xref: /freebsd/sys/dev/vr/if_vr.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Rhine fast ethernet PCI NIC driver
40  *
41  * Supports various network adapters based on the VIA Rhine
42  * and Rhine II PCI controllers, including the D-Link DFE530TX.
43  * Datasheets are available at http://www.via.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The VIA Rhine controllers are similar in some respects to the
52  * the DEC tulip chips, except less complicated. The controller
53  * uses an MII bus and an external physical layer interface. The
54  * receiver has a one entry perfect filter and a 64-bit hash table
55  * multicast filter. Transmit and receive descriptors are similar
56  * to the tulip.
57  *
58  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
59  * transmit buffers must be longword aligned. Unfortunately,
60  * FreeBSD doesn't guarantee that mbufs will be filled in starting
61  * at longword boundaries, so we have to do a buffer copy before
62  * transmission.
63  */
64 
65 #ifdef HAVE_KERNEL_OPTION_HEADERS
66 #include "opt_device_polling.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/module.h>
77 #include <sys/rman.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 #include <net/if_vlan_var.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include <machine/bus.h>
99 
100 #include <dev/vr/if_vrreg.h>
101 
102 /* "device miibus" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 MODULE_DEPEND(vr, pci, 1, 1, 1);
106 MODULE_DEPEND(vr, ether, 1, 1, 1);
107 MODULE_DEPEND(vr, miibus, 1, 1, 1);
108 
109 /* Define to show Rx/Tx error status. */
110 #undef	VR_SHOW_ERRORS
111 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
112 
113 /*
114  * Various supported device vendors/types, their names & quirks.
115  */
116 #define VR_Q_NEEDALIGN		(1<<0)
117 #define VR_Q_CSUM		(1<<1)
118 #define VR_Q_CAM		(1<<2)
119 
120 static const struct vr_type {
121 	u_int16_t		vr_vid;
122 	u_int16_t		vr_did;
123 	int			vr_quirks;
124 	const char		*vr_name;
125 } vr_devs[] = {
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT3043 Rhine I 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
130 	    VR_Q_NEEDALIGN,
131 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
133 	    0,
134 	    "VIA VT6102 Rhine II 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
136 	    0,
137 	    "VIA VT6105 Rhine III 10/100BaseTX" },
138 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
139 	    VR_Q_CSUM,
140 	    "VIA VT6105M Rhine III 10/100BaseTX" },
141 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Delta Electronics Rhine II 10/100BaseTX" },
144 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
145 	    VR_Q_NEEDALIGN,
146 	    "Addtron Technology Rhine II 10/100BaseTX" },
147 	{ 0, 0, 0, NULL }
148 };
149 
150 static int vr_probe(device_t);
151 static int vr_attach(device_t);
152 static int vr_detach(device_t);
153 static int vr_shutdown(device_t);
154 static int vr_suspend(device_t);
155 static int vr_resume(device_t);
156 
157 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
158 static int vr_dma_alloc(struct vr_softc *);
159 static void vr_dma_free(struct vr_softc *);
160 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
161 static int vr_newbuf(struct vr_softc *, int);
162 
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline void vr_fixup_rx(struct mbuf *);
165 #endif
166 static int vr_rxeof(struct vr_softc *);
167 static void vr_txeof(struct vr_softc *);
168 static void vr_tick(void *);
169 static int vr_error(struct vr_softc *, uint16_t);
170 static void vr_tx_underrun(struct vr_softc *);
171 static int vr_intr(void *);
172 static void vr_int_task(void *, int);
173 static void vr_start(struct ifnet *);
174 static void vr_start_locked(struct ifnet *);
175 static int vr_encap(struct vr_softc *, struct mbuf **);
176 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
177 static void vr_init(void *);
178 static void vr_init_locked(struct vr_softc *);
179 static void vr_tx_start(struct vr_softc *);
180 static void vr_rx_start(struct vr_softc *);
181 static int vr_tx_stop(struct vr_softc *);
182 static int vr_rx_stop(struct vr_softc *);
183 static void vr_stop(struct vr_softc *);
184 static void vr_watchdog(struct vr_softc *);
185 static int vr_ifmedia_upd(struct ifnet *);
186 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
187 
188 static int vr_miibus_readreg(device_t, int, int);
189 static int vr_miibus_writereg(device_t, int, int, int);
190 static void vr_miibus_statchg(device_t);
191 
192 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
193 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
194 static void vr_set_filter(struct vr_softc *);
195 static void vr_reset(const struct vr_softc *);
196 static int vr_tx_ring_init(struct vr_softc *);
197 static int vr_rx_ring_init(struct vr_softc *);
198 static void vr_setwol(struct vr_softc *);
199 static void vr_clrwol(struct vr_softc *);
200 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
201 
202 static const struct vr_tx_threshold_table {
203 	int tx_cfg;
204 	int bcr_cfg;
205 	int value;
206 } vr_tx_threshold_tables[] = {
207 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
208 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
209 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
210 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
211 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
212 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
213 };
214 
215 static device_method_t vr_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		vr_probe),
218 	DEVMETHOD(device_attach,	vr_attach),
219 	DEVMETHOD(device_detach, 	vr_detach),
220 	DEVMETHOD(device_shutdown,	vr_shutdown),
221 	DEVMETHOD(device_suspend,	vr_suspend),
222 	DEVMETHOD(device_resume,	vr_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	DEVMETHOD_END
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 static devclass_t vr_devclass;
239 
240 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
241 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
242 
243 static int
244 vr_miibus_readreg(device_t dev, int phy, int reg)
245 {
246 	struct vr_softc		*sc;
247 	int			i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* Set the register address. */
252 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
253 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
254 
255 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
256 		DELAY(1);
257 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
258 			break;
259 	}
260 	if (i == VR_MII_TIMEOUT)
261 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
262 
263 	return (CSR_READ_2(sc, VR_MIIDATA));
264 }
265 
266 static int
267 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
268 {
269 	struct vr_softc		*sc;
270 	int			i;
271 
272 	sc = device_get_softc(dev);
273 
274 	/* Set the register address and data to write. */
275 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
276 	CSR_WRITE_2(sc, VR_MIIDATA, data);
277 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
278 
279 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
280 		DELAY(1);
281 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
282 			break;
283 	}
284 	if (i == VR_MII_TIMEOUT)
285 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
286 		    reg);
287 
288 	return (0);
289 }
290 
291 /*
292  * In order to fiddle with the
293  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
294  * first have to put the transmit and/or receive logic in the idle state.
295  */
296 static void
297 vr_miibus_statchg(device_t dev)
298 {
299 	struct vr_softc		*sc;
300 	struct mii_data		*mii;
301 	struct ifnet		*ifp;
302 	int			lfdx, mfdx;
303 	uint8_t			cr0, cr1, fc;
304 
305 	sc = device_get_softc(dev);
306 	mii = device_get_softc(sc->vr_miibus);
307 	ifp = sc->vr_ifp;
308 	if (mii == NULL || ifp == NULL ||
309 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
310 		return;
311 
312 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
313 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
314 	    (IFM_ACTIVE | IFM_AVALID)) {
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_10_T:
317 		case IFM_100_TX:
318 			sc->vr_flags |= VR_F_LINK;
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 
325 	if ((sc->vr_flags & VR_F_LINK) != 0) {
326 		cr0 = CSR_READ_1(sc, VR_CR0);
327 		cr1 = CSR_READ_1(sc, VR_CR1);
328 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
329 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
330 		if (mfdx != lfdx) {
331 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
332 				if (vr_tx_stop(sc) != 0 ||
333 				    vr_rx_stop(sc) != 0) {
334 					device_printf(sc->vr_dev,
335 					    "%s: Tx/Rx shutdown error -- "
336 					    "resetting\n", __func__);
337 					sc->vr_flags |= VR_F_RESTART;
338 					VR_UNLOCK(sc);
339 					return;
340 				}
341 			}
342 			if (lfdx)
343 				cr1 |= VR_CR1_FULLDUPLEX;
344 			else
345 				cr1 &= ~VR_CR1_FULLDUPLEX;
346 			CSR_WRITE_1(sc, VR_CR1, cr1);
347 		}
348 		fc = 0;
349 		/* Configure flow-control. */
350 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
351 			fc = CSR_READ_1(sc, VR_FLOWCR1);
352 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
353 			if ((IFM_OPTIONS(mii->mii_media_active) &
354 			    IFM_ETH_RXPAUSE) != 0)
355 				fc |= VR_FLOWCR1_RXPAUSE;
356 			if ((IFM_OPTIONS(mii->mii_media_active) &
357 			    IFM_ETH_TXPAUSE) != 0) {
358 				fc |= VR_FLOWCR1_TXPAUSE;
359 				sc->vr_flags |= VR_F_TXPAUSE;
360 			}
361 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
362 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
363 			/* No Tx puase capability available for Rhine II. */
364 			fc = CSR_READ_1(sc, VR_MISC_CR0);
365 			fc &= ~VR_MISCCR0_RXPAUSE;
366 			if ((IFM_OPTIONS(mii->mii_media_active) &
367 			    IFM_ETH_RXPAUSE) != 0)
368 				fc |= VR_MISCCR0_RXPAUSE;
369 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
370 		}
371 		vr_rx_start(sc);
372 		vr_tx_start(sc);
373 	} else {
374 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
375 			device_printf(sc->vr_dev,
376 			    "%s: Tx/Rx shutdown error -- resetting\n",
377 			    __func__);
378 			sc->vr_flags |= VR_F_RESTART;
379 		}
380 	}
381 }
382 
383 
384 static void
385 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
386 {
387 
388 	if (type == VR_MCAST_CAM)
389 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
390 	else
391 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
392 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
393 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
394 }
395 
396 static int
397 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
398 {
399 	int	i;
400 
401 	if (type == VR_MCAST_CAM) {
402 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
403 			return (EINVAL);
404 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
405 	} else
406 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
407 
408 	/* Set CAM entry address. */
409 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
410 	/* Set CAM entry data. */
411 	if (type == VR_MCAST_CAM) {
412 		for (i = 0; i < ETHER_ADDR_LEN; i++)
413 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
414 	} else {
415 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
416 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
417 	}
418 	DELAY(10);
419 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
420 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
421 	for (i = 0; i < VR_TIMEOUT; i++) {
422 		DELAY(1);
423 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
424 			break;
425 	}
426 
427 	if (i == VR_TIMEOUT)
428 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
429 		    __func__);
430 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
431 
432 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
433 }
434 
435 struct vr_hash_maddr_cam_ctx {
436 	struct vr_softc *sc;
437 	uint32_t mask;
438 	int error;
439 };
440 
441 static u_int
442 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
443 {
444 	struct vr_hash_maddr_cam_ctx *ctx = arg;
445 
446 	if (ctx->error != 0)
447 		return (0);
448 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
449 	if (ctx->error != 0) {
450 		ctx->mask = 0;
451 		return (0);
452 	}
453 	ctx->mask |= 1 << mcnt;
454 
455 	return (1);
456 }
457 
458 static u_int
459 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
460 {
461 	uint32_t *hashes = arg;
462 	int h;
463 
464 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
465 	if (h < 32)
466 		hashes[0] |= (1 << h);
467 	else
468 		hashes[1] |= (1 << (h - 32));
469 
470 	return (1);
471 }
472 
473 /*
474  * Program the 64-bit multicast hash filter.
475  */
476 static void
477 vr_set_filter(struct vr_softc *sc)
478 {
479 	struct ifnet		*ifp;
480 	uint32_t		hashes[2] = { 0, 0 };
481 	uint8_t			rxfilt;
482 	int			error, mcnt;
483 
484 	VR_LOCK_ASSERT(sc);
485 
486 	ifp = sc->vr_ifp;
487 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
488 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
489 	    VR_RXCFG_RX_MULTI);
490 	if (ifp->if_flags & IFF_BROADCAST)
491 		rxfilt |= VR_RXCFG_RX_BROAD;
492 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
493 		rxfilt |= VR_RXCFG_RX_MULTI;
494 		if (ifp->if_flags & IFF_PROMISC)
495 			rxfilt |= VR_RXCFG_RX_PROMISC;
496 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
497 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
498 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
499 		return;
500 	}
501 
502 	/* Now program new ones. */
503 	error = 0;
504 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
505 		struct vr_hash_maddr_cam_ctx ctx;
506 
507 		/*
508 		 * For hardwares that have CAM capability, use
509 		 * 32 entries multicast perfect filter.
510 		 */
511 		ctx.sc = sc;
512 		ctx.mask = 0;
513 		ctx.error = 0;
514 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
515 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
516 	}
517 
518 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
519 		/*
520 		 * If there are too many multicast addresses or
521 		 * setting multicast CAM filter failed, use hash
522 		 * table based filtering.
523 		 */
524 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
525 	}
526 
527 	if (mcnt > 0)
528 		rxfilt |= VR_RXCFG_RX_MULTI;
529 
530 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
531 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
532 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
533 }
534 
535 static void
536 vr_reset(const struct vr_softc *sc)
537 {
538 	int		i;
539 
540 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
541 
542 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
543 	if (sc->vr_revid < REV_ID_VT6102_A) {
544 		/* VT86C100A needs more delay after reset. */
545 		DELAY(100);
546 	}
547 	for (i = 0; i < VR_TIMEOUT; i++) {
548 		DELAY(10);
549 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
550 			break;
551 	}
552 	if (i == VR_TIMEOUT) {
553 		if (sc->vr_revid < REV_ID_VT6102_A)
554 			device_printf(sc->vr_dev, "reset never completed!\n");
555 		else {
556 			/* Use newer force reset command. */
557 			device_printf(sc->vr_dev,
558 			    "Using force reset command.\n");
559 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
560 			/*
561 			 * Wait a little while for the chip to get its brains
562 			 * in order.
563 			 */
564 			DELAY(2000);
565 		}
566 	}
567 
568 }
569 
570 /*
571  * Probe for a VIA Rhine chip. Check the PCI vendor and device
572  * IDs against our list and return a match or NULL
573  */
574 static const struct vr_type *
575 vr_match(device_t dev)
576 {
577 	const struct vr_type	*t = vr_devs;
578 
579 	for (t = vr_devs; t->vr_name != NULL; t++)
580 		if ((pci_get_vendor(dev) == t->vr_vid) &&
581 		    (pci_get_device(dev) == t->vr_did))
582 			return (t);
583 	return (NULL);
584 }
585 
586 /*
587  * Probe for a VIA Rhine chip. Check the PCI vendor and device
588  * IDs against our list and return a device name if we find a match.
589  */
590 static int
591 vr_probe(device_t dev)
592 {
593 	const struct vr_type	*t;
594 
595 	t = vr_match(dev);
596 	if (t != NULL) {
597 		device_set_desc(dev, t->vr_name);
598 		return (BUS_PROBE_DEFAULT);
599 	}
600 	return (ENXIO);
601 }
602 
603 /*
604  * Attach the interface. Allocate softc structures, do ifmedia
605  * setup and ethernet/BPF attach.
606  */
607 static int
608 vr_attach(device_t dev)
609 {
610 	struct vr_softc		*sc;
611 	struct ifnet		*ifp;
612 	const struct vr_type	*t;
613 	uint8_t			eaddr[ETHER_ADDR_LEN];
614 	int			error, rid;
615 	int			i, phy, pmc;
616 
617 	sc = device_get_softc(dev);
618 	sc->vr_dev = dev;
619 	t = vr_match(dev);
620 	KASSERT(t != NULL, ("Lost if_vr device match"));
621 	sc->vr_quirks = t->vr_quirks;
622 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
623 
624 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
625 	    MTX_DEF);
626 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
627 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
628 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
629 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
630 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
631 
632 	error = 0;
633 
634 	/*
635 	 * Map control/status registers.
636 	 */
637 	pci_enable_busmaster(dev);
638 	sc->vr_revid = pci_get_revid(dev);
639 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
640 
641 	sc->vr_res_id = PCIR_BAR(0);
642 	sc->vr_res_type = SYS_RES_IOPORT;
643 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
644 	    &sc->vr_res_id, RF_ACTIVE);
645 	if (sc->vr_res == NULL) {
646 		device_printf(dev, "couldn't map ports\n");
647 		error = ENXIO;
648 		goto fail;
649 	}
650 
651 	/* Allocate interrupt. */
652 	rid = 0;
653 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
654 	    RF_SHAREABLE | RF_ACTIVE);
655 
656 	if (sc->vr_irq == NULL) {
657 		device_printf(dev, "couldn't map interrupt\n");
658 		error = ENXIO;
659 		goto fail;
660 	}
661 
662 	/* Allocate ifnet structure. */
663 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
664 	if (ifp == NULL) {
665 		device_printf(dev, "couldn't allocate ifnet structure\n");
666 		error = ENOSPC;
667 		goto fail;
668 	}
669 	ifp->if_softc = sc;
670 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
671 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
672 	ifp->if_ioctl = vr_ioctl;
673 	ifp->if_start = vr_start;
674 	ifp->if_init = vr_init;
675 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
676 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
677 	IFQ_SET_READY(&ifp->if_snd);
678 
679 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
680 
681 	/* Configure Tx FIFO threshold. */
682 	sc->vr_txthresh = VR_TXTHRESH_MIN;
683 	if (sc->vr_revid < REV_ID_VT6105_A0) {
684 		/*
685 		 * Use store and forward mode for Rhine I/II.
686 		 * Otherwise they produce a lot of Tx underruns and
687 		 * it would take a while to get working FIFO threshold
688 		 * value.
689 		 */
690 		sc->vr_txthresh = VR_TXTHRESH_MAX;
691 	}
692 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
693 		ifp->if_hwassist = VR_CSUM_FEATURES;
694 		ifp->if_capabilities |= IFCAP_HWCSUM;
695 		/*
696 		 * To update checksum field the hardware may need to
697 		 * store entire frames into FIFO before transmitting.
698 		 */
699 		sc->vr_txthresh = VR_TXTHRESH_MAX;
700 	}
701 
702 	if (sc->vr_revid >= REV_ID_VT6102_A &&
703 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
704 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
705 
706 	/* Rhine supports oversized VLAN frame. */
707 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
708 	ifp->if_capenable = ifp->if_capabilities;
709 #ifdef DEVICE_POLLING
710 	ifp->if_capabilities |= IFCAP_POLLING;
711 #endif
712 
713 	/*
714 	 * Windows may put the chip in suspend mode when it
715 	 * shuts down. Be sure to kick it in the head to wake it
716 	 * up again.
717 	 */
718 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
719 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
720 
721 	/*
722 	 * Get station address. The way the Rhine chips work,
723 	 * you're not allowed to directly access the EEPROM once
724 	 * they've been programmed a special way. Consequently,
725 	 * we need to read the node address from the PAR0 and PAR1
726 	 * registers.
727 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
728 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
729 	 * by driver is reset to default state.
730 	 */
731 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
732 	for (i = VR_TIMEOUT; i > 0; i--) {
733 		DELAY(1);
734 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
735 			break;
736 	}
737 	if (i == 0)
738 		device_printf(dev, "Reloading EEPROM timeout!\n");
739 	for (i = 0; i < ETHER_ADDR_LEN; i++)
740 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
741 
742 	/* Reset the adapter. */
743 	vr_reset(sc);
744 	/* Ack intr & disable further interrupts. */
745 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
746 	CSR_WRITE_2(sc, VR_IMR, 0);
747 	if (sc->vr_revid >= REV_ID_VT6102_A)
748 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
749 
750 	if (sc->vr_revid < REV_ID_VT6102_A) {
751 		pci_write_config(dev, VR_PCI_MODE2,
752 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
753 		    VR_MODE2_MODE10T, 1);
754 	} else {
755 		/* Report error instead of retrying forever. */
756 		pci_write_config(dev, VR_PCI_MODE2,
757 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
758 		    VR_MODE2_PCEROPT, 1);
759         	/* Detect MII coding error. */
760 		pci_write_config(dev, VR_PCI_MODE3,
761 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
762 		    VR_MODE3_MIION, 1);
763 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
764 		    sc->vr_revid < REV_ID_VT6105M_A0)
765 			pci_write_config(dev, VR_PCI_MODE2,
766 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
767 			    VR_MODE2_MODE10T, 1);
768 		/* Enable Memory-Read-Multiple. */
769 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
770 		    sc->vr_revid < REV_ID_VT6105M_A0)
771 			pci_write_config(dev, VR_PCI_MODE2,
772 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
773 			    VR_MODE2_MRDPL, 1);
774 	}
775 	/* Disable MII AUTOPOLL. */
776 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
777 
778 	if (vr_dma_alloc(sc) != 0) {
779 		error = ENXIO;
780 		goto fail;
781 	}
782 
783 	/* Do MII setup. */
784 	if (sc->vr_revid >= REV_ID_VT6105_A0)
785 		phy = 1;
786 	else
787 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
788 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
789 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
790 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
791 	if (error != 0) {
792 		device_printf(dev, "attaching PHYs failed\n");
793 		goto fail;
794 	}
795 
796 	/* Call MI attach routine. */
797 	ether_ifattach(ifp, eaddr);
798 	/*
799 	 * Tell the upper layer(s) we support long frames.
800 	 * Must appear after the call to ether_ifattach() because
801 	 * ether_ifattach() sets ifi_hdrlen to the default value.
802 	 */
803 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
804 
805 	/* Hook interrupt last to avoid having to lock softc. */
806 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
807 	    vr_intr, NULL, sc, &sc->vr_intrhand);
808 
809 	if (error) {
810 		device_printf(dev, "couldn't set up irq\n");
811 		ether_ifdetach(ifp);
812 		goto fail;
813 	}
814 
815 fail:
816 	if (error)
817 		vr_detach(dev);
818 
819 	return (error);
820 }
821 
822 /*
823  * Shutdown hardware and free up resources. This can be called any
824  * time after the mutex has been initialized. It is called in both
825  * the error case in attach and the normal detach case so it needs
826  * to be careful about only freeing resources that have actually been
827  * allocated.
828  */
829 static int
830 vr_detach(device_t dev)
831 {
832 	struct vr_softc		*sc = device_get_softc(dev);
833 	struct ifnet		*ifp = sc->vr_ifp;
834 
835 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
836 
837 #ifdef DEVICE_POLLING
838 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
839 		ether_poll_deregister(ifp);
840 #endif
841 
842 	/* These should only be active if attach succeeded. */
843 	if (device_is_attached(dev)) {
844 		VR_LOCK(sc);
845 		sc->vr_flags |= VR_F_DETACHED;
846 		vr_stop(sc);
847 		VR_UNLOCK(sc);
848 		callout_drain(&sc->vr_stat_callout);
849 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
850 		ether_ifdetach(ifp);
851 	}
852 	if (sc->vr_miibus)
853 		device_delete_child(dev, sc->vr_miibus);
854 	bus_generic_detach(dev);
855 
856 	if (sc->vr_intrhand)
857 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
858 	if (sc->vr_irq)
859 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
860 	if (sc->vr_res)
861 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
862 		    sc->vr_res);
863 
864 	if (ifp)
865 		if_free(ifp);
866 
867 	vr_dma_free(sc);
868 
869 	mtx_destroy(&sc->vr_mtx);
870 
871 	return (0);
872 }
873 
874 struct vr_dmamap_arg {
875 	bus_addr_t	vr_busaddr;
876 };
877 
878 static void
879 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
880 {
881 	struct vr_dmamap_arg	*ctx;
882 
883 	if (error != 0)
884 		return;
885 	ctx = arg;
886 	ctx->vr_busaddr = segs[0].ds_addr;
887 }
888 
889 static int
890 vr_dma_alloc(struct vr_softc *sc)
891 {
892 	struct vr_dmamap_arg	ctx;
893 	struct vr_txdesc	*txd;
894 	struct vr_rxdesc	*rxd;
895 	bus_size_t		tx_alignment;
896 	int			error, i;
897 
898 	/* Create parent DMA tag. */
899 	error = bus_dma_tag_create(
900 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
901 	    1, 0,			/* alignment, boundary */
902 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
903 	    BUS_SPACE_MAXADDR,		/* highaddr */
904 	    NULL, NULL,			/* filter, filterarg */
905 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
906 	    0,				/* nsegments */
907 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
908 	    0,				/* flags */
909 	    NULL, NULL,			/* lockfunc, lockarg */
910 	    &sc->vr_cdata.vr_parent_tag);
911 	if (error != 0) {
912 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
913 		goto fail;
914 	}
915 	/* Create tag for Tx ring. */
916 	error = bus_dma_tag_create(
917 	    sc->vr_cdata.vr_parent_tag,	/* parent */
918 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
919 	    BUS_SPACE_MAXADDR,		/* lowaddr */
920 	    BUS_SPACE_MAXADDR,		/* highaddr */
921 	    NULL, NULL,			/* filter, filterarg */
922 	    VR_TX_RING_SIZE,		/* maxsize */
923 	    1,				/* nsegments */
924 	    VR_TX_RING_SIZE,		/* maxsegsize */
925 	    0,				/* flags */
926 	    NULL, NULL,			/* lockfunc, lockarg */
927 	    &sc->vr_cdata.vr_tx_ring_tag);
928 	if (error != 0) {
929 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
930 		goto fail;
931 	}
932 
933 	/* Create tag for Rx ring. */
934 	error = bus_dma_tag_create(
935 	    sc->vr_cdata.vr_parent_tag,	/* parent */
936 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
937 	    BUS_SPACE_MAXADDR,		/* lowaddr */
938 	    BUS_SPACE_MAXADDR,		/* highaddr */
939 	    NULL, NULL,			/* filter, filterarg */
940 	    VR_RX_RING_SIZE,		/* maxsize */
941 	    1,				/* nsegments */
942 	    VR_RX_RING_SIZE,		/* maxsegsize */
943 	    0,				/* flags */
944 	    NULL, NULL,			/* lockfunc, lockarg */
945 	    &sc->vr_cdata.vr_rx_ring_tag);
946 	if (error != 0) {
947 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
948 		goto fail;
949 	}
950 
951 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
952 		tx_alignment = sizeof(uint32_t);
953 	else
954 		tx_alignment = 1;
955 	/* Create tag for Tx buffers. */
956 	error = bus_dma_tag_create(
957 	    sc->vr_cdata.vr_parent_tag,	/* parent */
958 	    tx_alignment, 0,		/* alignment, boundary */
959 	    BUS_SPACE_MAXADDR,		/* lowaddr */
960 	    BUS_SPACE_MAXADDR,		/* highaddr */
961 	    NULL, NULL,			/* filter, filterarg */
962 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
963 	    VR_MAXFRAGS,		/* nsegments */
964 	    MCLBYTES,			/* maxsegsize */
965 	    0,				/* flags */
966 	    NULL, NULL,			/* lockfunc, lockarg */
967 	    &sc->vr_cdata.vr_tx_tag);
968 	if (error != 0) {
969 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
970 		goto fail;
971 	}
972 
973 	/* Create tag for Rx buffers. */
974 	error = bus_dma_tag_create(
975 	    sc->vr_cdata.vr_parent_tag,	/* parent */
976 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
977 	    BUS_SPACE_MAXADDR,		/* lowaddr */
978 	    BUS_SPACE_MAXADDR,		/* highaddr */
979 	    NULL, NULL,			/* filter, filterarg */
980 	    MCLBYTES,			/* maxsize */
981 	    1,				/* nsegments */
982 	    MCLBYTES,			/* maxsegsize */
983 	    0,				/* flags */
984 	    NULL, NULL,			/* lockfunc, lockarg */
985 	    &sc->vr_cdata.vr_rx_tag);
986 	if (error != 0) {
987 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
988 		goto fail;
989 	}
990 
991 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
992 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
993 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
994 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
995 	if (error != 0) {
996 		device_printf(sc->vr_dev,
997 		    "failed to allocate DMA'able memory for Tx ring\n");
998 		goto fail;
999 	}
1000 
1001 	ctx.vr_busaddr = 0;
1002 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
1003 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
1004 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1005 	if (error != 0 || ctx.vr_busaddr == 0) {
1006 		device_printf(sc->vr_dev,
1007 		    "failed to load DMA'able memory for Tx ring\n");
1008 		goto fail;
1009 	}
1010 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1011 
1012 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1013 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1014 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1015 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1016 	if (error != 0) {
1017 		device_printf(sc->vr_dev,
1018 		    "failed to allocate DMA'able memory for Rx ring\n");
1019 		goto fail;
1020 	}
1021 
1022 	ctx.vr_busaddr = 0;
1023 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1024 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1025 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1026 	if (error != 0 || ctx.vr_busaddr == 0) {
1027 		device_printf(sc->vr_dev,
1028 		    "failed to load DMA'able memory for Rx ring\n");
1029 		goto fail;
1030 	}
1031 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1032 
1033 	/* Create DMA maps for Tx buffers. */
1034 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1035 		txd = &sc->vr_cdata.vr_txdesc[i];
1036 		txd->tx_m = NULL;
1037 		txd->tx_dmamap = NULL;
1038 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1039 		    &txd->tx_dmamap);
1040 		if (error != 0) {
1041 			device_printf(sc->vr_dev,
1042 			    "failed to create Tx dmamap\n");
1043 			goto fail;
1044 		}
1045 	}
1046 	/* Create DMA maps for Rx buffers. */
1047 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1048 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1049 		device_printf(sc->vr_dev,
1050 		    "failed to create spare Rx dmamap\n");
1051 		goto fail;
1052 	}
1053 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1054 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1055 		rxd->rx_m = NULL;
1056 		rxd->rx_dmamap = NULL;
1057 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1058 		    &rxd->rx_dmamap);
1059 		if (error != 0) {
1060 			device_printf(sc->vr_dev,
1061 			    "failed to create Rx dmamap\n");
1062 			goto fail;
1063 		}
1064 	}
1065 
1066 fail:
1067 	return (error);
1068 }
1069 
1070 static void
1071 vr_dma_free(struct vr_softc *sc)
1072 {
1073 	struct vr_txdesc	*txd;
1074 	struct vr_rxdesc	*rxd;
1075 	int			i;
1076 
1077 	/* Tx ring. */
1078 	if (sc->vr_cdata.vr_tx_ring_tag) {
1079 		if (sc->vr_rdata.vr_tx_ring_paddr)
1080 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1081 			    sc->vr_cdata.vr_tx_ring_map);
1082 		if (sc->vr_rdata.vr_tx_ring)
1083 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1084 			    sc->vr_rdata.vr_tx_ring,
1085 			    sc->vr_cdata.vr_tx_ring_map);
1086 		sc->vr_rdata.vr_tx_ring = NULL;
1087 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1088 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1089 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1090 	}
1091 	/* Rx ring. */
1092 	if (sc->vr_cdata.vr_rx_ring_tag) {
1093 		if (sc->vr_rdata.vr_rx_ring_paddr)
1094 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1095 			    sc->vr_cdata.vr_rx_ring_map);
1096 		if (sc->vr_rdata.vr_rx_ring)
1097 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1098 			    sc->vr_rdata.vr_rx_ring,
1099 			    sc->vr_cdata.vr_rx_ring_map);
1100 		sc->vr_rdata.vr_rx_ring = NULL;
1101 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1102 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1103 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1104 	}
1105 	/* Tx buffers. */
1106 	if (sc->vr_cdata.vr_tx_tag) {
1107 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1108 			txd = &sc->vr_cdata.vr_txdesc[i];
1109 			if (txd->tx_dmamap) {
1110 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1111 				    txd->tx_dmamap);
1112 				txd->tx_dmamap = NULL;
1113 			}
1114 		}
1115 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1116 		sc->vr_cdata.vr_tx_tag = NULL;
1117 	}
1118 	/* Rx buffers. */
1119 	if (sc->vr_cdata.vr_rx_tag) {
1120 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1121 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1122 			if (rxd->rx_dmamap) {
1123 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1124 				    rxd->rx_dmamap);
1125 				rxd->rx_dmamap = NULL;
1126 			}
1127 		}
1128 		if (sc->vr_cdata.vr_rx_sparemap) {
1129 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1130 			    sc->vr_cdata.vr_rx_sparemap);
1131 			sc->vr_cdata.vr_rx_sparemap = 0;
1132 		}
1133 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1134 		sc->vr_cdata.vr_rx_tag = NULL;
1135 	}
1136 
1137 	if (sc->vr_cdata.vr_parent_tag) {
1138 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1139 		sc->vr_cdata.vr_parent_tag = NULL;
1140 	}
1141 }
1142 
1143 /*
1144  * Initialize the transmit descriptors.
1145  */
1146 static int
1147 vr_tx_ring_init(struct vr_softc *sc)
1148 {
1149 	struct vr_ring_data	*rd;
1150 	struct vr_txdesc	*txd;
1151 	bus_addr_t		addr;
1152 	int			i;
1153 
1154 	sc->vr_cdata.vr_tx_prod = 0;
1155 	sc->vr_cdata.vr_tx_cons = 0;
1156 	sc->vr_cdata.vr_tx_cnt = 0;
1157 	sc->vr_cdata.vr_tx_pkts = 0;
1158 
1159 	rd = &sc->vr_rdata;
1160 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1161 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1162 		if (i == VR_TX_RING_CNT - 1)
1163 			addr = VR_TX_RING_ADDR(sc, 0);
1164 		else
1165 			addr = VR_TX_RING_ADDR(sc, i + 1);
1166 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1167 		txd = &sc->vr_cdata.vr_txdesc[i];
1168 		txd->tx_m = NULL;
1169 	}
1170 
1171 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1172 	    sc->vr_cdata.vr_tx_ring_map,
1173 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1174 
1175 	return (0);
1176 }
1177 
1178 /*
1179  * Initialize the RX descriptors and allocate mbufs for them. Note that
1180  * we arrange the descriptors in a closed ring, so that the last descriptor
1181  * points back to the first.
1182  */
1183 static int
1184 vr_rx_ring_init(struct vr_softc *sc)
1185 {
1186 	struct vr_ring_data	*rd;
1187 	struct vr_rxdesc	*rxd;
1188 	bus_addr_t		addr;
1189 	int			i;
1190 
1191 	sc->vr_cdata.vr_rx_cons = 0;
1192 
1193 	rd = &sc->vr_rdata;
1194 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1195 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1196 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1197 		rxd->rx_m = NULL;
1198 		rxd->desc = &rd->vr_rx_ring[i];
1199 		if (i == VR_RX_RING_CNT - 1)
1200 			addr = VR_RX_RING_ADDR(sc, 0);
1201 		else
1202 			addr = VR_RX_RING_ADDR(sc, i + 1);
1203 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1204 		if (vr_newbuf(sc, i) != 0)
1205 			return (ENOBUFS);
1206 	}
1207 
1208 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1209 	    sc->vr_cdata.vr_rx_ring_map,
1210 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1211 
1212 	return (0);
1213 }
1214 
1215 static __inline void
1216 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1217 {
1218 	struct vr_desc	*desc;
1219 
1220 	desc = rxd->desc;
1221 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1222 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1223 }
1224 
1225 /*
1226  * Initialize an RX descriptor and attach an MBUF cluster.
1227  * Note: the length fields are only 11 bits wide, which means the
1228  * largest size we can specify is 2047. This is important because
1229  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1230  * overflow the field and make a mess.
1231  */
1232 static int
1233 vr_newbuf(struct vr_softc *sc, int idx)
1234 {
1235 	struct vr_desc		*desc;
1236 	struct vr_rxdesc	*rxd;
1237 	struct mbuf		*m;
1238 	bus_dma_segment_t	segs[1];
1239 	bus_dmamap_t		map;
1240 	int			nsegs;
1241 
1242 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1243 	if (m == NULL)
1244 		return (ENOBUFS);
1245 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1246 	m_adj(m, sizeof(uint64_t));
1247 
1248 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1249 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1250 		m_freem(m);
1251 		return (ENOBUFS);
1252 	}
1253 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1254 
1255 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1256 	if (rxd->rx_m != NULL) {
1257 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1258 		    BUS_DMASYNC_POSTREAD);
1259 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1260 	}
1261 	map = rxd->rx_dmamap;
1262 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1263 	sc->vr_cdata.vr_rx_sparemap = map;
1264 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1265 	    BUS_DMASYNC_PREREAD);
1266 	rxd->rx_m = m;
1267 	desc = rxd->desc;
1268 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1269 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1270 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1271 
1272 	return (0);
1273 }
1274 
1275 #ifndef __NO_STRICT_ALIGNMENT
1276 static __inline void
1277 vr_fixup_rx(struct mbuf *m)
1278 {
1279         uint16_t		*src, *dst;
1280         int			i;
1281 
1282 	src = mtod(m, uint16_t *);
1283 	dst = src - 1;
1284 
1285 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1286 		*dst++ = *src++;
1287 
1288 	m->m_data -= ETHER_ALIGN;
1289 }
1290 #endif
1291 
1292 /*
1293  * A frame has been uploaded: pass the resulting mbuf chain up to
1294  * the higher level protocols.
1295  */
1296 static int
1297 vr_rxeof(struct vr_softc *sc)
1298 {
1299 	struct vr_rxdesc	*rxd;
1300 	struct mbuf		*m;
1301 	struct ifnet		*ifp;
1302 	struct vr_desc		*cur_rx;
1303 	int			cons, prog, total_len, rx_npkts;
1304 	uint32_t		rxstat, rxctl;
1305 
1306 	VR_LOCK_ASSERT(sc);
1307 	ifp = sc->vr_ifp;
1308 	cons = sc->vr_cdata.vr_rx_cons;
1309 	rx_npkts = 0;
1310 
1311 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1312 	    sc->vr_cdata.vr_rx_ring_map,
1313 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1314 
1315 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1316 #ifdef DEVICE_POLLING
1317 		if (ifp->if_capenable & IFCAP_POLLING) {
1318 			if (sc->rxcycles <= 0)
1319 				break;
1320 			sc->rxcycles--;
1321 		}
1322 #endif
1323 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1324 		rxstat = le32toh(cur_rx->vr_status);
1325 		rxctl = le32toh(cur_rx->vr_ctl);
1326 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1327 			break;
1328 
1329 		prog++;
1330 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1331 		m = rxd->rx_m;
1332 
1333 		/*
1334 		 * If an error occurs, update stats, clear the
1335 		 * status word and leave the mbuf cluster in place:
1336 		 * it should simply get re-used next time this descriptor
1337 		 * comes up in the ring.
1338 		 * We don't support SG in Rx path yet, so discard
1339 		 * partial frame.
1340 		 */
1341 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1342 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1343 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1344 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1345 			sc->vr_stat.rx_errors++;
1346 			if (rxstat & VR_RXSTAT_CRCERR)
1347 				sc->vr_stat.rx_crc_errors++;
1348 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1349 				sc->vr_stat.rx_alignment++;
1350 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1351 				sc->vr_stat.rx_fifo_overflows++;
1352 			if (rxstat & VR_RXSTAT_GIANT)
1353 				sc->vr_stat.rx_giants++;
1354 			if (rxstat & VR_RXSTAT_RUNT)
1355 				sc->vr_stat.rx_runts++;
1356 			if (rxstat & VR_RXSTAT_BUFFERR)
1357 				sc->vr_stat.rx_no_buffers++;
1358 #ifdef	VR_SHOW_ERRORS
1359 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1360 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1361 #endif
1362 			vr_discard_rxbuf(rxd);
1363 			continue;
1364 		}
1365 
1366 		if (vr_newbuf(sc, cons) != 0) {
1367 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1368 			sc->vr_stat.rx_errors++;
1369 			sc->vr_stat.rx_no_mbufs++;
1370 			vr_discard_rxbuf(rxd);
1371 			continue;
1372 		}
1373 
1374 		/*
1375 		 * XXX The VIA Rhine chip includes the CRC with every
1376 		 * received frame, and there's no way to turn this
1377 		 * behavior off (at least, I can't find anything in
1378 		 * the manual that explains how to do it) so we have
1379 		 * to trim off the CRC manually.
1380 		 */
1381 		total_len = VR_RXBYTES(rxstat);
1382 		total_len -= ETHER_CRC_LEN;
1383 		m->m_pkthdr.len = m->m_len = total_len;
1384 #ifndef	__NO_STRICT_ALIGNMENT
1385 		/*
1386 		 * RX buffers must be 32-bit aligned.
1387 		 * Ignore the alignment problems on the non-strict alignment
1388 		 * platform. The performance hit incurred due to unaligned
1389 		 * accesses is much smaller than the hit produced by forcing
1390 		 * buffer copies all the time.
1391 		 */
1392 		vr_fixup_rx(m);
1393 #endif
1394 		m->m_pkthdr.rcvif = ifp;
1395 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1396 		sc->vr_stat.rx_ok++;
1397 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1398 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1399 		    (rxctl & VR_RXCTL_IP) != 0) {
1400 			/* Checksum is valid for non-fragmented IP packets. */
1401 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1402 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1403 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1404 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1405 					m->m_pkthdr.csum_flags |=
1406 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1407 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1408 						m->m_pkthdr.csum_data = 0xffff;
1409 				}
1410 			}
1411 		}
1412 		VR_UNLOCK(sc);
1413 		(*ifp->if_input)(ifp, m);
1414 		VR_LOCK(sc);
1415 		rx_npkts++;
1416 	}
1417 
1418 	if (prog > 0) {
1419 		/*
1420 		 * Let controller know how many number of RX buffers
1421 		 * are posted but avoid expensive register access if
1422 		 * TX pause capability was not negotiated with link
1423 		 * partner.
1424 		 */
1425 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1426 			if (prog >= VR_RX_RING_CNT)
1427 				prog = VR_RX_RING_CNT - 1;
1428 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1429 		}
1430 		sc->vr_cdata.vr_rx_cons = cons;
1431 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1432 		    sc->vr_cdata.vr_rx_ring_map,
1433 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1434 	}
1435 	return (rx_npkts);
1436 }
1437 
1438 /*
1439  * A frame was downloaded to the chip. It's safe for us to clean up
1440  * the list buffers.
1441  */
1442 static void
1443 vr_txeof(struct vr_softc *sc)
1444 {
1445 	struct vr_txdesc	*txd;
1446 	struct vr_desc		*cur_tx;
1447 	struct ifnet		*ifp;
1448 	uint32_t		txctl, txstat;
1449 	int			cons, prod;
1450 
1451 	VR_LOCK_ASSERT(sc);
1452 
1453 	cons = sc->vr_cdata.vr_tx_cons;
1454 	prod = sc->vr_cdata.vr_tx_prod;
1455 	if (cons == prod)
1456 		return;
1457 
1458 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1459 	    sc->vr_cdata.vr_tx_ring_map,
1460 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1461 
1462 	ifp = sc->vr_ifp;
1463 	/*
1464 	 * Go through our tx list and free mbufs for those
1465 	 * frames that have been transmitted.
1466 	 */
1467 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1468 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1469 		txctl = le32toh(cur_tx->vr_ctl);
1470 		txstat = le32toh(cur_tx->vr_status);
1471 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1472 			break;
1473 
1474 		sc->vr_cdata.vr_tx_cnt--;
1475 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1476 		/* Only the first descriptor in the chain is valid. */
1477 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1478 			continue;
1479 
1480 		txd = &sc->vr_cdata.vr_txdesc[cons];
1481 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1482 		    __func__));
1483 
1484 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1485 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1486 			sc->vr_stat.tx_errors++;
1487 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1488 				/* Give up and restart Tx. */
1489 				sc->vr_stat.tx_abort++;
1490 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1491 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1492 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1493 				    txd->tx_dmamap);
1494 				m_freem(txd->tx_m);
1495 				txd->tx_m = NULL;
1496 				VR_INC(cons, VR_TX_RING_CNT);
1497 				sc->vr_cdata.vr_tx_cons = cons;
1498 				if (vr_tx_stop(sc) != 0) {
1499 					device_printf(sc->vr_dev,
1500 					    "%s: Tx shutdown error -- "
1501 					    "resetting\n", __func__);
1502 					sc->vr_flags |= VR_F_RESTART;
1503 					return;
1504 				}
1505 				vr_tx_start(sc);
1506 				break;
1507 			}
1508 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1509 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1510 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1511 				sc->vr_stat.tx_underrun++;
1512 				/* Retry and restart Tx. */
1513 				sc->vr_cdata.vr_tx_cnt++;
1514 				sc->vr_cdata.vr_tx_cons = cons;
1515 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1516 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1517 				    sc->vr_cdata.vr_tx_ring_map,
1518 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1519 				vr_tx_underrun(sc);
1520 				return;
1521 			}
1522 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1523 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1524 				sc->vr_stat.tx_collisions++;
1525 			}
1526 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1527 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1528 				sc->vr_stat.tx_late_collisions++;
1529 			}
1530 		} else {
1531 			sc->vr_stat.tx_ok++;
1532 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1533 		}
1534 
1535 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1536 		    BUS_DMASYNC_POSTWRITE);
1537 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1538 		if (sc->vr_revid < REV_ID_VT3071_A) {
1539 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1540 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1541 			sc->vr_stat.tx_collisions +=
1542 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1543 		} else {
1544 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1545 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1546 		}
1547 		m_freem(txd->tx_m);
1548 		txd->tx_m = NULL;
1549 	}
1550 
1551 	sc->vr_cdata.vr_tx_cons = cons;
1552 	if (sc->vr_cdata.vr_tx_cnt == 0)
1553 		sc->vr_watchdog_timer = 0;
1554 }
1555 
1556 static void
1557 vr_tick(void *xsc)
1558 {
1559 	struct vr_softc		*sc;
1560 	struct mii_data		*mii;
1561 
1562 	sc = (struct vr_softc *)xsc;
1563 
1564 	VR_LOCK_ASSERT(sc);
1565 
1566 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1567 		device_printf(sc->vr_dev, "restarting\n");
1568 		sc->vr_stat.num_restart++;
1569 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1570 		vr_init_locked(sc);
1571 		sc->vr_flags &= ~VR_F_RESTART;
1572 	}
1573 
1574 	mii = device_get_softc(sc->vr_miibus);
1575 	mii_tick(mii);
1576 	if ((sc->vr_flags & VR_F_LINK) == 0)
1577 		vr_miibus_statchg(sc->vr_dev);
1578 	vr_watchdog(sc);
1579 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1580 }
1581 
1582 #ifdef DEVICE_POLLING
1583 static poll_handler_t vr_poll;
1584 static poll_handler_t vr_poll_locked;
1585 
1586 static int
1587 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1588 {
1589 	struct vr_softc *sc;
1590 	int rx_npkts;
1591 
1592 	sc = ifp->if_softc;
1593 	rx_npkts = 0;
1594 
1595 	VR_LOCK(sc);
1596 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1597 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1598 	VR_UNLOCK(sc);
1599 	return (rx_npkts);
1600 }
1601 
1602 static int
1603 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1604 {
1605 	struct vr_softc *sc;
1606 	int rx_npkts;
1607 
1608 	sc = ifp->if_softc;
1609 
1610 	VR_LOCK_ASSERT(sc);
1611 
1612 	sc->rxcycles = count;
1613 	rx_npkts = vr_rxeof(sc);
1614 	vr_txeof(sc);
1615 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1616 		vr_start_locked(ifp);
1617 
1618 	if (cmd == POLL_AND_CHECK_STATUS) {
1619 		uint16_t status;
1620 
1621 		/* Also check status register. */
1622 		status = CSR_READ_2(sc, VR_ISR);
1623 		if (status)
1624 			CSR_WRITE_2(sc, VR_ISR, status);
1625 
1626 		if ((status & VR_INTRS) == 0)
1627 			return (rx_npkts);
1628 
1629 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1630 		    VR_ISR_STATSOFLOW)) != 0) {
1631 			if (vr_error(sc, status) != 0)
1632 				return (rx_npkts);
1633 		}
1634 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1635 #ifdef	VR_SHOW_ERRORS
1636 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1637 			    __func__, status, VR_ISR_ERR_BITS);
1638 #endif
1639 			vr_rx_start(sc);
1640 		}
1641 	}
1642 	return (rx_npkts);
1643 }
1644 #endif /* DEVICE_POLLING */
1645 
1646 /* Back off the transmit threshold. */
1647 static void
1648 vr_tx_underrun(struct vr_softc *sc)
1649 {
1650 	int	thresh;
1651 
1652 	device_printf(sc->vr_dev, "Tx underrun -- ");
1653 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1654 		thresh = sc->vr_txthresh;
1655 		sc->vr_txthresh++;
1656 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1657 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1658 			printf("using store and forward mode\n");
1659 		} else
1660 			printf("increasing Tx threshold(%d -> %d)\n",
1661 			    vr_tx_threshold_tables[thresh].value,
1662 			    vr_tx_threshold_tables[thresh + 1].value);
1663 	} else
1664 		printf("\n");
1665 	sc->vr_stat.tx_underrun++;
1666 	if (vr_tx_stop(sc) != 0) {
1667 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1668 		    "resetting\n", __func__);
1669 		sc->vr_flags |= VR_F_RESTART;
1670 		return;
1671 	}
1672 	vr_tx_start(sc);
1673 }
1674 
1675 static int
1676 vr_intr(void *arg)
1677 {
1678 	struct vr_softc		*sc;
1679 	uint16_t		status;
1680 
1681 	sc = (struct vr_softc *)arg;
1682 
1683 	status = CSR_READ_2(sc, VR_ISR);
1684 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1685 		return (FILTER_STRAY);
1686 
1687 	/* Disable interrupts. */
1688 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1689 
1690 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1691 
1692 	return (FILTER_HANDLED);
1693 }
1694 
1695 static void
1696 vr_int_task(void *arg, int npending)
1697 {
1698 	struct vr_softc		*sc;
1699 	struct ifnet		*ifp;
1700 	uint16_t		status;
1701 
1702 	sc = (struct vr_softc *)arg;
1703 
1704 	VR_LOCK(sc);
1705 
1706 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1707 		goto done_locked;
1708 
1709 	status = CSR_READ_2(sc, VR_ISR);
1710 	ifp = sc->vr_ifp;
1711 #ifdef DEVICE_POLLING
1712 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1713 		goto done_locked;
1714 #endif
1715 
1716 	/* Suppress unwanted interrupts. */
1717 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1718 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1719 		CSR_WRITE_2(sc, VR_IMR, 0);
1720 		CSR_WRITE_2(sc, VR_ISR, status);
1721 		goto done_locked;
1722 	}
1723 
1724 	for (; (status & VR_INTRS) != 0;) {
1725 		CSR_WRITE_2(sc, VR_ISR, status);
1726 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1727 		    VR_ISR_STATSOFLOW)) != 0) {
1728 			if (vr_error(sc, status) != 0) {
1729 				VR_UNLOCK(sc);
1730 				return;
1731 			}
1732 		}
1733 		vr_rxeof(sc);
1734 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1735 #ifdef	VR_SHOW_ERRORS
1736 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1737 			    __func__, status, VR_ISR_ERR_BITS);
1738 #endif
1739 			/* Restart Rx if RxDMA SM was stopped. */
1740 			vr_rx_start(sc);
1741 		}
1742 		vr_txeof(sc);
1743 
1744 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745 			vr_start_locked(ifp);
1746 
1747 		status = CSR_READ_2(sc, VR_ISR);
1748 	}
1749 
1750 	/* Re-enable interrupts. */
1751 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1752 
1753 done_locked:
1754 	VR_UNLOCK(sc);
1755 }
1756 
1757 static int
1758 vr_error(struct vr_softc *sc, uint16_t status)
1759 {
1760 	uint16_t pcis;
1761 
1762 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1763 	if ((status & VR_ISR_BUSERR) != 0) {
1764 		status &= ~VR_ISR_BUSERR;
1765 		sc->vr_stat.bus_errors++;
1766 		/* Disable further interrupts. */
1767 		CSR_WRITE_2(sc, VR_IMR, 0);
1768 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1769 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1770 		    "resetting\n", pcis);
1771 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1772 		sc->vr_flags |= VR_F_RESTART;
1773 		return (EAGAIN);
1774 	}
1775 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1776 		/* Link state change, duplex changes etc. */
1777 		status &= ~VR_ISR_LINKSTAT2;
1778 	}
1779 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1780 		status &= ~VR_ISR_STATSOFLOW;
1781 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1782 			/* Update MIB counters. */
1783 		}
1784 	}
1785 
1786 	if (status != 0)
1787 		device_printf(sc->vr_dev,
1788 		    "unhandled interrupt, status = 0x%04x\n", status);
1789 	return (0);
1790 }
1791 
1792 /*
1793  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1794  * pointers to the fragment pointers.
1795  */
1796 static int
1797 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1798 {
1799 	struct vr_txdesc	*txd;
1800 	struct vr_desc		*desc;
1801 	struct mbuf		*m;
1802 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1803 	uint32_t		csum_flags, txctl;
1804 	int			error, i, nsegs, prod, si;
1805 	int			padlen;
1806 
1807 	VR_LOCK_ASSERT(sc);
1808 
1809 	M_ASSERTPKTHDR((*m_head));
1810 
1811 	/*
1812 	 * Some VIA Rhine wants packet buffers to be longword
1813 	 * aligned, but very often our mbufs aren't. Rather than
1814 	 * waste time trying to decide when to copy and when not
1815 	 * to copy, just do it all the time.
1816 	 */
1817 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1818 		m = m_defrag(*m_head, M_NOWAIT);
1819 		if (m == NULL) {
1820 			m_freem(*m_head);
1821 			*m_head = NULL;
1822 			return (ENOBUFS);
1823 		}
1824 		*m_head = m;
1825 	}
1826 
1827 	/*
1828 	 * The Rhine chip doesn't auto-pad, so we have to make
1829 	 * sure to pad short frames out to the minimum frame length
1830 	 * ourselves.
1831 	 */
1832 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1833 		m = *m_head;
1834 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1835 		if (M_WRITABLE(m) == 0) {
1836 			/* Get a writable copy. */
1837 			m = m_dup(*m_head, M_NOWAIT);
1838 			m_freem(*m_head);
1839 			if (m == NULL) {
1840 				*m_head = NULL;
1841 				return (ENOBUFS);
1842 			}
1843 			*m_head = m;
1844 		}
1845 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1846 			m = m_defrag(m, M_NOWAIT);
1847 			if (m == NULL) {
1848 				m_freem(*m_head);
1849 				*m_head = NULL;
1850 				return (ENOBUFS);
1851 			}
1852 		}
1853 		/*
1854 		 * Manually pad short frames, and zero the pad space
1855 		 * to avoid leaking data.
1856 		 */
1857 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1858 		m->m_pkthdr.len += padlen;
1859 		m->m_len = m->m_pkthdr.len;
1860 		*m_head = m;
1861 	}
1862 
1863 	prod = sc->vr_cdata.vr_tx_prod;
1864 	txd = &sc->vr_cdata.vr_txdesc[prod];
1865 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1866 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1867 	if (error == EFBIG) {
1868 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1869 		if (m == NULL) {
1870 			m_freem(*m_head);
1871 			*m_head = NULL;
1872 			return (ENOBUFS);
1873 		}
1874 		*m_head = m;
1875 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1876 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1877 		if (error != 0) {
1878 			m_freem(*m_head);
1879 			*m_head = NULL;
1880 			return (error);
1881 		}
1882 	} else if (error != 0)
1883 		return (error);
1884 	if (nsegs == 0) {
1885 		m_freem(*m_head);
1886 		*m_head = NULL;
1887 		return (EIO);
1888 	}
1889 
1890 	/* Check number of available descriptors. */
1891 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1892 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1893 		return (ENOBUFS);
1894 	}
1895 
1896 	txd->tx_m = *m_head;
1897 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1898 	    BUS_DMASYNC_PREWRITE);
1899 
1900 	/* Set checksum offload. */
1901 	csum_flags = 0;
1902 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1903 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1904 			csum_flags |= VR_TXCTL_IPCSUM;
1905 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1906 			csum_flags |= VR_TXCTL_TCPCSUM;
1907 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1908 			csum_flags |= VR_TXCTL_UDPCSUM;
1909 	}
1910 
1911 	/*
1912 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1913 	 * is required for all descriptors regardless of single or
1914 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1915 	 * the first descriptor for a multi-fragmented frames. Without
1916 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1917 	 * send any frames.
1918 	 */
1919 	si = prod;
1920 	for (i = 0; i < nsegs; i++) {
1921 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1922 		desc->vr_status = 0;
1923 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1924 		if (i == 0)
1925 			txctl |= VR_TXCTL_FIRSTFRAG;
1926 		desc->vr_ctl = htole32(txctl);
1927 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1928 		sc->vr_cdata.vr_tx_cnt++;
1929 		VR_INC(prod, VR_TX_RING_CNT);
1930 	}
1931 	/* Update producer index. */
1932 	sc->vr_cdata.vr_tx_prod = prod;
1933 
1934 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1935 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1936 
1937 	/*
1938 	 * Set EOP on the last desciptor and reuqest Tx completion
1939 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1940 	 */
1941 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1942 	if (sc->vr_cdata.vr_tx_pkts == 0)
1943 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1944 	else
1945 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1946 
1947 	/* Lastly turn the first descriptor ownership to hardware. */
1948 	desc = &sc->vr_rdata.vr_tx_ring[si];
1949 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1950 
1951 	/* Sync descriptors. */
1952 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1953 	    sc->vr_cdata.vr_tx_ring_map,
1954 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1955 
1956 	return (0);
1957 }
1958 
1959 static void
1960 vr_start(struct ifnet *ifp)
1961 {
1962 	struct vr_softc		*sc;
1963 
1964 	sc = ifp->if_softc;
1965 	VR_LOCK(sc);
1966 	vr_start_locked(ifp);
1967 	VR_UNLOCK(sc);
1968 }
1969 
1970 static void
1971 vr_start_locked(struct ifnet *ifp)
1972 {
1973 	struct vr_softc		*sc;
1974 	struct mbuf		*m_head;
1975 	int			enq;
1976 
1977 	sc = ifp->if_softc;
1978 
1979 	VR_LOCK_ASSERT(sc);
1980 
1981 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1982 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1983 		return;
1984 
1985 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1986 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1987 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1988 		if (m_head == NULL)
1989 			break;
1990 		/*
1991 		 * Pack the data into the transmit ring. If we
1992 		 * don't have room, set the OACTIVE flag and wait
1993 		 * for the NIC to drain the ring.
1994 		 */
1995 		if (vr_encap(sc, &m_head)) {
1996 			if (m_head == NULL)
1997 				break;
1998 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1999 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2000 			break;
2001 		}
2002 
2003 		enq++;
2004 		/*
2005 		 * If there's a BPF listener, bounce a copy of this frame
2006 		 * to him.
2007 		 */
2008 		ETHER_BPF_MTAP(ifp, m_head);
2009 	}
2010 
2011 	if (enq > 0) {
2012 		/* Tell the chip to start transmitting. */
2013 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2014 		/* Set a timeout in case the chip goes out to lunch. */
2015 		sc->vr_watchdog_timer = 5;
2016 	}
2017 }
2018 
2019 static void
2020 vr_init(void *xsc)
2021 {
2022 	struct vr_softc		*sc;
2023 
2024 	sc = (struct vr_softc *)xsc;
2025 	VR_LOCK(sc);
2026 	vr_init_locked(sc);
2027 	VR_UNLOCK(sc);
2028 }
2029 
2030 static void
2031 vr_init_locked(struct vr_softc *sc)
2032 {
2033 	struct ifnet		*ifp;
2034 	struct mii_data		*mii;
2035 	bus_addr_t		addr;
2036 	int			i;
2037 
2038 	VR_LOCK_ASSERT(sc);
2039 
2040 	ifp = sc->vr_ifp;
2041 	mii = device_get_softc(sc->vr_miibus);
2042 
2043 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2044 		return;
2045 
2046 	/* Cancel pending I/O and free all RX/TX buffers. */
2047 	vr_stop(sc);
2048 	vr_reset(sc);
2049 
2050 	/* Set our station address. */
2051 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2052 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2053 
2054 	/* Set DMA size. */
2055 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2056 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2057 
2058 	/*
2059 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2060 	 * so we must set both.
2061 	 */
2062 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2063 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2064 
2065 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2066 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2067 
2068 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2069 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2070 
2071 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2072 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2073 
2074 	/* Init circular RX list. */
2075 	if (vr_rx_ring_init(sc) != 0) {
2076 		device_printf(sc->vr_dev,
2077 		    "initialization failed: no memory for rx buffers\n");
2078 		vr_stop(sc);
2079 		return;
2080 	}
2081 
2082 	/* Init tx descriptors. */
2083 	vr_tx_ring_init(sc);
2084 
2085 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2086 		uint8_t vcam[2] = { 0, 0 };
2087 
2088 		/* Disable VLAN hardware tag insertion/stripping. */
2089 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2090 		/* Disable VLAN hardware filtering. */
2091 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2092 		/* Disable all CAM entries. */
2093 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2094 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2095 		/* Enable the first VLAN CAM. */
2096 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2097 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2098 	}
2099 
2100 	/*
2101 	 * Set up receive filter.
2102 	 */
2103 	vr_set_filter(sc);
2104 
2105 	/*
2106 	 * Load the address of the RX ring.
2107 	 */
2108 	addr = VR_RX_RING_ADDR(sc, 0);
2109 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2110 	/*
2111 	 * Load the address of the TX ring.
2112 	 */
2113 	addr = VR_TX_RING_ADDR(sc, 0);
2114 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2115 	/* Default : full-duplex, no Tx poll. */
2116 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2117 
2118 	/* Set flow-control parameters for Rhine III. */
2119 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2120 		/*
2121 		 * Configure Rx buffer count available for incoming
2122 		 * packet.
2123 		 * Even though data sheet says almost nothing about
2124 		 * this register, this register should be updated
2125 		 * whenever driver adds new RX buffers to controller.
2126 		 * Otherwise, XON frame is not sent to link partner
2127 		 * even if controller has enough RX buffers and you
2128 		 * would be isolated from network.
2129 		 * The controller is not smart enough to know number
2130 		 * of available RX buffers so driver have to let
2131 		 * controller know how many RX buffers are posted.
2132 		 * In other words, this register works like a residue
2133 		 * counter for RX buffers and should be initialized
2134 		 * to the number of total RX buffers  - 1 before
2135 		 * enabling RX MAC.  Note, this register is 8bits so
2136 		 * it effectively limits the maximum number of RX
2137 		 * buffer to be configured by controller is 255.
2138 		 */
2139 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2140 		/*
2141 		 * Tx pause low threshold : 8 free receive buffers
2142 		 * Tx pause XON high threshold : 24 free receive buffers
2143 		 */
2144 		CSR_WRITE_1(sc, VR_FLOWCR1,
2145 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2146 		/* Set Tx pause timer. */
2147 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2148 	}
2149 
2150 	/* Enable receiver and transmitter. */
2151 	CSR_WRITE_1(sc, VR_CR0,
2152 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2153 
2154 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2155 #ifdef DEVICE_POLLING
2156 	/*
2157 	 * Disable interrupts if we are polling.
2158 	 */
2159 	if (ifp->if_capenable & IFCAP_POLLING)
2160 		CSR_WRITE_2(sc, VR_IMR, 0);
2161 	else
2162 #endif
2163 	/*
2164 	 * Enable interrupts and disable MII intrs.
2165 	 */
2166 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2167 	if (sc->vr_revid > REV_ID_VT6102_A)
2168 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2169 
2170 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2171 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2172 
2173 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2174 	mii_mediachg(mii);
2175 
2176 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2177 }
2178 
2179 /*
2180  * Set media options.
2181  */
2182 static int
2183 vr_ifmedia_upd(struct ifnet *ifp)
2184 {
2185 	struct vr_softc		*sc;
2186 	struct mii_data		*mii;
2187 	struct mii_softc	*miisc;
2188 	int			error;
2189 
2190 	sc = ifp->if_softc;
2191 	VR_LOCK(sc);
2192 	mii = device_get_softc(sc->vr_miibus);
2193 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2194 		PHY_RESET(miisc);
2195 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2196 	error = mii_mediachg(mii);
2197 	VR_UNLOCK(sc);
2198 
2199 	return (error);
2200 }
2201 
2202 /*
2203  * Report current media status.
2204  */
2205 static void
2206 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2207 {
2208 	struct vr_softc		*sc;
2209 	struct mii_data		*mii;
2210 
2211 	sc = ifp->if_softc;
2212 	mii = device_get_softc(sc->vr_miibus);
2213 	VR_LOCK(sc);
2214 	if ((ifp->if_flags & IFF_UP) == 0) {
2215 		VR_UNLOCK(sc);
2216 		return;
2217 	}
2218 	mii_pollstat(mii);
2219 	ifmr->ifm_active = mii->mii_media_active;
2220 	ifmr->ifm_status = mii->mii_media_status;
2221 	VR_UNLOCK(sc);
2222 }
2223 
2224 static int
2225 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2226 {
2227 	struct vr_softc		*sc;
2228 	struct ifreq		*ifr;
2229 	struct mii_data		*mii;
2230 	int			error, mask;
2231 
2232 	sc = ifp->if_softc;
2233 	ifr = (struct ifreq *)data;
2234 	error = 0;
2235 
2236 	switch (command) {
2237 	case SIOCSIFFLAGS:
2238 		VR_LOCK(sc);
2239 		if (ifp->if_flags & IFF_UP) {
2240 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2241 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2242 				    (IFF_PROMISC | IFF_ALLMULTI))
2243 					vr_set_filter(sc);
2244 			} else {
2245 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2246 					vr_init_locked(sc);
2247 			}
2248 		} else {
2249 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2250 				vr_stop(sc);
2251 		}
2252 		sc->vr_if_flags = ifp->if_flags;
2253 		VR_UNLOCK(sc);
2254 		break;
2255 	case SIOCADDMULTI:
2256 	case SIOCDELMULTI:
2257 		VR_LOCK(sc);
2258 		vr_set_filter(sc);
2259 		VR_UNLOCK(sc);
2260 		break;
2261 	case SIOCGIFMEDIA:
2262 	case SIOCSIFMEDIA:
2263 		mii = device_get_softc(sc->vr_miibus);
2264 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2265 		break;
2266 	case SIOCSIFCAP:
2267 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2268 #ifdef DEVICE_POLLING
2269 		if (mask & IFCAP_POLLING) {
2270 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2271 				error = ether_poll_register(vr_poll, ifp);
2272 				if (error != 0)
2273 					break;
2274 				VR_LOCK(sc);
2275 				/* Disable interrupts. */
2276 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2277 				ifp->if_capenable |= IFCAP_POLLING;
2278 				VR_UNLOCK(sc);
2279 			} else {
2280 				error = ether_poll_deregister(ifp);
2281 				/* Enable interrupts. */
2282 				VR_LOCK(sc);
2283 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2284 				ifp->if_capenable &= ~IFCAP_POLLING;
2285 				VR_UNLOCK(sc);
2286 			}
2287 		}
2288 #endif /* DEVICE_POLLING */
2289 		if ((mask & IFCAP_TXCSUM) != 0 &&
2290 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2291 			ifp->if_capenable ^= IFCAP_TXCSUM;
2292 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2293 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2294 			else
2295 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2296 		}
2297 		if ((mask & IFCAP_RXCSUM) != 0 &&
2298 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2299 			ifp->if_capenable ^= IFCAP_RXCSUM;
2300 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2301 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2302 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2303 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2304 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2305 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2306 		break;
2307 	default:
2308 		error = ether_ioctl(ifp, command, data);
2309 		break;
2310 	}
2311 
2312 	return (error);
2313 }
2314 
2315 static void
2316 vr_watchdog(struct vr_softc *sc)
2317 {
2318 	struct ifnet		*ifp;
2319 
2320 	VR_LOCK_ASSERT(sc);
2321 
2322 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2323 		return;
2324 
2325 	ifp = sc->vr_ifp;
2326 	/*
2327 	 * Reclaim first as we don't request interrupt for every packets.
2328 	 */
2329 	vr_txeof(sc);
2330 	if (sc->vr_cdata.vr_tx_cnt == 0)
2331 		return;
2332 
2333 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2334 		if (bootverbose)
2335 			if_printf(sc->vr_ifp, "watchdog timeout "
2336 			   "(missed link)\n");
2337 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2338 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2339 		vr_init_locked(sc);
2340 		return;
2341 	}
2342 
2343 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2344 	if_printf(ifp, "watchdog timeout\n");
2345 
2346 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2347 	vr_init_locked(sc);
2348 
2349 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2350 		vr_start_locked(ifp);
2351 }
2352 
2353 static void
2354 vr_tx_start(struct vr_softc *sc)
2355 {
2356 	bus_addr_t	addr;
2357 	uint8_t		cmd;
2358 
2359 	cmd = CSR_READ_1(sc, VR_CR0);
2360 	if ((cmd & VR_CR0_TX_ON) == 0) {
2361 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2362 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2363 		cmd |= VR_CR0_TX_ON;
2364 		CSR_WRITE_1(sc, VR_CR0, cmd);
2365 	}
2366 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2367 		sc->vr_watchdog_timer = 5;
2368 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2369 	}
2370 }
2371 
2372 static void
2373 vr_rx_start(struct vr_softc *sc)
2374 {
2375 	bus_addr_t	addr;
2376 	uint8_t		cmd;
2377 
2378 	cmd = CSR_READ_1(sc, VR_CR0);
2379 	if ((cmd & VR_CR0_RX_ON) == 0) {
2380 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2381 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2382 		cmd |= VR_CR0_RX_ON;
2383 		CSR_WRITE_1(sc, VR_CR0, cmd);
2384 	}
2385 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2386 }
2387 
2388 static int
2389 vr_tx_stop(struct vr_softc *sc)
2390 {
2391 	int		i;
2392 	uint8_t		cmd;
2393 
2394 	cmd = CSR_READ_1(sc, VR_CR0);
2395 	if ((cmd & VR_CR0_TX_ON) != 0) {
2396 		cmd &= ~VR_CR0_TX_ON;
2397 		CSR_WRITE_1(sc, VR_CR0, cmd);
2398 		for (i = VR_TIMEOUT; i > 0; i--) {
2399 			DELAY(5);
2400 			cmd = CSR_READ_1(sc, VR_CR0);
2401 			if ((cmd & VR_CR0_TX_ON) == 0)
2402 				break;
2403 		}
2404 		if (i == 0)
2405 			return (ETIMEDOUT);
2406 	}
2407 	return (0);
2408 }
2409 
2410 static int
2411 vr_rx_stop(struct vr_softc *sc)
2412 {
2413 	int		i;
2414 	uint8_t		cmd;
2415 
2416 	cmd = CSR_READ_1(sc, VR_CR0);
2417 	if ((cmd & VR_CR0_RX_ON) != 0) {
2418 		cmd &= ~VR_CR0_RX_ON;
2419 		CSR_WRITE_1(sc, VR_CR0, cmd);
2420 		for (i = VR_TIMEOUT; i > 0; i--) {
2421 			DELAY(5);
2422 			cmd = CSR_READ_1(sc, VR_CR0);
2423 			if ((cmd & VR_CR0_RX_ON) == 0)
2424 				break;
2425 		}
2426 		if (i == 0)
2427 			return (ETIMEDOUT);
2428 	}
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Stop the adapter and free any mbufs allocated to the
2434  * RX and TX lists.
2435  */
2436 static void
2437 vr_stop(struct vr_softc *sc)
2438 {
2439 	struct vr_txdesc	*txd;
2440 	struct vr_rxdesc	*rxd;
2441 	struct ifnet		*ifp;
2442 	int			i;
2443 
2444 	VR_LOCK_ASSERT(sc);
2445 
2446 	ifp = sc->vr_ifp;
2447 	sc->vr_watchdog_timer = 0;
2448 
2449 	callout_stop(&sc->vr_stat_callout);
2450 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2451 
2452 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2453 	if (vr_rx_stop(sc) != 0)
2454 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2455 	if (vr_tx_stop(sc) != 0)
2456 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2457 	/* Clear pending interrupts. */
2458 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2459 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2460 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2461 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2462 
2463 	/*
2464 	 * Free RX and TX mbufs still in the queues.
2465 	 */
2466 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2467 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2468 		if (rxd->rx_m != NULL) {
2469 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2470 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2471 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2472 			    rxd->rx_dmamap);
2473 			m_freem(rxd->rx_m);
2474 			rxd->rx_m = NULL;
2475 		}
2476         }
2477 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2478 		txd = &sc->vr_cdata.vr_txdesc[i];
2479 		if (txd->tx_m != NULL) {
2480 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2481 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2482 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2483 			    txd->tx_dmamap);
2484 			m_freem(txd->tx_m);
2485 			txd->tx_m = NULL;
2486 		}
2487         }
2488 }
2489 
2490 /*
2491  * Stop all chip I/O so that the kernel's probe routines don't
2492  * get confused by errant DMAs when rebooting.
2493  */
2494 static int
2495 vr_shutdown(device_t dev)
2496 {
2497 
2498 	return (vr_suspend(dev));
2499 }
2500 
2501 static int
2502 vr_suspend(device_t dev)
2503 {
2504 	struct vr_softc		*sc;
2505 
2506 	sc = device_get_softc(dev);
2507 
2508 	VR_LOCK(sc);
2509 	vr_stop(sc);
2510 	vr_setwol(sc);
2511 	sc->vr_flags |= VR_F_SUSPENDED;
2512 	VR_UNLOCK(sc);
2513 
2514 	return (0);
2515 }
2516 
2517 static int
2518 vr_resume(device_t dev)
2519 {
2520 	struct vr_softc		*sc;
2521 	struct ifnet		*ifp;
2522 
2523 	sc = device_get_softc(dev);
2524 
2525 	VR_LOCK(sc);
2526 	ifp = sc->vr_ifp;
2527 	vr_clrwol(sc);
2528 	vr_reset(sc);
2529 	if (ifp->if_flags & IFF_UP)
2530 		vr_init_locked(sc);
2531 
2532 	sc->vr_flags &= ~VR_F_SUSPENDED;
2533 	VR_UNLOCK(sc);
2534 
2535 	return (0);
2536 }
2537 
2538 static void
2539 vr_setwol(struct vr_softc *sc)
2540 {
2541 	struct ifnet		*ifp;
2542 	int			pmc;
2543 	uint16_t		pmstat;
2544 	uint8_t			v;
2545 
2546 	VR_LOCK_ASSERT(sc);
2547 
2548 	if (sc->vr_revid < REV_ID_VT6102_A ||
2549 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2550 		return;
2551 
2552 	ifp = sc->vr_ifp;
2553 
2554 	/* Clear WOL configuration. */
2555 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2556 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2557 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2558 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2559 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2560 		/* Newer Rhine III supports two additional patterns. */
2561 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2562 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2563 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2564 	}
2565 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2566 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2567 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2568 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2569 	/*
2570 	 * It seems that multicast wakeup frames require programming pattern
2571 	 * registers and valid CRC as well as pattern mask for each pattern.
2572 	 * While it's possible to setup such a pattern it would complicate
2573 	 * WOL configuration so ignore multicast wakeup frames.
2574 	 */
2575 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2576 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2577 		v = CSR_READ_1(sc, VR_STICKHW);
2578 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2579 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2580 	}
2581 
2582 	/* Put hardware into sleep. */
2583 	v = CSR_READ_1(sc, VR_STICKHW);
2584 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2585 	CSR_WRITE_1(sc, VR_STICKHW, v);
2586 
2587 	/* Request PME if WOL is requested. */
2588 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2589 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2590 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2591 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2592 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2593 }
2594 
2595 static void
2596 vr_clrwol(struct vr_softc *sc)
2597 {
2598 	uint8_t			v;
2599 
2600 	VR_LOCK_ASSERT(sc);
2601 
2602 	if (sc->vr_revid < REV_ID_VT6102_A)
2603 		return;
2604 
2605 	/* Take hardware out of sleep. */
2606 	v = CSR_READ_1(sc, VR_STICKHW);
2607 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2608 	CSR_WRITE_1(sc, VR_STICKHW, v);
2609 
2610 	/* Clear WOL configuration as WOL may interfere normal operation. */
2611 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2612 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2613 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2614 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2615 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2616 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2617 		/* Newer Rhine III supports two additional patterns. */
2618 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2619 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2620 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2621 	}
2622 }
2623 
2624 static int
2625 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2626 {
2627 	struct vr_softc		*sc;
2628 	struct vr_statistics	*stat;
2629 	int			error;
2630 	int			result;
2631 
2632 	result = -1;
2633 	error = sysctl_handle_int(oidp, &result, 0, req);
2634 
2635 	if (error != 0 || req->newptr == NULL)
2636 		return (error);
2637 
2638 	if (result == 1) {
2639 		sc = (struct vr_softc *)arg1;
2640 		stat = &sc->vr_stat;
2641 
2642 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2643 		printf("Outbound good frames : %ju\n",
2644 		    (uintmax_t)stat->tx_ok);
2645 		printf("Inbound good frames : %ju\n",
2646 		    (uintmax_t)stat->rx_ok);
2647 		printf("Outbound errors : %u\n", stat->tx_errors);
2648 		printf("Inbound errors : %u\n", stat->rx_errors);
2649 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2650 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2651 		printf("Inbound FIFO overflows : %d\n",
2652 		    stat->rx_fifo_overflows);
2653 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2654 		printf("Inbound frame alignment errors : %u\n",
2655 		    stat->rx_alignment);
2656 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2657 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2658 		printf("Outbound aborted with excessive collisions : %u\n",
2659 		    stat->tx_abort);
2660 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2661 		printf("Outbound late collisions : %u\n",
2662 		    stat->tx_late_collisions);
2663 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2664 		printf("PCI bus errors : %u\n", stat->bus_errors);
2665 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2666 		    stat->num_restart);
2667 	}
2668 
2669 	return (error);
2670 }
2671