xref: /freebsd/sys/dev/vr/if_vr.c (revision 675be9115aae86ad6b3d877155d4fd7822892105)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static const struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	const char		*vr_name;
122 } const vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static int vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static void vr_intr(void *);
169 static void vr_start(struct ifnet *);
170 static void vr_start_locked(struct ifnet *);
171 static int vr_encap(struct vr_softc *, struct mbuf **);
172 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
173 static void vr_init(void *);
174 static void vr_init_locked(struct vr_softc *);
175 static void vr_tx_start(struct vr_softc *);
176 static void vr_rx_start(struct vr_softc *);
177 static int vr_tx_stop(struct vr_softc *);
178 static int vr_rx_stop(struct vr_softc *);
179 static void vr_stop(struct vr_softc *);
180 static void vr_watchdog(struct vr_softc *);
181 static int vr_ifmedia_upd(struct ifnet *);
182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
183 
184 static int vr_miibus_readreg(device_t, int, int);
185 static int vr_miibus_writereg(device_t, int, int, int);
186 static void vr_miibus_statchg(device_t);
187 
188 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
189 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
190 static void vr_set_filter(struct vr_softc *);
191 static void vr_reset(const struct vr_softc *);
192 static int vr_tx_ring_init(struct vr_softc *);
193 static int vr_rx_ring_init(struct vr_softc *);
194 static void vr_setwol(struct vr_softc *);
195 static void vr_clrwol(struct vr_softc *);
196 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
197 
198 static const struct vr_tx_threshold_table {
199 	int tx_cfg;
200 	int bcr_cfg;
201 	int value;
202 } const vr_tx_threshold_tables[] = {
203 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
204 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
205 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
206 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
207 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
208 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
209 };
210 
211 static device_method_t vr_methods[] = {
212 	/* Device interface */
213 	DEVMETHOD(device_probe,		vr_probe),
214 	DEVMETHOD(device_attach,	vr_attach),
215 	DEVMETHOD(device_detach, 	vr_detach),
216 	DEVMETHOD(device_shutdown,	vr_shutdown),
217 	DEVMETHOD(device_suspend,	vr_suspend),
218 	DEVMETHOD(device_resume,	vr_resume),
219 
220 	/* MII interface */
221 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
222 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
223 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
224 
225 	DEVMETHOD_END
226 };
227 
228 static driver_t vr_driver = {
229 	"vr",
230 	vr_methods,
231 	sizeof(struct vr_softc)
232 };
233 
234 static devclass_t vr_devclass;
235 
236 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
237 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
238 
239 static int
240 vr_miibus_readreg(device_t dev, int phy, int reg)
241 {
242 	struct vr_softc		*sc;
243 	int			i;
244 
245 	sc = device_get_softc(dev);
246 
247 	/* Set the register address. */
248 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
249 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
250 
251 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
252 		DELAY(1);
253 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
254 			break;
255 	}
256 	if (i == VR_MII_TIMEOUT)
257 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
258 
259 	return (CSR_READ_2(sc, VR_MIIDATA));
260 }
261 
262 static int
263 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
264 {
265 	struct vr_softc		*sc;
266 	int			i;
267 
268 	sc = device_get_softc(dev);
269 
270 	/* Set the register address and data to write. */
271 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
272 	CSR_WRITE_2(sc, VR_MIIDATA, data);
273 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
274 
275 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
276 		DELAY(1);
277 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
278 			break;
279 	}
280 	if (i == VR_MII_TIMEOUT)
281 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
282 		    reg);
283 
284 	return (0);
285 }
286 
287 /*
288  * In order to fiddle with the
289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
290  * first have to put the transmit and/or receive logic in the idle state.
291  */
292 static void
293 vr_miibus_statchg(device_t dev)
294 {
295 	struct vr_softc		*sc;
296 	struct mii_data		*mii;
297 	struct ifnet		*ifp;
298 	int			lfdx, mfdx;
299 	uint8_t			cr0, cr1, fc;
300 
301 	sc = device_get_softc(dev);
302 	mii = device_get_softc(sc->vr_miibus);
303 	ifp = sc->vr_ifp;
304 	if (mii == NULL || ifp == NULL ||
305 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
306 		return;
307 
308 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
309 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
310 	    (IFM_ACTIVE | IFM_AVALID)) {
311 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
312 		case IFM_10_T:
313 		case IFM_100_TX:
314 			sc->vr_flags |= VR_F_LINK;
315 			break;
316 		default:
317 			break;
318 		}
319 	}
320 
321 	if ((sc->vr_flags & VR_F_LINK) != 0) {
322 		cr0 = CSR_READ_1(sc, VR_CR0);
323 		cr1 = CSR_READ_1(sc, VR_CR1);
324 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
325 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
326 		if (mfdx != lfdx) {
327 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
328 				if (vr_tx_stop(sc) != 0 ||
329 				    vr_rx_stop(sc) != 0) {
330 					device_printf(sc->vr_dev,
331 					    "%s: Tx/Rx shutdown error -- "
332 					    "resetting\n", __func__);
333 					sc->vr_flags |= VR_F_RESTART;
334 					VR_UNLOCK(sc);
335 					return;
336 				}
337 			}
338 			if (lfdx)
339 				cr1 |= VR_CR1_FULLDUPLEX;
340 			else
341 				cr1 &= ~VR_CR1_FULLDUPLEX;
342 			CSR_WRITE_1(sc, VR_CR1, cr1);
343 		}
344 		fc = 0;
345 		/* Configure flow-control. */
346 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
347 			fc = CSR_READ_1(sc, VR_FLOWCR1);
348 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
349 			if ((IFM_OPTIONS(mii->mii_media_active) &
350 			    IFM_ETH_RXPAUSE) != 0)
351 				fc |= VR_FLOWCR1_RXPAUSE;
352 			if ((IFM_OPTIONS(mii->mii_media_active) &
353 			    IFM_ETH_TXPAUSE) != 0) {
354 				fc |= VR_FLOWCR1_TXPAUSE;
355 				sc->vr_flags |= VR_F_TXPAUSE;
356 			}
357 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
358 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
359 			/* No Tx puase capability available for Rhine II. */
360 			fc = CSR_READ_1(sc, VR_MISC_CR0);
361 			fc &= ~VR_MISCCR0_RXPAUSE;
362 			if ((IFM_OPTIONS(mii->mii_media_active) &
363 			    IFM_ETH_RXPAUSE) != 0)
364 				fc |= VR_MISCCR0_RXPAUSE;
365 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
366 		}
367 		vr_rx_start(sc);
368 		vr_tx_start(sc);
369 	} else {
370 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
371 			device_printf(sc->vr_dev,
372 			    "%s: Tx/Rx shutdown error -- resetting\n",
373 			    __func__);
374 			sc->vr_flags |= VR_F_RESTART;
375 		}
376 	}
377 }
378 
379 
380 static void
381 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
382 {
383 
384 	if (type == VR_MCAST_CAM)
385 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
386 	else
387 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
388 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
389 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
390 }
391 
392 static int
393 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
394 {
395 	int	i;
396 
397 	if (type == VR_MCAST_CAM) {
398 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
399 			return (EINVAL);
400 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
401 	} else
402 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
403 
404 	/* Set CAM entry address. */
405 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
406 	/* Set CAM entry data. */
407 	if (type == VR_MCAST_CAM) {
408 		for (i = 0; i < ETHER_ADDR_LEN; i++)
409 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
410 	} else {
411 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
412 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
413 	}
414 	DELAY(10);
415 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
416 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
417 	for (i = 0; i < VR_TIMEOUT; i++) {
418 		DELAY(1);
419 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
420 			break;
421 	}
422 
423 	if (i == VR_TIMEOUT)
424 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
425 		    __func__);
426 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
427 
428 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
429 }
430 
431 /*
432  * Program the 64-bit multicast hash filter.
433  */
434 static void
435 vr_set_filter(struct vr_softc *sc)
436 {
437 	struct ifnet		*ifp;
438 	int			h;
439 	uint32_t		hashes[2] = { 0, 0 };
440 	struct ifmultiaddr	*ifma;
441 	uint8_t			rxfilt;
442 	int			error, mcnt;
443 	uint32_t		cam_mask;
444 
445 	VR_LOCK_ASSERT(sc);
446 
447 	ifp = sc->vr_ifp;
448 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
449 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
450 	    VR_RXCFG_RX_MULTI);
451 	if (ifp->if_flags & IFF_BROADCAST)
452 		rxfilt |= VR_RXCFG_RX_BROAD;
453 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
454 		rxfilt |= VR_RXCFG_RX_MULTI;
455 		if (ifp->if_flags & IFF_PROMISC)
456 			rxfilt |= VR_RXCFG_RX_PROMISC;
457 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
458 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
459 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
460 		return;
461 	}
462 
463 	/* Now program new ones. */
464 	error = 0;
465 	mcnt = 0;
466 	if_maddr_rlock(ifp);
467 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
468 		/*
469 		 * For hardwares that have CAM capability, use
470 		 * 32 entries multicast perfect filter.
471 		 */
472 		cam_mask = 0;
473 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
474 			if (ifma->ifma_addr->sa_family != AF_LINK)
475 				continue;
476 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
477 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
478 			if (error != 0) {
479 				cam_mask = 0;
480 				break;
481 			}
482 			cam_mask |= 1 << mcnt;
483 			mcnt++;
484 		}
485 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
486 	}
487 
488 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
489 		/*
490 		 * If there are too many multicast addresses or
491 		 * setting multicast CAM filter failed, use hash
492 		 * table based filtering.
493 		 */
494 		mcnt = 0;
495 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
496 			if (ifma->ifma_addr->sa_family != AF_LINK)
497 				continue;
498 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
499 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
500 			if (h < 32)
501 				hashes[0] |= (1 << h);
502 			else
503 				hashes[1] |= (1 << (h - 32));
504 			mcnt++;
505 		}
506 	}
507 	if_maddr_runlock(ifp);
508 
509 	if (mcnt > 0)
510 		rxfilt |= VR_RXCFG_RX_MULTI;
511 
512 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
513 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
514 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
515 }
516 
517 static void
518 vr_reset(const struct vr_softc *sc)
519 {
520 	int		i;
521 
522 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
523 
524 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
525 	if (sc->vr_revid < REV_ID_VT6102_A) {
526 		/* VT86C100A needs more delay after reset. */
527 		DELAY(100);
528 	}
529 	for (i = 0; i < VR_TIMEOUT; i++) {
530 		DELAY(10);
531 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
532 			break;
533 	}
534 	if (i == VR_TIMEOUT) {
535 		if (sc->vr_revid < REV_ID_VT6102_A)
536 			device_printf(sc->vr_dev, "reset never completed!\n");
537 		else {
538 			/* Use newer force reset command. */
539 			device_printf(sc->vr_dev,
540 			    "Using force reset command.\n");
541 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
542 			/*
543 			 * Wait a little while for the chip to get its brains
544 			 * in order.
545 			 */
546 			DELAY(2000);
547 		}
548 	}
549 
550 }
551 
552 /*
553  * Probe for a VIA Rhine chip. Check the PCI vendor and device
554  * IDs against our list and return a match or NULL
555  */
556 static const struct vr_type *
557 vr_match(device_t dev)
558 {
559 	const struct vr_type	*t = vr_devs;
560 
561 	for (t = vr_devs; t->vr_name != NULL; t++)
562 		if ((pci_get_vendor(dev) == t->vr_vid) &&
563 		    (pci_get_device(dev) == t->vr_did))
564 			return (t);
565 	return (NULL);
566 }
567 
568 /*
569  * Probe for a VIA Rhine chip. Check the PCI vendor and device
570  * IDs against our list and return a device name if we find a match.
571  */
572 static int
573 vr_probe(device_t dev)
574 {
575 	const struct vr_type	*t;
576 
577 	t = vr_match(dev);
578 	if (t != NULL) {
579 		device_set_desc(dev, t->vr_name);
580 		return (BUS_PROBE_DEFAULT);
581 	}
582 	return (ENXIO);
583 }
584 
585 /*
586  * Attach the interface. Allocate softc structures, do ifmedia
587  * setup and ethernet/BPF attach.
588  */
589 static int
590 vr_attach(device_t dev)
591 {
592 	struct vr_softc		*sc;
593 	struct ifnet		*ifp;
594 	const struct vr_type	*t;
595 	uint8_t			eaddr[ETHER_ADDR_LEN];
596 	int			error, rid;
597 	int			i, phy, pmc;
598 
599 	sc = device_get_softc(dev);
600 	sc->vr_dev = dev;
601 	t = vr_match(dev);
602 	KASSERT(t != NULL, ("Lost if_vr device match"));
603 	sc->vr_quirks = t->vr_quirks;
604 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
605 
606 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
607 	    MTX_DEF);
608 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
609 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
610 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
611 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
612 	    vr_sysctl_stats, "I", "Statistics");
613 
614 	error = 0;
615 
616 	/*
617 	 * Map control/status registers.
618 	 */
619 	pci_enable_busmaster(dev);
620 	sc->vr_revid = pci_get_revid(dev);
621 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
622 
623 	sc->vr_res_id = PCIR_BAR(0);
624 	sc->vr_res_type = SYS_RES_IOPORT;
625 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
626 	    &sc->vr_res_id, RF_ACTIVE);
627 	if (sc->vr_res == NULL) {
628 		device_printf(dev, "couldn't map ports\n");
629 		error = ENXIO;
630 		goto fail;
631 	}
632 
633 	/* Allocate interrupt. */
634 	rid = 0;
635 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
636 	    RF_SHAREABLE | RF_ACTIVE);
637 
638 	if (sc->vr_irq == NULL) {
639 		device_printf(dev, "couldn't map interrupt\n");
640 		error = ENXIO;
641 		goto fail;
642 	}
643 
644 	/* Allocate ifnet structure. */
645 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
646 	if (ifp == NULL) {
647 		device_printf(dev, "couldn't allocate ifnet structure\n");
648 		error = ENOSPC;
649 		goto fail;
650 	}
651 	ifp->if_softc = sc;
652 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_ioctl = vr_ioctl;
655 	ifp->if_start = vr_start;
656 	ifp->if_init = vr_init;
657 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
658 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
659 	IFQ_SET_READY(&ifp->if_snd);
660 
661 	/* Configure Tx FIFO threshold. */
662 	sc->vr_txthresh = VR_TXTHRESH_MIN;
663 	if (sc->vr_revid < REV_ID_VT6105_A0) {
664 		/*
665 		 * Use store and forward mode for Rhine I/II.
666 		 * Otherwise they produce a lot of Tx underruns and
667 		 * it would take a while to get working FIFO threshold
668 		 * value.
669 		 */
670 		sc->vr_txthresh = VR_TXTHRESH_MAX;
671 	}
672 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
673 		ifp->if_hwassist = VR_CSUM_FEATURES;
674 		ifp->if_capabilities |= IFCAP_HWCSUM;
675 		/*
676 		 * To update checksum field the hardware may need to
677 		 * store entire frames into FIFO before transmitting.
678 		 */
679 		sc->vr_txthresh = VR_TXTHRESH_MAX;
680 	}
681 
682 	if (sc->vr_revid >= REV_ID_VT6102_A &&
683 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
684 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
685 
686 	/* Rhine supports oversized VLAN frame. */
687 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
688 	ifp->if_capenable = ifp->if_capabilities;
689 #ifdef DEVICE_POLLING
690 	ifp->if_capabilities |= IFCAP_POLLING;
691 #endif
692 
693 	/*
694 	 * Windows may put the chip in suspend mode when it
695 	 * shuts down. Be sure to kick it in the head to wake it
696 	 * up again.
697 	 */
698 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
699 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
700 
701 	/*
702 	 * Get station address. The way the Rhine chips work,
703 	 * you're not allowed to directly access the EEPROM once
704 	 * they've been programmed a special way. Consequently,
705 	 * we need to read the node address from the PAR0 and PAR1
706 	 * registers.
707 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
708 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
709 	 * by driver is reset to default state.
710 	 */
711 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
712 	for (i = VR_TIMEOUT; i > 0; i--) {
713 		DELAY(1);
714 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
715 			break;
716 	}
717 	if (i == 0)
718 		device_printf(dev, "Reloading EEPROM timeout!\n");
719 	for (i = 0; i < ETHER_ADDR_LEN; i++)
720 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
721 
722 	/* Reset the adapter. */
723 	vr_reset(sc);
724 	/* Ack intr & disable further interrupts. */
725 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
726 	CSR_WRITE_2(sc, VR_IMR, 0);
727 	if (sc->vr_revid >= REV_ID_VT6102_A)
728 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
729 
730 	if (sc->vr_revid < REV_ID_VT6102_A) {
731 		pci_write_config(dev, VR_PCI_MODE2,
732 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
733 		    VR_MODE2_MODE10T, 1);
734 	} else {
735 		/* Report error instead of retrying forever. */
736 		pci_write_config(dev, VR_PCI_MODE2,
737 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
738 		    VR_MODE2_PCEROPT, 1);
739         	/* Detect MII coding error. */
740 		pci_write_config(dev, VR_PCI_MODE3,
741 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
742 		    VR_MODE3_MIION, 1);
743 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
744 		    sc->vr_revid < REV_ID_VT6105M_A0)
745 			pci_write_config(dev, VR_PCI_MODE2,
746 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
747 			    VR_MODE2_MODE10T, 1);
748 		/* Enable Memory-Read-Multiple. */
749 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
750 		    sc->vr_revid < REV_ID_VT6105M_A0)
751 			pci_write_config(dev, VR_PCI_MODE2,
752 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
753 			    VR_MODE2_MRDPL, 1);
754 	}
755 	/* Disable MII AUTOPOLL. */
756 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
757 
758 	if (vr_dma_alloc(sc) != 0) {
759 		error = ENXIO;
760 		goto fail;
761 	}
762 
763 	/* Do MII setup. */
764 	if (sc->vr_revid >= REV_ID_VT6105_A0)
765 		phy = 1;
766 	else
767 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
768 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
769 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
770 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
771 	if (error != 0) {
772 		device_printf(dev, "attaching PHYs failed\n");
773 		goto fail;
774 	}
775 
776 	/* Call MI attach routine. */
777 	ether_ifattach(ifp, eaddr);
778 	/*
779 	 * Tell the upper layer(s) we support long frames.
780 	 * Must appear after the call to ether_ifattach() because
781 	 * ether_ifattach() sets ifi_hdrlen to the default value.
782 	 */
783 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
784 
785 	/* Hook interrupt last to avoid having to lock softc. */
786 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
787 	    NULL, vr_intr, sc, &sc->vr_intrhand);
788 
789 	if (error) {
790 		device_printf(dev, "couldn't set up irq\n");
791 		ether_ifdetach(ifp);
792 		goto fail;
793 	}
794 
795 fail:
796 	if (error)
797 		vr_detach(dev);
798 
799 	return (error);
800 }
801 
802 /*
803  * Shutdown hardware and free up resources. This can be called any
804  * time after the mutex has been initialized. It is called in both
805  * the error case in attach and the normal detach case so it needs
806  * to be careful about only freeing resources that have actually been
807  * allocated.
808  */
809 static int
810 vr_detach(device_t dev)
811 {
812 	struct vr_softc		*sc = device_get_softc(dev);
813 	struct ifnet		*ifp = sc->vr_ifp;
814 
815 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
816 
817 #ifdef DEVICE_POLLING
818 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
819 		ether_poll_deregister(ifp);
820 #endif
821 
822 	/* These should only be active if attach succeeded. */
823 	if (device_is_attached(dev)) {
824 		VR_LOCK(sc);
825 		sc->vr_flags |= VR_F_DETACHED;
826 		vr_stop(sc);
827 		VR_UNLOCK(sc);
828 		callout_drain(&sc->vr_stat_callout);
829 		ether_ifdetach(ifp);
830 	}
831 	if (sc->vr_miibus)
832 		device_delete_child(dev, sc->vr_miibus);
833 	bus_generic_detach(dev);
834 
835 	if (sc->vr_intrhand)
836 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
837 	if (sc->vr_irq)
838 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
839 	if (sc->vr_res)
840 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
841 		    sc->vr_res);
842 
843 	if (ifp)
844 		if_free(ifp);
845 
846 	vr_dma_free(sc);
847 
848 	mtx_destroy(&sc->vr_mtx);
849 
850 	return (0);
851 }
852 
853 struct vr_dmamap_arg {
854 	bus_addr_t	vr_busaddr;
855 };
856 
857 static void
858 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
859 {
860 	struct vr_dmamap_arg	*ctx;
861 
862 	if (error != 0)
863 		return;
864 	ctx = arg;
865 	ctx->vr_busaddr = segs[0].ds_addr;
866 }
867 
868 static int
869 vr_dma_alloc(struct vr_softc *sc)
870 {
871 	struct vr_dmamap_arg	ctx;
872 	struct vr_txdesc	*txd;
873 	struct vr_rxdesc	*rxd;
874 	bus_size_t		tx_alignment;
875 	int			error, i;
876 
877 	/* Create parent DMA tag. */
878 	error = bus_dma_tag_create(
879 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
880 	    1, 0,			/* alignment, boundary */
881 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
882 	    BUS_SPACE_MAXADDR,		/* highaddr */
883 	    NULL, NULL,			/* filter, filterarg */
884 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
885 	    0,				/* nsegments */
886 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
887 	    0,				/* flags */
888 	    NULL, NULL,			/* lockfunc, lockarg */
889 	    &sc->vr_cdata.vr_parent_tag);
890 	if (error != 0) {
891 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
892 		goto fail;
893 	}
894 	/* Create tag for Tx ring. */
895 	error = bus_dma_tag_create(
896 	    sc->vr_cdata.vr_parent_tag,	/* parent */
897 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
898 	    BUS_SPACE_MAXADDR,		/* lowaddr */
899 	    BUS_SPACE_MAXADDR,		/* highaddr */
900 	    NULL, NULL,			/* filter, filterarg */
901 	    VR_TX_RING_SIZE,		/* maxsize */
902 	    1,				/* nsegments */
903 	    VR_TX_RING_SIZE,		/* maxsegsize */
904 	    0,				/* flags */
905 	    NULL, NULL,			/* lockfunc, lockarg */
906 	    &sc->vr_cdata.vr_tx_ring_tag);
907 	if (error != 0) {
908 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
909 		goto fail;
910 	}
911 
912 	/* Create tag for Rx ring. */
913 	error = bus_dma_tag_create(
914 	    sc->vr_cdata.vr_parent_tag,	/* parent */
915 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
916 	    BUS_SPACE_MAXADDR,		/* lowaddr */
917 	    BUS_SPACE_MAXADDR,		/* highaddr */
918 	    NULL, NULL,			/* filter, filterarg */
919 	    VR_RX_RING_SIZE,		/* maxsize */
920 	    1,				/* nsegments */
921 	    VR_RX_RING_SIZE,		/* maxsegsize */
922 	    0,				/* flags */
923 	    NULL, NULL,			/* lockfunc, lockarg */
924 	    &sc->vr_cdata.vr_rx_ring_tag);
925 	if (error != 0) {
926 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
927 		goto fail;
928 	}
929 
930 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
931 		tx_alignment = sizeof(uint32_t);
932 	else
933 		tx_alignment = 1;
934 	/* Create tag for Tx buffers. */
935 	error = bus_dma_tag_create(
936 	    sc->vr_cdata.vr_parent_tag,	/* parent */
937 	    tx_alignment, 0,		/* alignment, boundary */
938 	    BUS_SPACE_MAXADDR,		/* lowaddr */
939 	    BUS_SPACE_MAXADDR,		/* highaddr */
940 	    NULL, NULL,			/* filter, filterarg */
941 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
942 	    VR_MAXFRAGS,		/* nsegments */
943 	    MCLBYTES,			/* maxsegsize */
944 	    0,				/* flags */
945 	    NULL, NULL,			/* lockfunc, lockarg */
946 	    &sc->vr_cdata.vr_tx_tag);
947 	if (error != 0) {
948 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
949 		goto fail;
950 	}
951 
952 	/* Create tag for Rx buffers. */
953 	error = bus_dma_tag_create(
954 	    sc->vr_cdata.vr_parent_tag,	/* parent */
955 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
956 	    BUS_SPACE_MAXADDR,		/* lowaddr */
957 	    BUS_SPACE_MAXADDR,		/* highaddr */
958 	    NULL, NULL,			/* filter, filterarg */
959 	    MCLBYTES,			/* maxsize */
960 	    1,				/* nsegments */
961 	    MCLBYTES,			/* maxsegsize */
962 	    0,				/* flags */
963 	    NULL, NULL,			/* lockfunc, lockarg */
964 	    &sc->vr_cdata.vr_rx_tag);
965 	if (error != 0) {
966 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
967 		goto fail;
968 	}
969 
970 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
971 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
972 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
973 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
974 	if (error != 0) {
975 		device_printf(sc->vr_dev,
976 		    "failed to allocate DMA'able memory for Tx ring\n");
977 		goto fail;
978 	}
979 
980 	ctx.vr_busaddr = 0;
981 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
982 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
983 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
984 	if (error != 0 || ctx.vr_busaddr == 0) {
985 		device_printf(sc->vr_dev,
986 		    "failed to load DMA'able memory for Tx ring\n");
987 		goto fail;
988 	}
989 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
990 
991 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
992 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
993 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
994 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
995 	if (error != 0) {
996 		device_printf(sc->vr_dev,
997 		    "failed to allocate DMA'able memory for Rx ring\n");
998 		goto fail;
999 	}
1000 
1001 	ctx.vr_busaddr = 0;
1002 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1003 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1004 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1005 	if (error != 0 || ctx.vr_busaddr == 0) {
1006 		device_printf(sc->vr_dev,
1007 		    "failed to load DMA'able memory for Rx ring\n");
1008 		goto fail;
1009 	}
1010 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1011 
1012 	/* Create DMA maps for Tx buffers. */
1013 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1014 		txd = &sc->vr_cdata.vr_txdesc[i];
1015 		txd->tx_m = NULL;
1016 		txd->tx_dmamap = NULL;
1017 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1018 		    &txd->tx_dmamap);
1019 		if (error != 0) {
1020 			device_printf(sc->vr_dev,
1021 			    "failed to create Tx dmamap\n");
1022 			goto fail;
1023 		}
1024 	}
1025 	/* Create DMA maps for Rx buffers. */
1026 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1027 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1028 		device_printf(sc->vr_dev,
1029 		    "failed to create spare Rx dmamap\n");
1030 		goto fail;
1031 	}
1032 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1033 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1034 		rxd->rx_m = NULL;
1035 		rxd->rx_dmamap = NULL;
1036 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1037 		    &rxd->rx_dmamap);
1038 		if (error != 0) {
1039 			device_printf(sc->vr_dev,
1040 			    "failed to create Rx dmamap\n");
1041 			goto fail;
1042 		}
1043 	}
1044 
1045 fail:
1046 	return (error);
1047 }
1048 
1049 static void
1050 vr_dma_free(struct vr_softc *sc)
1051 {
1052 	struct vr_txdesc	*txd;
1053 	struct vr_rxdesc	*rxd;
1054 	int			i;
1055 
1056 	/* Tx ring. */
1057 	if (sc->vr_cdata.vr_tx_ring_tag) {
1058 		if (sc->vr_cdata.vr_tx_ring_map)
1059 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1060 			    sc->vr_cdata.vr_tx_ring_map);
1061 		if (sc->vr_cdata.vr_tx_ring_map &&
1062 		    sc->vr_rdata.vr_tx_ring)
1063 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1064 			    sc->vr_rdata.vr_tx_ring,
1065 			    sc->vr_cdata.vr_tx_ring_map);
1066 		sc->vr_rdata.vr_tx_ring = NULL;
1067 		sc->vr_cdata.vr_tx_ring_map = NULL;
1068 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1069 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1070 	}
1071 	/* Rx ring. */
1072 	if (sc->vr_cdata.vr_rx_ring_tag) {
1073 		if (sc->vr_cdata.vr_rx_ring_map)
1074 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1075 			    sc->vr_cdata.vr_rx_ring_map);
1076 		if (sc->vr_cdata.vr_rx_ring_map &&
1077 		    sc->vr_rdata.vr_rx_ring)
1078 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1079 			    sc->vr_rdata.vr_rx_ring,
1080 			    sc->vr_cdata.vr_rx_ring_map);
1081 		sc->vr_rdata.vr_rx_ring = NULL;
1082 		sc->vr_cdata.vr_rx_ring_map = NULL;
1083 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1084 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1085 	}
1086 	/* Tx buffers. */
1087 	if (sc->vr_cdata.vr_tx_tag) {
1088 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1089 			txd = &sc->vr_cdata.vr_txdesc[i];
1090 			if (txd->tx_dmamap) {
1091 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1092 				    txd->tx_dmamap);
1093 				txd->tx_dmamap = NULL;
1094 			}
1095 		}
1096 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1097 		sc->vr_cdata.vr_tx_tag = NULL;
1098 	}
1099 	/* Rx buffers. */
1100 	if (sc->vr_cdata.vr_rx_tag) {
1101 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1102 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1103 			if (rxd->rx_dmamap) {
1104 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1105 				    rxd->rx_dmamap);
1106 				rxd->rx_dmamap = NULL;
1107 			}
1108 		}
1109 		if (sc->vr_cdata.vr_rx_sparemap) {
1110 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1111 			    sc->vr_cdata.vr_rx_sparemap);
1112 			sc->vr_cdata.vr_rx_sparemap = 0;
1113 		}
1114 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1115 		sc->vr_cdata.vr_rx_tag = NULL;
1116 	}
1117 
1118 	if (sc->vr_cdata.vr_parent_tag) {
1119 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1120 		sc->vr_cdata.vr_parent_tag = NULL;
1121 	}
1122 }
1123 
1124 /*
1125  * Initialize the transmit descriptors.
1126  */
1127 static int
1128 vr_tx_ring_init(struct vr_softc *sc)
1129 {
1130 	struct vr_ring_data	*rd;
1131 	struct vr_txdesc	*txd;
1132 	bus_addr_t		addr;
1133 	int			i;
1134 
1135 	sc->vr_cdata.vr_tx_prod = 0;
1136 	sc->vr_cdata.vr_tx_cons = 0;
1137 	sc->vr_cdata.vr_tx_cnt = 0;
1138 	sc->vr_cdata.vr_tx_pkts = 0;
1139 
1140 	rd = &sc->vr_rdata;
1141 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1142 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1143 		if (i == VR_TX_RING_CNT - 1)
1144 			addr = VR_TX_RING_ADDR(sc, 0);
1145 		else
1146 			addr = VR_TX_RING_ADDR(sc, i + 1);
1147 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1148 		txd = &sc->vr_cdata.vr_txdesc[i];
1149 		txd->tx_m = NULL;
1150 	}
1151 
1152 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1153 	    sc->vr_cdata.vr_tx_ring_map,
1154 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1155 
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Initialize the RX descriptors and allocate mbufs for them. Note that
1161  * we arrange the descriptors in a closed ring, so that the last descriptor
1162  * points back to the first.
1163  */
1164 static int
1165 vr_rx_ring_init(struct vr_softc *sc)
1166 {
1167 	struct vr_ring_data	*rd;
1168 	struct vr_rxdesc	*rxd;
1169 	bus_addr_t		addr;
1170 	int			i;
1171 
1172 	sc->vr_cdata.vr_rx_cons = 0;
1173 
1174 	rd = &sc->vr_rdata;
1175 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1176 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1177 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1178 		rxd->rx_m = NULL;
1179 		rxd->desc = &rd->vr_rx_ring[i];
1180 		if (i == VR_RX_RING_CNT - 1)
1181 			addr = VR_RX_RING_ADDR(sc, 0);
1182 		else
1183 			addr = VR_RX_RING_ADDR(sc, i + 1);
1184 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1185 		if (vr_newbuf(sc, i) != 0)
1186 			return (ENOBUFS);
1187 	}
1188 
1189 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1190 	    sc->vr_cdata.vr_rx_ring_map,
1191 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1192 
1193 	return (0);
1194 }
1195 
1196 static __inline void
1197 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1198 {
1199 	struct vr_desc	*desc;
1200 
1201 	desc = rxd->desc;
1202 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1203 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1204 }
1205 
1206 /*
1207  * Initialize an RX descriptor and attach an MBUF cluster.
1208  * Note: the length fields are only 11 bits wide, which means the
1209  * largest size we can specify is 2047. This is important because
1210  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1211  * overflow the field and make a mess.
1212  */
1213 static int
1214 vr_newbuf(struct vr_softc *sc, int idx)
1215 {
1216 	struct vr_desc		*desc;
1217 	struct vr_rxdesc	*rxd;
1218 	struct mbuf		*m;
1219 	bus_dma_segment_t	segs[1];
1220 	bus_dmamap_t		map;
1221 	int			nsegs;
1222 
1223 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1224 	if (m == NULL)
1225 		return (ENOBUFS);
1226 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1227 	m_adj(m, sizeof(uint64_t));
1228 
1229 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1230 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1231 		m_freem(m);
1232 		return (ENOBUFS);
1233 	}
1234 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1235 
1236 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1237 	if (rxd->rx_m != NULL) {
1238 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1239 		    BUS_DMASYNC_POSTREAD);
1240 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1241 	}
1242 	map = rxd->rx_dmamap;
1243 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1244 	sc->vr_cdata.vr_rx_sparemap = map;
1245 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1246 	    BUS_DMASYNC_PREREAD);
1247 	rxd->rx_m = m;
1248 	desc = rxd->desc;
1249 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1250 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1251 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1252 
1253 	return (0);
1254 }
1255 
1256 #ifndef __NO_STRICT_ALIGNMENT
1257 static __inline void
1258 vr_fixup_rx(struct mbuf *m)
1259 {
1260         uint16_t		*src, *dst;
1261         int			i;
1262 
1263 	src = mtod(m, uint16_t *);
1264 	dst = src - 1;
1265 
1266 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1267 		*dst++ = *src++;
1268 
1269 	m->m_data -= ETHER_ALIGN;
1270 }
1271 #endif
1272 
1273 /*
1274  * A frame has been uploaded: pass the resulting mbuf chain up to
1275  * the higher level protocols.
1276  */
1277 static int
1278 vr_rxeof(struct vr_softc *sc)
1279 {
1280 	struct vr_rxdesc	*rxd;
1281 	struct mbuf		*m;
1282 	struct ifnet		*ifp;
1283 	struct vr_desc		*cur_rx;
1284 	int			cons, prog, total_len, rx_npkts;
1285 	uint32_t		rxstat, rxctl;
1286 
1287 	VR_LOCK_ASSERT(sc);
1288 	ifp = sc->vr_ifp;
1289 	cons = sc->vr_cdata.vr_rx_cons;
1290 	rx_npkts = 0;
1291 
1292 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1293 	    sc->vr_cdata.vr_rx_ring_map,
1294 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1295 
1296 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1297 #ifdef DEVICE_POLLING
1298 		if (ifp->if_capenable & IFCAP_POLLING) {
1299 			if (sc->rxcycles <= 0)
1300 				break;
1301 			sc->rxcycles--;
1302 		}
1303 #endif
1304 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1305 		rxstat = le32toh(cur_rx->vr_status);
1306 		rxctl = le32toh(cur_rx->vr_ctl);
1307 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1308 			break;
1309 
1310 		prog++;
1311 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1312 		m = rxd->rx_m;
1313 
1314 		/*
1315 		 * If an error occurs, update stats, clear the
1316 		 * status word and leave the mbuf cluster in place:
1317 		 * it should simply get re-used next time this descriptor
1318 		 * comes up in the ring.
1319 		 * We don't support SG in Rx path yet, so discard
1320 		 * partial frame.
1321 		 */
1322 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1323 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1324 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1325 			ifp->if_ierrors++;
1326 			sc->vr_stat.rx_errors++;
1327 			if (rxstat & VR_RXSTAT_CRCERR)
1328 				sc->vr_stat.rx_crc_errors++;
1329 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1330 				sc->vr_stat.rx_alignment++;
1331 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1332 				sc->vr_stat.rx_fifo_overflows++;
1333 			if (rxstat & VR_RXSTAT_GIANT)
1334 				sc->vr_stat.rx_giants++;
1335 			if (rxstat & VR_RXSTAT_RUNT)
1336 				sc->vr_stat.rx_runts++;
1337 			if (rxstat & VR_RXSTAT_BUFFERR)
1338 				sc->vr_stat.rx_no_buffers++;
1339 #ifdef	VR_SHOW_ERRORS
1340 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1341 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1342 #endif
1343 			vr_discard_rxbuf(rxd);
1344 			continue;
1345 		}
1346 
1347 		if (vr_newbuf(sc, cons) != 0) {
1348 			ifp->if_iqdrops++;
1349 			sc->vr_stat.rx_errors++;
1350 			sc->vr_stat.rx_no_mbufs++;
1351 			vr_discard_rxbuf(rxd);
1352 			continue;
1353 		}
1354 
1355 		/*
1356 		 * XXX The VIA Rhine chip includes the CRC with every
1357 		 * received frame, and there's no way to turn this
1358 		 * behavior off (at least, I can't find anything in
1359 		 * the manual that explains how to do it) so we have
1360 		 * to trim off the CRC manually.
1361 		 */
1362 		total_len = VR_RXBYTES(rxstat);
1363 		total_len -= ETHER_CRC_LEN;
1364 		m->m_pkthdr.len = m->m_len = total_len;
1365 #ifndef	__NO_STRICT_ALIGNMENT
1366 		/*
1367 		 * RX buffers must be 32-bit aligned.
1368 		 * Ignore the alignment problems on the non-strict alignment
1369 		 * platform. The performance hit incurred due to unaligned
1370 		 * accesses is much smaller than the hit produced by forcing
1371 		 * buffer copies all the time.
1372 		 */
1373 		vr_fixup_rx(m);
1374 #endif
1375 		m->m_pkthdr.rcvif = ifp;
1376 		ifp->if_ipackets++;
1377 		sc->vr_stat.rx_ok++;
1378 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1379 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1380 		    (rxctl & VR_RXCTL_IP) != 0) {
1381 			/* Checksum is valid for non-fragmented IP packets. */
1382 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1383 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1384 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1385 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1386 					m->m_pkthdr.csum_flags |=
1387 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1388 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1389 						m->m_pkthdr.csum_data = 0xffff;
1390 				}
1391 			}
1392 		}
1393 		VR_UNLOCK(sc);
1394 		(*ifp->if_input)(ifp, m);
1395 		VR_LOCK(sc);
1396 		rx_npkts++;
1397 	}
1398 
1399 	if (prog > 0) {
1400 		/*
1401 		 * Let controller know how many number of RX buffers
1402 		 * are posted but avoid expensive register access if
1403 		 * TX pause capability was not negotiated with link
1404 		 * partner.
1405 		 */
1406 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1407 			if (prog >= VR_RX_RING_CNT)
1408 				prog = VR_RX_RING_CNT - 1;
1409 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1410 		}
1411 		sc->vr_cdata.vr_rx_cons = cons;
1412 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1413 		    sc->vr_cdata.vr_rx_ring_map,
1414 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1415 	}
1416 	return (rx_npkts);
1417 }
1418 
1419 /*
1420  * A frame was downloaded to the chip. It's safe for us to clean up
1421  * the list buffers.
1422  */
1423 static void
1424 vr_txeof(struct vr_softc *sc)
1425 {
1426 	struct vr_txdesc	*txd;
1427 	struct vr_desc		*cur_tx;
1428 	struct ifnet		*ifp;
1429 	uint32_t		txctl, txstat;
1430 	int			cons, prod;
1431 
1432 	VR_LOCK_ASSERT(sc);
1433 
1434 	cons = sc->vr_cdata.vr_tx_cons;
1435 	prod = sc->vr_cdata.vr_tx_prod;
1436 	if (cons == prod)
1437 		return;
1438 
1439 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1440 	    sc->vr_cdata.vr_tx_ring_map,
1441 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1442 
1443 	ifp = sc->vr_ifp;
1444 	/*
1445 	 * Go through our tx list and free mbufs for those
1446 	 * frames that have been transmitted.
1447 	 */
1448 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1449 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1450 		txctl = le32toh(cur_tx->vr_ctl);
1451 		txstat = le32toh(cur_tx->vr_status);
1452 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1453 			break;
1454 
1455 		sc->vr_cdata.vr_tx_cnt--;
1456 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1457 		/* Only the first descriptor in the chain is valid. */
1458 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1459 			continue;
1460 
1461 		txd = &sc->vr_cdata.vr_txdesc[cons];
1462 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1463 		    __func__));
1464 
1465 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1466 			ifp->if_oerrors++;
1467 			sc->vr_stat.tx_errors++;
1468 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1469 				/* Give up and restart Tx. */
1470 				sc->vr_stat.tx_abort++;
1471 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1472 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1473 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1474 				    txd->tx_dmamap);
1475 				m_freem(txd->tx_m);
1476 				txd->tx_m = NULL;
1477 				VR_INC(cons, VR_TX_RING_CNT);
1478 				sc->vr_cdata.vr_tx_cons = cons;
1479 				if (vr_tx_stop(sc) != 0) {
1480 					device_printf(sc->vr_dev,
1481 					    "%s: Tx shutdown error -- "
1482 					    "resetting\n", __func__);
1483 					sc->vr_flags |= VR_F_RESTART;
1484 					return;
1485 				}
1486 				vr_tx_start(sc);
1487 				break;
1488 			}
1489 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1490 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1491 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1492 				sc->vr_stat.tx_underrun++;
1493 				/* Retry and restart Tx. */
1494 				sc->vr_cdata.vr_tx_cnt++;
1495 				sc->vr_cdata.vr_tx_cons = cons;
1496 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1497 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1498 				    sc->vr_cdata.vr_tx_ring_map,
1499 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1500 				vr_tx_underrun(sc);
1501 				return;
1502 			}
1503 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1504 				ifp->if_collisions++;
1505 				sc->vr_stat.tx_collisions++;
1506 			}
1507 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1508 				ifp->if_collisions++;
1509 				sc->vr_stat.tx_late_collisions++;
1510 			}
1511 		} else {
1512 			sc->vr_stat.tx_ok++;
1513 			ifp->if_opackets++;
1514 		}
1515 
1516 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1517 		    BUS_DMASYNC_POSTWRITE);
1518 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1519 		if (sc->vr_revid < REV_ID_VT3071_A) {
1520 			ifp->if_collisions +=
1521 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1522 			sc->vr_stat.tx_collisions +=
1523 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1524 		} else {
1525 			ifp->if_collisions += (txstat & 0x0f);
1526 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1527 		}
1528 		m_freem(txd->tx_m);
1529 		txd->tx_m = NULL;
1530 	}
1531 
1532 	sc->vr_cdata.vr_tx_cons = cons;
1533 	if (sc->vr_cdata.vr_tx_cnt == 0)
1534 		sc->vr_watchdog_timer = 0;
1535 }
1536 
1537 static void
1538 vr_tick(void *xsc)
1539 {
1540 	struct vr_softc		*sc;
1541 	struct mii_data		*mii;
1542 
1543 	sc = (struct vr_softc *)xsc;
1544 
1545 	VR_LOCK_ASSERT(sc);
1546 
1547 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1548 		device_printf(sc->vr_dev, "restarting\n");
1549 		sc->vr_stat.num_restart++;
1550 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1551 		vr_init_locked(sc);
1552 		sc->vr_flags &= ~VR_F_RESTART;
1553 	}
1554 
1555 	mii = device_get_softc(sc->vr_miibus);
1556 	mii_tick(mii);
1557 	if ((sc->vr_flags & VR_F_LINK) == 0)
1558 		vr_miibus_statchg(sc->vr_dev);
1559 	vr_watchdog(sc);
1560 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1561 }
1562 
1563 #ifdef DEVICE_POLLING
1564 static poll_handler_t vr_poll;
1565 static poll_handler_t vr_poll_locked;
1566 
1567 static int
1568 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1569 {
1570 	struct vr_softc *sc;
1571 	int rx_npkts;
1572 
1573 	sc = ifp->if_softc;
1574 	rx_npkts = 0;
1575 
1576 	VR_LOCK(sc);
1577 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1578 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1579 	VR_UNLOCK(sc);
1580 	return (rx_npkts);
1581 }
1582 
1583 static int
1584 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1585 {
1586 	struct vr_softc *sc;
1587 	int rx_npkts;
1588 
1589 	sc = ifp->if_softc;
1590 
1591 	VR_LOCK_ASSERT(sc);
1592 
1593 	sc->rxcycles = count;
1594 	rx_npkts = vr_rxeof(sc);
1595 	vr_txeof(sc);
1596 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1597 		vr_start_locked(ifp);
1598 
1599 	if (cmd == POLL_AND_CHECK_STATUS) {
1600 		uint16_t status;
1601 
1602 		/* Also check status register. */
1603 		status = CSR_READ_2(sc, VR_ISR);
1604 		if (status)
1605 			CSR_WRITE_2(sc, VR_ISR, status);
1606 
1607 		if ((status & VR_INTRS) == 0)
1608 			return (rx_npkts);
1609 
1610 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1611 		    VR_ISR_STATSOFLOW)) != 0) {
1612 			if (vr_error(sc, status) != 0)
1613 				return (rx_npkts);
1614 		}
1615 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1616 #ifdef	VR_SHOW_ERRORS
1617 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1618 			    __func__, status, VR_ISR_ERR_BITS);
1619 #endif
1620 			vr_rx_start(sc);
1621 		}
1622 	}
1623 	return (rx_npkts);
1624 }
1625 #endif /* DEVICE_POLLING */
1626 
1627 /* Back off the transmit threshold. */
1628 static void
1629 vr_tx_underrun(struct vr_softc *sc)
1630 {
1631 	int	thresh;
1632 
1633 	device_printf(sc->vr_dev, "Tx underrun -- ");
1634 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1635 		thresh = sc->vr_txthresh;
1636 		sc->vr_txthresh++;
1637 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1638 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1639 			printf("using store and forward mode\n");
1640 		} else
1641 			printf("increasing Tx threshold(%d -> %d)\n",
1642 			    vr_tx_threshold_tables[thresh].value,
1643 			    vr_tx_threshold_tables[thresh + 1].value);
1644 	} else
1645 		printf("\n");
1646 	sc->vr_stat.tx_underrun++;
1647 	if (vr_tx_stop(sc) != 0) {
1648 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1649 		    "resetting\n", __func__);
1650 		sc->vr_flags |= VR_F_RESTART;
1651 		return;
1652 	}
1653 	vr_tx_start(sc);
1654 }
1655 
1656 static void
1657 vr_intr(void *arg)
1658 {
1659 	struct vr_softc		*sc;
1660 	struct ifnet		*ifp;
1661 	uint16_t		status;
1662 
1663 	sc = (struct vr_softc *)arg;
1664 
1665 	VR_LOCK(sc);
1666 
1667 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1668 		goto done_locked;
1669 
1670 	status = CSR_READ_2(sc, VR_ISR);
1671 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1672 		goto done_locked;
1673 
1674 	ifp = sc->vr_ifp;
1675 #ifdef DEVICE_POLLING
1676 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1677 		goto done_locked;
1678 #endif
1679 
1680 	/* Suppress unwanted interrupts. */
1681 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1682 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1683 		CSR_WRITE_2(sc, VR_IMR, 0);
1684 		CSR_WRITE_2(sc, VR_ISR, status);
1685 		goto done_locked;
1686 	}
1687 
1688 	/* Disable interrupts. */
1689 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1690 
1691 	for (; (status & VR_INTRS) != 0;) {
1692 		CSR_WRITE_2(sc, VR_ISR, status);
1693 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1694 		    VR_ISR_STATSOFLOW)) != 0) {
1695 			if (vr_error(sc, status) != 0) {
1696 				VR_UNLOCK(sc);
1697 				return;
1698 			}
1699 		}
1700 		vr_rxeof(sc);
1701 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1702 #ifdef	VR_SHOW_ERRORS
1703 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1704 			    __func__, status, VR_ISR_ERR_BITS);
1705 #endif
1706 			/* Restart Rx if RxDMA SM was stopped. */
1707 			vr_rx_start(sc);
1708 		}
1709 		vr_txeof(sc);
1710 		status = CSR_READ_2(sc, VR_ISR);
1711 	}
1712 
1713 	/* Re-enable interrupts. */
1714 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1715 
1716 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1717 		vr_start_locked(ifp);
1718 
1719 done_locked:
1720 	VR_UNLOCK(sc);
1721 }
1722 
1723 static int
1724 vr_error(struct vr_softc *sc, uint16_t status)
1725 {
1726 	uint16_t pcis;
1727 
1728 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1729 	if ((status & VR_ISR_BUSERR) != 0) {
1730 		status &= ~VR_ISR_BUSERR;
1731 		sc->vr_stat.bus_errors++;
1732 		/* Disable further interrupts. */
1733 		CSR_WRITE_2(sc, VR_IMR, 0);
1734 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1735 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1736 		    "resetting\n", pcis);
1737 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1738 		sc->vr_flags |= VR_F_RESTART;
1739 		return (EAGAIN);
1740 	}
1741 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1742 		/* Link state change, duplex changes etc. */
1743 		status &= ~VR_ISR_LINKSTAT2;
1744 	}
1745 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1746 		status &= ~VR_ISR_STATSOFLOW;
1747 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1748 			/* Update MIB counters. */
1749 		}
1750 	}
1751 
1752 	if (status != 0)
1753 		device_printf(sc->vr_dev,
1754 		    "unhandled interrupt, status = 0x%04x\n", status);
1755 	return (0);
1756 }
1757 
1758 /*
1759  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1760  * pointers to the fragment pointers.
1761  */
1762 static int
1763 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1764 {
1765 	struct vr_txdesc	*txd;
1766 	struct vr_desc		*desc;
1767 	struct mbuf		*m;
1768 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1769 	uint32_t		csum_flags, txctl;
1770 	int			error, i, nsegs, prod, si;
1771 	int			padlen;
1772 
1773 	VR_LOCK_ASSERT(sc);
1774 
1775 	M_ASSERTPKTHDR((*m_head));
1776 
1777 	/*
1778 	 * Some VIA Rhine wants packet buffers to be longword
1779 	 * aligned, but very often our mbufs aren't. Rather than
1780 	 * waste time trying to decide when to copy and when not
1781 	 * to copy, just do it all the time.
1782 	 */
1783 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1784 		m = m_defrag(*m_head, M_DONTWAIT);
1785 		if (m == NULL) {
1786 			m_freem(*m_head);
1787 			*m_head = NULL;
1788 			return (ENOBUFS);
1789 		}
1790 		*m_head = m;
1791 	}
1792 
1793 	/*
1794 	 * The Rhine chip doesn't auto-pad, so we have to make
1795 	 * sure to pad short frames out to the minimum frame length
1796 	 * ourselves.
1797 	 */
1798 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1799 		m = *m_head;
1800 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1801 		if (M_WRITABLE(m) == 0) {
1802 			/* Get a writable copy. */
1803 			m = m_dup(*m_head, M_DONTWAIT);
1804 			m_freem(*m_head);
1805 			if (m == NULL) {
1806 				*m_head = NULL;
1807 				return (ENOBUFS);
1808 			}
1809 			*m_head = m;
1810 		}
1811 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1812 			m = m_defrag(m, M_DONTWAIT);
1813 			if (m == NULL) {
1814 				m_freem(*m_head);
1815 				*m_head = NULL;
1816 				return (ENOBUFS);
1817 			}
1818 		}
1819 		/*
1820 		 * Manually pad short frames, and zero the pad space
1821 		 * to avoid leaking data.
1822 		 */
1823 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1824 		m->m_pkthdr.len += padlen;
1825 		m->m_len = m->m_pkthdr.len;
1826 		*m_head = m;
1827 	}
1828 
1829 	prod = sc->vr_cdata.vr_tx_prod;
1830 	txd = &sc->vr_cdata.vr_txdesc[prod];
1831 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1832 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1833 	if (error == EFBIG) {
1834 		m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
1835 		if (m == NULL) {
1836 			m_freem(*m_head);
1837 			*m_head = NULL;
1838 			return (ENOBUFS);
1839 		}
1840 		*m_head = m;
1841 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1842 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1843 		if (error != 0) {
1844 			m_freem(*m_head);
1845 			*m_head = NULL;
1846 			return (error);
1847 		}
1848 	} else if (error != 0)
1849 		return (error);
1850 	if (nsegs == 0) {
1851 		m_freem(*m_head);
1852 		*m_head = NULL;
1853 		return (EIO);
1854 	}
1855 
1856 	/* Check number of available descriptors. */
1857 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1858 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1859 		return (ENOBUFS);
1860 	}
1861 
1862 	txd->tx_m = *m_head;
1863 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1864 	    BUS_DMASYNC_PREWRITE);
1865 
1866 	/* Set checksum offload. */
1867 	csum_flags = 0;
1868 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1869 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1870 			csum_flags |= VR_TXCTL_IPCSUM;
1871 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1872 			csum_flags |= VR_TXCTL_TCPCSUM;
1873 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1874 			csum_flags |= VR_TXCTL_UDPCSUM;
1875 	}
1876 
1877 	/*
1878 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1879 	 * is required for all descriptors regardless of single or
1880 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1881 	 * the first descriptor for a multi-fragmented frames. Without
1882 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1883 	 * send any frames.
1884 	 */
1885 	si = prod;
1886 	for (i = 0; i < nsegs; i++) {
1887 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1888 		desc->vr_status = 0;
1889 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1890 		if (i == 0)
1891 			txctl |= VR_TXCTL_FIRSTFRAG;
1892 		desc->vr_ctl = htole32(txctl);
1893 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1894 		sc->vr_cdata.vr_tx_cnt++;
1895 		VR_INC(prod, VR_TX_RING_CNT);
1896 	}
1897 	/* Update producer index. */
1898 	sc->vr_cdata.vr_tx_prod = prod;
1899 
1900 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1901 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1902 
1903 	/*
1904 	 * Set EOP on the last desciptor and reuqest Tx completion
1905 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1906 	 */
1907 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1908 	if (sc->vr_cdata.vr_tx_pkts == 0)
1909 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1910 	else
1911 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1912 
1913 	/* Lastly turn the first descriptor ownership to hardware. */
1914 	desc = &sc->vr_rdata.vr_tx_ring[si];
1915 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1916 
1917 	/* Sync descriptors. */
1918 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1919 	    sc->vr_cdata.vr_tx_ring_map,
1920 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1921 
1922 	return (0);
1923 }
1924 
1925 static void
1926 vr_start(struct ifnet *ifp)
1927 {
1928 	struct vr_softc		*sc;
1929 
1930 	sc = ifp->if_softc;
1931 	VR_LOCK(sc);
1932 	vr_start_locked(ifp);
1933 	VR_UNLOCK(sc);
1934 }
1935 
1936 static void
1937 vr_start_locked(struct ifnet *ifp)
1938 {
1939 	struct vr_softc		*sc;
1940 	struct mbuf		*m_head;
1941 	int			enq;
1942 
1943 	sc = ifp->if_softc;
1944 
1945 	VR_LOCK_ASSERT(sc);
1946 
1947 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1948 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1949 		return;
1950 
1951 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1952 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1953 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1954 		if (m_head == NULL)
1955 			break;
1956 		/*
1957 		 * Pack the data into the transmit ring. If we
1958 		 * don't have room, set the OACTIVE flag and wait
1959 		 * for the NIC to drain the ring.
1960 		 */
1961 		if (vr_encap(sc, &m_head)) {
1962 			if (m_head == NULL)
1963 				break;
1964 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1965 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1966 			break;
1967 		}
1968 
1969 		enq++;
1970 		/*
1971 		 * If there's a BPF listener, bounce a copy of this frame
1972 		 * to him.
1973 		 */
1974 		ETHER_BPF_MTAP(ifp, m_head);
1975 	}
1976 
1977 	if (enq > 0) {
1978 		/* Tell the chip to start transmitting. */
1979 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1980 		/* Set a timeout in case the chip goes out to lunch. */
1981 		sc->vr_watchdog_timer = 5;
1982 	}
1983 }
1984 
1985 static void
1986 vr_init(void *xsc)
1987 {
1988 	struct vr_softc		*sc;
1989 
1990 	sc = (struct vr_softc *)xsc;
1991 	VR_LOCK(sc);
1992 	vr_init_locked(sc);
1993 	VR_UNLOCK(sc);
1994 }
1995 
1996 static void
1997 vr_init_locked(struct vr_softc *sc)
1998 {
1999 	struct ifnet		*ifp;
2000 	struct mii_data		*mii;
2001 	bus_addr_t		addr;
2002 	int			i;
2003 
2004 	VR_LOCK_ASSERT(sc);
2005 
2006 	ifp = sc->vr_ifp;
2007 	mii = device_get_softc(sc->vr_miibus);
2008 
2009 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2010 		return;
2011 
2012 	/* Cancel pending I/O and free all RX/TX buffers. */
2013 	vr_stop(sc);
2014 	vr_reset(sc);
2015 
2016 	/* Set our station address. */
2017 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2018 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2019 
2020 	/* Set DMA size. */
2021 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2022 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2023 
2024 	/*
2025 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2026 	 * so we must set both.
2027 	 */
2028 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2029 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2030 
2031 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2032 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2033 
2034 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2035 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2036 
2037 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2038 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2039 
2040 	/* Init circular RX list. */
2041 	if (vr_rx_ring_init(sc) != 0) {
2042 		device_printf(sc->vr_dev,
2043 		    "initialization failed: no memory for rx buffers\n");
2044 		vr_stop(sc);
2045 		return;
2046 	}
2047 
2048 	/* Init tx descriptors. */
2049 	vr_tx_ring_init(sc);
2050 
2051 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2052 		uint8_t vcam[2] = { 0, 0 };
2053 
2054 		/* Disable VLAN hardware tag insertion/stripping. */
2055 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2056 		/* Disable VLAN hardware filtering. */
2057 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2058 		/* Disable all CAM entries. */
2059 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2060 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2061 		/* Enable the first VLAN CAM. */
2062 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2063 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2064 	}
2065 
2066 	/*
2067 	 * Set up receive filter.
2068 	 */
2069 	vr_set_filter(sc);
2070 
2071 	/*
2072 	 * Load the address of the RX ring.
2073 	 */
2074 	addr = VR_RX_RING_ADDR(sc, 0);
2075 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2076 	/*
2077 	 * Load the address of the TX ring.
2078 	 */
2079 	addr = VR_TX_RING_ADDR(sc, 0);
2080 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2081 	/* Default : full-duplex, no Tx poll. */
2082 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2083 
2084 	/* Set flow-control parameters for Rhine III. */
2085 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2086 		/*
2087 		 * Configure Rx buffer count available for incoming
2088 		 * packet.
2089 		 * Even though data sheet says almost nothing about
2090 		 * this register, this register should be updated
2091 		 * whenever driver adds new RX buffers to controller.
2092 		 * Otherwise, XON frame is not sent to link partner
2093 		 * even if controller has enough RX buffers and you
2094 		 * would be isolated from network.
2095 		 * The controller is not smart enough to know number
2096 		 * of available RX buffers so driver have to let
2097 		 * controller know how many RX buffers are posted.
2098 		 * In other words, this register works like a residue
2099 		 * counter for RX buffers and should be initialized
2100 		 * to the number of total RX buffers  - 1 before
2101 		 * enabling RX MAC.  Note, this register is 8bits so
2102 		 * it effectively limits the maximum number of RX
2103 		 * buffer to be configured by controller is 255.
2104 		 */
2105 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2106 		/*
2107 		 * Tx pause low threshold : 8 free receive buffers
2108 		 * Tx pause XON high threshold : 24 free receive buffers
2109 		 */
2110 		CSR_WRITE_1(sc, VR_FLOWCR1,
2111 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2112 		/* Set Tx pause timer. */
2113 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2114 	}
2115 
2116 	/* Enable receiver and transmitter. */
2117 	CSR_WRITE_1(sc, VR_CR0,
2118 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2119 
2120 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2121 #ifdef DEVICE_POLLING
2122 	/*
2123 	 * Disable interrupts if we are polling.
2124 	 */
2125 	if (ifp->if_capenable & IFCAP_POLLING)
2126 		CSR_WRITE_2(sc, VR_IMR, 0);
2127 	else
2128 #endif
2129 	/*
2130 	 * Enable interrupts and disable MII intrs.
2131 	 */
2132 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2133 	if (sc->vr_revid > REV_ID_VT6102_A)
2134 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2135 
2136 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2137 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2138 
2139 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2140 	mii_mediachg(mii);
2141 
2142 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2143 }
2144 
2145 /*
2146  * Set media options.
2147  */
2148 static int
2149 vr_ifmedia_upd(struct ifnet *ifp)
2150 {
2151 	struct vr_softc		*sc;
2152 	struct mii_data		*mii;
2153 	struct mii_softc	*miisc;
2154 	int			error;
2155 
2156 	sc = ifp->if_softc;
2157 	VR_LOCK(sc);
2158 	mii = device_get_softc(sc->vr_miibus);
2159 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2160 		PHY_RESET(miisc);
2161 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2162 	error = mii_mediachg(mii);
2163 	VR_UNLOCK(sc);
2164 
2165 	return (error);
2166 }
2167 
2168 /*
2169  * Report current media status.
2170  */
2171 static void
2172 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2173 {
2174 	struct vr_softc		*sc;
2175 	struct mii_data		*mii;
2176 
2177 	sc = ifp->if_softc;
2178 	mii = device_get_softc(sc->vr_miibus);
2179 	VR_LOCK(sc);
2180 	if ((ifp->if_flags & IFF_UP) == 0) {
2181 		VR_UNLOCK(sc);
2182 		return;
2183 	}
2184 	mii_pollstat(mii);
2185 	ifmr->ifm_active = mii->mii_media_active;
2186 	ifmr->ifm_status = mii->mii_media_status;
2187 	VR_UNLOCK(sc);
2188 }
2189 
2190 static int
2191 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2192 {
2193 	struct vr_softc		*sc;
2194 	struct ifreq		*ifr;
2195 	struct mii_data		*mii;
2196 	int			error, mask;
2197 
2198 	sc = ifp->if_softc;
2199 	ifr = (struct ifreq *)data;
2200 	error = 0;
2201 
2202 	switch (command) {
2203 	case SIOCSIFFLAGS:
2204 		VR_LOCK(sc);
2205 		if (ifp->if_flags & IFF_UP) {
2206 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2207 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2208 				    (IFF_PROMISC | IFF_ALLMULTI))
2209 					vr_set_filter(sc);
2210 			} else {
2211 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2212 					vr_init_locked(sc);
2213 			}
2214 		} else {
2215 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2216 				vr_stop(sc);
2217 		}
2218 		sc->vr_if_flags = ifp->if_flags;
2219 		VR_UNLOCK(sc);
2220 		break;
2221 	case SIOCADDMULTI:
2222 	case SIOCDELMULTI:
2223 		VR_LOCK(sc);
2224 		vr_set_filter(sc);
2225 		VR_UNLOCK(sc);
2226 		break;
2227 	case SIOCGIFMEDIA:
2228 	case SIOCSIFMEDIA:
2229 		mii = device_get_softc(sc->vr_miibus);
2230 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2231 		break;
2232 	case SIOCSIFCAP:
2233 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2234 #ifdef DEVICE_POLLING
2235 		if (mask & IFCAP_POLLING) {
2236 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2237 				error = ether_poll_register(vr_poll, ifp);
2238 				if (error != 0)
2239 					break;
2240 				VR_LOCK(sc);
2241 				/* Disable interrupts. */
2242 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2243 				ifp->if_capenable |= IFCAP_POLLING;
2244 				VR_UNLOCK(sc);
2245 			} else {
2246 				error = ether_poll_deregister(ifp);
2247 				/* Enable interrupts. */
2248 				VR_LOCK(sc);
2249 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2250 				ifp->if_capenable &= ~IFCAP_POLLING;
2251 				VR_UNLOCK(sc);
2252 			}
2253 		}
2254 #endif /* DEVICE_POLLING */
2255 		if ((mask & IFCAP_TXCSUM) != 0 &&
2256 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2257 			ifp->if_capenable ^= IFCAP_TXCSUM;
2258 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2259 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2260 			else
2261 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2262 		}
2263 		if ((mask & IFCAP_RXCSUM) != 0 &&
2264 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2265 			ifp->if_capenable ^= IFCAP_RXCSUM;
2266 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2267 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2268 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2269 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2270 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2271 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2272 		break;
2273 	default:
2274 		error = ether_ioctl(ifp, command, data);
2275 		break;
2276 	}
2277 
2278 	return (error);
2279 }
2280 
2281 static void
2282 vr_watchdog(struct vr_softc *sc)
2283 {
2284 	struct ifnet		*ifp;
2285 
2286 	VR_LOCK_ASSERT(sc);
2287 
2288 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2289 		return;
2290 
2291 	ifp = sc->vr_ifp;
2292 	/*
2293 	 * Reclaim first as we don't request interrupt for every packets.
2294 	 */
2295 	vr_txeof(sc);
2296 	if (sc->vr_cdata.vr_tx_cnt == 0)
2297 		return;
2298 
2299 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2300 		if (bootverbose)
2301 			if_printf(sc->vr_ifp, "watchdog timeout "
2302 			   "(missed link)\n");
2303 		ifp->if_oerrors++;
2304 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2305 		vr_init_locked(sc);
2306 		return;
2307 	}
2308 
2309 	ifp->if_oerrors++;
2310 	if_printf(ifp, "watchdog timeout\n");
2311 
2312 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2313 	vr_init_locked(sc);
2314 
2315 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2316 		vr_start_locked(ifp);
2317 }
2318 
2319 static void
2320 vr_tx_start(struct vr_softc *sc)
2321 {
2322 	bus_addr_t	addr;
2323 	uint8_t		cmd;
2324 
2325 	cmd = CSR_READ_1(sc, VR_CR0);
2326 	if ((cmd & VR_CR0_TX_ON) == 0) {
2327 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2328 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2329 		cmd |= VR_CR0_TX_ON;
2330 		CSR_WRITE_1(sc, VR_CR0, cmd);
2331 	}
2332 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2333 		sc->vr_watchdog_timer = 5;
2334 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2335 	}
2336 }
2337 
2338 static void
2339 vr_rx_start(struct vr_softc *sc)
2340 {
2341 	bus_addr_t	addr;
2342 	uint8_t		cmd;
2343 
2344 	cmd = CSR_READ_1(sc, VR_CR0);
2345 	if ((cmd & VR_CR0_RX_ON) == 0) {
2346 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2347 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2348 		cmd |= VR_CR0_RX_ON;
2349 		CSR_WRITE_1(sc, VR_CR0, cmd);
2350 	}
2351 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2352 }
2353 
2354 static int
2355 vr_tx_stop(struct vr_softc *sc)
2356 {
2357 	int		i;
2358 	uint8_t		cmd;
2359 
2360 	cmd = CSR_READ_1(sc, VR_CR0);
2361 	if ((cmd & VR_CR0_TX_ON) != 0) {
2362 		cmd &= ~VR_CR0_TX_ON;
2363 		CSR_WRITE_1(sc, VR_CR0, cmd);
2364 		for (i = VR_TIMEOUT; i > 0; i--) {
2365 			DELAY(5);
2366 			cmd = CSR_READ_1(sc, VR_CR0);
2367 			if ((cmd & VR_CR0_TX_ON) == 0)
2368 				break;
2369 		}
2370 		if (i == 0)
2371 			return (ETIMEDOUT);
2372 	}
2373 	return (0);
2374 }
2375 
2376 static int
2377 vr_rx_stop(struct vr_softc *sc)
2378 {
2379 	int		i;
2380 	uint8_t		cmd;
2381 
2382 	cmd = CSR_READ_1(sc, VR_CR0);
2383 	if ((cmd & VR_CR0_RX_ON) != 0) {
2384 		cmd &= ~VR_CR0_RX_ON;
2385 		CSR_WRITE_1(sc, VR_CR0, cmd);
2386 		for (i = VR_TIMEOUT; i > 0; i--) {
2387 			DELAY(5);
2388 			cmd = CSR_READ_1(sc, VR_CR0);
2389 			if ((cmd & VR_CR0_RX_ON) == 0)
2390 				break;
2391 		}
2392 		if (i == 0)
2393 			return (ETIMEDOUT);
2394 	}
2395 	return (0);
2396 }
2397 
2398 /*
2399  * Stop the adapter and free any mbufs allocated to the
2400  * RX and TX lists.
2401  */
2402 static void
2403 vr_stop(struct vr_softc *sc)
2404 {
2405 	struct vr_txdesc	*txd;
2406 	struct vr_rxdesc	*rxd;
2407 	struct ifnet		*ifp;
2408 	int			i;
2409 
2410 	VR_LOCK_ASSERT(sc);
2411 
2412 	ifp = sc->vr_ifp;
2413 	sc->vr_watchdog_timer = 0;
2414 
2415 	callout_stop(&sc->vr_stat_callout);
2416 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2417 
2418 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2419 	if (vr_rx_stop(sc) != 0)
2420 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2421 	if (vr_tx_stop(sc) != 0)
2422 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2423 	/* Clear pending interrupts. */
2424 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2425 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2426 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2427 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2428 
2429 	/*
2430 	 * Free RX and TX mbufs still in the queues.
2431 	 */
2432 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2433 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2434 		if (rxd->rx_m != NULL) {
2435 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2436 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2437 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2438 			    rxd->rx_dmamap);
2439 			m_freem(rxd->rx_m);
2440 			rxd->rx_m = NULL;
2441 		}
2442         }
2443 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2444 		txd = &sc->vr_cdata.vr_txdesc[i];
2445 		if (txd->tx_m != NULL) {
2446 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2447 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2448 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2449 			    txd->tx_dmamap);
2450 			m_freem(txd->tx_m);
2451 			txd->tx_m = NULL;
2452 		}
2453         }
2454 }
2455 
2456 /*
2457  * Stop all chip I/O so that the kernel's probe routines don't
2458  * get confused by errant DMAs when rebooting.
2459  */
2460 static int
2461 vr_shutdown(device_t dev)
2462 {
2463 
2464 	return (vr_suspend(dev));
2465 }
2466 
2467 static int
2468 vr_suspend(device_t dev)
2469 {
2470 	struct vr_softc		*sc;
2471 
2472 	sc = device_get_softc(dev);
2473 
2474 	VR_LOCK(sc);
2475 	vr_stop(sc);
2476 	vr_setwol(sc);
2477 	sc->vr_flags |= VR_F_SUSPENDED;
2478 	VR_UNLOCK(sc);
2479 
2480 	return (0);
2481 }
2482 
2483 static int
2484 vr_resume(device_t dev)
2485 {
2486 	struct vr_softc		*sc;
2487 	struct ifnet		*ifp;
2488 
2489 	sc = device_get_softc(dev);
2490 
2491 	VR_LOCK(sc);
2492 	ifp = sc->vr_ifp;
2493 	vr_clrwol(sc);
2494 	vr_reset(sc);
2495 	if (ifp->if_flags & IFF_UP)
2496 		vr_init_locked(sc);
2497 
2498 	sc->vr_flags &= ~VR_F_SUSPENDED;
2499 	VR_UNLOCK(sc);
2500 
2501 	return (0);
2502 }
2503 
2504 static void
2505 vr_setwol(struct vr_softc *sc)
2506 {
2507 	struct ifnet		*ifp;
2508 	int			pmc;
2509 	uint16_t		pmstat;
2510 	uint8_t			v;
2511 
2512 	VR_LOCK_ASSERT(sc);
2513 
2514 	if (sc->vr_revid < REV_ID_VT6102_A ||
2515 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2516 		return;
2517 
2518 	ifp = sc->vr_ifp;
2519 
2520 	/* Clear WOL configuration. */
2521 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2522 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2523 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2524 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2525 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2526 		/* Newer Rhine III supports two additional patterns. */
2527 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2528 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2529 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2530 	}
2531 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2532 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2533 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2534 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2535 	/*
2536 	 * It seems that multicast wakeup frames require programming pattern
2537 	 * registers and valid CRC as well as pattern mask for each pattern.
2538 	 * While it's possible to setup such a pattern it would complicate
2539 	 * WOL configuration so ignore multicast wakeup frames.
2540 	 */
2541 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2542 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2543 		v = CSR_READ_1(sc, VR_STICKHW);
2544 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2545 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2546 	}
2547 
2548 	/* Put hardware into sleep. */
2549 	v = CSR_READ_1(sc, VR_STICKHW);
2550 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2551 	CSR_WRITE_1(sc, VR_STICKHW, v);
2552 
2553 	/* Request PME if WOL is requested. */
2554 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2555 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2556 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2557 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2558 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2559 }
2560 
2561 static void
2562 vr_clrwol(struct vr_softc *sc)
2563 {
2564 	uint8_t			v;
2565 
2566 	VR_LOCK_ASSERT(sc);
2567 
2568 	if (sc->vr_revid < REV_ID_VT6102_A)
2569 		return;
2570 
2571 	/* Take hardware out of sleep. */
2572 	v = CSR_READ_1(sc, VR_STICKHW);
2573 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2574 	CSR_WRITE_1(sc, VR_STICKHW, v);
2575 
2576 	/* Clear WOL configuration as WOL may interfere normal operation. */
2577 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2578 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2579 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2580 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2581 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2582 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2583 		/* Newer Rhine III supports two additional patterns. */
2584 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2585 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2586 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2587 	}
2588 }
2589 
2590 static int
2591 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2592 {
2593 	struct vr_softc		*sc;
2594 	struct vr_statistics	*stat;
2595 	int			error;
2596 	int			result;
2597 
2598 	result = -1;
2599 	error = sysctl_handle_int(oidp, &result, 0, req);
2600 
2601 	if (error != 0 || req->newptr == NULL)
2602 		return (error);
2603 
2604 	if (result == 1) {
2605 		sc = (struct vr_softc *)arg1;
2606 		stat = &sc->vr_stat;
2607 
2608 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2609 		printf("Outbound good frames : %ju\n",
2610 		    (uintmax_t)stat->tx_ok);
2611 		printf("Inbound good frames : %ju\n",
2612 		    (uintmax_t)stat->rx_ok);
2613 		printf("Outbound errors : %u\n", stat->tx_errors);
2614 		printf("Inbound errors : %u\n", stat->rx_errors);
2615 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2616 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2617 		printf("Inbound FIFO overflows : %d\n",
2618 		    stat->rx_fifo_overflows);
2619 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2620 		printf("Inbound frame alignment errors : %u\n",
2621 		    stat->rx_alignment);
2622 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2623 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2624 		printf("Outbound aborted with excessive collisions : %u\n",
2625 		    stat->tx_abort);
2626 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2627 		printf("Outbound late collisions : %u\n",
2628 		    stat->tx_late_collisions);
2629 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2630 		printf("PCI bus errors : %u\n", stat->bus_errors);
2631 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2632 		    stat->num_restart);
2633 	}
2634 
2635 	return (error);
2636 }
2637