xref: /freebsd/sys/dev/vr/if_vr.c (revision a9029fbb59bf682ed0d57511a4a5bf06b17f7e80)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static const struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	const char		*vr_name;
122 } const vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static int vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static void vr_intr(void *);
169 static void vr_start(struct ifnet *);
170 static void vr_start_locked(struct ifnet *);
171 static int vr_encap(struct vr_softc *, struct mbuf **);
172 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
173 static void vr_init(void *);
174 static void vr_init_locked(struct vr_softc *);
175 static void vr_tx_start(struct vr_softc *);
176 static void vr_rx_start(struct vr_softc *);
177 static int vr_tx_stop(struct vr_softc *);
178 static int vr_rx_stop(struct vr_softc *);
179 static void vr_stop(struct vr_softc *);
180 static void vr_watchdog(struct vr_softc *);
181 static int vr_ifmedia_upd(struct ifnet *);
182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
183 
184 static int vr_miibus_readreg(device_t, int, int);
185 static int vr_miibus_writereg(device_t, int, int, int);
186 static void vr_miibus_statchg(device_t);
187 
188 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
189 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
190 static void vr_set_filter(struct vr_softc *);
191 static void vr_reset(const struct vr_softc *);
192 static int vr_tx_ring_init(struct vr_softc *);
193 static int vr_rx_ring_init(struct vr_softc *);
194 static void vr_setwol(struct vr_softc *);
195 static void vr_clrwol(struct vr_softc *);
196 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
197 
198 static const struct vr_tx_threshold_table {
199 	int tx_cfg;
200 	int bcr_cfg;
201 	int value;
202 } const vr_tx_threshold_tables[] = {
203 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
204 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
205 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
206 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
207 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
208 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
209 };
210 
211 static device_method_t vr_methods[] = {
212 	/* Device interface */
213 	DEVMETHOD(device_probe,		vr_probe),
214 	DEVMETHOD(device_attach,	vr_attach),
215 	DEVMETHOD(device_detach, 	vr_detach),
216 	DEVMETHOD(device_shutdown,	vr_shutdown),
217 	DEVMETHOD(device_suspend,	vr_suspend),
218 	DEVMETHOD(device_resume,	vr_resume),
219 
220 	/* MII interface */
221 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
222 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
223 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
224 
225 	DEVMETHOD_END
226 };
227 
228 static driver_t vr_driver = {
229 	"vr",
230 	vr_methods,
231 	sizeof(struct vr_softc)
232 };
233 
234 static devclass_t vr_devclass;
235 
236 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
237 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
238 
239 static int
240 vr_miibus_readreg(device_t dev, int phy, int reg)
241 {
242 	struct vr_softc		*sc;
243 	int			i;
244 
245 	sc = device_get_softc(dev);
246 
247 	/* Set the register address. */
248 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
249 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
250 
251 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
252 		DELAY(1);
253 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
254 			break;
255 	}
256 	if (i == VR_MII_TIMEOUT)
257 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
258 
259 	return (CSR_READ_2(sc, VR_MIIDATA));
260 }
261 
262 static int
263 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
264 {
265 	struct vr_softc		*sc;
266 	int			i;
267 
268 	sc = device_get_softc(dev);
269 
270 	/* Set the register address and data to write. */
271 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
272 	CSR_WRITE_2(sc, VR_MIIDATA, data);
273 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
274 
275 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
276 		DELAY(1);
277 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
278 			break;
279 	}
280 	if (i == VR_MII_TIMEOUT)
281 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
282 		    reg);
283 
284 	return (0);
285 }
286 
287 /*
288  * In order to fiddle with the
289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
290  * first have to put the transmit and/or receive logic in the idle state.
291  */
292 static void
293 vr_miibus_statchg(device_t dev)
294 {
295 	struct vr_softc		*sc;
296 	struct mii_data		*mii;
297 	struct ifnet		*ifp;
298 	int			lfdx, mfdx;
299 	uint8_t			cr0, cr1, fc;
300 
301 	sc = device_get_softc(dev);
302 	mii = device_get_softc(sc->vr_miibus);
303 	ifp = sc->vr_ifp;
304 	if (mii == NULL || ifp == NULL ||
305 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
306 		return;
307 
308 	sc->vr_link = 0;
309 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
310 	    (IFM_ACTIVE | IFM_AVALID)) {
311 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
312 		case IFM_10_T:
313 		case IFM_100_TX:
314 			sc->vr_link = 1;
315 			break;
316 		default:
317 			break;
318 		}
319 	}
320 
321 	if (sc->vr_link != 0) {
322 		cr0 = CSR_READ_1(sc, VR_CR0);
323 		cr1 = CSR_READ_1(sc, VR_CR1);
324 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
325 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
326 		if (mfdx != lfdx) {
327 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
328 				if (vr_tx_stop(sc) != 0 ||
329 				    vr_rx_stop(sc) != 0) {
330 					device_printf(sc->vr_dev,
331 					    "%s: Tx/Rx shutdown error -- "
332 					    "resetting\n", __func__);
333 					sc->vr_flags |= VR_F_RESTART;
334 					VR_UNLOCK(sc);
335 					return;
336 				}
337 			}
338 			if (lfdx)
339 				cr1 |= VR_CR1_FULLDUPLEX;
340 			else
341 				cr1 &= ~VR_CR1_FULLDUPLEX;
342 			CSR_WRITE_1(sc, VR_CR1, cr1);
343 		}
344 		fc = 0;
345 #ifdef notyet
346 		/* Configure flow-control. */
347 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
348 			fc = CSR_READ_1(sc, VR_FLOWCR1);
349 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
350 			if ((IFM_OPTIONS(mii->mii_media_active) &
351 			    IFM_ETH_RXPAUSE) != 0)
352 				fc |= VR_FLOWCR1_RXPAUSE;
353 			if ((IFM_OPTIONS(mii->mii_media_active) &
354 			    IFM_ETH_TXPAUSE) != 0)
355 				fc |= VR_FLOWCR1_TXPAUSE;
356 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
357 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
358 			/* No Tx puase capability available for Rhine II. */
359 			fc = CSR_READ_1(sc, VR_MISC_CR0);
360 			fc &= ~VR_MISCCR0_RXPAUSE;
361 			if ((IFM_OPTIONS(mii->mii_media_active) &
362 			    IFM_ETH_RXPAUSE) != 0)
363 				fc |= VR_MISCCR0_RXPAUSE;
364 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
365 		}
366 #endif
367 		vr_rx_start(sc);
368 		vr_tx_start(sc);
369 	} else {
370 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
371 			device_printf(sc->vr_dev,
372 			    "%s: Tx/Rx shutdown error -- resetting\n",
373 			    __func__);
374 			sc->vr_flags |= VR_F_RESTART;
375 		}
376 	}
377 }
378 
379 
380 static void
381 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
382 {
383 
384 	if (type == VR_MCAST_CAM)
385 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
386 	else
387 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
388 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
389 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
390 }
391 
392 static int
393 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
394 {
395 	int	i;
396 
397 	if (type == VR_MCAST_CAM) {
398 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
399 			return (EINVAL);
400 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
401 	} else
402 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
403 
404 	/* Set CAM entry address. */
405 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
406 	/* Set CAM entry data. */
407 	if (type == VR_MCAST_CAM) {
408 		for (i = 0; i < ETHER_ADDR_LEN; i++)
409 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
410 	} else {
411 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
412 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
413 	}
414 	DELAY(10);
415 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
416 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
417 	for (i = 0; i < VR_TIMEOUT; i++) {
418 		DELAY(1);
419 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
420 			break;
421 	}
422 
423 	if (i == VR_TIMEOUT)
424 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
425 		    __func__);
426 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
427 
428 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
429 }
430 
431 /*
432  * Program the 64-bit multicast hash filter.
433  */
434 static void
435 vr_set_filter(struct vr_softc *sc)
436 {
437 	struct ifnet		*ifp;
438 	int			h;
439 	uint32_t		hashes[2] = { 0, 0 };
440 	struct ifmultiaddr	*ifma;
441 	uint8_t			rxfilt;
442 	int			error, mcnt;
443 	uint32_t		cam_mask;
444 
445 	VR_LOCK_ASSERT(sc);
446 
447 	ifp = sc->vr_ifp;
448 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
449 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
450 	    VR_RXCFG_RX_MULTI);
451 	if (ifp->if_flags & IFF_BROADCAST)
452 		rxfilt |= VR_RXCFG_RX_BROAD;
453 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
454 		rxfilt |= VR_RXCFG_RX_MULTI;
455 		if (ifp->if_flags & IFF_PROMISC)
456 			rxfilt |= VR_RXCFG_RX_PROMISC;
457 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
458 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
459 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
460 		return;
461 	}
462 
463 	/* Now program new ones. */
464 	error = 0;
465 	mcnt = 0;
466 	if_maddr_rlock(ifp);
467 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
468 		/*
469 		 * For hardwares that have CAM capability, use
470 		 * 32 entries multicast perfect filter.
471 		 */
472 		cam_mask = 0;
473 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
474 			if (ifma->ifma_addr->sa_family != AF_LINK)
475 				continue;
476 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
477 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
478 			if (error != 0) {
479 				cam_mask = 0;
480 				break;
481 			}
482 			cam_mask |= 1 << mcnt;
483 			mcnt++;
484 		}
485 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
486 	}
487 
488 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
489 		/*
490 		 * If there are too many multicast addresses or
491 		 * setting multicast CAM filter failed, use hash
492 		 * table based filtering.
493 		 */
494 		mcnt = 0;
495 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
496 			if (ifma->ifma_addr->sa_family != AF_LINK)
497 				continue;
498 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
499 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
500 			if (h < 32)
501 				hashes[0] |= (1 << h);
502 			else
503 				hashes[1] |= (1 << (h - 32));
504 			mcnt++;
505 		}
506 	}
507 	if_maddr_runlock(ifp);
508 
509 	if (mcnt > 0)
510 		rxfilt |= VR_RXCFG_RX_MULTI;
511 
512 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
513 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
514 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
515 }
516 
517 static void
518 vr_reset(const struct vr_softc *sc)
519 {
520 	int		i;
521 
522 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
523 
524 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
525 	if (sc->vr_revid < REV_ID_VT6102_A) {
526 		/* VT86C100A needs more delay after reset. */
527 		DELAY(100);
528 	}
529 	for (i = 0; i < VR_TIMEOUT; i++) {
530 		DELAY(10);
531 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
532 			break;
533 	}
534 	if (i == VR_TIMEOUT) {
535 		if (sc->vr_revid < REV_ID_VT6102_A)
536 			device_printf(sc->vr_dev, "reset never completed!\n");
537 		else {
538 			/* Use newer force reset command. */
539 			device_printf(sc->vr_dev,
540 			    "Using force reset command.\n");
541 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
542 			/*
543 			 * Wait a little while for the chip to get its brains
544 			 * in order.
545 			 */
546 			DELAY(2000);
547 		}
548 	}
549 
550 }
551 
552 /*
553  * Probe for a VIA Rhine chip. Check the PCI vendor and device
554  * IDs against our list and return a match or NULL
555  */
556 static const struct vr_type *
557 vr_match(device_t dev)
558 {
559 	const struct vr_type	*t = vr_devs;
560 
561 	for (t = vr_devs; t->vr_name != NULL; t++)
562 		if ((pci_get_vendor(dev) == t->vr_vid) &&
563 		    (pci_get_device(dev) == t->vr_did))
564 			return (t);
565 	return (NULL);
566 }
567 
568 /*
569  * Probe for a VIA Rhine chip. Check the PCI vendor and device
570  * IDs against our list and return a device name if we find a match.
571  */
572 static int
573 vr_probe(device_t dev)
574 {
575 	const struct vr_type	*t;
576 
577 	t = vr_match(dev);
578 	if (t != NULL) {
579 		device_set_desc(dev, t->vr_name);
580 		return (BUS_PROBE_DEFAULT);
581 	}
582 	return (ENXIO);
583 }
584 
585 /*
586  * Attach the interface. Allocate softc structures, do ifmedia
587  * setup and ethernet/BPF attach.
588  */
589 static int
590 vr_attach(device_t dev)
591 {
592 	struct vr_softc		*sc;
593 	struct ifnet		*ifp;
594 	const struct vr_type	*t;
595 	uint8_t			eaddr[ETHER_ADDR_LEN];
596 	int			error, rid;
597 	int			i, phy, pmc;
598 
599 	sc = device_get_softc(dev);
600 	sc->vr_dev = dev;
601 	t = vr_match(dev);
602 	KASSERT(t != NULL, ("Lost if_vr device match"));
603 	sc->vr_quirks = t->vr_quirks;
604 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
605 
606 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
607 	    MTX_DEF);
608 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
609 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
610 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
611 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
612 	    vr_sysctl_stats, "I", "Statistics");
613 
614 	error = 0;
615 
616 	/*
617 	 * Map control/status registers.
618 	 */
619 	pci_enable_busmaster(dev);
620 	sc->vr_revid = pci_get_revid(dev);
621 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
622 
623 	sc->vr_res_id = PCIR_BAR(0);
624 	sc->vr_res_type = SYS_RES_IOPORT;
625 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
626 	    &sc->vr_res_id, RF_ACTIVE);
627 	if (sc->vr_res == NULL) {
628 		device_printf(dev, "couldn't map ports\n");
629 		error = ENXIO;
630 		goto fail;
631 	}
632 
633 	/* Allocate interrupt. */
634 	rid = 0;
635 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
636 	    RF_SHAREABLE | RF_ACTIVE);
637 
638 	if (sc->vr_irq == NULL) {
639 		device_printf(dev, "couldn't map interrupt\n");
640 		error = ENXIO;
641 		goto fail;
642 	}
643 
644 	/* Allocate ifnet structure. */
645 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
646 	if (ifp == NULL) {
647 		device_printf(dev, "couldn't allocate ifnet structure\n");
648 		error = ENOSPC;
649 		goto fail;
650 	}
651 	ifp->if_softc = sc;
652 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_ioctl = vr_ioctl;
655 	ifp->if_start = vr_start;
656 	ifp->if_init = vr_init;
657 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
658 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
659 	IFQ_SET_READY(&ifp->if_snd);
660 
661 	/* Configure Tx FIFO threshold. */
662 	sc->vr_txthresh = VR_TXTHRESH_MIN;
663 	if (sc->vr_revid < REV_ID_VT6105_A0) {
664 		/*
665 		 * Use store and forward mode for Rhine I/II.
666 		 * Otherwise they produce a lot of Tx underruns and
667 		 * it would take a while to get working FIFO threshold
668 		 * value.
669 		 */
670 		sc->vr_txthresh = VR_TXTHRESH_MAX;
671 	}
672 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
673 		ifp->if_hwassist = VR_CSUM_FEATURES;
674 		ifp->if_capabilities |= IFCAP_HWCSUM;
675 		/*
676 		 * To update checksum field the hardware may need to
677 		 * store entire frames into FIFO before transmitting.
678 		 */
679 		sc->vr_txthresh = VR_TXTHRESH_MAX;
680 	}
681 
682 	if (sc->vr_revid >= REV_ID_VT6102_A &&
683 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
684 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
685 
686 	/* Rhine supports oversized VLAN frame. */
687 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
688 	ifp->if_capenable = ifp->if_capabilities;
689 #ifdef DEVICE_POLLING
690 	ifp->if_capabilities |= IFCAP_POLLING;
691 #endif
692 
693 	/*
694 	 * Windows may put the chip in suspend mode when it
695 	 * shuts down. Be sure to kick it in the head to wake it
696 	 * up again.
697 	 */
698 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
699 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
700 
701 	/*
702 	 * Get station address. The way the Rhine chips work,
703 	 * you're not allowed to directly access the EEPROM once
704 	 * they've been programmed a special way. Consequently,
705 	 * we need to read the node address from the PAR0 and PAR1
706 	 * registers.
707 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
708 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
709 	 * by driver is reset to default state.
710 	 */
711 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
712 	for (i = VR_TIMEOUT; i > 0; i--) {
713 		DELAY(1);
714 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
715 			break;
716 	}
717 	if (i == 0)
718 		device_printf(dev, "Reloading EEPROM timeout!\n");
719 	for (i = 0; i < ETHER_ADDR_LEN; i++)
720 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
721 
722 	/* Reset the adapter. */
723 	vr_reset(sc);
724 	/* Ack intr & disable further interrupts. */
725 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
726 	CSR_WRITE_2(sc, VR_IMR, 0);
727 	if (sc->vr_revid >= REV_ID_VT6102_A)
728 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
729 
730 	if (sc->vr_revid < REV_ID_VT6102_A) {
731 		pci_write_config(dev, VR_PCI_MODE2,
732 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
733 		    VR_MODE2_MODE10T, 1);
734 	} else {
735 		/* Report error instead of retrying forever. */
736 		pci_write_config(dev, VR_PCI_MODE2,
737 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
738 		    VR_MODE2_PCEROPT, 1);
739         	/* Detect MII coding error. */
740 		pci_write_config(dev, VR_PCI_MODE3,
741 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
742 		    VR_MODE3_MIION, 1);
743 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
744 		    sc->vr_revid < REV_ID_VT6105M_A0)
745 			pci_write_config(dev, VR_PCI_MODE2,
746 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
747 			    VR_MODE2_MODE10T, 1);
748 		/* Enable Memory-Read-Multiple. */
749 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
750 		    sc->vr_revid < REV_ID_VT6105M_A0)
751 			pci_write_config(dev, VR_PCI_MODE2,
752 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
753 			    VR_MODE2_MRDPL, 1);
754 	}
755 	/* Disable MII AUTOPOLL. */
756 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
757 
758 	if (vr_dma_alloc(sc) != 0) {
759 		error = ENXIO;
760 		goto fail;
761 	}
762 
763 	/* Do MII setup. */
764 	if (sc->vr_revid >= REV_ID_VT6105_A0)
765 		phy = 1;
766 	else
767 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
768 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
769 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
770 	if (error != 0) {
771 		device_printf(dev, "attaching PHYs failed\n");
772 		goto fail;
773 	}
774 
775 	/* Call MI attach routine. */
776 	ether_ifattach(ifp, eaddr);
777 	/*
778 	 * Tell the upper layer(s) we support long frames.
779 	 * Must appear after the call to ether_ifattach() because
780 	 * ether_ifattach() sets ifi_hdrlen to the default value.
781 	 */
782 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
783 
784 	/* Hook interrupt last to avoid having to lock softc. */
785 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
786 	    NULL, vr_intr, sc, &sc->vr_intrhand);
787 
788 	if (error) {
789 		device_printf(dev, "couldn't set up irq\n");
790 		ether_ifdetach(ifp);
791 		goto fail;
792 	}
793 
794 fail:
795 	if (error)
796 		vr_detach(dev);
797 
798 	return (error);
799 }
800 
801 /*
802  * Shutdown hardware and free up resources. This can be called any
803  * time after the mutex has been initialized. It is called in both
804  * the error case in attach and the normal detach case so it needs
805  * to be careful about only freeing resources that have actually been
806  * allocated.
807  */
808 static int
809 vr_detach(device_t dev)
810 {
811 	struct vr_softc		*sc = device_get_softc(dev);
812 	struct ifnet		*ifp = sc->vr_ifp;
813 
814 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
815 
816 #ifdef DEVICE_POLLING
817 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
818 		ether_poll_deregister(ifp);
819 #endif
820 
821 	/* These should only be active if attach succeeded. */
822 	if (device_is_attached(dev)) {
823 		VR_LOCK(sc);
824 		sc->vr_detach = 1;
825 		vr_stop(sc);
826 		VR_UNLOCK(sc);
827 		callout_drain(&sc->vr_stat_callout);
828 		ether_ifdetach(ifp);
829 	}
830 	if (sc->vr_miibus)
831 		device_delete_child(dev, sc->vr_miibus);
832 	bus_generic_detach(dev);
833 
834 	if (sc->vr_intrhand)
835 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
836 	if (sc->vr_irq)
837 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
838 	if (sc->vr_res)
839 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
840 		    sc->vr_res);
841 
842 	if (ifp)
843 		if_free(ifp);
844 
845 	vr_dma_free(sc);
846 
847 	mtx_destroy(&sc->vr_mtx);
848 
849 	return (0);
850 }
851 
852 struct vr_dmamap_arg {
853 	bus_addr_t	vr_busaddr;
854 };
855 
856 static void
857 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
858 {
859 	struct vr_dmamap_arg	*ctx;
860 
861 	if (error != 0)
862 		return;
863 	ctx = arg;
864 	ctx->vr_busaddr = segs[0].ds_addr;
865 }
866 
867 static int
868 vr_dma_alloc(struct vr_softc *sc)
869 {
870 	struct vr_dmamap_arg	ctx;
871 	struct vr_txdesc	*txd;
872 	struct vr_rxdesc	*rxd;
873 	bus_size_t		tx_alignment;
874 	int			error, i;
875 
876 	/* Create parent DMA tag. */
877 	error = bus_dma_tag_create(
878 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
879 	    1, 0,			/* alignment, boundary */
880 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
881 	    BUS_SPACE_MAXADDR,		/* highaddr */
882 	    NULL, NULL,			/* filter, filterarg */
883 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
884 	    0,				/* nsegments */
885 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
886 	    0,				/* flags */
887 	    NULL, NULL,			/* lockfunc, lockarg */
888 	    &sc->vr_cdata.vr_parent_tag);
889 	if (error != 0) {
890 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
891 		goto fail;
892 	}
893 	/* Create tag for Tx ring. */
894 	error = bus_dma_tag_create(
895 	    sc->vr_cdata.vr_parent_tag,	/* parent */
896 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
897 	    BUS_SPACE_MAXADDR,		/* lowaddr */
898 	    BUS_SPACE_MAXADDR,		/* highaddr */
899 	    NULL, NULL,			/* filter, filterarg */
900 	    VR_TX_RING_SIZE,		/* maxsize */
901 	    1,				/* nsegments */
902 	    VR_TX_RING_SIZE,		/* maxsegsize */
903 	    0,				/* flags */
904 	    NULL, NULL,			/* lockfunc, lockarg */
905 	    &sc->vr_cdata.vr_tx_ring_tag);
906 	if (error != 0) {
907 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
908 		goto fail;
909 	}
910 
911 	/* Create tag for Rx ring. */
912 	error = bus_dma_tag_create(
913 	    sc->vr_cdata.vr_parent_tag,	/* parent */
914 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
915 	    BUS_SPACE_MAXADDR,		/* lowaddr */
916 	    BUS_SPACE_MAXADDR,		/* highaddr */
917 	    NULL, NULL,			/* filter, filterarg */
918 	    VR_RX_RING_SIZE,		/* maxsize */
919 	    1,				/* nsegments */
920 	    VR_RX_RING_SIZE,		/* maxsegsize */
921 	    0,				/* flags */
922 	    NULL, NULL,			/* lockfunc, lockarg */
923 	    &sc->vr_cdata.vr_rx_ring_tag);
924 	if (error != 0) {
925 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
926 		goto fail;
927 	}
928 
929 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
930 		tx_alignment = sizeof(uint32_t);
931 	else
932 		tx_alignment = 1;
933 	/* Create tag for Tx buffers. */
934 	error = bus_dma_tag_create(
935 	    sc->vr_cdata.vr_parent_tag,	/* parent */
936 	    tx_alignment, 0,		/* alignment, boundary */
937 	    BUS_SPACE_MAXADDR,		/* lowaddr */
938 	    BUS_SPACE_MAXADDR,		/* highaddr */
939 	    NULL, NULL,			/* filter, filterarg */
940 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
941 	    VR_MAXFRAGS,		/* nsegments */
942 	    MCLBYTES,			/* maxsegsize */
943 	    0,				/* flags */
944 	    NULL, NULL,			/* lockfunc, lockarg */
945 	    &sc->vr_cdata.vr_tx_tag);
946 	if (error != 0) {
947 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
948 		goto fail;
949 	}
950 
951 	/* Create tag for Rx buffers. */
952 	error = bus_dma_tag_create(
953 	    sc->vr_cdata.vr_parent_tag,	/* parent */
954 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
955 	    BUS_SPACE_MAXADDR,		/* lowaddr */
956 	    BUS_SPACE_MAXADDR,		/* highaddr */
957 	    NULL, NULL,			/* filter, filterarg */
958 	    MCLBYTES,			/* maxsize */
959 	    1,				/* nsegments */
960 	    MCLBYTES,			/* maxsegsize */
961 	    0,				/* flags */
962 	    NULL, NULL,			/* lockfunc, lockarg */
963 	    &sc->vr_cdata.vr_rx_tag);
964 	if (error != 0) {
965 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
966 		goto fail;
967 	}
968 
969 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
970 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
971 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
972 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
973 	if (error != 0) {
974 		device_printf(sc->vr_dev,
975 		    "failed to allocate DMA'able memory for Tx ring\n");
976 		goto fail;
977 	}
978 
979 	ctx.vr_busaddr = 0;
980 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
981 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
982 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
983 	if (error != 0 || ctx.vr_busaddr == 0) {
984 		device_printf(sc->vr_dev,
985 		    "failed to load DMA'able memory for Tx ring\n");
986 		goto fail;
987 	}
988 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
989 
990 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
991 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
992 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
993 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
994 	if (error != 0) {
995 		device_printf(sc->vr_dev,
996 		    "failed to allocate DMA'able memory for Rx ring\n");
997 		goto fail;
998 	}
999 
1000 	ctx.vr_busaddr = 0;
1001 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1002 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1003 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1004 	if (error != 0 || ctx.vr_busaddr == 0) {
1005 		device_printf(sc->vr_dev,
1006 		    "failed to load DMA'able memory for Rx ring\n");
1007 		goto fail;
1008 	}
1009 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1010 
1011 	/* Create DMA maps for Tx buffers. */
1012 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1013 		txd = &sc->vr_cdata.vr_txdesc[i];
1014 		txd->tx_m = NULL;
1015 		txd->tx_dmamap = NULL;
1016 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1017 		    &txd->tx_dmamap);
1018 		if (error != 0) {
1019 			device_printf(sc->vr_dev,
1020 			    "failed to create Tx dmamap\n");
1021 			goto fail;
1022 		}
1023 	}
1024 	/* Create DMA maps for Rx buffers. */
1025 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1026 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1027 		device_printf(sc->vr_dev,
1028 		    "failed to create spare Rx dmamap\n");
1029 		goto fail;
1030 	}
1031 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1032 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1033 		rxd->rx_m = NULL;
1034 		rxd->rx_dmamap = NULL;
1035 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1036 		    &rxd->rx_dmamap);
1037 		if (error != 0) {
1038 			device_printf(sc->vr_dev,
1039 			    "failed to create Rx dmamap\n");
1040 			goto fail;
1041 		}
1042 	}
1043 
1044 fail:
1045 	return (error);
1046 }
1047 
1048 static void
1049 vr_dma_free(struct vr_softc *sc)
1050 {
1051 	struct vr_txdesc	*txd;
1052 	struct vr_rxdesc	*rxd;
1053 	int			i;
1054 
1055 	/* Tx ring. */
1056 	if (sc->vr_cdata.vr_tx_ring_tag) {
1057 		if (sc->vr_cdata.vr_tx_ring_map)
1058 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1059 			    sc->vr_cdata.vr_tx_ring_map);
1060 		if (sc->vr_cdata.vr_tx_ring_map &&
1061 		    sc->vr_rdata.vr_tx_ring)
1062 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1063 			    sc->vr_rdata.vr_tx_ring,
1064 			    sc->vr_cdata.vr_tx_ring_map);
1065 		sc->vr_rdata.vr_tx_ring = NULL;
1066 		sc->vr_cdata.vr_tx_ring_map = NULL;
1067 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1068 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1069 	}
1070 	/* Rx ring. */
1071 	if (sc->vr_cdata.vr_rx_ring_tag) {
1072 		if (sc->vr_cdata.vr_rx_ring_map)
1073 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1074 			    sc->vr_cdata.vr_rx_ring_map);
1075 		if (sc->vr_cdata.vr_rx_ring_map &&
1076 		    sc->vr_rdata.vr_rx_ring)
1077 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1078 			    sc->vr_rdata.vr_rx_ring,
1079 			    sc->vr_cdata.vr_rx_ring_map);
1080 		sc->vr_rdata.vr_rx_ring = NULL;
1081 		sc->vr_cdata.vr_rx_ring_map = NULL;
1082 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1083 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1084 	}
1085 	/* Tx buffers. */
1086 	if (sc->vr_cdata.vr_tx_tag) {
1087 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1088 			txd = &sc->vr_cdata.vr_txdesc[i];
1089 			if (txd->tx_dmamap) {
1090 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1091 				    txd->tx_dmamap);
1092 				txd->tx_dmamap = NULL;
1093 			}
1094 		}
1095 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1096 		sc->vr_cdata.vr_tx_tag = NULL;
1097 	}
1098 	/* Rx buffers. */
1099 	if (sc->vr_cdata.vr_rx_tag) {
1100 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1101 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1102 			if (rxd->rx_dmamap) {
1103 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1104 				    rxd->rx_dmamap);
1105 				rxd->rx_dmamap = NULL;
1106 			}
1107 		}
1108 		if (sc->vr_cdata.vr_rx_sparemap) {
1109 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1110 			    sc->vr_cdata.vr_rx_sparemap);
1111 			sc->vr_cdata.vr_rx_sparemap = 0;
1112 		}
1113 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1114 		sc->vr_cdata.vr_rx_tag = NULL;
1115 	}
1116 
1117 	if (sc->vr_cdata.vr_parent_tag) {
1118 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1119 		sc->vr_cdata.vr_parent_tag = NULL;
1120 	}
1121 }
1122 
1123 /*
1124  * Initialize the transmit descriptors.
1125  */
1126 static int
1127 vr_tx_ring_init(struct vr_softc *sc)
1128 {
1129 	struct vr_ring_data	*rd;
1130 	struct vr_txdesc	*txd;
1131 	bus_addr_t		addr;
1132 	int			i;
1133 
1134 	sc->vr_cdata.vr_tx_prod = 0;
1135 	sc->vr_cdata.vr_tx_cons = 0;
1136 	sc->vr_cdata.vr_tx_cnt = 0;
1137 	sc->vr_cdata.vr_tx_pkts = 0;
1138 
1139 	rd = &sc->vr_rdata;
1140 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1141 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1142 		if (i == VR_TX_RING_CNT - 1)
1143 			addr = VR_TX_RING_ADDR(sc, 0);
1144 		else
1145 			addr = VR_TX_RING_ADDR(sc, i + 1);
1146 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1147 		txd = &sc->vr_cdata.vr_txdesc[i];
1148 		txd->tx_m = NULL;
1149 	}
1150 
1151 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1152 	    sc->vr_cdata.vr_tx_ring_map,
1153 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1154 
1155 	return (0);
1156 }
1157 
1158 /*
1159  * Initialize the RX descriptors and allocate mbufs for them. Note that
1160  * we arrange the descriptors in a closed ring, so that the last descriptor
1161  * points back to the first.
1162  */
1163 static int
1164 vr_rx_ring_init(struct vr_softc *sc)
1165 {
1166 	struct vr_ring_data	*rd;
1167 	struct vr_rxdesc	*rxd;
1168 	bus_addr_t		addr;
1169 	int			i;
1170 
1171 	sc->vr_cdata.vr_rx_cons = 0;
1172 
1173 	rd = &sc->vr_rdata;
1174 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1175 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1176 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1177 		rxd->rx_m = NULL;
1178 		rxd->desc = &rd->vr_rx_ring[i];
1179 		if (i == VR_RX_RING_CNT - 1)
1180 			addr = VR_RX_RING_ADDR(sc, 0);
1181 		else
1182 			addr = VR_RX_RING_ADDR(sc, i + 1);
1183 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1184 		if (vr_newbuf(sc, i) != 0)
1185 			return (ENOBUFS);
1186 	}
1187 
1188 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1189 	    sc->vr_cdata.vr_rx_ring_map,
1190 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1191 
1192 	return (0);
1193 }
1194 
1195 static __inline void
1196 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1197 {
1198 	struct vr_desc	*desc;
1199 
1200 	desc = rxd->desc;
1201 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1202 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1203 }
1204 
1205 /*
1206  * Initialize an RX descriptor and attach an MBUF cluster.
1207  * Note: the length fields are only 11 bits wide, which means the
1208  * largest size we can specify is 2047. This is important because
1209  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1210  * overflow the field and make a mess.
1211  */
1212 static int
1213 vr_newbuf(struct vr_softc *sc, int idx)
1214 {
1215 	struct vr_desc		*desc;
1216 	struct vr_rxdesc	*rxd;
1217 	struct mbuf		*m;
1218 	bus_dma_segment_t	segs[1];
1219 	bus_dmamap_t		map;
1220 	int			nsegs;
1221 
1222 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1223 	if (m == NULL)
1224 		return (ENOBUFS);
1225 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1226 	m_adj(m, sizeof(uint64_t));
1227 
1228 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1229 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1230 		m_freem(m);
1231 		return (ENOBUFS);
1232 	}
1233 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1234 
1235 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1236 	if (rxd->rx_m != NULL) {
1237 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1238 		    BUS_DMASYNC_POSTREAD);
1239 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1240 	}
1241 	map = rxd->rx_dmamap;
1242 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1243 	sc->vr_cdata.vr_rx_sparemap = map;
1244 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1245 	    BUS_DMASYNC_PREREAD);
1246 	rxd->rx_m = m;
1247 	desc = rxd->desc;
1248 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1249 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1250 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1251 
1252 	return (0);
1253 }
1254 
1255 #ifndef __NO_STRICT_ALIGNMENT
1256 static __inline void
1257 vr_fixup_rx(struct mbuf *m)
1258 {
1259         uint16_t		*src, *dst;
1260         int			i;
1261 
1262 	src = mtod(m, uint16_t *);
1263 	dst = src - 1;
1264 
1265 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1266 		*dst++ = *src++;
1267 
1268 	m->m_data -= ETHER_ALIGN;
1269 }
1270 #endif
1271 
1272 /*
1273  * A frame has been uploaded: pass the resulting mbuf chain up to
1274  * the higher level protocols.
1275  */
1276 static int
1277 vr_rxeof(struct vr_softc *sc)
1278 {
1279 	struct vr_rxdesc	*rxd;
1280 	struct mbuf		*m;
1281 	struct ifnet		*ifp;
1282 	struct vr_desc		*cur_rx;
1283 	int			cons, prog, total_len, rx_npkts;
1284 	uint32_t		rxstat, rxctl;
1285 
1286 	VR_LOCK_ASSERT(sc);
1287 	ifp = sc->vr_ifp;
1288 	cons = sc->vr_cdata.vr_rx_cons;
1289 	rx_npkts = 0;
1290 
1291 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1292 	    sc->vr_cdata.vr_rx_ring_map,
1293 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1294 
1295 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1296 #ifdef DEVICE_POLLING
1297 		if (ifp->if_capenable & IFCAP_POLLING) {
1298 			if (sc->rxcycles <= 0)
1299 				break;
1300 			sc->rxcycles--;
1301 		}
1302 #endif
1303 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1304 		rxstat = le32toh(cur_rx->vr_status);
1305 		rxctl = le32toh(cur_rx->vr_ctl);
1306 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1307 			break;
1308 
1309 		prog++;
1310 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1311 		m = rxd->rx_m;
1312 
1313 		/*
1314 		 * If an error occurs, update stats, clear the
1315 		 * status word and leave the mbuf cluster in place:
1316 		 * it should simply get re-used next time this descriptor
1317 		 * comes up in the ring.
1318 		 * We don't support SG in Rx path yet, so discard
1319 		 * partial frame.
1320 		 */
1321 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1322 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1323 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1324 			ifp->if_ierrors++;
1325 			sc->vr_stat.rx_errors++;
1326 			if (rxstat & VR_RXSTAT_CRCERR)
1327 				sc->vr_stat.rx_crc_errors++;
1328 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1329 				sc->vr_stat.rx_alignment++;
1330 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1331 				sc->vr_stat.rx_fifo_overflows++;
1332 			if (rxstat & VR_RXSTAT_GIANT)
1333 				sc->vr_stat.rx_giants++;
1334 			if (rxstat & VR_RXSTAT_RUNT)
1335 				sc->vr_stat.rx_runts++;
1336 			if (rxstat & VR_RXSTAT_BUFFERR)
1337 				sc->vr_stat.rx_no_buffers++;
1338 #ifdef	VR_SHOW_ERRORS
1339 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1340 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1341 #endif
1342 			vr_discard_rxbuf(rxd);
1343 			continue;
1344 		}
1345 
1346 		if (vr_newbuf(sc, cons) != 0) {
1347 			ifp->if_iqdrops++;
1348 			sc->vr_stat.rx_errors++;
1349 			sc->vr_stat.rx_no_mbufs++;
1350 			vr_discard_rxbuf(rxd);
1351 			continue;
1352 		}
1353 
1354 		/*
1355 		 * XXX The VIA Rhine chip includes the CRC with every
1356 		 * received frame, and there's no way to turn this
1357 		 * behavior off (at least, I can't find anything in
1358 		 * the manual that explains how to do it) so we have
1359 		 * to trim off the CRC manually.
1360 		 */
1361 		total_len = VR_RXBYTES(rxstat);
1362 		total_len -= ETHER_CRC_LEN;
1363 		m->m_pkthdr.len = m->m_len = total_len;
1364 #ifndef	__NO_STRICT_ALIGNMENT
1365 		/*
1366 		 * RX buffers must be 32-bit aligned.
1367 		 * Ignore the alignment problems on the non-strict alignment
1368 		 * platform. The performance hit incurred due to unaligned
1369 		 * accesses is much smaller than the hit produced by forcing
1370 		 * buffer copies all the time.
1371 		 */
1372 		vr_fixup_rx(m);
1373 #endif
1374 		m->m_pkthdr.rcvif = ifp;
1375 		ifp->if_ipackets++;
1376 		sc->vr_stat.rx_ok++;
1377 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1378 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1379 		    (rxctl & VR_RXCTL_IP) != 0) {
1380 			/* Checksum is valid for non-fragmented IP packets. */
1381 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1382 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1383 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1384 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1385 					m->m_pkthdr.csum_flags |=
1386 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1387 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1388 						m->m_pkthdr.csum_data = 0xffff;
1389 				}
1390 			}
1391 		}
1392 		VR_UNLOCK(sc);
1393 		(*ifp->if_input)(ifp, m);
1394 		VR_LOCK(sc);
1395 		rx_npkts++;
1396 	}
1397 
1398 	if (prog > 0) {
1399 		sc->vr_cdata.vr_rx_cons = cons;
1400 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1401 		    sc->vr_cdata.vr_rx_ring_map,
1402 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1403 	}
1404 	return (rx_npkts);
1405 }
1406 
1407 /*
1408  * A frame was downloaded to the chip. It's safe for us to clean up
1409  * the list buffers.
1410  */
1411 static void
1412 vr_txeof(struct vr_softc *sc)
1413 {
1414 	struct vr_txdesc	*txd;
1415 	struct vr_desc		*cur_tx;
1416 	struct ifnet		*ifp;
1417 	uint32_t		txctl, txstat;
1418 	int			cons, prod;
1419 
1420 	VR_LOCK_ASSERT(sc);
1421 
1422 	cons = sc->vr_cdata.vr_tx_cons;
1423 	prod = sc->vr_cdata.vr_tx_prod;
1424 	if (cons == prod)
1425 		return;
1426 
1427 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1428 	    sc->vr_cdata.vr_tx_ring_map,
1429 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1430 
1431 	ifp = sc->vr_ifp;
1432 	/*
1433 	 * Go through our tx list and free mbufs for those
1434 	 * frames that have been transmitted.
1435 	 */
1436 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1437 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1438 		txctl = le32toh(cur_tx->vr_ctl);
1439 		txstat = le32toh(cur_tx->vr_status);
1440 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1441 			break;
1442 
1443 		sc->vr_cdata.vr_tx_cnt--;
1444 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1445 		/* Only the first descriptor in the chain is valid. */
1446 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1447 			continue;
1448 
1449 		txd = &sc->vr_cdata.vr_txdesc[cons];
1450 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1451 		    __func__));
1452 
1453 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1454 			ifp->if_oerrors++;
1455 			sc->vr_stat.tx_errors++;
1456 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1457 				/* Give up and restart Tx. */
1458 				sc->vr_stat.tx_abort++;
1459 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1460 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1461 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1462 				    txd->tx_dmamap);
1463 				m_freem(txd->tx_m);
1464 				txd->tx_m = NULL;
1465 				VR_INC(cons, VR_TX_RING_CNT);
1466 				sc->vr_cdata.vr_tx_cons = cons;
1467 				if (vr_tx_stop(sc) != 0) {
1468 					device_printf(sc->vr_dev,
1469 					    "%s: Tx shutdown error -- "
1470 					    "resetting\n", __func__);
1471 					sc->vr_flags |= VR_F_RESTART;
1472 					return;
1473 				}
1474 				vr_tx_start(sc);
1475 				break;
1476 			}
1477 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1478 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1479 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1480 				sc->vr_stat.tx_underrun++;
1481 				/* Retry and restart Tx. */
1482 				sc->vr_cdata.vr_tx_cnt++;
1483 				sc->vr_cdata.vr_tx_cons = cons;
1484 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1485 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1486 				    sc->vr_cdata.vr_tx_ring_map,
1487 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1488 				vr_tx_underrun(sc);
1489 				return;
1490 			}
1491 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1492 				ifp->if_collisions++;
1493 				sc->vr_stat.tx_collisions++;
1494 			}
1495 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1496 				ifp->if_collisions++;
1497 				sc->vr_stat.tx_late_collisions++;
1498 			}
1499 		} else {
1500 			sc->vr_stat.tx_ok++;
1501 			ifp->if_opackets++;
1502 		}
1503 
1504 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1505 		    BUS_DMASYNC_POSTWRITE);
1506 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1507 		if (sc->vr_revid < REV_ID_VT3071_A) {
1508 			ifp->if_collisions +=
1509 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1510 			sc->vr_stat.tx_collisions +=
1511 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1512 		} else {
1513 			ifp->if_collisions += (txstat & 0x0f);
1514 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1515 		}
1516 		m_freem(txd->tx_m);
1517 		txd->tx_m = NULL;
1518 	}
1519 
1520 	sc->vr_cdata.vr_tx_cons = cons;
1521 	if (sc->vr_cdata.vr_tx_cnt == 0)
1522 		sc->vr_watchdog_timer = 0;
1523 }
1524 
1525 static void
1526 vr_tick(void *xsc)
1527 {
1528 	struct vr_softc		*sc;
1529 	struct mii_data		*mii;
1530 
1531 	sc = (struct vr_softc *)xsc;
1532 
1533 	VR_LOCK_ASSERT(sc);
1534 
1535 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1536 		device_printf(sc->vr_dev, "restarting\n");
1537 		sc->vr_stat.num_restart++;
1538 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1539 		vr_init_locked(sc);
1540 		sc->vr_flags &= ~VR_F_RESTART;
1541 	}
1542 
1543 	mii = device_get_softc(sc->vr_miibus);
1544 	mii_tick(mii);
1545 	if (sc->vr_link == 0)
1546 		vr_miibus_statchg(sc->vr_dev);
1547 	vr_watchdog(sc);
1548 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1549 }
1550 
1551 #ifdef DEVICE_POLLING
1552 static poll_handler_t vr_poll;
1553 static poll_handler_t vr_poll_locked;
1554 
1555 static int
1556 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1557 {
1558 	struct vr_softc *sc;
1559 	int rx_npkts;
1560 
1561 	sc = ifp->if_softc;
1562 	rx_npkts = 0;
1563 
1564 	VR_LOCK(sc);
1565 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1566 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1567 	VR_UNLOCK(sc);
1568 	return (rx_npkts);
1569 }
1570 
1571 static int
1572 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1573 {
1574 	struct vr_softc *sc;
1575 	int rx_npkts;
1576 
1577 	sc = ifp->if_softc;
1578 
1579 	VR_LOCK_ASSERT(sc);
1580 
1581 	sc->rxcycles = count;
1582 	rx_npkts = vr_rxeof(sc);
1583 	vr_txeof(sc);
1584 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1585 		vr_start_locked(ifp);
1586 
1587 	if (cmd == POLL_AND_CHECK_STATUS) {
1588 		uint16_t status;
1589 
1590 		/* Also check status register. */
1591 		status = CSR_READ_2(sc, VR_ISR);
1592 		if (status)
1593 			CSR_WRITE_2(sc, VR_ISR, status);
1594 
1595 		if ((status & VR_INTRS) == 0)
1596 			return (rx_npkts);
1597 
1598 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1599 		    VR_ISR_STATSOFLOW)) != 0) {
1600 			if (vr_error(sc, status) != 0)
1601 				return (rx_npkts);
1602 		}
1603 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1604 #ifdef	VR_SHOW_ERRORS
1605 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1606 			    __func__, status, VR_ISR_ERR_BITS);
1607 #endif
1608 			vr_rx_start(sc);
1609 		}
1610 	}
1611 	return (rx_npkts);
1612 }
1613 #endif /* DEVICE_POLLING */
1614 
1615 /* Back off the transmit threshold. */
1616 static void
1617 vr_tx_underrun(struct vr_softc *sc)
1618 {
1619 	int	thresh;
1620 
1621 	device_printf(sc->vr_dev, "Tx underrun -- ");
1622 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1623 		thresh = sc->vr_txthresh;
1624 		sc->vr_txthresh++;
1625 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1626 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1627 			printf("using store and forward mode\n");
1628 		} else
1629 			printf("increasing Tx threshold(%d -> %d)\n",
1630 			    vr_tx_threshold_tables[thresh].value,
1631 			    vr_tx_threshold_tables[thresh + 1].value);
1632 	} else
1633 		printf("\n");
1634 	sc->vr_stat.tx_underrun++;
1635 	if (vr_tx_stop(sc) != 0) {
1636 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1637 		    "resetting\n", __func__);
1638 		sc->vr_flags |= VR_F_RESTART;
1639 		return;
1640 	}
1641 	vr_tx_start(sc);
1642 }
1643 
1644 static void
1645 vr_intr(void *arg)
1646 {
1647 	struct vr_softc		*sc;
1648 	struct ifnet		*ifp;
1649 	uint16_t		status;
1650 
1651 	sc = (struct vr_softc *)arg;
1652 
1653 	VR_LOCK(sc);
1654 
1655 	if (sc->vr_suspended != 0)
1656 		goto done_locked;
1657 
1658 	status = CSR_READ_2(sc, VR_ISR);
1659 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1660 		goto done_locked;
1661 
1662 	ifp = sc->vr_ifp;
1663 #ifdef DEVICE_POLLING
1664 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1665 		goto done_locked;
1666 #endif
1667 
1668 	/* Suppress unwanted interrupts. */
1669 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1670 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1671 		CSR_WRITE_2(sc, VR_IMR, 0);
1672 		CSR_WRITE_2(sc, VR_ISR, status);
1673 		goto done_locked;
1674 	}
1675 
1676 	/* Disable interrupts. */
1677 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1678 
1679 	for (; (status & VR_INTRS) != 0;) {
1680 		CSR_WRITE_2(sc, VR_ISR, status);
1681 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1682 		    VR_ISR_STATSOFLOW)) != 0) {
1683 			if (vr_error(sc, status) != 0) {
1684 				VR_UNLOCK(sc);
1685 				return;
1686 			}
1687 		}
1688 		vr_rxeof(sc);
1689 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1690 #ifdef	VR_SHOW_ERRORS
1691 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1692 			    __func__, status, VR_ISR_ERR_BITS);
1693 #endif
1694 			/* Restart Rx if RxDMA SM was stopped. */
1695 			vr_rx_start(sc);
1696 		}
1697 		vr_txeof(sc);
1698 		status = CSR_READ_2(sc, VR_ISR);
1699 	}
1700 
1701 	/* Re-enable interrupts. */
1702 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1703 
1704 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1705 		vr_start_locked(ifp);
1706 
1707 done_locked:
1708 	VR_UNLOCK(sc);
1709 }
1710 
1711 static int
1712 vr_error(struct vr_softc *sc, uint16_t status)
1713 {
1714 	uint16_t pcis;
1715 
1716 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1717 	if ((status & VR_ISR_BUSERR) != 0) {
1718 		status &= ~VR_ISR_BUSERR;
1719 		sc->vr_stat.bus_errors++;
1720 		/* Disable further interrupts. */
1721 		CSR_WRITE_2(sc, VR_IMR, 0);
1722 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1723 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1724 		    "resetting\n", pcis);
1725 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1726 		sc->vr_flags |= VR_F_RESTART;
1727 		return (EAGAIN);
1728 	}
1729 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1730 		/* Link state change, duplex changes etc. */
1731 		status &= ~VR_ISR_LINKSTAT2;
1732 	}
1733 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1734 		status &= ~VR_ISR_STATSOFLOW;
1735 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1736 			/* Update MIB counters. */
1737 		}
1738 	}
1739 
1740 	if (status != 0)
1741 		device_printf(sc->vr_dev,
1742 		    "unhandled interrupt, status = 0x%04x\n", status);
1743 	return (0);
1744 }
1745 
1746 /*
1747  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1748  * pointers to the fragment pointers.
1749  */
1750 static int
1751 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1752 {
1753 	struct vr_txdesc	*txd;
1754 	struct vr_desc		*desc;
1755 	struct mbuf		*m;
1756 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1757 	uint32_t		csum_flags, txctl;
1758 	int			error, i, nsegs, prod, si;
1759 	int			padlen;
1760 
1761 	VR_LOCK_ASSERT(sc);
1762 
1763 	M_ASSERTPKTHDR((*m_head));
1764 
1765 	/*
1766 	 * Some VIA Rhine wants packet buffers to be longword
1767 	 * aligned, but very often our mbufs aren't. Rather than
1768 	 * waste time trying to decide when to copy and when not
1769 	 * to copy, just do it all the time.
1770 	 */
1771 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1772 		m = m_defrag(*m_head, M_DONTWAIT);
1773 		if (m == NULL) {
1774 			m_freem(*m_head);
1775 			*m_head = NULL;
1776 			return (ENOBUFS);
1777 		}
1778 		*m_head = m;
1779 	}
1780 
1781 	/*
1782 	 * The Rhine chip doesn't auto-pad, so we have to make
1783 	 * sure to pad short frames out to the minimum frame length
1784 	 * ourselves.
1785 	 */
1786 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1787 		m = *m_head;
1788 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1789 		if (M_WRITABLE(m) == 0) {
1790 			/* Get a writable copy. */
1791 			m = m_dup(*m_head, M_DONTWAIT);
1792 			m_freem(*m_head);
1793 			if (m == NULL) {
1794 				*m_head = NULL;
1795 				return (ENOBUFS);
1796 			}
1797 			*m_head = m;
1798 		}
1799 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1800 			m = m_defrag(m, M_DONTWAIT);
1801 			if (m == NULL) {
1802 				m_freem(*m_head);
1803 				*m_head = NULL;
1804 				return (ENOBUFS);
1805 			}
1806 		}
1807 		/*
1808 		 * Manually pad short frames, and zero the pad space
1809 		 * to avoid leaking data.
1810 		 */
1811 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1812 		m->m_pkthdr.len += padlen;
1813 		m->m_len = m->m_pkthdr.len;
1814 		*m_head = m;
1815 	}
1816 
1817 	prod = sc->vr_cdata.vr_tx_prod;
1818 	txd = &sc->vr_cdata.vr_txdesc[prod];
1819 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1820 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1821 	if (error == EFBIG) {
1822 		m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
1823 		if (m == NULL) {
1824 			m_freem(*m_head);
1825 			*m_head = NULL;
1826 			return (ENOBUFS);
1827 		}
1828 		*m_head = m;
1829 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1830 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1831 		if (error != 0) {
1832 			m_freem(*m_head);
1833 			*m_head = NULL;
1834 			return (error);
1835 		}
1836 	} else if (error != 0)
1837 		return (error);
1838 	if (nsegs == 0) {
1839 		m_freem(*m_head);
1840 		*m_head = NULL;
1841 		return (EIO);
1842 	}
1843 
1844 	/* Check number of available descriptors. */
1845 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1846 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1847 		return (ENOBUFS);
1848 	}
1849 
1850 	txd->tx_m = *m_head;
1851 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1852 	    BUS_DMASYNC_PREWRITE);
1853 
1854 	/* Set checksum offload. */
1855 	csum_flags = 0;
1856 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1857 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1858 			csum_flags |= VR_TXCTL_IPCSUM;
1859 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1860 			csum_flags |= VR_TXCTL_TCPCSUM;
1861 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1862 			csum_flags |= VR_TXCTL_UDPCSUM;
1863 	}
1864 
1865 	/*
1866 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1867 	 * is required for all descriptors regardless of single or
1868 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1869 	 * the first descriptor for a multi-fragmented frames. Without
1870 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1871 	 * send any frames.
1872 	 */
1873 	si = prod;
1874 	for (i = 0; i < nsegs; i++) {
1875 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1876 		desc->vr_status = 0;
1877 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1878 		if (i == 0)
1879 			txctl |= VR_TXCTL_FIRSTFRAG;
1880 		desc->vr_ctl = htole32(txctl);
1881 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1882 		sc->vr_cdata.vr_tx_cnt++;
1883 		VR_INC(prod, VR_TX_RING_CNT);
1884 	}
1885 	/* Update producer index. */
1886 	sc->vr_cdata.vr_tx_prod = prod;
1887 
1888 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1889 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1890 
1891 	/*
1892 	 * Set EOP on the last desciptor and reuqest Tx completion
1893 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1894 	 */
1895 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1896 	if (sc->vr_cdata.vr_tx_pkts == 0)
1897 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1898 	else
1899 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1900 
1901 	/* Lastly turn the first descriptor ownership to hardware. */
1902 	desc = &sc->vr_rdata.vr_tx_ring[si];
1903 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1904 
1905 	/* Sync descriptors. */
1906 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1907 	    sc->vr_cdata.vr_tx_ring_map,
1908 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1909 
1910 	return (0);
1911 }
1912 
1913 static void
1914 vr_start(struct ifnet *ifp)
1915 {
1916 	struct vr_softc		*sc;
1917 
1918 	sc = ifp->if_softc;
1919 	VR_LOCK(sc);
1920 	vr_start_locked(ifp);
1921 	VR_UNLOCK(sc);
1922 }
1923 
1924 static void
1925 vr_start_locked(struct ifnet *ifp)
1926 {
1927 	struct vr_softc		*sc;
1928 	struct mbuf		*m_head;
1929 	int			enq;
1930 
1931 	sc = ifp->if_softc;
1932 
1933 	VR_LOCK_ASSERT(sc);
1934 
1935 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1936 	    IFF_DRV_RUNNING || sc->vr_link == 0)
1937 		return;
1938 
1939 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1940 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1941 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1942 		if (m_head == NULL)
1943 			break;
1944 		/*
1945 		 * Pack the data into the transmit ring. If we
1946 		 * don't have room, set the OACTIVE flag and wait
1947 		 * for the NIC to drain the ring.
1948 		 */
1949 		if (vr_encap(sc, &m_head)) {
1950 			if (m_head == NULL)
1951 				break;
1952 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1953 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1954 			break;
1955 		}
1956 
1957 		enq++;
1958 		/*
1959 		 * If there's a BPF listener, bounce a copy of this frame
1960 		 * to him.
1961 		 */
1962 		ETHER_BPF_MTAP(ifp, m_head);
1963 	}
1964 
1965 	if (enq > 0) {
1966 		/* Tell the chip to start transmitting. */
1967 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1968 		/* Set a timeout in case the chip goes out to lunch. */
1969 		sc->vr_watchdog_timer = 5;
1970 	}
1971 }
1972 
1973 static void
1974 vr_init(void *xsc)
1975 {
1976 	struct vr_softc		*sc;
1977 
1978 	sc = (struct vr_softc *)xsc;
1979 	VR_LOCK(sc);
1980 	vr_init_locked(sc);
1981 	VR_UNLOCK(sc);
1982 }
1983 
1984 static void
1985 vr_init_locked(struct vr_softc *sc)
1986 {
1987 	struct ifnet		*ifp;
1988 	struct mii_data		*mii;
1989 	bus_addr_t		addr;
1990 	int			i;
1991 
1992 	VR_LOCK_ASSERT(sc);
1993 
1994 	ifp = sc->vr_ifp;
1995 	mii = device_get_softc(sc->vr_miibus);
1996 
1997 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1998 		return;
1999 
2000 	/* Cancel pending I/O and free all RX/TX buffers. */
2001 	vr_stop(sc);
2002 	vr_reset(sc);
2003 
2004 	/* Set our station address. */
2005 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2006 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2007 
2008 	/* Set DMA size. */
2009 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2010 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2011 
2012 	/*
2013 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2014 	 * so we must set both.
2015 	 */
2016 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2017 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2018 
2019 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2020 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2021 
2022 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2023 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2024 
2025 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2026 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2027 
2028 	/* Init circular RX list. */
2029 	if (vr_rx_ring_init(sc) != 0) {
2030 		device_printf(sc->vr_dev,
2031 		    "initialization failed: no memory for rx buffers\n");
2032 		vr_stop(sc);
2033 		return;
2034 	}
2035 
2036 	/* Init tx descriptors. */
2037 	vr_tx_ring_init(sc);
2038 
2039 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2040 		uint8_t vcam[2] = { 0, 0 };
2041 
2042 		/* Disable VLAN hardware tag insertion/stripping. */
2043 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2044 		/* Disable VLAN hardware filtering. */
2045 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2046 		/* Disable all CAM entries. */
2047 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2048 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2049 		/* Enable the first VLAN CAM. */
2050 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2051 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2052 	}
2053 
2054 	/*
2055 	 * Set up receive filter.
2056 	 */
2057 	vr_set_filter(sc);
2058 
2059 	/*
2060 	 * Load the address of the RX ring.
2061 	 */
2062 	addr = VR_RX_RING_ADDR(sc, 0);
2063 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2064 	/*
2065 	 * Load the address of the TX ring.
2066 	 */
2067 	addr = VR_TX_RING_ADDR(sc, 0);
2068 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2069 	/* Default : full-duplex, no Tx poll. */
2070 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2071 
2072 	/* Set flow-control parameters for Rhine III. */
2073 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2074  		/* Rx buffer count available for incoming packet. */
2075 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
2076 		/*
2077 		 * Tx pause low threshold : 16 free receive buffers
2078 		 * Tx pause XON high threshold : 48 free receive buffers
2079 		 */
2080 		CSR_WRITE_1(sc, VR_FLOWCR1,
2081 		    VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
2082 		/* Set Tx pause timer. */
2083 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2084 	}
2085 
2086 	/* Enable receiver and transmitter. */
2087 	CSR_WRITE_1(sc, VR_CR0,
2088 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2089 
2090 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2091 #ifdef DEVICE_POLLING
2092 	/*
2093 	 * Disable interrupts if we are polling.
2094 	 */
2095 	if (ifp->if_capenable & IFCAP_POLLING)
2096 		CSR_WRITE_2(sc, VR_IMR, 0);
2097 	else
2098 #endif
2099 	/*
2100 	 * Enable interrupts and disable MII intrs.
2101 	 */
2102 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2103 	if (sc->vr_revid > REV_ID_VT6102_A)
2104 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2105 
2106 	sc->vr_link = 0;
2107 	mii_mediachg(mii);
2108 
2109 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2110 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2111 
2112 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2113 }
2114 
2115 /*
2116  * Set media options.
2117  */
2118 static int
2119 vr_ifmedia_upd(struct ifnet *ifp)
2120 {
2121 	struct vr_softc		*sc;
2122 	struct mii_data		*mii;
2123 	struct mii_softc	*miisc;
2124 	int			error;
2125 
2126 	sc = ifp->if_softc;
2127 	VR_LOCK(sc);
2128 	mii = device_get_softc(sc->vr_miibus);
2129 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2130 		PHY_RESET(miisc);
2131 	error = mii_mediachg(mii);
2132 	VR_UNLOCK(sc);
2133 
2134 	return (error);
2135 }
2136 
2137 /*
2138  * Report current media status.
2139  */
2140 static void
2141 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2142 {
2143 	struct vr_softc		*sc;
2144 	struct mii_data		*mii;
2145 
2146 	sc = ifp->if_softc;
2147 	mii = device_get_softc(sc->vr_miibus);
2148 	VR_LOCK(sc);
2149 	if ((ifp->if_flags & IFF_UP) == 0) {
2150 		VR_UNLOCK(sc);
2151 		return;
2152 	}
2153 	mii_pollstat(mii);
2154 	ifmr->ifm_active = mii->mii_media_active;
2155 	ifmr->ifm_status = mii->mii_media_status;
2156 	VR_UNLOCK(sc);
2157 }
2158 
2159 static int
2160 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2161 {
2162 	struct vr_softc		*sc;
2163 	struct ifreq		*ifr;
2164 	struct mii_data		*mii;
2165 	int			error, mask;
2166 
2167 	sc = ifp->if_softc;
2168 	ifr = (struct ifreq *)data;
2169 	error = 0;
2170 
2171 	switch (command) {
2172 	case SIOCSIFFLAGS:
2173 		VR_LOCK(sc);
2174 		if (ifp->if_flags & IFF_UP) {
2175 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2176 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2177 				    (IFF_PROMISC | IFF_ALLMULTI))
2178 					vr_set_filter(sc);
2179 			} else {
2180 				if (sc->vr_detach == 0)
2181 					vr_init_locked(sc);
2182 			}
2183 		} else {
2184 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2185 				vr_stop(sc);
2186 		}
2187 		sc->vr_if_flags = ifp->if_flags;
2188 		VR_UNLOCK(sc);
2189 		break;
2190 	case SIOCADDMULTI:
2191 	case SIOCDELMULTI:
2192 		VR_LOCK(sc);
2193 		vr_set_filter(sc);
2194 		VR_UNLOCK(sc);
2195 		break;
2196 	case SIOCGIFMEDIA:
2197 	case SIOCSIFMEDIA:
2198 		mii = device_get_softc(sc->vr_miibus);
2199 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2200 		break;
2201 	case SIOCSIFCAP:
2202 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2203 #ifdef DEVICE_POLLING
2204 		if (mask & IFCAP_POLLING) {
2205 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2206 				error = ether_poll_register(vr_poll, ifp);
2207 				if (error != 0)
2208 					break;
2209 				VR_LOCK(sc);
2210 				/* Disable interrupts. */
2211 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2212 				ifp->if_capenable |= IFCAP_POLLING;
2213 				VR_UNLOCK(sc);
2214 			} else {
2215 				error = ether_poll_deregister(ifp);
2216 				/* Enable interrupts. */
2217 				VR_LOCK(sc);
2218 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2219 				ifp->if_capenable &= ~IFCAP_POLLING;
2220 				VR_UNLOCK(sc);
2221 			}
2222 		}
2223 #endif /* DEVICE_POLLING */
2224 		if ((mask & IFCAP_TXCSUM) != 0 &&
2225 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2226 			ifp->if_capenable ^= IFCAP_TXCSUM;
2227 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2228 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2229 			else
2230 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2231 		}
2232 		if ((mask & IFCAP_RXCSUM) != 0 &&
2233 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2234 			ifp->if_capenable ^= IFCAP_RXCSUM;
2235 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2236 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2237 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2238 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2239 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2240 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2241 		break;
2242 	default:
2243 		error = ether_ioctl(ifp, command, data);
2244 		break;
2245 	}
2246 
2247 	return (error);
2248 }
2249 
2250 static void
2251 vr_watchdog(struct vr_softc *sc)
2252 {
2253 	struct ifnet		*ifp;
2254 
2255 	VR_LOCK_ASSERT(sc);
2256 
2257 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2258 		return;
2259 
2260 	ifp = sc->vr_ifp;
2261 	/*
2262 	 * Reclaim first as we don't request interrupt for every packets.
2263 	 */
2264 	vr_txeof(sc);
2265 	if (sc->vr_cdata.vr_tx_cnt == 0)
2266 		return;
2267 
2268 	if (sc->vr_link == 0) {
2269 		if (bootverbose)
2270 			if_printf(sc->vr_ifp, "watchdog timeout "
2271 			   "(missed link)\n");
2272 		ifp->if_oerrors++;
2273 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2274 		vr_init_locked(sc);
2275 		return;
2276 	}
2277 
2278 	ifp->if_oerrors++;
2279 	if_printf(ifp, "watchdog timeout\n");
2280 
2281 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2282 	vr_init_locked(sc);
2283 
2284 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2285 		vr_start_locked(ifp);
2286 }
2287 
2288 static void
2289 vr_tx_start(struct vr_softc *sc)
2290 {
2291 	bus_addr_t	addr;
2292 	uint8_t		cmd;
2293 
2294 	cmd = CSR_READ_1(sc, VR_CR0);
2295 	if ((cmd & VR_CR0_TX_ON) == 0) {
2296 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2297 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2298 		cmd |= VR_CR0_TX_ON;
2299 		CSR_WRITE_1(sc, VR_CR0, cmd);
2300 	}
2301 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2302 		sc->vr_watchdog_timer = 5;
2303 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2304 	}
2305 }
2306 
2307 static void
2308 vr_rx_start(struct vr_softc *sc)
2309 {
2310 	bus_addr_t	addr;
2311 	uint8_t		cmd;
2312 
2313 	cmd = CSR_READ_1(sc, VR_CR0);
2314 	if ((cmd & VR_CR0_RX_ON) == 0) {
2315 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2316 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2317 		cmd |= VR_CR0_RX_ON;
2318 		CSR_WRITE_1(sc, VR_CR0, cmd);
2319 	}
2320 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2321 }
2322 
2323 static int
2324 vr_tx_stop(struct vr_softc *sc)
2325 {
2326 	int		i;
2327 	uint8_t		cmd;
2328 
2329 	cmd = CSR_READ_1(sc, VR_CR0);
2330 	if ((cmd & VR_CR0_TX_ON) != 0) {
2331 		cmd &= ~VR_CR0_TX_ON;
2332 		CSR_WRITE_1(sc, VR_CR0, cmd);
2333 		for (i = VR_TIMEOUT; i > 0; i--) {
2334 			DELAY(5);
2335 			cmd = CSR_READ_1(sc, VR_CR0);
2336 			if ((cmd & VR_CR0_TX_ON) == 0)
2337 				break;
2338 		}
2339 		if (i == 0)
2340 			return (ETIMEDOUT);
2341 	}
2342 	return (0);
2343 }
2344 
2345 static int
2346 vr_rx_stop(struct vr_softc *sc)
2347 {
2348 	int		i;
2349 	uint8_t		cmd;
2350 
2351 	cmd = CSR_READ_1(sc, VR_CR0);
2352 	if ((cmd & VR_CR0_RX_ON) != 0) {
2353 		cmd &= ~VR_CR0_RX_ON;
2354 		CSR_WRITE_1(sc, VR_CR0, cmd);
2355 		for (i = VR_TIMEOUT; i > 0; i--) {
2356 			DELAY(5);
2357 			cmd = CSR_READ_1(sc, VR_CR0);
2358 			if ((cmd & VR_CR0_RX_ON) == 0)
2359 				break;
2360 		}
2361 		if (i == 0)
2362 			return (ETIMEDOUT);
2363 	}
2364 	return (0);
2365 }
2366 
2367 /*
2368  * Stop the adapter and free any mbufs allocated to the
2369  * RX and TX lists.
2370  */
2371 static void
2372 vr_stop(struct vr_softc *sc)
2373 {
2374 	struct vr_txdesc	*txd;
2375 	struct vr_rxdesc	*rxd;
2376 	struct ifnet		*ifp;
2377 	int			i;
2378 
2379 	VR_LOCK_ASSERT(sc);
2380 
2381 	ifp = sc->vr_ifp;
2382 	sc->vr_watchdog_timer = 0;
2383 
2384 	callout_stop(&sc->vr_stat_callout);
2385 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2386 
2387 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2388 	if (vr_rx_stop(sc) != 0)
2389 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2390 	if (vr_tx_stop(sc) != 0)
2391 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2392 	/* Clear pending interrupts. */
2393 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2394 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2395 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2396 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2397 
2398 	/*
2399 	 * Free RX and TX mbufs still in the queues.
2400 	 */
2401 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2402 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2403 		if (rxd->rx_m != NULL) {
2404 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2405 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2406 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2407 			    rxd->rx_dmamap);
2408 			m_freem(rxd->rx_m);
2409 			rxd->rx_m = NULL;
2410 		}
2411         }
2412 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2413 		txd = &sc->vr_cdata.vr_txdesc[i];
2414 		if (txd->tx_m != NULL) {
2415 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2416 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2417 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2418 			    txd->tx_dmamap);
2419 			m_freem(txd->tx_m);
2420 			txd->tx_m = NULL;
2421 		}
2422         }
2423 }
2424 
2425 /*
2426  * Stop all chip I/O so that the kernel's probe routines don't
2427  * get confused by errant DMAs when rebooting.
2428  */
2429 static int
2430 vr_shutdown(device_t dev)
2431 {
2432 
2433 	return (vr_suspend(dev));
2434 }
2435 
2436 static int
2437 vr_suspend(device_t dev)
2438 {
2439 	struct vr_softc		*sc;
2440 
2441 	sc = device_get_softc(dev);
2442 
2443 	VR_LOCK(sc);
2444 	vr_stop(sc);
2445 	vr_setwol(sc);
2446 	sc->vr_suspended = 1;
2447 	VR_UNLOCK(sc);
2448 
2449 	return (0);
2450 }
2451 
2452 static int
2453 vr_resume(device_t dev)
2454 {
2455 	struct vr_softc		*sc;
2456 	struct ifnet		*ifp;
2457 
2458 	sc = device_get_softc(dev);
2459 
2460 	VR_LOCK(sc);
2461 	ifp = sc->vr_ifp;
2462 	vr_clrwol(sc);
2463 	vr_reset(sc);
2464 	if (ifp->if_flags & IFF_UP)
2465 		vr_init_locked(sc);
2466 
2467 	sc->vr_suspended = 0;
2468 	VR_UNLOCK(sc);
2469 
2470 	return (0);
2471 }
2472 
2473 static void
2474 vr_setwol(struct vr_softc *sc)
2475 {
2476 	struct ifnet		*ifp;
2477 	int			pmc;
2478 	uint16_t		pmstat;
2479 	uint8_t			v;
2480 
2481 	VR_LOCK_ASSERT(sc);
2482 
2483 	if (sc->vr_revid < REV_ID_VT6102_A ||
2484 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2485 		return;
2486 
2487 	ifp = sc->vr_ifp;
2488 
2489 	/* Clear WOL configuration. */
2490 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2491 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2492 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2493 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2494 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2495 		/* Newer Rhine III supports two additional patterns. */
2496 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2497 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2498 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2499 	}
2500 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2501 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2502 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2503 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2504 	/*
2505 	 * It seems that multicast wakeup frames require programming pattern
2506 	 * registers and valid CRC as well as pattern mask for each pattern.
2507 	 * While it's possible to setup such a pattern it would complicate
2508 	 * WOL configuration so ignore multicast wakeup frames.
2509 	 */
2510 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2511 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2512 		v = CSR_READ_1(sc, VR_STICKHW);
2513 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2514 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2515 	}
2516 
2517 	/* Put hardware into sleep. */
2518 	v = CSR_READ_1(sc, VR_STICKHW);
2519 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2520 	CSR_WRITE_1(sc, VR_STICKHW, v);
2521 
2522 	/* Request PME if WOL is requested. */
2523 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2524 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2525 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2526 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2527 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2528 }
2529 
2530 static void
2531 vr_clrwol(struct vr_softc *sc)
2532 {
2533 	uint8_t			v;
2534 
2535 	VR_LOCK_ASSERT(sc);
2536 
2537 	if (sc->vr_revid < REV_ID_VT6102_A)
2538 		return;
2539 
2540 	/* Take hardware out of sleep. */
2541 	v = CSR_READ_1(sc, VR_STICKHW);
2542 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2543 	CSR_WRITE_1(sc, VR_STICKHW, v);
2544 
2545 	/* Clear WOL configuration as WOL may interfere normal operation. */
2546 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2547 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2548 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2549 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2550 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2551 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2552 		/* Newer Rhine III supports two additional patterns. */
2553 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2554 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2555 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2556 	}
2557 }
2558 
2559 static int
2560 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2561 {
2562 	struct vr_softc		*sc;
2563 	struct vr_statistics	*stat;
2564 	int			error;
2565 	int			result;
2566 
2567 	result = -1;
2568 	error = sysctl_handle_int(oidp, &result, 0, req);
2569 
2570 	if (error != 0 || req->newptr == NULL)
2571 		return (error);
2572 
2573 	if (result == 1) {
2574 		sc = (struct vr_softc *)arg1;
2575 		stat = &sc->vr_stat;
2576 
2577 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2578 		printf("Outbound good frames : %ju\n",
2579 		    (uintmax_t)stat->tx_ok);
2580 		printf("Inbound good frames : %ju\n",
2581 		    (uintmax_t)stat->rx_ok);
2582 		printf("Outbound errors : %u\n", stat->tx_errors);
2583 		printf("Inbound errors : %u\n", stat->rx_errors);
2584 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2585 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2586 		printf("Inbound FIFO overflows : %d\n",
2587 		    stat->rx_fifo_overflows);
2588 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2589 		printf("Inbound frame alignment errors : %u\n",
2590 		    stat->rx_alignment);
2591 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2592 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2593 		printf("Outbound aborted with excessive collisions : %u\n",
2594 		    stat->tx_abort);
2595 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2596 		printf("Outbound late collisions : %u\n",
2597 		    stat->tx_late_collisions);
2598 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2599 		printf("PCI bus errors : %u\n", stat->bus_errors);
2600 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2601 		    stat->num_restart);
2602 	}
2603 
2604 	return (error);
2605 }
2606