xref: /freebsd/sys/dev/vr/if_vr.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Rhine fast ethernet PCI NIC driver
40  *
41  * Supports various network adapters based on the VIA Rhine
42  * and Rhine II PCI controllers, including the D-Link DFE530TX.
43  * Datasheets are available at http://www.via.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The VIA Rhine controllers are similar in some respects to the
52  * the DEC tulip chips, except less complicated. The controller
53  * uses an MII bus and an external physical layer interface. The
54  * receiver has a one entry perfect filter and a 64-bit hash table
55  * multicast filter. Transmit and receive descriptors are similar
56  * to the tulip.
57  *
58  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
59  * transmit buffers must be longword aligned. Unfortunately,
60  * FreeBSD doesn't guarantee that mbufs will be filled in starting
61  * at longword boundaries, so we have to do a buffer copy before
62  * transmission.
63  */
64 
65 #ifdef HAVE_KERNEL_OPTION_HEADERS
66 #include "opt_device_polling.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/module.h>
77 #include <sys/rman.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 #include <net/if_vlan_var.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include <machine/bus.h>
99 
100 #include <dev/vr/if_vrreg.h>
101 
102 /* "device miibus" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 MODULE_DEPEND(vr, pci, 1, 1, 1);
106 MODULE_DEPEND(vr, ether, 1, 1, 1);
107 MODULE_DEPEND(vr, miibus, 1, 1, 1);
108 
109 /* Define to show Rx/Tx error status. */
110 #undef	VR_SHOW_ERRORS
111 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
112 
113 /*
114  * Various supported device vendors/types, their names & quirks.
115  */
116 #define VR_Q_NEEDALIGN		(1<<0)
117 #define VR_Q_CSUM		(1<<1)
118 #define VR_Q_CAM		(1<<2)
119 
120 static const struct vr_type {
121 	u_int16_t		vr_vid;
122 	u_int16_t		vr_did;
123 	int			vr_quirks;
124 	const char		*vr_name;
125 } vr_devs[] = {
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT3043 Rhine I 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
130 	    VR_Q_NEEDALIGN,
131 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
133 	    0,
134 	    "VIA VT6102 Rhine II 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
136 	    0,
137 	    "VIA VT6105 Rhine III 10/100BaseTX" },
138 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
139 	    VR_Q_CSUM,
140 	    "VIA VT6105M Rhine III 10/100BaseTX" },
141 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Delta Electronics Rhine II 10/100BaseTX" },
144 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
145 	    VR_Q_NEEDALIGN,
146 	    "Addtron Technology Rhine II 10/100BaseTX" },
147 	{ 0, 0, 0, NULL }
148 };
149 
150 static int vr_probe(device_t);
151 static int vr_attach(device_t);
152 static int vr_detach(device_t);
153 static int vr_shutdown(device_t);
154 static int vr_suspend(device_t);
155 static int vr_resume(device_t);
156 
157 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
158 static int vr_dma_alloc(struct vr_softc *);
159 static void vr_dma_free(struct vr_softc *);
160 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
161 static int vr_newbuf(struct vr_softc *, int);
162 
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline void vr_fixup_rx(struct mbuf *);
165 #endif
166 static int vr_rxeof(struct vr_softc *);
167 static void vr_txeof(struct vr_softc *);
168 static void vr_tick(void *);
169 static int vr_error(struct vr_softc *, uint16_t);
170 static void vr_tx_underrun(struct vr_softc *);
171 static int vr_intr(void *);
172 static void vr_int_task(void *, int);
173 static void vr_start(if_t);
174 static void vr_start_locked(if_t);
175 static int vr_encap(struct vr_softc *, struct mbuf **);
176 static int vr_ioctl(if_t, u_long, caddr_t);
177 static void vr_init(void *);
178 static void vr_init_locked(struct vr_softc *);
179 static void vr_tx_start(struct vr_softc *);
180 static void vr_rx_start(struct vr_softc *);
181 static int vr_tx_stop(struct vr_softc *);
182 static int vr_rx_stop(struct vr_softc *);
183 static void vr_stop(struct vr_softc *);
184 static void vr_watchdog(struct vr_softc *);
185 static int vr_ifmedia_upd(if_t);
186 static void vr_ifmedia_sts(if_t, struct ifmediareq *);
187 
188 static int vr_miibus_readreg(device_t, int, int);
189 static int vr_miibus_writereg(device_t, int, int, int);
190 static void vr_miibus_statchg(device_t);
191 
192 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
193 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
194 static void vr_set_filter(struct vr_softc *);
195 static void vr_reset(const struct vr_softc *);
196 static int vr_tx_ring_init(struct vr_softc *);
197 static int vr_rx_ring_init(struct vr_softc *);
198 static void vr_setwol(struct vr_softc *);
199 static void vr_clrwol(struct vr_softc *);
200 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
201 
202 static const struct vr_tx_threshold_table {
203 	int tx_cfg;
204 	int bcr_cfg;
205 	int value;
206 } vr_tx_threshold_tables[] = {
207 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
208 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
209 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
210 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
211 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
212 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
213 };
214 
215 static device_method_t vr_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		vr_probe),
218 	DEVMETHOD(device_attach,	vr_attach),
219 	DEVMETHOD(device_detach, 	vr_detach),
220 	DEVMETHOD(device_shutdown,	vr_shutdown),
221 	DEVMETHOD(device_suspend,	vr_suspend),
222 	DEVMETHOD(device_resume,	vr_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	DEVMETHOD_END
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 DRIVER_MODULE(vr, pci, vr_driver, 0, 0);
239 DRIVER_MODULE(miibus, vr, miibus_driver, 0, 0);
240 
241 static int
242 vr_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 	struct vr_softc		*sc;
245 	int			i;
246 
247 	sc = device_get_softc(dev);
248 
249 	/* Set the register address. */
250 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
251 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
252 
253 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
254 		DELAY(1);
255 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
256 			break;
257 	}
258 	if (i == VR_MII_TIMEOUT)
259 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
260 
261 	return (CSR_READ_2(sc, VR_MIIDATA));
262 }
263 
264 static int
265 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
266 {
267 	struct vr_softc		*sc;
268 	int			i;
269 
270 	sc = device_get_softc(dev);
271 
272 	/* Set the register address and data to write. */
273 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
274 	CSR_WRITE_2(sc, VR_MIIDATA, data);
275 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
276 
277 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
278 		DELAY(1);
279 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
280 			break;
281 	}
282 	if (i == VR_MII_TIMEOUT)
283 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
284 		    reg);
285 
286 	return (0);
287 }
288 
289 /*
290  * In order to fiddle with the
291  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
292  * first have to put the transmit and/or receive logic in the idle state.
293  */
294 static void
295 vr_miibus_statchg(device_t dev)
296 {
297 	struct vr_softc		*sc;
298 	struct mii_data		*mii;
299 	if_t			ifp;
300 	int			lfdx, mfdx;
301 	uint8_t			cr0, cr1, fc;
302 
303 	sc = device_get_softc(dev);
304 	mii = device_get_softc(sc->vr_miibus);
305 	ifp = sc->vr_ifp;
306 	if (mii == NULL || ifp == NULL ||
307 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
308 		return;
309 
310 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
311 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
312 	    (IFM_ACTIVE | IFM_AVALID)) {
313 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
314 		case IFM_10_T:
315 		case IFM_100_TX:
316 			sc->vr_flags |= VR_F_LINK;
317 			break;
318 		default:
319 			break;
320 		}
321 	}
322 
323 	if ((sc->vr_flags & VR_F_LINK) != 0) {
324 		cr0 = CSR_READ_1(sc, VR_CR0);
325 		cr1 = CSR_READ_1(sc, VR_CR1);
326 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
327 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
328 		if (mfdx != lfdx) {
329 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
330 				if (vr_tx_stop(sc) != 0 ||
331 				    vr_rx_stop(sc) != 0) {
332 					device_printf(sc->vr_dev,
333 					    "%s: Tx/Rx shutdown error -- "
334 					    "resetting\n", __func__);
335 					sc->vr_flags |= VR_F_RESTART;
336 					VR_UNLOCK(sc);
337 					return;
338 				}
339 			}
340 			if (lfdx)
341 				cr1 |= VR_CR1_FULLDUPLEX;
342 			else
343 				cr1 &= ~VR_CR1_FULLDUPLEX;
344 			CSR_WRITE_1(sc, VR_CR1, cr1);
345 		}
346 		fc = 0;
347 		/* Configure flow-control. */
348 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
349 			fc = CSR_READ_1(sc, VR_FLOWCR1);
350 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
351 			if ((IFM_OPTIONS(mii->mii_media_active) &
352 			    IFM_ETH_RXPAUSE) != 0)
353 				fc |= VR_FLOWCR1_RXPAUSE;
354 			if ((IFM_OPTIONS(mii->mii_media_active) &
355 			    IFM_ETH_TXPAUSE) != 0) {
356 				fc |= VR_FLOWCR1_TXPAUSE;
357 				sc->vr_flags |= VR_F_TXPAUSE;
358 			}
359 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
360 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
361 			/* No Tx puase capability available for Rhine II. */
362 			fc = CSR_READ_1(sc, VR_MISC_CR0);
363 			fc &= ~VR_MISCCR0_RXPAUSE;
364 			if ((IFM_OPTIONS(mii->mii_media_active) &
365 			    IFM_ETH_RXPAUSE) != 0)
366 				fc |= VR_MISCCR0_RXPAUSE;
367 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
368 		}
369 		vr_rx_start(sc);
370 		vr_tx_start(sc);
371 	} else {
372 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
373 			device_printf(sc->vr_dev,
374 			    "%s: Tx/Rx shutdown error -- resetting\n",
375 			    __func__);
376 			sc->vr_flags |= VR_F_RESTART;
377 		}
378 	}
379 }
380 
381 static void
382 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
383 {
384 
385 	if (type == VR_MCAST_CAM)
386 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
387 	else
388 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
389 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
390 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
391 }
392 
393 static int
394 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
395 {
396 	int	i;
397 
398 	if (type == VR_MCAST_CAM) {
399 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
400 			return (EINVAL);
401 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
402 	} else
403 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
404 
405 	/* Set CAM entry address. */
406 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
407 	/* Set CAM entry data. */
408 	if (type == VR_MCAST_CAM) {
409 		for (i = 0; i < ETHER_ADDR_LEN; i++)
410 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
411 	} else {
412 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
413 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
414 	}
415 	DELAY(10);
416 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
417 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
418 	for (i = 0; i < VR_TIMEOUT; i++) {
419 		DELAY(1);
420 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
421 			break;
422 	}
423 
424 	if (i == VR_TIMEOUT)
425 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
426 		    __func__);
427 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
428 
429 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
430 }
431 
432 struct vr_hash_maddr_cam_ctx {
433 	struct vr_softc *sc;
434 	uint32_t mask;
435 	int error;
436 };
437 
438 static u_int
439 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
440 {
441 	struct vr_hash_maddr_cam_ctx *ctx = arg;
442 
443 	if (ctx->error != 0)
444 		return (0);
445 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
446 	if (ctx->error != 0) {
447 		ctx->mask = 0;
448 		return (0);
449 	}
450 	ctx->mask |= 1 << mcnt;
451 
452 	return (1);
453 }
454 
455 static u_int
456 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
457 {
458 	uint32_t *hashes = arg;
459 	int h;
460 
461 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
462 	if (h < 32)
463 		hashes[0] |= (1 << h);
464 	else
465 		hashes[1] |= (1 << (h - 32));
466 
467 	return (1);
468 }
469 
470 /*
471  * Program the 64-bit multicast hash filter.
472  */
473 static void
474 vr_set_filter(struct vr_softc *sc)
475 {
476 	if_t			ifp;
477 	uint32_t		hashes[2] = { 0, 0 };
478 	uint8_t			rxfilt;
479 	int			error, mcnt;
480 
481 	VR_LOCK_ASSERT(sc);
482 
483 	ifp = sc->vr_ifp;
484 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
485 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
486 	    VR_RXCFG_RX_MULTI);
487 	if (if_getflags(ifp) & IFF_BROADCAST)
488 		rxfilt |= VR_RXCFG_RX_BROAD;
489 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
490 		rxfilt |= VR_RXCFG_RX_MULTI;
491 		if (if_getflags(ifp) & IFF_PROMISC)
492 			rxfilt |= VR_RXCFG_RX_PROMISC;
493 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
494 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
495 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
496 		return;
497 	}
498 
499 	/* Now program new ones. */
500 	error = 0;
501 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
502 		struct vr_hash_maddr_cam_ctx ctx;
503 
504 		/*
505 		 * For hardwares that have CAM capability, use
506 		 * 32 entries multicast perfect filter.
507 		 */
508 		ctx.sc = sc;
509 		ctx.mask = 0;
510 		ctx.error = 0;
511 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
512 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
513 	}
514 
515 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
516 		/*
517 		 * If there are too many multicast addresses or
518 		 * setting multicast CAM filter failed, use hash
519 		 * table based filtering.
520 		 */
521 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
522 	}
523 
524 	if (mcnt > 0)
525 		rxfilt |= VR_RXCFG_RX_MULTI;
526 
527 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
528 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
529 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
530 }
531 
532 static void
533 vr_reset(const struct vr_softc *sc)
534 {
535 	int		i;
536 
537 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
538 
539 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
540 	if (sc->vr_revid < REV_ID_VT6102_A) {
541 		/* VT86C100A needs more delay after reset. */
542 		DELAY(100);
543 	}
544 	for (i = 0; i < VR_TIMEOUT; i++) {
545 		DELAY(10);
546 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
547 			break;
548 	}
549 	if (i == VR_TIMEOUT) {
550 		if (sc->vr_revid < REV_ID_VT6102_A)
551 			device_printf(sc->vr_dev, "reset never completed!\n");
552 		else {
553 			/* Use newer force reset command. */
554 			device_printf(sc->vr_dev,
555 			    "Using force reset command.\n");
556 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
557 			/*
558 			 * Wait a little while for the chip to get its brains
559 			 * in order.
560 			 */
561 			DELAY(2000);
562 		}
563 	}
564 
565 }
566 
567 /*
568  * Probe for a VIA Rhine chip. Check the PCI vendor and device
569  * IDs against our list and return a match or NULL
570  */
571 static const struct vr_type *
572 vr_match(device_t dev)
573 {
574 	const struct vr_type	*t = vr_devs;
575 
576 	for (t = vr_devs; t->vr_name != NULL; t++)
577 		if ((pci_get_vendor(dev) == t->vr_vid) &&
578 		    (pci_get_device(dev) == t->vr_did))
579 			return (t);
580 	return (NULL);
581 }
582 
583 /*
584  * Probe for a VIA Rhine chip. Check the PCI vendor and device
585  * IDs against our list and return a device name if we find a match.
586  */
587 static int
588 vr_probe(device_t dev)
589 {
590 	const struct vr_type	*t;
591 
592 	t = vr_match(dev);
593 	if (t != NULL) {
594 		device_set_desc(dev, t->vr_name);
595 		return (BUS_PROBE_DEFAULT);
596 	}
597 	return (ENXIO);
598 }
599 
600 /*
601  * Attach the interface. Allocate softc structures, do ifmedia
602  * setup and ethernet/BPF attach.
603  */
604 static int
605 vr_attach(device_t dev)
606 {
607 	struct vr_softc		*sc;
608 	if_t			ifp;
609 	const struct vr_type	*t;
610 	uint8_t			eaddr[ETHER_ADDR_LEN];
611 	int			error, rid;
612 	int			i, phy, pmc;
613 
614 	sc = device_get_softc(dev);
615 	sc->vr_dev = dev;
616 	t = vr_match(dev);
617 	KASSERT(t != NULL, ("Lost if_vr device match"));
618 	sc->vr_quirks = t->vr_quirks;
619 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
620 
621 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
622 	    MTX_DEF);
623 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
624 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
625 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
626 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
627 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
628 
629 	error = 0;
630 
631 	/*
632 	 * Map control/status registers.
633 	 */
634 	pci_enable_busmaster(dev);
635 	sc->vr_revid = pci_get_revid(dev);
636 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
637 
638 	sc->vr_res_id = PCIR_BAR(0);
639 	sc->vr_res_type = SYS_RES_IOPORT;
640 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
641 	    &sc->vr_res_id, RF_ACTIVE);
642 	if (sc->vr_res == NULL) {
643 		device_printf(dev, "couldn't map ports\n");
644 		error = ENXIO;
645 		goto fail;
646 	}
647 
648 	/* Allocate interrupt. */
649 	rid = 0;
650 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
651 	    RF_SHAREABLE | RF_ACTIVE);
652 
653 	if (sc->vr_irq == NULL) {
654 		device_printf(dev, "couldn't map interrupt\n");
655 		error = ENXIO;
656 		goto fail;
657 	}
658 
659 	/* Allocate ifnet structure. */
660 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
661 	if (ifp == NULL) {
662 		device_printf(dev, "couldn't allocate ifnet structure\n");
663 		error = ENOSPC;
664 		goto fail;
665 	}
666 	if_setsoftc(ifp, sc);
667 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
668 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
669 	if_setioctlfn(ifp, vr_ioctl);
670 	if_setstartfn(ifp, vr_start);
671 	if_setinitfn(ifp, vr_init);
672 	if_setsendqlen(ifp, VR_TX_RING_CNT - 1);
673 	if_setsendqready(ifp);
674 
675 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
676 
677 	/* Configure Tx FIFO threshold. */
678 	sc->vr_txthresh = VR_TXTHRESH_MIN;
679 	if (sc->vr_revid < REV_ID_VT6105_A0) {
680 		/*
681 		 * Use store and forward mode for Rhine I/II.
682 		 * Otherwise they produce a lot of Tx underruns and
683 		 * it would take a while to get working FIFO threshold
684 		 * value.
685 		 */
686 		sc->vr_txthresh = VR_TXTHRESH_MAX;
687 	}
688 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
689 		if_sethwassist(ifp, VR_CSUM_FEATURES);
690 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
691 		/*
692 		 * To update checksum field the hardware may need to
693 		 * store entire frames into FIFO before transmitting.
694 		 */
695 		sc->vr_txthresh = VR_TXTHRESH_MAX;
696 	}
697 
698 	if (sc->vr_revid >= REV_ID_VT6102_A &&
699 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
700 		if_setcapabilitiesbit(ifp, IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC, 0);
701 
702 	/* Rhine supports oversized VLAN frame. */
703 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
704 	if_setcapenable(ifp, if_getcapabilities(ifp));
705 #ifdef DEVICE_POLLING
706 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
707 #endif
708 
709 	/*
710 	 * Windows may put the chip in suspend mode when it
711 	 * shuts down. Be sure to kick it in the head to wake it
712 	 * up again.
713 	 */
714 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
715 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
716 
717 	/*
718 	 * Get station address. The way the Rhine chips work,
719 	 * you're not allowed to directly access the EEPROM once
720 	 * they've been programmed a special way. Consequently,
721 	 * we need to read the node address from the PAR0 and PAR1
722 	 * registers.
723 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
724 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
725 	 * by driver is reset to default state.
726 	 */
727 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
728 	for (i = VR_TIMEOUT; i > 0; i--) {
729 		DELAY(1);
730 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
731 			break;
732 	}
733 	if (i == 0)
734 		device_printf(dev, "Reloading EEPROM timeout!\n");
735 	for (i = 0; i < ETHER_ADDR_LEN; i++)
736 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
737 
738 	/* Reset the adapter. */
739 	vr_reset(sc);
740 	/* Ack intr & disable further interrupts. */
741 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
742 	CSR_WRITE_2(sc, VR_IMR, 0);
743 	if (sc->vr_revid >= REV_ID_VT6102_A)
744 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
745 
746 	if (sc->vr_revid < REV_ID_VT6102_A) {
747 		pci_write_config(dev, VR_PCI_MODE2,
748 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
749 		    VR_MODE2_MODE10T, 1);
750 	} else {
751 		/* Report error instead of retrying forever. */
752 		pci_write_config(dev, VR_PCI_MODE2,
753 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
754 		    VR_MODE2_PCEROPT, 1);
755         	/* Detect MII coding error. */
756 		pci_write_config(dev, VR_PCI_MODE3,
757 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
758 		    VR_MODE3_MIION, 1);
759 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
760 		    sc->vr_revid < REV_ID_VT6105M_A0)
761 			pci_write_config(dev, VR_PCI_MODE2,
762 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
763 			    VR_MODE2_MODE10T, 1);
764 		/* Enable Memory-Read-Multiple. */
765 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
766 		    sc->vr_revid < REV_ID_VT6105M_A0)
767 			pci_write_config(dev, VR_PCI_MODE2,
768 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
769 			    VR_MODE2_MRDPL, 1);
770 	}
771 	/* Disable MII AUTOPOLL. */
772 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
773 
774 	if (vr_dma_alloc(sc) != 0) {
775 		error = ENXIO;
776 		goto fail;
777 	}
778 
779 	/* Do MII setup. */
780 	if (sc->vr_revid >= REV_ID_VT6105_A0)
781 		phy = 1;
782 	else
783 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
784 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
785 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
786 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
787 	if (error != 0) {
788 		device_printf(dev, "attaching PHYs failed\n");
789 		goto fail;
790 	}
791 
792 	/* Call MI attach routine. */
793 	ether_ifattach(ifp, eaddr);
794 	/*
795 	 * Tell the upper layer(s) we support long frames.
796 	 * Must appear after the call to ether_ifattach() because
797 	 * ether_ifattach() sets ifi_hdrlen to the default value.
798 	 */
799 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
800 
801 	/* Hook interrupt last to avoid having to lock softc. */
802 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
803 	    vr_intr, NULL, sc, &sc->vr_intrhand);
804 
805 	if (error) {
806 		device_printf(dev, "couldn't set up irq\n");
807 		ether_ifdetach(ifp);
808 		goto fail;
809 	}
810 
811 fail:
812 	if (error)
813 		vr_detach(dev);
814 
815 	return (error);
816 }
817 
818 /*
819  * Shutdown hardware and free up resources. This can be called any
820  * time after the mutex has been initialized. It is called in both
821  * the error case in attach and the normal detach case so it needs
822  * to be careful about only freeing resources that have actually been
823  * allocated.
824  */
825 static int
826 vr_detach(device_t dev)
827 {
828 	struct vr_softc		*sc = device_get_softc(dev);
829 	if_t			ifp = sc->vr_ifp;
830 
831 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
832 
833 #ifdef DEVICE_POLLING
834 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
835 		ether_poll_deregister(ifp);
836 #endif
837 
838 	/* These should only be active if attach succeeded. */
839 	if (device_is_attached(dev)) {
840 		VR_LOCK(sc);
841 		sc->vr_flags |= VR_F_DETACHED;
842 		vr_stop(sc);
843 		VR_UNLOCK(sc);
844 		callout_drain(&sc->vr_stat_callout);
845 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
846 		ether_ifdetach(ifp);
847 	}
848 	if (sc->vr_miibus)
849 		device_delete_child(dev, sc->vr_miibus);
850 	bus_generic_detach(dev);
851 
852 	if (sc->vr_intrhand)
853 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
854 	if (sc->vr_irq)
855 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
856 	if (sc->vr_res)
857 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
858 		    sc->vr_res);
859 
860 	if (ifp)
861 		if_free(ifp);
862 
863 	vr_dma_free(sc);
864 
865 	mtx_destroy(&sc->vr_mtx);
866 
867 	return (0);
868 }
869 
870 struct vr_dmamap_arg {
871 	bus_addr_t	vr_busaddr;
872 };
873 
874 static void
875 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
876 {
877 	struct vr_dmamap_arg	*ctx;
878 
879 	if (error != 0)
880 		return;
881 	ctx = arg;
882 	ctx->vr_busaddr = segs[0].ds_addr;
883 }
884 
885 static int
886 vr_dma_alloc(struct vr_softc *sc)
887 {
888 	struct vr_dmamap_arg	ctx;
889 	struct vr_txdesc	*txd;
890 	struct vr_rxdesc	*rxd;
891 	bus_size_t		tx_alignment;
892 	int			error, i;
893 
894 	/* Create parent DMA tag. */
895 	error = bus_dma_tag_create(
896 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
897 	    1, 0,			/* alignment, boundary */
898 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
899 	    BUS_SPACE_MAXADDR,		/* highaddr */
900 	    NULL, NULL,			/* filter, filterarg */
901 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
902 	    0,				/* nsegments */
903 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
904 	    0,				/* flags */
905 	    NULL, NULL,			/* lockfunc, lockarg */
906 	    &sc->vr_cdata.vr_parent_tag);
907 	if (error != 0) {
908 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
909 		goto fail;
910 	}
911 	/* Create tag for Tx ring. */
912 	error = bus_dma_tag_create(
913 	    sc->vr_cdata.vr_parent_tag,	/* parent */
914 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
915 	    BUS_SPACE_MAXADDR,		/* lowaddr */
916 	    BUS_SPACE_MAXADDR,		/* highaddr */
917 	    NULL, NULL,			/* filter, filterarg */
918 	    VR_TX_RING_SIZE,		/* maxsize */
919 	    1,				/* nsegments */
920 	    VR_TX_RING_SIZE,		/* maxsegsize */
921 	    0,				/* flags */
922 	    NULL, NULL,			/* lockfunc, lockarg */
923 	    &sc->vr_cdata.vr_tx_ring_tag);
924 	if (error != 0) {
925 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
926 		goto fail;
927 	}
928 
929 	/* Create tag for Rx ring. */
930 	error = bus_dma_tag_create(
931 	    sc->vr_cdata.vr_parent_tag,	/* parent */
932 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
933 	    BUS_SPACE_MAXADDR,		/* lowaddr */
934 	    BUS_SPACE_MAXADDR,		/* highaddr */
935 	    NULL, NULL,			/* filter, filterarg */
936 	    VR_RX_RING_SIZE,		/* maxsize */
937 	    1,				/* nsegments */
938 	    VR_RX_RING_SIZE,		/* maxsegsize */
939 	    0,				/* flags */
940 	    NULL, NULL,			/* lockfunc, lockarg */
941 	    &sc->vr_cdata.vr_rx_ring_tag);
942 	if (error != 0) {
943 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
944 		goto fail;
945 	}
946 
947 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
948 		tx_alignment = sizeof(uint32_t);
949 	else
950 		tx_alignment = 1;
951 	/* Create tag for Tx buffers. */
952 	error = bus_dma_tag_create(
953 	    sc->vr_cdata.vr_parent_tag,	/* parent */
954 	    tx_alignment, 0,		/* alignment, boundary */
955 	    BUS_SPACE_MAXADDR,		/* lowaddr */
956 	    BUS_SPACE_MAXADDR,		/* highaddr */
957 	    NULL, NULL,			/* filter, filterarg */
958 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
959 	    VR_MAXFRAGS,		/* nsegments */
960 	    MCLBYTES,			/* maxsegsize */
961 	    0,				/* flags */
962 	    NULL, NULL,			/* lockfunc, lockarg */
963 	    &sc->vr_cdata.vr_tx_tag);
964 	if (error != 0) {
965 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
966 		goto fail;
967 	}
968 
969 	/* Create tag for Rx buffers. */
970 	error = bus_dma_tag_create(
971 	    sc->vr_cdata.vr_parent_tag,	/* parent */
972 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
973 	    BUS_SPACE_MAXADDR,		/* lowaddr */
974 	    BUS_SPACE_MAXADDR,		/* highaddr */
975 	    NULL, NULL,			/* filter, filterarg */
976 	    MCLBYTES,			/* maxsize */
977 	    1,				/* nsegments */
978 	    MCLBYTES,			/* maxsegsize */
979 	    0,				/* flags */
980 	    NULL, NULL,			/* lockfunc, lockarg */
981 	    &sc->vr_cdata.vr_rx_tag);
982 	if (error != 0) {
983 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
984 		goto fail;
985 	}
986 
987 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
988 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
989 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
990 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
991 	if (error != 0) {
992 		device_printf(sc->vr_dev,
993 		    "failed to allocate DMA'able memory for Tx ring\n");
994 		goto fail;
995 	}
996 
997 	ctx.vr_busaddr = 0;
998 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
999 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
1000 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1001 	if (error != 0 || ctx.vr_busaddr == 0) {
1002 		device_printf(sc->vr_dev,
1003 		    "failed to load DMA'able memory for Tx ring\n");
1004 		goto fail;
1005 	}
1006 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1007 
1008 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1009 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1010 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1011 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1012 	if (error != 0) {
1013 		device_printf(sc->vr_dev,
1014 		    "failed to allocate DMA'able memory for Rx ring\n");
1015 		goto fail;
1016 	}
1017 
1018 	ctx.vr_busaddr = 0;
1019 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1020 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1021 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1022 	if (error != 0 || ctx.vr_busaddr == 0) {
1023 		device_printf(sc->vr_dev,
1024 		    "failed to load DMA'able memory for Rx ring\n");
1025 		goto fail;
1026 	}
1027 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1028 
1029 	/* Create DMA maps for Tx buffers. */
1030 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1031 		txd = &sc->vr_cdata.vr_txdesc[i];
1032 		txd->tx_m = NULL;
1033 		txd->tx_dmamap = NULL;
1034 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1035 		    &txd->tx_dmamap);
1036 		if (error != 0) {
1037 			device_printf(sc->vr_dev,
1038 			    "failed to create Tx dmamap\n");
1039 			goto fail;
1040 		}
1041 	}
1042 	/* Create DMA maps for Rx buffers. */
1043 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1044 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1045 		device_printf(sc->vr_dev,
1046 		    "failed to create spare Rx dmamap\n");
1047 		goto fail;
1048 	}
1049 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1050 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1051 		rxd->rx_m = NULL;
1052 		rxd->rx_dmamap = NULL;
1053 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1054 		    &rxd->rx_dmamap);
1055 		if (error != 0) {
1056 			device_printf(sc->vr_dev,
1057 			    "failed to create Rx dmamap\n");
1058 			goto fail;
1059 		}
1060 	}
1061 
1062 fail:
1063 	return (error);
1064 }
1065 
1066 static void
1067 vr_dma_free(struct vr_softc *sc)
1068 {
1069 	struct vr_txdesc	*txd;
1070 	struct vr_rxdesc	*rxd;
1071 	int			i;
1072 
1073 	/* Tx ring. */
1074 	if (sc->vr_cdata.vr_tx_ring_tag) {
1075 		if (sc->vr_rdata.vr_tx_ring_paddr)
1076 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1077 			    sc->vr_cdata.vr_tx_ring_map);
1078 		if (sc->vr_rdata.vr_tx_ring)
1079 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1080 			    sc->vr_rdata.vr_tx_ring,
1081 			    sc->vr_cdata.vr_tx_ring_map);
1082 		sc->vr_rdata.vr_tx_ring = NULL;
1083 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1084 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1085 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1086 	}
1087 	/* Rx ring. */
1088 	if (sc->vr_cdata.vr_rx_ring_tag) {
1089 		if (sc->vr_rdata.vr_rx_ring_paddr)
1090 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1091 			    sc->vr_cdata.vr_rx_ring_map);
1092 		if (sc->vr_rdata.vr_rx_ring)
1093 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1094 			    sc->vr_rdata.vr_rx_ring,
1095 			    sc->vr_cdata.vr_rx_ring_map);
1096 		sc->vr_rdata.vr_rx_ring = NULL;
1097 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1098 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1099 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1100 	}
1101 	/* Tx buffers. */
1102 	if (sc->vr_cdata.vr_tx_tag) {
1103 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1104 			txd = &sc->vr_cdata.vr_txdesc[i];
1105 			if (txd->tx_dmamap) {
1106 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1107 				    txd->tx_dmamap);
1108 				txd->tx_dmamap = NULL;
1109 			}
1110 		}
1111 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1112 		sc->vr_cdata.vr_tx_tag = NULL;
1113 	}
1114 	/* Rx buffers. */
1115 	if (sc->vr_cdata.vr_rx_tag) {
1116 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1117 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1118 			if (rxd->rx_dmamap) {
1119 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1120 				    rxd->rx_dmamap);
1121 				rxd->rx_dmamap = NULL;
1122 			}
1123 		}
1124 		if (sc->vr_cdata.vr_rx_sparemap) {
1125 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1126 			    sc->vr_cdata.vr_rx_sparemap);
1127 			sc->vr_cdata.vr_rx_sparemap = 0;
1128 		}
1129 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1130 		sc->vr_cdata.vr_rx_tag = NULL;
1131 	}
1132 
1133 	if (sc->vr_cdata.vr_parent_tag) {
1134 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1135 		sc->vr_cdata.vr_parent_tag = NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * Initialize the transmit descriptors.
1141  */
1142 static int
1143 vr_tx_ring_init(struct vr_softc *sc)
1144 {
1145 	struct vr_ring_data	*rd;
1146 	struct vr_txdesc	*txd;
1147 	bus_addr_t		addr;
1148 	int			i;
1149 
1150 	sc->vr_cdata.vr_tx_prod = 0;
1151 	sc->vr_cdata.vr_tx_cons = 0;
1152 	sc->vr_cdata.vr_tx_cnt = 0;
1153 	sc->vr_cdata.vr_tx_pkts = 0;
1154 
1155 	rd = &sc->vr_rdata;
1156 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1157 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1158 		if (i == VR_TX_RING_CNT - 1)
1159 			addr = VR_TX_RING_ADDR(sc, 0);
1160 		else
1161 			addr = VR_TX_RING_ADDR(sc, i + 1);
1162 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1163 		txd = &sc->vr_cdata.vr_txdesc[i];
1164 		txd->tx_m = NULL;
1165 	}
1166 
1167 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1168 	    sc->vr_cdata.vr_tx_ring_map,
1169 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1170 
1171 	return (0);
1172 }
1173 
1174 /*
1175  * Initialize the RX descriptors and allocate mbufs for them. Note that
1176  * we arrange the descriptors in a closed ring, so that the last descriptor
1177  * points back to the first.
1178  */
1179 static int
1180 vr_rx_ring_init(struct vr_softc *sc)
1181 {
1182 	struct vr_ring_data	*rd;
1183 	struct vr_rxdesc	*rxd;
1184 	bus_addr_t		addr;
1185 	int			i;
1186 
1187 	sc->vr_cdata.vr_rx_cons = 0;
1188 
1189 	rd = &sc->vr_rdata;
1190 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1191 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1192 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1193 		rxd->rx_m = NULL;
1194 		rxd->desc = &rd->vr_rx_ring[i];
1195 		if (i == VR_RX_RING_CNT - 1)
1196 			addr = VR_RX_RING_ADDR(sc, 0);
1197 		else
1198 			addr = VR_RX_RING_ADDR(sc, i + 1);
1199 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1200 		if (vr_newbuf(sc, i) != 0)
1201 			return (ENOBUFS);
1202 	}
1203 
1204 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1205 	    sc->vr_cdata.vr_rx_ring_map,
1206 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1207 
1208 	return (0);
1209 }
1210 
1211 static __inline void
1212 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1213 {
1214 	struct vr_desc	*desc;
1215 
1216 	desc = rxd->desc;
1217 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1218 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1219 }
1220 
1221 /*
1222  * Initialize an RX descriptor and attach an MBUF cluster.
1223  * Note: the length fields are only 11 bits wide, which means the
1224  * largest size we can specify is 2047. This is important because
1225  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1226  * overflow the field and make a mess.
1227  */
1228 static int
1229 vr_newbuf(struct vr_softc *sc, int idx)
1230 {
1231 	struct vr_desc		*desc;
1232 	struct vr_rxdesc	*rxd;
1233 	struct mbuf		*m;
1234 	bus_dma_segment_t	segs[1];
1235 	bus_dmamap_t		map;
1236 	int			nsegs;
1237 
1238 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1239 	if (m == NULL)
1240 		return (ENOBUFS);
1241 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1242 	m_adj(m, sizeof(uint64_t));
1243 
1244 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1245 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1246 		m_freem(m);
1247 		return (ENOBUFS);
1248 	}
1249 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1250 
1251 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1252 	if (rxd->rx_m != NULL) {
1253 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1254 		    BUS_DMASYNC_POSTREAD);
1255 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1256 	}
1257 	map = rxd->rx_dmamap;
1258 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1259 	sc->vr_cdata.vr_rx_sparemap = map;
1260 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1261 	    BUS_DMASYNC_PREREAD);
1262 	rxd->rx_m = m;
1263 	desc = rxd->desc;
1264 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1265 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1266 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1267 
1268 	return (0);
1269 }
1270 
1271 #ifndef __NO_STRICT_ALIGNMENT
1272 static __inline void
1273 vr_fixup_rx(struct mbuf *m)
1274 {
1275         uint16_t		*src, *dst;
1276         int			i;
1277 
1278 	src = mtod(m, uint16_t *);
1279 	dst = src - 1;
1280 
1281 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1282 		*dst++ = *src++;
1283 
1284 	m->m_data -= ETHER_ALIGN;
1285 }
1286 #endif
1287 
1288 /*
1289  * A frame has been uploaded: pass the resulting mbuf chain up to
1290  * the higher level protocols.
1291  */
1292 static int
1293 vr_rxeof(struct vr_softc *sc)
1294 {
1295 	struct vr_rxdesc	*rxd;
1296 	struct mbuf		*m;
1297 	if_t			ifp;
1298 	struct vr_desc		*cur_rx;
1299 	int			cons, prog, total_len, rx_npkts;
1300 	uint32_t		rxstat, rxctl;
1301 
1302 	VR_LOCK_ASSERT(sc);
1303 	ifp = sc->vr_ifp;
1304 	cons = sc->vr_cdata.vr_rx_cons;
1305 	rx_npkts = 0;
1306 
1307 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1308 	    sc->vr_cdata.vr_rx_ring_map,
1309 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1310 
1311 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1312 #ifdef DEVICE_POLLING
1313 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1314 			if (sc->rxcycles <= 0)
1315 				break;
1316 			sc->rxcycles--;
1317 		}
1318 #endif
1319 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1320 		rxstat = le32toh(cur_rx->vr_status);
1321 		rxctl = le32toh(cur_rx->vr_ctl);
1322 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1323 			break;
1324 
1325 		prog++;
1326 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1327 		m = rxd->rx_m;
1328 
1329 		/*
1330 		 * If an error occurs, update stats, clear the
1331 		 * status word and leave the mbuf cluster in place:
1332 		 * it should simply get re-used next time this descriptor
1333 		 * comes up in the ring.
1334 		 * We don't support SG in Rx path yet, so discard
1335 		 * partial frame.
1336 		 */
1337 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1338 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1339 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1340 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1341 			sc->vr_stat.rx_errors++;
1342 			if (rxstat & VR_RXSTAT_CRCERR)
1343 				sc->vr_stat.rx_crc_errors++;
1344 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1345 				sc->vr_stat.rx_alignment++;
1346 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1347 				sc->vr_stat.rx_fifo_overflows++;
1348 			if (rxstat & VR_RXSTAT_GIANT)
1349 				sc->vr_stat.rx_giants++;
1350 			if (rxstat & VR_RXSTAT_RUNT)
1351 				sc->vr_stat.rx_runts++;
1352 			if (rxstat & VR_RXSTAT_BUFFERR)
1353 				sc->vr_stat.rx_no_buffers++;
1354 #ifdef	VR_SHOW_ERRORS
1355 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1356 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1357 #endif
1358 			vr_discard_rxbuf(rxd);
1359 			continue;
1360 		}
1361 
1362 		if (vr_newbuf(sc, cons) != 0) {
1363 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1364 			sc->vr_stat.rx_errors++;
1365 			sc->vr_stat.rx_no_mbufs++;
1366 			vr_discard_rxbuf(rxd);
1367 			continue;
1368 		}
1369 
1370 		/*
1371 		 * XXX The VIA Rhine chip includes the CRC with every
1372 		 * received frame, and there's no way to turn this
1373 		 * behavior off (at least, I can't find anything in
1374 		 * the manual that explains how to do it) so we have
1375 		 * to trim off the CRC manually.
1376 		 */
1377 		total_len = VR_RXBYTES(rxstat);
1378 		total_len -= ETHER_CRC_LEN;
1379 		m->m_pkthdr.len = m->m_len = total_len;
1380 #ifndef	__NO_STRICT_ALIGNMENT
1381 		/*
1382 		 * RX buffers must be 32-bit aligned.
1383 		 * Ignore the alignment problems on the non-strict alignment
1384 		 * platform. The performance hit incurred due to unaligned
1385 		 * accesses is much smaller than the hit produced by forcing
1386 		 * buffer copies all the time.
1387 		 */
1388 		vr_fixup_rx(m);
1389 #endif
1390 		m->m_pkthdr.rcvif = ifp;
1391 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1392 		sc->vr_stat.rx_ok++;
1393 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1394 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1395 		    (rxctl & VR_RXCTL_IP) != 0) {
1396 			/* Checksum is valid for non-fragmented IP packets. */
1397 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1398 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1399 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1400 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1401 					m->m_pkthdr.csum_flags |=
1402 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1403 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1404 						m->m_pkthdr.csum_data = 0xffff;
1405 				}
1406 			}
1407 		}
1408 		VR_UNLOCK(sc);
1409 		if_input(ifp, m);
1410 		VR_LOCK(sc);
1411 		rx_npkts++;
1412 	}
1413 
1414 	if (prog > 0) {
1415 		/*
1416 		 * Let controller know how many number of RX buffers
1417 		 * are posted but avoid expensive register access if
1418 		 * TX pause capability was not negotiated with link
1419 		 * partner.
1420 		 */
1421 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1422 			if (prog >= VR_RX_RING_CNT)
1423 				prog = VR_RX_RING_CNT - 1;
1424 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1425 		}
1426 		sc->vr_cdata.vr_rx_cons = cons;
1427 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1428 		    sc->vr_cdata.vr_rx_ring_map,
1429 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1430 	}
1431 	return (rx_npkts);
1432 }
1433 
1434 /*
1435  * A frame was downloaded to the chip. It's safe for us to clean up
1436  * the list buffers.
1437  */
1438 static void
1439 vr_txeof(struct vr_softc *sc)
1440 {
1441 	struct vr_txdesc	*txd;
1442 	struct vr_desc		*cur_tx;
1443 	if_t			ifp;
1444 	uint32_t		txctl, txstat;
1445 	int			cons, prod;
1446 
1447 	VR_LOCK_ASSERT(sc);
1448 
1449 	cons = sc->vr_cdata.vr_tx_cons;
1450 	prod = sc->vr_cdata.vr_tx_prod;
1451 	if (cons == prod)
1452 		return;
1453 
1454 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1455 	    sc->vr_cdata.vr_tx_ring_map,
1456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1457 
1458 	ifp = sc->vr_ifp;
1459 	/*
1460 	 * Go through our tx list and free mbufs for those
1461 	 * frames that have been transmitted.
1462 	 */
1463 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1464 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1465 		txctl = le32toh(cur_tx->vr_ctl);
1466 		txstat = le32toh(cur_tx->vr_status);
1467 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1468 			break;
1469 
1470 		sc->vr_cdata.vr_tx_cnt--;
1471 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1472 		/* Only the first descriptor in the chain is valid. */
1473 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1474 			continue;
1475 
1476 		txd = &sc->vr_cdata.vr_txdesc[cons];
1477 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1478 		    __func__));
1479 
1480 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1481 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1482 			sc->vr_stat.tx_errors++;
1483 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1484 				/* Give up and restart Tx. */
1485 				sc->vr_stat.tx_abort++;
1486 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1487 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1488 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1489 				    txd->tx_dmamap);
1490 				m_freem(txd->tx_m);
1491 				txd->tx_m = NULL;
1492 				VR_INC(cons, VR_TX_RING_CNT);
1493 				sc->vr_cdata.vr_tx_cons = cons;
1494 				if (vr_tx_stop(sc) != 0) {
1495 					device_printf(sc->vr_dev,
1496 					    "%s: Tx shutdown error -- "
1497 					    "resetting\n", __func__);
1498 					sc->vr_flags |= VR_F_RESTART;
1499 					return;
1500 				}
1501 				vr_tx_start(sc);
1502 				break;
1503 			}
1504 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1505 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1506 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1507 				sc->vr_stat.tx_underrun++;
1508 				/* Retry and restart Tx. */
1509 				sc->vr_cdata.vr_tx_cnt++;
1510 				sc->vr_cdata.vr_tx_cons = cons;
1511 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1512 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1513 				    sc->vr_cdata.vr_tx_ring_map,
1514 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1515 				vr_tx_underrun(sc);
1516 				return;
1517 			}
1518 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1519 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1520 				sc->vr_stat.tx_collisions++;
1521 			}
1522 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1523 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1524 				sc->vr_stat.tx_late_collisions++;
1525 			}
1526 		} else {
1527 			sc->vr_stat.tx_ok++;
1528 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1529 		}
1530 
1531 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1532 		    BUS_DMASYNC_POSTWRITE);
1533 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1534 		if (sc->vr_revid < REV_ID_VT3071_A) {
1535 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1536 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1537 			sc->vr_stat.tx_collisions +=
1538 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1539 		} else {
1540 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1541 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1542 		}
1543 		m_freem(txd->tx_m);
1544 		txd->tx_m = NULL;
1545 	}
1546 
1547 	sc->vr_cdata.vr_tx_cons = cons;
1548 	if (sc->vr_cdata.vr_tx_cnt == 0)
1549 		sc->vr_watchdog_timer = 0;
1550 }
1551 
1552 static void
1553 vr_tick(void *xsc)
1554 {
1555 	struct vr_softc		*sc;
1556 	struct mii_data		*mii;
1557 
1558 	sc = (struct vr_softc *)xsc;
1559 
1560 	VR_LOCK_ASSERT(sc);
1561 
1562 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1563 		device_printf(sc->vr_dev, "restarting\n");
1564 		sc->vr_stat.num_restart++;
1565 		if_setdrvflagbits(sc->vr_ifp, 0, IFF_DRV_RUNNING);
1566 		vr_init_locked(sc);
1567 		sc->vr_flags &= ~VR_F_RESTART;
1568 	}
1569 
1570 	mii = device_get_softc(sc->vr_miibus);
1571 	mii_tick(mii);
1572 	if ((sc->vr_flags & VR_F_LINK) == 0)
1573 		vr_miibus_statchg(sc->vr_dev);
1574 	vr_watchdog(sc);
1575 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1576 }
1577 
1578 #ifdef DEVICE_POLLING
1579 static poll_handler_t vr_poll;
1580 static poll_handler_t vr_poll_locked;
1581 
1582 static int
1583 vr_poll(if_t ifp, enum poll_cmd cmd, int count)
1584 {
1585 	struct vr_softc *sc;
1586 	int rx_npkts;
1587 
1588 	sc = if_getsoftc(ifp);
1589 	rx_npkts = 0;
1590 
1591 	VR_LOCK(sc);
1592 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1593 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1594 	VR_UNLOCK(sc);
1595 	return (rx_npkts);
1596 }
1597 
1598 static int
1599 vr_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
1600 {
1601 	struct vr_softc *sc;
1602 	int rx_npkts;
1603 
1604 	sc = if_getsoftc(ifp);
1605 
1606 	VR_LOCK_ASSERT(sc);
1607 
1608 	sc->rxcycles = count;
1609 	rx_npkts = vr_rxeof(sc);
1610 	vr_txeof(sc);
1611 	if (!if_sendq_empty(ifp))
1612 		vr_start_locked(ifp);
1613 
1614 	if (cmd == POLL_AND_CHECK_STATUS) {
1615 		uint16_t status;
1616 
1617 		/* Also check status register. */
1618 		status = CSR_READ_2(sc, VR_ISR);
1619 		if (status)
1620 			CSR_WRITE_2(sc, VR_ISR, status);
1621 
1622 		if ((status & VR_INTRS) == 0)
1623 			return (rx_npkts);
1624 
1625 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1626 		    VR_ISR_STATSOFLOW)) != 0) {
1627 			if (vr_error(sc, status) != 0)
1628 				return (rx_npkts);
1629 		}
1630 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1631 #ifdef	VR_SHOW_ERRORS
1632 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1633 			    __func__, status, VR_ISR_ERR_BITS);
1634 #endif
1635 			vr_rx_start(sc);
1636 		}
1637 	}
1638 	return (rx_npkts);
1639 }
1640 #endif /* DEVICE_POLLING */
1641 
1642 /* Back off the transmit threshold. */
1643 static void
1644 vr_tx_underrun(struct vr_softc *sc)
1645 {
1646 	int	thresh;
1647 
1648 	device_printf(sc->vr_dev, "Tx underrun -- ");
1649 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1650 		thresh = sc->vr_txthresh;
1651 		sc->vr_txthresh++;
1652 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1653 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1654 			printf("using store and forward mode\n");
1655 		} else
1656 			printf("increasing Tx threshold(%d -> %d)\n",
1657 			    vr_tx_threshold_tables[thresh].value,
1658 			    vr_tx_threshold_tables[thresh + 1].value);
1659 	} else
1660 		printf("\n");
1661 	sc->vr_stat.tx_underrun++;
1662 	if (vr_tx_stop(sc) != 0) {
1663 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1664 		    "resetting\n", __func__);
1665 		sc->vr_flags |= VR_F_RESTART;
1666 		return;
1667 	}
1668 	vr_tx_start(sc);
1669 }
1670 
1671 static int
1672 vr_intr(void *arg)
1673 {
1674 	struct vr_softc		*sc;
1675 	uint16_t		status;
1676 
1677 	sc = (struct vr_softc *)arg;
1678 
1679 	status = CSR_READ_2(sc, VR_ISR);
1680 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1681 		return (FILTER_STRAY);
1682 
1683 	/* Disable interrupts. */
1684 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1685 
1686 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1687 
1688 	return (FILTER_HANDLED);
1689 }
1690 
1691 static void
1692 vr_int_task(void *arg, int npending)
1693 {
1694 	struct vr_softc		*sc;
1695 	if_t			ifp;
1696 	uint16_t		status;
1697 
1698 	sc = (struct vr_softc *)arg;
1699 
1700 	VR_LOCK(sc);
1701 
1702 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1703 		goto done_locked;
1704 
1705 	status = CSR_READ_2(sc, VR_ISR);
1706 	ifp = sc->vr_ifp;
1707 #ifdef DEVICE_POLLING
1708 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1709 		goto done_locked;
1710 #endif
1711 
1712 	/* Suppress unwanted interrupts. */
1713 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1714 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1715 		CSR_WRITE_2(sc, VR_IMR, 0);
1716 		CSR_WRITE_2(sc, VR_ISR, status);
1717 		goto done_locked;
1718 	}
1719 
1720 	for (; (status & VR_INTRS) != 0;) {
1721 		CSR_WRITE_2(sc, VR_ISR, status);
1722 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1723 		    VR_ISR_STATSOFLOW)) != 0) {
1724 			if (vr_error(sc, status) != 0) {
1725 				VR_UNLOCK(sc);
1726 				return;
1727 			}
1728 		}
1729 		vr_rxeof(sc);
1730 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1731 #ifdef	VR_SHOW_ERRORS
1732 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1733 			    __func__, status, VR_ISR_ERR_BITS);
1734 #endif
1735 			/* Restart Rx if RxDMA SM was stopped. */
1736 			vr_rx_start(sc);
1737 		}
1738 		vr_txeof(sc);
1739 
1740 		if (!if_sendq_empty(ifp))
1741 			vr_start_locked(ifp);
1742 
1743 		status = CSR_READ_2(sc, VR_ISR);
1744 	}
1745 
1746 	/* Re-enable interrupts. */
1747 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1748 
1749 done_locked:
1750 	VR_UNLOCK(sc);
1751 }
1752 
1753 static int
1754 vr_error(struct vr_softc *sc, uint16_t status)
1755 {
1756 	uint16_t pcis;
1757 
1758 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1759 	if ((status & VR_ISR_BUSERR) != 0) {
1760 		status &= ~VR_ISR_BUSERR;
1761 		sc->vr_stat.bus_errors++;
1762 		/* Disable further interrupts. */
1763 		CSR_WRITE_2(sc, VR_IMR, 0);
1764 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1765 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1766 		    "resetting\n", pcis);
1767 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1768 		sc->vr_flags |= VR_F_RESTART;
1769 		return (EAGAIN);
1770 	}
1771 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1772 		/* Link state change, duplex changes etc. */
1773 		status &= ~VR_ISR_LINKSTAT2;
1774 	}
1775 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1776 		status &= ~VR_ISR_STATSOFLOW;
1777 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1778 			/* Update MIB counters. */
1779 		}
1780 	}
1781 
1782 	if (status != 0)
1783 		device_printf(sc->vr_dev,
1784 		    "unhandled interrupt, status = 0x%04x\n", status);
1785 	return (0);
1786 }
1787 
1788 /*
1789  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1790  * pointers to the fragment pointers.
1791  */
1792 static int
1793 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1794 {
1795 	struct vr_txdesc	*txd;
1796 	struct vr_desc		*desc;
1797 	struct mbuf		*m;
1798 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1799 	uint32_t		csum_flags, txctl;
1800 	int			error, i, nsegs, prod, si;
1801 	int			padlen;
1802 
1803 	VR_LOCK_ASSERT(sc);
1804 
1805 	M_ASSERTPKTHDR((*m_head));
1806 
1807 	/*
1808 	 * Some VIA Rhine wants packet buffers to be longword
1809 	 * aligned, but very often our mbufs aren't. Rather than
1810 	 * waste time trying to decide when to copy and when not
1811 	 * to copy, just do it all the time.
1812 	 */
1813 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1814 		m = m_defrag(*m_head, M_NOWAIT);
1815 		if (m == NULL) {
1816 			m_freem(*m_head);
1817 			*m_head = NULL;
1818 			return (ENOBUFS);
1819 		}
1820 		*m_head = m;
1821 	}
1822 
1823 	/*
1824 	 * The Rhine chip doesn't auto-pad, so we have to make
1825 	 * sure to pad short frames out to the minimum frame length
1826 	 * ourselves.
1827 	 */
1828 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1829 		m = *m_head;
1830 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1831 		if (M_WRITABLE(m) == 0) {
1832 			/* Get a writable copy. */
1833 			m = m_dup(*m_head, M_NOWAIT);
1834 			m_freem(*m_head);
1835 			if (m == NULL) {
1836 				*m_head = NULL;
1837 				return (ENOBUFS);
1838 			}
1839 			*m_head = m;
1840 		}
1841 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1842 			m = m_defrag(m, M_NOWAIT);
1843 			if (m == NULL) {
1844 				m_freem(*m_head);
1845 				*m_head = NULL;
1846 				return (ENOBUFS);
1847 			}
1848 		}
1849 		/*
1850 		 * Manually pad short frames, and zero the pad space
1851 		 * to avoid leaking data.
1852 		 */
1853 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1854 		m->m_pkthdr.len += padlen;
1855 		m->m_len = m->m_pkthdr.len;
1856 		*m_head = m;
1857 	}
1858 
1859 	prod = sc->vr_cdata.vr_tx_prod;
1860 	txd = &sc->vr_cdata.vr_txdesc[prod];
1861 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1862 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1863 	if (error == EFBIG) {
1864 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1865 		if (m == NULL) {
1866 			m_freem(*m_head);
1867 			*m_head = NULL;
1868 			return (ENOBUFS);
1869 		}
1870 		*m_head = m;
1871 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1872 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1873 		if (error != 0) {
1874 			m_freem(*m_head);
1875 			*m_head = NULL;
1876 			return (error);
1877 		}
1878 	} else if (error != 0)
1879 		return (error);
1880 	if (nsegs == 0) {
1881 		m_freem(*m_head);
1882 		*m_head = NULL;
1883 		return (EIO);
1884 	}
1885 
1886 	/* Check number of available descriptors. */
1887 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1888 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1889 		return (ENOBUFS);
1890 	}
1891 
1892 	txd->tx_m = *m_head;
1893 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1894 	    BUS_DMASYNC_PREWRITE);
1895 
1896 	/* Set checksum offload. */
1897 	csum_flags = 0;
1898 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1899 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1900 			csum_flags |= VR_TXCTL_IPCSUM;
1901 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1902 			csum_flags |= VR_TXCTL_TCPCSUM;
1903 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1904 			csum_flags |= VR_TXCTL_UDPCSUM;
1905 	}
1906 
1907 	/*
1908 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1909 	 * is required for all descriptors regardless of single or
1910 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1911 	 * the first descriptor for a multi-fragmented frames. Without
1912 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1913 	 * send any frames.
1914 	 */
1915 	si = prod;
1916 	for (i = 0; i < nsegs; i++) {
1917 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1918 		desc->vr_status = 0;
1919 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1920 		if (i == 0)
1921 			txctl |= VR_TXCTL_FIRSTFRAG;
1922 		desc->vr_ctl = htole32(txctl);
1923 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1924 		sc->vr_cdata.vr_tx_cnt++;
1925 		VR_INC(prod, VR_TX_RING_CNT);
1926 	}
1927 	/* Update producer index. */
1928 	sc->vr_cdata.vr_tx_prod = prod;
1929 
1930 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1931 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1932 
1933 	/*
1934 	 * Set EOP on the last descriptor and request Tx completion
1935 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1936 	 */
1937 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1938 	if (sc->vr_cdata.vr_tx_pkts == 0)
1939 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1940 	else
1941 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1942 
1943 	/* Lastly turn the first descriptor ownership to hardware. */
1944 	desc = &sc->vr_rdata.vr_tx_ring[si];
1945 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1946 
1947 	/* Sync descriptors. */
1948 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1949 	    sc->vr_cdata.vr_tx_ring_map,
1950 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1951 
1952 	return (0);
1953 }
1954 
1955 static void
1956 vr_start(if_t ifp)
1957 {
1958 	struct vr_softc		*sc;
1959 
1960 	sc = if_getsoftc(ifp);
1961 	VR_LOCK(sc);
1962 	vr_start_locked(ifp);
1963 	VR_UNLOCK(sc);
1964 }
1965 
1966 static void
1967 vr_start_locked(if_t ifp)
1968 {
1969 	struct vr_softc		*sc;
1970 	struct mbuf		*m_head;
1971 	int			enq;
1972 
1973 	sc = if_getsoftc(ifp);
1974 
1975 	VR_LOCK_ASSERT(sc);
1976 
1977 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1978 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1979 		return;
1980 
1981 	for (enq = 0; !if_sendq_empty(ifp) &&
1982 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1983 		m_head = if_dequeue(ifp);
1984 		if (m_head == NULL)
1985 			break;
1986 		/*
1987 		 * Pack the data into the transmit ring. If we
1988 		 * don't have room, set the OACTIVE flag and wait
1989 		 * for the NIC to drain the ring.
1990 		 */
1991 		if (vr_encap(sc, &m_head)) {
1992 			if (m_head == NULL)
1993 				break;
1994 			if_sendq_prepend(ifp, m_head);
1995 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1996 			break;
1997 		}
1998 
1999 		enq++;
2000 		/*
2001 		 * If there's a BPF listener, bounce a copy of this frame
2002 		 * to him.
2003 		 */
2004 		ETHER_BPF_MTAP(ifp, m_head);
2005 	}
2006 
2007 	if (enq > 0) {
2008 		/* Tell the chip to start transmitting. */
2009 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2010 		/* Set a timeout in case the chip goes out to lunch. */
2011 		sc->vr_watchdog_timer = 5;
2012 	}
2013 }
2014 
2015 static void
2016 vr_init(void *xsc)
2017 {
2018 	struct vr_softc		*sc;
2019 
2020 	sc = (struct vr_softc *)xsc;
2021 	VR_LOCK(sc);
2022 	vr_init_locked(sc);
2023 	VR_UNLOCK(sc);
2024 }
2025 
2026 static void
2027 vr_init_locked(struct vr_softc *sc)
2028 {
2029 	if_t			ifp;
2030 	struct mii_data		*mii;
2031 	bus_addr_t		addr;
2032 	int			i;
2033 
2034 	VR_LOCK_ASSERT(sc);
2035 
2036 	ifp = sc->vr_ifp;
2037 	mii = device_get_softc(sc->vr_miibus);
2038 
2039 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2040 		return;
2041 
2042 	/* Cancel pending I/O and free all RX/TX buffers. */
2043 	vr_stop(sc);
2044 	vr_reset(sc);
2045 
2046 	/* Set our station address. */
2047 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2048 		CSR_WRITE_1(sc, VR_PAR0 + i, if_getlladdr(sc->vr_ifp)[i]);
2049 
2050 	/* Set DMA size. */
2051 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2052 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2053 
2054 	/*
2055 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2056 	 * so we must set both.
2057 	 */
2058 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2059 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2060 
2061 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2062 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2063 
2064 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2065 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2066 
2067 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2068 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2069 
2070 	/* Init circular RX list. */
2071 	if (vr_rx_ring_init(sc) != 0) {
2072 		device_printf(sc->vr_dev,
2073 		    "initialization failed: no memory for rx buffers\n");
2074 		vr_stop(sc);
2075 		return;
2076 	}
2077 
2078 	/* Init tx descriptors. */
2079 	vr_tx_ring_init(sc);
2080 
2081 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2082 		uint8_t vcam[2] = { 0, 0 };
2083 
2084 		/* Disable VLAN hardware tag insertion/stripping. */
2085 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2086 		/* Disable VLAN hardware filtering. */
2087 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2088 		/* Disable all CAM entries. */
2089 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2090 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2091 		/* Enable the first VLAN CAM. */
2092 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2093 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2094 	}
2095 
2096 	/*
2097 	 * Set up receive filter.
2098 	 */
2099 	vr_set_filter(sc);
2100 
2101 	/*
2102 	 * Load the address of the RX ring.
2103 	 */
2104 	addr = VR_RX_RING_ADDR(sc, 0);
2105 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2106 	/*
2107 	 * Load the address of the TX ring.
2108 	 */
2109 	addr = VR_TX_RING_ADDR(sc, 0);
2110 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2111 	/* Default : full-duplex, no Tx poll. */
2112 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2113 
2114 	/* Set flow-control parameters for Rhine III. */
2115 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2116 		/*
2117 		 * Configure Rx buffer count available for incoming
2118 		 * packet.
2119 		 * Even though data sheet says almost nothing about
2120 		 * this register, this register should be updated
2121 		 * whenever driver adds new RX buffers to controller.
2122 		 * Otherwise, XON frame is not sent to link partner
2123 		 * even if controller has enough RX buffers and you
2124 		 * would be isolated from network.
2125 		 * The controller is not smart enough to know number
2126 		 * of available RX buffers so driver have to let
2127 		 * controller know how many RX buffers are posted.
2128 		 * In other words, this register works like a residue
2129 		 * counter for RX buffers and should be initialized
2130 		 * to the number of total RX buffers  - 1 before
2131 		 * enabling RX MAC.  Note, this register is 8bits so
2132 		 * it effectively limits the maximum number of RX
2133 		 * buffer to be configured by controller is 255.
2134 		 */
2135 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2136 		/*
2137 		 * Tx pause low threshold : 8 free receive buffers
2138 		 * Tx pause XON high threshold : 24 free receive buffers
2139 		 */
2140 		CSR_WRITE_1(sc, VR_FLOWCR1,
2141 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2142 		/* Set Tx pause timer. */
2143 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2144 	}
2145 
2146 	/* Enable receiver and transmitter. */
2147 	CSR_WRITE_1(sc, VR_CR0,
2148 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2149 
2150 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2151 #ifdef DEVICE_POLLING
2152 	/*
2153 	 * Disable interrupts if we are polling.
2154 	 */
2155 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2156 		CSR_WRITE_2(sc, VR_IMR, 0);
2157 	else
2158 #endif
2159 	/*
2160 	 * Enable interrupts and disable MII intrs.
2161 	 */
2162 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2163 	if (sc->vr_revid > REV_ID_VT6102_A)
2164 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2165 
2166 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2167 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2168 
2169 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2170 	mii_mediachg(mii);
2171 
2172 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2173 }
2174 
2175 /*
2176  * Set media options.
2177  */
2178 static int
2179 vr_ifmedia_upd(if_t ifp)
2180 {
2181 	struct vr_softc		*sc;
2182 	struct mii_data		*mii;
2183 	struct mii_softc	*miisc;
2184 	int			error;
2185 
2186 	sc = if_getsoftc(ifp);
2187 	VR_LOCK(sc);
2188 	mii = device_get_softc(sc->vr_miibus);
2189 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2190 		PHY_RESET(miisc);
2191 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2192 	error = mii_mediachg(mii);
2193 	VR_UNLOCK(sc);
2194 
2195 	return (error);
2196 }
2197 
2198 /*
2199  * Report current media status.
2200  */
2201 static void
2202 vr_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2203 {
2204 	struct vr_softc		*sc;
2205 	struct mii_data		*mii;
2206 
2207 	sc = if_getsoftc(ifp);
2208 	mii = device_get_softc(sc->vr_miibus);
2209 	VR_LOCK(sc);
2210 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2211 		VR_UNLOCK(sc);
2212 		return;
2213 	}
2214 	mii_pollstat(mii);
2215 	ifmr->ifm_active = mii->mii_media_active;
2216 	ifmr->ifm_status = mii->mii_media_status;
2217 	VR_UNLOCK(sc);
2218 }
2219 
2220 static int
2221 vr_ioctl(if_t ifp, u_long command, caddr_t data)
2222 {
2223 	struct vr_softc		*sc;
2224 	struct ifreq		*ifr;
2225 	struct mii_data		*mii;
2226 	int			error, mask;
2227 
2228 	sc = if_getsoftc(ifp);
2229 	ifr = (struct ifreq *)data;
2230 	error = 0;
2231 
2232 	switch (command) {
2233 	case SIOCSIFFLAGS:
2234 		VR_LOCK(sc);
2235 		if (if_getflags(ifp) & IFF_UP) {
2236 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2237 				if ((if_getflags(ifp) ^ sc->vr_if_flags) &
2238 				    (IFF_PROMISC | IFF_ALLMULTI))
2239 					vr_set_filter(sc);
2240 			} else {
2241 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2242 					vr_init_locked(sc);
2243 			}
2244 		} else {
2245 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2246 				vr_stop(sc);
2247 		}
2248 		sc->vr_if_flags = if_getflags(ifp);
2249 		VR_UNLOCK(sc);
2250 		break;
2251 	case SIOCADDMULTI:
2252 	case SIOCDELMULTI:
2253 		VR_LOCK(sc);
2254 		vr_set_filter(sc);
2255 		VR_UNLOCK(sc);
2256 		break;
2257 	case SIOCGIFMEDIA:
2258 	case SIOCSIFMEDIA:
2259 		mii = device_get_softc(sc->vr_miibus);
2260 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2261 		break;
2262 	case SIOCSIFCAP:
2263 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2264 #ifdef DEVICE_POLLING
2265 		if (mask & IFCAP_POLLING) {
2266 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2267 				error = ether_poll_register(vr_poll, ifp);
2268 				if (error != 0)
2269 					break;
2270 				VR_LOCK(sc);
2271 				/* Disable interrupts. */
2272 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2273 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2274 				VR_UNLOCK(sc);
2275 			} else {
2276 				error = ether_poll_deregister(ifp);
2277 				/* Enable interrupts. */
2278 				VR_LOCK(sc);
2279 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2280 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2281 				VR_UNLOCK(sc);
2282 			}
2283 		}
2284 #endif /* DEVICE_POLLING */
2285 		if ((mask & IFCAP_TXCSUM) != 0 &&
2286 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2287 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2288 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2289 				if_sethwassistbits(ifp, VR_CSUM_FEATURES, 0);
2290 			else
2291 				if_sethwassistbits(ifp, 0, VR_CSUM_FEATURES);
2292 		}
2293 		if ((mask & IFCAP_RXCSUM) != 0 &&
2294 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2295 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2296 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2297 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2298 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2299 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2300 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2301 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2302 		break;
2303 	default:
2304 		error = ether_ioctl(ifp, command, data);
2305 		break;
2306 	}
2307 
2308 	return (error);
2309 }
2310 
2311 static void
2312 vr_watchdog(struct vr_softc *sc)
2313 {
2314 	if_t			ifp;
2315 
2316 	VR_LOCK_ASSERT(sc);
2317 
2318 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2319 		return;
2320 
2321 	ifp = sc->vr_ifp;
2322 	/*
2323 	 * Reclaim first as we don't request interrupt for every packets.
2324 	 */
2325 	vr_txeof(sc);
2326 	if (sc->vr_cdata.vr_tx_cnt == 0)
2327 		return;
2328 
2329 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2330 		if (bootverbose)
2331 			if_printf(sc->vr_ifp, "watchdog timeout "
2332 			   "(missed link)\n");
2333 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2334 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2335 		vr_init_locked(sc);
2336 		return;
2337 	}
2338 
2339 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2340 	if_printf(ifp, "watchdog timeout\n");
2341 
2342 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2343 	vr_init_locked(sc);
2344 
2345 	if (!if_sendq_empty(ifp))
2346 		vr_start_locked(ifp);
2347 }
2348 
2349 static void
2350 vr_tx_start(struct vr_softc *sc)
2351 {
2352 	bus_addr_t	addr;
2353 	uint8_t		cmd;
2354 
2355 	cmd = CSR_READ_1(sc, VR_CR0);
2356 	if ((cmd & VR_CR0_TX_ON) == 0) {
2357 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2358 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2359 		cmd |= VR_CR0_TX_ON;
2360 		CSR_WRITE_1(sc, VR_CR0, cmd);
2361 	}
2362 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2363 		sc->vr_watchdog_timer = 5;
2364 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2365 	}
2366 }
2367 
2368 static void
2369 vr_rx_start(struct vr_softc *sc)
2370 {
2371 	bus_addr_t	addr;
2372 	uint8_t		cmd;
2373 
2374 	cmd = CSR_READ_1(sc, VR_CR0);
2375 	if ((cmd & VR_CR0_RX_ON) == 0) {
2376 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2377 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2378 		cmd |= VR_CR0_RX_ON;
2379 		CSR_WRITE_1(sc, VR_CR0, cmd);
2380 	}
2381 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2382 }
2383 
2384 static int
2385 vr_tx_stop(struct vr_softc *sc)
2386 {
2387 	int		i;
2388 	uint8_t		cmd;
2389 
2390 	cmd = CSR_READ_1(sc, VR_CR0);
2391 	if ((cmd & VR_CR0_TX_ON) != 0) {
2392 		cmd &= ~VR_CR0_TX_ON;
2393 		CSR_WRITE_1(sc, VR_CR0, cmd);
2394 		for (i = VR_TIMEOUT; i > 0; i--) {
2395 			DELAY(5);
2396 			cmd = CSR_READ_1(sc, VR_CR0);
2397 			if ((cmd & VR_CR0_TX_ON) == 0)
2398 				break;
2399 		}
2400 		if (i == 0)
2401 			return (ETIMEDOUT);
2402 	}
2403 	return (0);
2404 }
2405 
2406 static int
2407 vr_rx_stop(struct vr_softc *sc)
2408 {
2409 	int		i;
2410 	uint8_t		cmd;
2411 
2412 	cmd = CSR_READ_1(sc, VR_CR0);
2413 	if ((cmd & VR_CR0_RX_ON) != 0) {
2414 		cmd &= ~VR_CR0_RX_ON;
2415 		CSR_WRITE_1(sc, VR_CR0, cmd);
2416 		for (i = VR_TIMEOUT; i > 0; i--) {
2417 			DELAY(5);
2418 			cmd = CSR_READ_1(sc, VR_CR0);
2419 			if ((cmd & VR_CR0_RX_ON) == 0)
2420 				break;
2421 		}
2422 		if (i == 0)
2423 			return (ETIMEDOUT);
2424 	}
2425 	return (0);
2426 }
2427 
2428 /*
2429  * Stop the adapter and free any mbufs allocated to the
2430  * RX and TX lists.
2431  */
2432 static void
2433 vr_stop(struct vr_softc *sc)
2434 {
2435 	struct vr_txdesc	*txd;
2436 	struct vr_rxdesc	*rxd;
2437 	if_t			ifp;
2438 	int			i;
2439 
2440 	VR_LOCK_ASSERT(sc);
2441 
2442 	ifp = sc->vr_ifp;
2443 	sc->vr_watchdog_timer = 0;
2444 
2445 	callout_stop(&sc->vr_stat_callout);
2446 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2447 
2448 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2449 	if (vr_rx_stop(sc) != 0)
2450 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2451 	if (vr_tx_stop(sc) != 0)
2452 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2453 	/* Clear pending interrupts. */
2454 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2455 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2456 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2457 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2458 
2459 	/*
2460 	 * Free RX and TX mbufs still in the queues.
2461 	 */
2462 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2463 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2464 		if (rxd->rx_m != NULL) {
2465 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2466 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2467 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2468 			    rxd->rx_dmamap);
2469 			m_freem(rxd->rx_m);
2470 			rxd->rx_m = NULL;
2471 		}
2472         }
2473 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2474 		txd = &sc->vr_cdata.vr_txdesc[i];
2475 		if (txd->tx_m != NULL) {
2476 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2477 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2478 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2479 			    txd->tx_dmamap);
2480 			m_freem(txd->tx_m);
2481 			txd->tx_m = NULL;
2482 		}
2483         }
2484 }
2485 
2486 /*
2487  * Stop all chip I/O so that the kernel's probe routines don't
2488  * get confused by errant DMAs when rebooting.
2489  */
2490 static int
2491 vr_shutdown(device_t dev)
2492 {
2493 
2494 	return (vr_suspend(dev));
2495 }
2496 
2497 static int
2498 vr_suspend(device_t dev)
2499 {
2500 	struct vr_softc		*sc;
2501 
2502 	sc = device_get_softc(dev);
2503 
2504 	VR_LOCK(sc);
2505 	vr_stop(sc);
2506 	vr_setwol(sc);
2507 	sc->vr_flags |= VR_F_SUSPENDED;
2508 	VR_UNLOCK(sc);
2509 
2510 	return (0);
2511 }
2512 
2513 static int
2514 vr_resume(device_t dev)
2515 {
2516 	struct vr_softc		*sc;
2517 	if_t			ifp;
2518 
2519 	sc = device_get_softc(dev);
2520 
2521 	VR_LOCK(sc);
2522 	ifp = sc->vr_ifp;
2523 	vr_clrwol(sc);
2524 	vr_reset(sc);
2525 	if (if_getflags(ifp) & IFF_UP)
2526 		vr_init_locked(sc);
2527 
2528 	sc->vr_flags &= ~VR_F_SUSPENDED;
2529 	VR_UNLOCK(sc);
2530 
2531 	return (0);
2532 }
2533 
2534 static void
2535 vr_setwol(struct vr_softc *sc)
2536 {
2537 	if_t			ifp;
2538 	int			pmc;
2539 	uint16_t		pmstat;
2540 	uint8_t			v;
2541 
2542 	VR_LOCK_ASSERT(sc);
2543 
2544 	if (sc->vr_revid < REV_ID_VT6102_A ||
2545 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2546 		return;
2547 
2548 	ifp = sc->vr_ifp;
2549 
2550 	/* Clear WOL configuration. */
2551 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2552 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2553 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2554 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2555 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2556 		/* Newer Rhine III supports two additional patterns. */
2557 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2558 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2559 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2560 	}
2561 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2562 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2563 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2564 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2565 	/*
2566 	 * It seems that multicast wakeup frames require programming pattern
2567 	 * registers and valid CRC as well as pattern mask for each pattern.
2568 	 * While it's possible to setup such a pattern it would complicate
2569 	 * WOL configuration so ignore multicast wakeup frames.
2570 	 */
2571 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2572 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2573 		v = CSR_READ_1(sc, VR_STICKHW);
2574 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2575 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2576 	}
2577 
2578 	/* Put hardware into sleep. */
2579 	v = CSR_READ_1(sc, VR_STICKHW);
2580 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2581 	CSR_WRITE_1(sc, VR_STICKHW, v);
2582 
2583 	/* Request PME if WOL is requested. */
2584 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2585 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2586 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2587 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2588 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2589 }
2590 
2591 static void
2592 vr_clrwol(struct vr_softc *sc)
2593 {
2594 	uint8_t			v;
2595 
2596 	VR_LOCK_ASSERT(sc);
2597 
2598 	if (sc->vr_revid < REV_ID_VT6102_A)
2599 		return;
2600 
2601 	/* Take hardware out of sleep. */
2602 	v = CSR_READ_1(sc, VR_STICKHW);
2603 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2604 	CSR_WRITE_1(sc, VR_STICKHW, v);
2605 
2606 	/* Clear WOL configuration as WOL may interfere normal operation. */
2607 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2608 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2609 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2610 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2611 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2612 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2613 		/* Newer Rhine III supports two additional patterns. */
2614 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2615 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2616 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2617 	}
2618 }
2619 
2620 static int
2621 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2622 {
2623 	struct vr_softc		*sc;
2624 	struct vr_statistics	*stat;
2625 	int			error;
2626 	int			result;
2627 
2628 	result = -1;
2629 	error = sysctl_handle_int(oidp, &result, 0, req);
2630 
2631 	if (error != 0 || req->newptr == NULL)
2632 		return (error);
2633 
2634 	if (result == 1) {
2635 		sc = (struct vr_softc *)arg1;
2636 		stat = &sc->vr_stat;
2637 
2638 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2639 		printf("Outbound good frames : %ju\n",
2640 		    (uintmax_t)stat->tx_ok);
2641 		printf("Inbound good frames : %ju\n",
2642 		    (uintmax_t)stat->rx_ok);
2643 		printf("Outbound errors : %u\n", stat->tx_errors);
2644 		printf("Inbound errors : %u\n", stat->rx_errors);
2645 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2646 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2647 		printf("Inbound FIFO overflows : %d\n",
2648 		    stat->rx_fifo_overflows);
2649 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2650 		printf("Inbound frame alignment errors : %u\n",
2651 		    stat->rx_alignment);
2652 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2653 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2654 		printf("Outbound aborted with excessive collisions : %u\n",
2655 		    stat->tx_abort);
2656 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2657 		printf("Outbound late collisions : %u\n",
2658 		    stat->tx_late_collisions);
2659 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2660 		printf("PCI bus errors : %u\n", stat->bus_errors);
2661 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2662 		    stat->num_restart);
2663 	}
2664 
2665 	return (error);
2666 }
2667