 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2601 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2602 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2603 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2604 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2605 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2606 		/* Newer Rhine III supports two additional patterns. */
2607 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2608 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2609 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2610 	}
2611 }
2612 
2613 static int
2614 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2615 {
2616 	struct vr_softc		*sc;
2617 	struct vr_statistics	*stat;
2618 	int			error;
2619 	int			result;
2620 
2621 	result = -1;
2622 	error = sysctl_handle_int(oidp, &result, 0, req);
2623 
2624 	if (error != 0 || req->newptr == NULL)
2625 		return (error);
2626 
2627 	if (result == 1) {
2628 		sc = (struct vr_softc *)arg1;
2629 		stat = &sc->vr_stat;
2630 
2631 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2632 		printf("Outbound good frames : %ju\n",
2633 		    (uintmax_t)stat->tx_ok);
2634 		printf("Inbound good frames : %ju\n",
2635 		    (uintmax_t)stat->rx_ok);
2636 		printf("Outbound errors : %u\n", stat->tx_errors);
2637 		printf("Inbound errors : %u\n", stat->rx_errors);
2638 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2639 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2640 		printf("Inbound FIFO overflows : %d\n",
2641 		    stat->rx_fifo_overflows);
2642 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2643 		printf("Inbound frame alignment errors : %u\n",
2644 		    stat->rx_alignment);
2645 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2646 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2647 		printf("Outbound aborted with excessive collisions : %u\n",
2648 		    stat->tx_abort);
2649 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2650 		printf("Outbound late collisions : %u\n",
2651 		    stat->tx_late_collisions);
2652 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2653 		printf("PCI bus errors : %u\n", stat->bus_errors);
2654 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2655 		    stat->num_restart);
2656 	}
2657 
2658 	return (error);
2659 }
2660