xref: /freebsd/sys/dev/vr/if_vr.c (revision 4848dd0858385db46fa4e0192a134605ee42ab01)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	char			*vr_name;
122 } vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static void vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static void vr_intr(void *);
169 static void vr_start(struct ifnet *);
170 static void vr_start_locked(struct ifnet *);
171 static int vr_encap(struct vr_softc *, struct mbuf **);
172 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
173 static void vr_init(void *);
174 static void vr_init_locked(struct vr_softc *);
175 static void vr_tx_start(struct vr_softc *);
176 static void vr_rx_start(struct vr_softc *);
177 static int vr_tx_stop(struct vr_softc *);
178 static int vr_rx_stop(struct vr_softc *);
179 static void vr_stop(struct vr_softc *);
180 static void vr_watchdog(struct vr_softc *);
181 static int vr_ifmedia_upd(struct ifnet *);
182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
183 
184 static int vr_miibus_readreg(device_t, int, int);
185 static int vr_miibus_writereg(device_t, int, int, int);
186 static void vr_miibus_statchg(device_t);
187 
188 static void vr_link_task(void *, int);
189 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
190 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
191 static void vr_set_filter(struct vr_softc *);
192 static void vr_reset(const struct vr_softc *);
193 static int vr_tx_ring_init(struct vr_softc *);
194 static int vr_rx_ring_init(struct vr_softc *);
195 static void vr_setwol(struct vr_softc *);
196 static void vr_clrwol(struct vr_softc *);
197 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
198 
199 static struct vr_tx_threshold_table {
200 	int tx_cfg;
201 	int bcr_cfg;
202 	int value;
203 } vr_tx_threshold_tables[] = {
204 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
205 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
206 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
207 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
208 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
209 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
210 };
211 
212 static device_method_t vr_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		vr_probe),
215 	DEVMETHOD(device_attach,	vr_attach),
216 	DEVMETHOD(device_detach, 	vr_detach),
217 	DEVMETHOD(device_shutdown,	vr_shutdown),
218 	DEVMETHOD(device_suspend,	vr_suspend),
219 	DEVMETHOD(device_resume,	vr_resume),
220 
221 	/* bus interface */
222 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
223 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
224 
225 	/* MII interface */
226 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
227 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
228 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
229 	DEVMETHOD(miibus_linkchg,	vr_miibus_statchg),
230 
231 	{ NULL, NULL }
232 };
233 
234 static driver_t vr_driver = {
235 	"vr",
236 	vr_methods,
237 	sizeof(struct vr_softc)
238 };
239 
240 static devclass_t vr_devclass;
241 
242 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
243 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
244 
245 static int
246 vr_miibus_readreg(device_t dev, int phy, int reg)
247 {
248 	struct vr_softc		*sc;
249 	int			i;
250 
251 	sc = device_get_softc(dev);
252 	if (sc->vr_phyaddr != phy)
253 		return (0);
254 
255 	/* Set the register address. */
256 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
257 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
258 
259 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
260 		DELAY(1);
261 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
262 			break;
263 	}
264 	if (i == VR_MII_TIMEOUT)
265 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
266 
267 	return (CSR_READ_2(sc, VR_MIIDATA));
268 }
269 
270 static int
271 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
272 {
273 	struct vr_softc		*sc;
274 	int			i;
275 
276 	sc = device_get_softc(dev);
277 	if (sc->vr_phyaddr != phy)
278 		return (0);
279 
280 	/* Set the register address and data to write. */
281 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
282 	CSR_WRITE_2(sc, VR_MIIDATA, data);
283 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
284 
285 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
286 		DELAY(1);
287 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
288 			break;
289 	}
290 	if (i == VR_MII_TIMEOUT)
291 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
292 		    reg);
293 
294 	return (0);
295 }
296 
297 static void
298 vr_miibus_statchg(device_t dev)
299 {
300 	struct vr_softc		*sc;
301 
302 	sc = device_get_softc(dev);
303 	taskqueue_enqueue(taskqueue_swi, &sc->vr_link_task);
304 }
305 
306 /*
307  * In order to fiddle with the
308  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
309  * first have to put the transmit and/or receive logic in the idle state.
310  */
311 static void
312 vr_link_task(void *arg, int pending)
313 {
314 	struct vr_softc		*sc;
315 	struct mii_data		*mii;
316 	struct ifnet		*ifp;
317 	int			lfdx, mfdx;
318 	uint8_t			cr0, cr1, fc;
319 
320 	sc = (struct vr_softc *)arg;
321 
322 	VR_LOCK(sc);
323 	mii = device_get_softc(sc->vr_miibus);
324 	ifp = sc->vr_ifp;
325 	if (mii == NULL || ifp == NULL ||
326 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
327 		VR_UNLOCK(sc);
328 		return;
329 	}
330 
331 	if (mii->mii_media_status & IFM_ACTIVE) {
332 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
333 			sc->vr_link = 1;
334 	} else
335 		sc->vr_link = 0;
336 
337 	if (sc->vr_link != 0) {
338 		cr0 = CSR_READ_1(sc, VR_CR0);
339 		cr1 = CSR_READ_1(sc, VR_CR1);
340 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
341 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
342 		if (mfdx != lfdx) {
343 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
344 				if (vr_tx_stop(sc) != 0 ||
345 				    vr_rx_stop(sc) != 0) {
346 					device_printf(sc->vr_dev,
347 					    "%s: Tx/Rx shutdown error -- "
348 					    "resetting\n", __func__);
349 					sc->vr_flags |= VR_F_RESTART;
350 					VR_UNLOCK(sc);
351 					return;
352 				}
353 			}
354 			if (lfdx)
355 				cr1 |= VR_CR1_FULLDUPLEX;
356 			else
357 				cr1 &= ~VR_CR1_FULLDUPLEX;
358 			CSR_WRITE_1(sc, VR_CR1, cr1);
359 		}
360 		fc = 0;
361 #ifdef notyet
362 		/* Configure flow-control. */
363 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
364 			fc = CSR_READ_1(sc, VR_FLOWCR1);
365 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
366 			if ((IFM_OPTIONS(mii->mii_media_active) &
367 			    IFM_ETH_RXPAUSE) != 0)
368 				fc |= VR_FLOWCR1_RXPAUSE;
369 			if ((IFM_OPTIONS(mii->mii_media_active) &
370 			    IFM_ETH_TXPAUSE) != 0)
371 				fc |= VR_FLOWCR1_TXPAUSE;
372 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
373 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
374 			/* No Tx puase capability available for Rhine II. */
375 			fc = CSR_READ_1(sc, VR_MISC_CR0);
376 			fc &= ~VR_MISCCR0_RXPAUSE;
377 			if ((IFM_OPTIONS(mii->mii_media_active) &
378 			    IFM_ETH_RXPAUSE) != 0)
379 				fc |= VR_MISCCR0_RXPAUSE;
380 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
381 		}
382 #endif
383 		vr_rx_start(sc);
384 		vr_tx_start(sc);
385 	} else {
386 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
387 			device_printf(sc->vr_dev,
388 			    "%s: Tx/Rx shutdown error -- resetting\n",
389 			    __func__);
390 			sc->vr_flags |= VR_F_RESTART;
391 			VR_UNLOCK(sc);
392 			return;
393 		}
394 	}
395 	VR_UNLOCK(sc);
396 }
397 
398 
399 static void
400 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
401 {
402 
403 	if (type == VR_MCAST_CAM)
404 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
405 	else
406 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
407 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
408 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
409 }
410 
411 static int
412 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
413 {
414 	int	i;
415 
416 	if (type == VR_MCAST_CAM) {
417 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
418 			return (EINVAL);
419 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
420 	} else
421 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
422 
423 	/* Set CAM entry address. */
424 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
425 	/* Set CAM entry data. */
426 	if (type == VR_MCAST_CAM) {
427 		for (i = 0; i < ETHER_ADDR_LEN; i++)
428 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
429 	} else {
430 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
431 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
432 	}
433 	DELAY(10);
434 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
435 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
436 	for (i = 0; i < VR_TIMEOUT; i++) {
437 		DELAY(1);
438 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
439 			break;
440 	}
441 
442 	if (i == VR_TIMEOUT)
443 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
444 		    __func__);
445 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
446 
447 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
448 }
449 
450 /*
451  * Program the 64-bit multicast hash filter.
452  */
453 static void
454 vr_set_filter(struct vr_softc *sc)
455 {
456 	struct ifnet		*ifp;
457 	int			h;
458 	uint32_t		hashes[2] = { 0, 0 };
459 	struct ifmultiaddr	*ifma;
460 	uint8_t			rxfilt;
461 	int			error, mcnt;
462 	uint32_t		cam_mask;
463 
464 	VR_LOCK_ASSERT(sc);
465 
466 	ifp = sc->vr_ifp;
467 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
468 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
469 	    VR_RXCFG_RX_MULTI);
470 	if (ifp->if_flags & IFF_BROADCAST)
471 		rxfilt |= VR_RXCFG_RX_BROAD;
472 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
473 		rxfilt |= VR_RXCFG_RX_MULTI;
474 		if (ifp->if_flags & IFF_PROMISC)
475 			rxfilt |= VR_RXCFG_RX_PROMISC;
476 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
477 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
478 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
479 		return;
480 	}
481 
482 	/* Now program new ones. */
483 	error = 0;
484 	mcnt = 0;
485 	IF_ADDR_LOCK(ifp);
486 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
487 		/*
488 		 * For hardwares that have CAM capability, use
489 		 * 32 entries multicast perfect filter.
490 		 */
491 		cam_mask = 0;
492 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
493 			if (ifma->ifma_addr->sa_family != AF_LINK)
494 				continue;
495 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
496 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
497 			if (error != 0) {
498 				cam_mask = 0;
499 				break;
500 			}
501 			cam_mask |= 1 << mcnt;
502 			mcnt++;
503 		}
504 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
505 	}
506 
507 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
508 		/*
509 		 * If there are too many multicast addresses or
510 		 * setting multicast CAM filter failed, use hash
511 		 * table based filtering.
512 		 */
513 		mcnt = 0;
514 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
515 			if (ifma->ifma_addr->sa_family != AF_LINK)
516 				continue;
517 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
518 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
519 			if (h < 32)
520 				hashes[0] |= (1 << h);
521 			else
522 				hashes[1] |= (1 << (h - 32));
523 			mcnt++;
524 		}
525 	}
526 	IF_ADDR_UNLOCK(ifp);
527 
528 	if (mcnt > 0)
529 		rxfilt |= VR_RXCFG_RX_MULTI;
530 
531 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
532 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
533 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
534 }
535 
536 static void
537 vr_reset(const struct vr_softc *sc)
538 {
539 	int		i;
540 
541 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
542 
543 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
544 	if (sc->vr_revid < REV_ID_VT6102_A) {
545 		/* VT86C100A needs more delay after reset. */
546 		DELAY(100);
547 	}
548 	for (i = 0; i < VR_TIMEOUT; i++) {
549 		DELAY(10);
550 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
551 			break;
552 	}
553 	if (i == VR_TIMEOUT) {
554 		if (sc->vr_revid < REV_ID_VT6102_A)
555 			device_printf(sc->vr_dev, "reset never completed!\n");
556 		else {
557 			/* Use newer force reset command. */
558 			device_printf(sc->vr_dev,
559 			    "Using force reset command.\n");
560 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
561 			/*
562 			 * Wait a little while for the chip to get its brains
563 			 * in order.
564 			 */
565 			DELAY(2000);
566 		}
567 	}
568 
569 }
570 
571 /*
572  * Probe for a VIA Rhine chip. Check the PCI vendor and device
573  * IDs against our list and return a match or NULL
574  */
575 static struct vr_type *
576 vr_match(device_t dev)
577 {
578 	struct vr_type	*t = vr_devs;
579 
580 	for (t = vr_devs; t->vr_name != NULL; t++)
581 		if ((pci_get_vendor(dev) == t->vr_vid) &&
582 		    (pci_get_device(dev) == t->vr_did))
583 			return (t);
584 	return (NULL);
585 }
586 
587 /*
588  * Probe for a VIA Rhine chip. Check the PCI vendor and device
589  * IDs against our list and return a device name if we find a match.
590  */
591 static int
592 vr_probe(device_t dev)
593 {
594 	struct vr_type	*t;
595 
596 	t = vr_match(dev);
597 	if (t != NULL) {
598 		device_set_desc(dev, t->vr_name);
599 		return (BUS_PROBE_DEFAULT);
600 	}
601 	return (ENXIO);
602 }
603 
604 /*
605  * Attach the interface. Allocate softc structures, do ifmedia
606  * setup and ethernet/BPF attach.
607  */
608 static int
609 vr_attach(device_t dev)
610 {
611 	struct vr_softc		*sc;
612 	struct ifnet		*ifp;
613 	struct vr_type		*t;
614 	uint8_t			eaddr[ETHER_ADDR_LEN];
615 	int			error, rid;
616 	int			i, pmc;
617 
618 	sc = device_get_softc(dev);
619 	sc->vr_dev = dev;
620 	t = vr_match(dev);
621 	KASSERT(t != NULL, ("Lost if_vr device match"));
622 	sc->vr_quirks = t->vr_quirks;
623 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
624 
625 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
626 	    MTX_DEF);
627 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
628 	TASK_INIT(&sc->vr_link_task, 0, vr_link_task, sc);
629 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
630 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
631 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
632 	    vr_sysctl_stats, "I", "Statistics");
633 
634 	error = 0;
635 
636 	/*
637 	 * Map control/status registers.
638 	 */
639 	pci_enable_busmaster(dev);
640 	sc->vr_revid = pci_get_revid(dev);
641 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
642 
643 	sc->vr_res_id = PCIR_BAR(0);
644 	sc->vr_res_type = SYS_RES_IOPORT;
645 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
646 	    &sc->vr_res_id, RF_ACTIVE);
647 	if (sc->vr_res == NULL) {
648 		device_printf(dev, "couldn't map ports\n");
649 		error = ENXIO;
650 		goto fail;
651 	}
652 
653 	/* Allocate interrupt. */
654 	rid = 0;
655 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
656 	    RF_SHAREABLE | RF_ACTIVE);
657 
658 	if (sc->vr_irq == NULL) {
659 		device_printf(dev, "couldn't map interrupt\n");
660 		error = ENXIO;
661 		goto fail;
662 	}
663 
664 	/* Allocate ifnet structure. */
665 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
666 	if (ifp == NULL) {
667 		device_printf(dev, "couldn't allocate ifnet structure\n");
668 		error = ENOSPC;
669 		goto fail;
670 	}
671 	ifp->if_softc = sc;
672 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
673 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
674 	ifp->if_ioctl = vr_ioctl;
675 	ifp->if_start = vr_start;
676 	ifp->if_init = vr_init;
677 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
678 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
679 	IFQ_SET_READY(&ifp->if_snd);
680 
681 	/* Configure Tx FIFO threshold. */
682 	sc->vr_txthresh = VR_TXTHRESH_MIN;
683 	if (sc->vr_revid < REV_ID_VT6105_A0) {
684 		/*
685 		 * Use store and forward mode for Rhine I/II.
686 		 * Otherwise they produce a lot of Tx underruns and
687 		 * it would take a while to get working FIFO threshold
688 		 * value.
689 		 */
690 		sc->vr_txthresh = VR_TXTHRESH_MAX;
691 	}
692 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
693 		ifp->if_hwassist = VR_CSUM_FEATURES;
694 		ifp->if_capabilities |= IFCAP_HWCSUM;
695 		/*
696 		 * To update checksum field the hardware may need to
697 		 * store entire frames into FIFO before transmitting.
698 		 */
699 		sc->vr_txthresh = VR_TXTHRESH_MAX;
700 	}
701 
702 	if (sc->vr_revid >= REV_ID_VT6102_A &&
703 	    pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
704 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
705 
706 	/* Rhine supports oversized VLAN frame. */
707 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
708 	ifp->if_capenable = ifp->if_capabilities;
709 #ifdef DEVICE_POLLING
710 	ifp->if_capabilities |= IFCAP_POLLING;
711 #endif
712 
713 	/*
714 	 * Windows may put the chip in suspend mode when it
715 	 * shuts down. Be sure to kick it in the head to wake it
716 	 * up again.
717 	 */
718 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
719 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
720 
721 	/*
722 	 * Get station address. The way the Rhine chips work,
723 	 * you're not allowed to directly access the EEPROM once
724 	 * they've been programmed a special way. Consequently,
725 	 * we need to read the node address from the PAR0 and PAR1
726 	 * registers.
727 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
728 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
729 	 * by driver is reset to default state.
730 	 */
731 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
732 	for (i = VR_TIMEOUT; i > 0; i--) {
733 		DELAY(1);
734 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
735 			break;
736 	}
737 	if (i == 0)
738 		device_printf(dev, "Reloading EEPROM timeout!\n");
739 	for (i = 0; i < ETHER_ADDR_LEN; i++)
740 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
741 
742 	/* Reset the adapter. */
743 	vr_reset(sc);
744 	/* Ack intr & disable further interrupts. */
745 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
746 	CSR_WRITE_2(sc, VR_IMR, 0);
747 	if (sc->vr_revid >= REV_ID_VT6102_A)
748 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
749 
750 	if (sc->vr_revid < REV_ID_VT6102_A) {
751 		pci_write_config(dev, VR_PCI_MODE2,
752 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
753 		    VR_MODE2_MODE10T, 1);
754 	} else {
755 		/* Report error instead of retrying forever. */
756 		pci_write_config(dev, VR_PCI_MODE2,
757 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
758 		    VR_MODE2_PCEROPT, 1);
759         	/* Detect MII coding error. */
760 		pci_write_config(dev, VR_PCI_MODE3,
761 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
762 		    VR_MODE3_MIION, 1);
763 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
764 		    sc->vr_revid < REV_ID_VT6105M_A0)
765 			pci_write_config(dev, VR_PCI_MODE2,
766 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
767 			    VR_MODE2_MODE10T, 1);
768 		/* Enable Memory-Read-Multiple. */
769 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
770 		    sc->vr_revid < REV_ID_VT6105M_A0)
771 			pci_write_config(dev, VR_PCI_MODE2,
772 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
773 			    VR_MODE2_MRDPL, 1);
774 	}
775 	/* Disable MII AUTOPOLL. */
776 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
777 
778 	if (vr_dma_alloc(sc) != 0) {
779 		error = ENXIO;
780 		goto fail;
781 	}
782 
783 	/* Save PHY address. */
784 	if (sc->vr_revid >= REV_ID_VT6105_A0)
785 		sc->vr_phyaddr = 1;
786 	else
787 		sc->vr_phyaddr = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
788 
789 	/* Do MII setup. */
790 	if (mii_phy_probe(dev, &sc->vr_miibus,
791 	    vr_ifmedia_upd, vr_ifmedia_sts)) {
792 		device_printf(dev, "MII without any phy!\n");
793 		error = ENXIO;
794 		goto fail;
795 	}
796 
797 	/* Call MI attach routine. */
798 	ether_ifattach(ifp, eaddr);
799 	/*
800 	 * Tell the upper layer(s) we support long frames.
801 	 * Must appear after the call to ether_ifattach() because
802 	 * ether_ifattach() sets ifi_hdrlen to the default value.
803 	 */
804 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
805 
806 	/* Hook interrupt last to avoid having to lock softc. */
807 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
808 	    NULL, vr_intr, sc, &sc->vr_intrhand);
809 
810 	if (error) {
811 		device_printf(dev, "couldn't set up irq\n");
812 		ether_ifdetach(ifp);
813 		goto fail;
814 	}
815 
816 fail:
817 	if (error)
818 		vr_detach(dev);
819 
820 	return (error);
821 }
822 
823 /*
824  * Shutdown hardware and free up resources. This can be called any
825  * time after the mutex has been initialized. It is called in both
826  * the error case in attach and the normal detach case so it needs
827  * to be careful about only freeing resources that have actually been
828  * allocated.
829  */
830 static int
831 vr_detach(device_t dev)
832 {
833 	struct vr_softc		*sc = device_get_softc(dev);
834 	struct ifnet		*ifp = sc->vr_ifp;
835 
836 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
837 
838 #ifdef DEVICE_POLLING
839 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
840 		ether_poll_deregister(ifp);
841 #endif
842 
843 	/* These should only be active if attach succeeded. */
844 	if (device_is_attached(dev)) {
845 		VR_LOCK(sc);
846 		sc->vr_detach = 1;
847 		vr_stop(sc);
848 		VR_UNLOCK(sc);
849 		callout_drain(&sc->vr_stat_callout);
850 		taskqueue_drain(taskqueue_swi, &sc->vr_link_task);
851 		ether_ifdetach(ifp);
852 	}
853 	if (sc->vr_miibus)
854 		device_delete_child(dev, sc->vr_miibus);
855 	bus_generic_detach(dev);
856 
857 	if (sc->vr_intrhand)
858 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
859 	if (sc->vr_irq)
860 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
861 	if (sc->vr_res)
862 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
863 		    sc->vr_res);
864 
865 	if (ifp)
866 		if_free(ifp);
867 
868 	vr_dma_free(sc);
869 
870 	mtx_destroy(&sc->vr_mtx);
871 
872 	return (0);
873 }
874 
875 struct vr_dmamap_arg {
876 	bus_addr_t	vr_busaddr;
877 };
878 
879 static void
880 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
881 {
882 	struct vr_dmamap_arg	*ctx;
883 
884 	if (error != 0)
885 		return;
886 	ctx = arg;
887 	ctx->vr_busaddr = segs[0].ds_addr;
888 }
889 
890 static int
891 vr_dma_alloc(struct vr_softc *sc)
892 {
893 	struct vr_dmamap_arg	ctx;
894 	struct vr_txdesc	*txd;
895 	struct vr_rxdesc	*rxd;
896 	bus_size_t		tx_alignment;
897 	int			error, i;
898 
899 	/* Create parent DMA tag. */
900 	error = bus_dma_tag_create(
901 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
902 	    1, 0,			/* alignment, boundary */
903 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
904 	    BUS_SPACE_MAXADDR,		/* highaddr */
905 	    NULL, NULL,			/* filter, filterarg */
906 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
907 	    0,				/* nsegments */
908 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
909 	    0,				/* flags */
910 	    NULL, NULL,			/* lockfunc, lockarg */
911 	    &sc->vr_cdata.vr_parent_tag);
912 	if (error != 0) {
913 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
914 		goto fail;
915 	}
916 	/* Create tag for Tx ring. */
917 	error = bus_dma_tag_create(
918 	    sc->vr_cdata.vr_parent_tag,	/* parent */
919 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
920 	    BUS_SPACE_MAXADDR,		/* lowaddr */
921 	    BUS_SPACE_MAXADDR,		/* highaddr */
922 	    NULL, NULL,			/* filter, filterarg */
923 	    VR_TX_RING_SIZE,		/* maxsize */
924 	    1,				/* nsegments */
925 	    VR_TX_RING_SIZE,		/* maxsegsize */
926 	    0,				/* flags */
927 	    NULL, NULL,			/* lockfunc, lockarg */
928 	    &sc->vr_cdata.vr_tx_ring_tag);
929 	if (error != 0) {
930 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
931 		goto fail;
932 	}
933 
934 	/* Create tag for Rx ring. */
935 	error = bus_dma_tag_create(
936 	    sc->vr_cdata.vr_parent_tag,	/* parent */
937 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
938 	    BUS_SPACE_MAXADDR,		/* lowaddr */
939 	    BUS_SPACE_MAXADDR,		/* highaddr */
940 	    NULL, NULL,			/* filter, filterarg */
941 	    VR_RX_RING_SIZE,		/* maxsize */
942 	    1,				/* nsegments */
943 	    VR_RX_RING_SIZE,		/* maxsegsize */
944 	    0,				/* flags */
945 	    NULL, NULL,			/* lockfunc, lockarg */
946 	    &sc->vr_cdata.vr_rx_ring_tag);
947 	if (error != 0) {
948 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
949 		goto fail;
950 	}
951 
952 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
953 		tx_alignment = sizeof(uint32_t);
954 	else
955 		tx_alignment = 1;
956 	/* Create tag for Tx buffers. */
957 	error = bus_dma_tag_create(
958 	    sc->vr_cdata.vr_parent_tag,	/* parent */
959 	    tx_alignment, 0,		/* alignment, boundary */
960 	    BUS_SPACE_MAXADDR,		/* lowaddr */
961 	    BUS_SPACE_MAXADDR,		/* highaddr */
962 	    NULL, NULL,			/* filter, filterarg */
963 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
964 	    VR_MAXFRAGS,		/* nsegments */
965 	    MCLBYTES,			/* maxsegsize */
966 	    0,				/* flags */
967 	    NULL, NULL,			/* lockfunc, lockarg */
968 	    &sc->vr_cdata.vr_tx_tag);
969 	if (error != 0) {
970 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
971 		goto fail;
972 	}
973 
974 	/* Create tag for Rx buffers. */
975 	error = bus_dma_tag_create(
976 	    sc->vr_cdata.vr_parent_tag,	/* parent */
977 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
978 	    BUS_SPACE_MAXADDR,		/* lowaddr */
979 	    BUS_SPACE_MAXADDR,		/* highaddr */
980 	    NULL, NULL,			/* filter, filterarg */
981 	    MCLBYTES,			/* maxsize */
982 	    1,				/* nsegments */
983 	    MCLBYTES,			/* maxsegsize */
984 	    0,				/* flags */
985 	    NULL, NULL,			/* lockfunc, lockarg */
986 	    &sc->vr_cdata.vr_rx_tag);
987 	if (error != 0) {
988 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
989 		goto fail;
990 	}
991 
992 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
993 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
994 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
995 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
996 	if (error != 0) {
997 		device_printf(sc->vr_dev,
998 		    "failed to allocate DMA'able memory for Tx ring\n");
999 		goto fail;
1000 	}
1001 
1002 	ctx.vr_busaddr = 0;
1003 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
1004 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
1005 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1006 	if (error != 0 || ctx.vr_busaddr == 0) {
1007 		device_printf(sc->vr_dev,
1008 		    "failed to load DMA'able memory for Tx ring\n");
1009 		goto fail;
1010 	}
1011 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1012 
1013 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1014 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1015 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1016 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1017 	if (error != 0) {
1018 		device_printf(sc->vr_dev,
1019 		    "failed to allocate DMA'able memory for Rx ring\n");
1020 		goto fail;
1021 	}
1022 
1023 	ctx.vr_busaddr = 0;
1024 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1025 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1026 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1027 	if (error != 0 || ctx.vr_busaddr == 0) {
1028 		device_printf(sc->vr_dev,
1029 		    "failed to load DMA'able memory for Rx ring\n");
1030 		goto fail;
1031 	}
1032 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1033 
1034 	/* Create DMA maps for Tx buffers. */
1035 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1036 		txd = &sc->vr_cdata.vr_txdesc[i];
1037 		txd->tx_m = NULL;
1038 		txd->tx_dmamap = NULL;
1039 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1040 		    &txd->tx_dmamap);
1041 		if (error != 0) {
1042 			device_printf(sc->vr_dev,
1043 			    "failed to create Tx dmamap\n");
1044 			goto fail;
1045 		}
1046 	}
1047 	/* Create DMA maps for Rx buffers. */
1048 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1049 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1050 		device_printf(sc->vr_dev,
1051 		    "failed to create spare Rx dmamap\n");
1052 		goto fail;
1053 	}
1054 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1055 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1056 		rxd->rx_m = NULL;
1057 		rxd->rx_dmamap = NULL;
1058 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1059 		    &rxd->rx_dmamap);
1060 		if (error != 0) {
1061 			device_printf(sc->vr_dev,
1062 			    "failed to create Rx dmamap\n");
1063 			goto fail;
1064 		}
1065 	}
1066 
1067 fail:
1068 	return (error);
1069 }
1070 
1071 static void
1072 vr_dma_free(struct vr_softc *sc)
1073 {
1074 	struct vr_txdesc	*txd;
1075 	struct vr_rxdesc	*rxd;
1076 	int			i;
1077 
1078 	/* Tx ring. */
1079 	if (sc->vr_cdata.vr_tx_ring_tag) {
1080 		if (sc->vr_cdata.vr_tx_ring_map)
1081 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1082 			    sc->vr_cdata.vr_tx_ring_map);
1083 		if (sc->vr_cdata.vr_tx_ring_map &&
1084 		    sc->vr_rdata.vr_tx_ring)
1085 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1086 			    sc->vr_rdata.vr_tx_ring,
1087 			    sc->vr_cdata.vr_tx_ring_map);
1088 		sc->vr_rdata.vr_tx_ring = NULL;
1089 		sc->vr_cdata.vr_tx_ring_map = NULL;
1090 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1091 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1092 	}
1093 	/* Rx ring. */
1094 	if (sc->vr_cdata.vr_rx_ring_tag) {
1095 		if (sc->vr_cdata.vr_rx_ring_map)
1096 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1097 			    sc->vr_cdata.vr_rx_ring_map);
1098 		if (sc->vr_cdata.vr_rx_ring_map &&
1099 		    sc->vr_rdata.vr_rx_ring)
1100 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1101 			    sc->vr_rdata.vr_rx_ring,
1102 			    sc->vr_cdata.vr_rx_ring_map);
1103 		sc->vr_rdata.vr_rx_ring = NULL;
1104 		sc->vr_cdata.vr_rx_ring_map = NULL;
1105 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1106 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1107 	}
1108 	/* Tx buffers. */
1109 	if (sc->vr_cdata.vr_tx_tag) {
1110 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1111 			txd = &sc->vr_cdata.vr_txdesc[i];
1112 			if (txd->tx_dmamap) {
1113 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1114 				    txd->tx_dmamap);
1115 				txd->tx_dmamap = NULL;
1116 			}
1117 		}
1118 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1119 		sc->vr_cdata.vr_tx_tag = NULL;
1120 	}
1121 	/* Rx buffers. */
1122 	if (sc->vr_cdata.vr_rx_tag) {
1123 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1124 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1125 			if (rxd->rx_dmamap) {
1126 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1127 				    rxd->rx_dmamap);
1128 				rxd->rx_dmamap = NULL;
1129 			}
1130 		}
1131 		if (sc->vr_cdata.vr_rx_sparemap) {
1132 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1133 			    sc->vr_cdata.vr_rx_sparemap);
1134 			sc->vr_cdata.vr_rx_sparemap = 0;
1135 		}
1136 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1137 		sc->vr_cdata.vr_rx_tag = NULL;
1138 	}
1139 
1140 	if (sc->vr_cdata.vr_parent_tag) {
1141 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1142 		sc->vr_cdata.vr_parent_tag = NULL;
1143 	}
1144 }
1145 
1146 /*
1147  * Initialize the transmit descriptors.
1148  */
1149 static int
1150 vr_tx_ring_init(struct vr_softc *sc)
1151 {
1152 	struct vr_ring_data	*rd;
1153 	struct vr_txdesc	*txd;
1154 	bus_addr_t		addr;
1155 	int			i;
1156 
1157 	sc->vr_cdata.vr_tx_prod = 0;
1158 	sc->vr_cdata.vr_tx_cons = 0;
1159 	sc->vr_cdata.vr_tx_cnt = 0;
1160 	sc->vr_cdata.vr_tx_pkts = 0;
1161 
1162 	rd = &sc->vr_rdata;
1163 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1164 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1165 		if (i == VR_TX_RING_CNT - 1)
1166 			addr = VR_TX_RING_ADDR(sc, 0);
1167 		else
1168 			addr = VR_TX_RING_ADDR(sc, i + 1);
1169 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1170 		txd = &sc->vr_cdata.vr_txdesc[i];
1171 		txd->tx_m = NULL;
1172 	}
1173 
1174 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1175 	    sc->vr_cdata.vr_tx_ring_map,
1176 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1177 
1178 	return (0);
1179 }
1180 
1181 /*
1182  * Initialize the RX descriptors and allocate mbufs for them. Note that
1183  * we arrange the descriptors in a closed ring, so that the last descriptor
1184  * points back to the first.
1185  */
1186 static int
1187 vr_rx_ring_init(struct vr_softc *sc)
1188 {
1189 	struct vr_ring_data	*rd;
1190 	struct vr_rxdesc	*rxd;
1191 	bus_addr_t		addr;
1192 	int			i;
1193 
1194 	sc->vr_cdata.vr_rx_cons = 0;
1195 
1196 	rd = &sc->vr_rdata;
1197 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1198 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1199 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1200 		rxd->rx_m = NULL;
1201 		rxd->desc = &rd->vr_rx_ring[i];
1202 		if (i == VR_RX_RING_CNT - 1)
1203 			addr = VR_RX_RING_ADDR(sc, 0);
1204 		else
1205 			addr = VR_RX_RING_ADDR(sc, i + 1);
1206 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1207 		if (vr_newbuf(sc, i) != 0)
1208 			return (ENOBUFS);
1209 	}
1210 
1211 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1212 	    sc->vr_cdata.vr_rx_ring_map,
1213 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1214 
1215 	return (0);
1216 }
1217 
1218 static __inline void
1219 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1220 {
1221 	struct vr_desc	*desc;
1222 
1223 	desc = rxd->desc;
1224 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1225 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1226 }
1227 
1228 /*
1229  * Initialize an RX descriptor and attach an MBUF cluster.
1230  * Note: the length fields are only 11 bits wide, which means the
1231  * largest size we can specify is 2047. This is important because
1232  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1233  * overflow the field and make a mess.
1234  */
1235 static int
1236 vr_newbuf(struct vr_softc *sc, int idx)
1237 {
1238 	struct vr_desc		*desc;
1239 	struct vr_rxdesc	*rxd;
1240 	struct mbuf		*m;
1241 	bus_dma_segment_t	segs[1];
1242 	bus_dmamap_t		map;
1243 	int			nsegs;
1244 
1245 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1246 	if (m == NULL)
1247 		return (ENOBUFS);
1248 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1249 	m_adj(m, sizeof(uint64_t));
1250 
1251 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1252 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1253 		m_freem(m);
1254 		return (ENOBUFS);
1255 	}
1256 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1257 
1258 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1259 	if (rxd->rx_m != NULL) {
1260 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1261 		    BUS_DMASYNC_POSTREAD);
1262 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1263 	}
1264 	map = rxd->rx_dmamap;
1265 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1266 	sc->vr_cdata.vr_rx_sparemap = map;
1267 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1268 	    BUS_DMASYNC_PREREAD);
1269 	rxd->rx_m = m;
1270 	desc = rxd->desc;
1271 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1272 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1273 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1274 
1275 	return (0);
1276 }
1277 
1278 #ifndef __NO_STRICT_ALIGNMENT
1279 static __inline void
1280 vr_fixup_rx(struct mbuf *m)
1281 {
1282         uint16_t		*src, *dst;
1283         int			i;
1284 
1285 	src = mtod(m, uint16_t *);
1286 	dst = src - 1;
1287 
1288 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1289 		*dst++ = *src++;
1290 
1291 	m->m_data -= ETHER_ALIGN;
1292 }
1293 #endif
1294 
1295 /*
1296  * A frame has been uploaded: pass the resulting mbuf chain up to
1297  * the higher level protocols.
1298  */
1299 static void
1300 vr_rxeof(struct vr_softc *sc)
1301 {
1302 	struct vr_rxdesc	*rxd;
1303 	struct mbuf		*m;
1304 	struct ifnet		*ifp;
1305 	struct vr_desc		*cur_rx;
1306 	int			cons, prog, total_len;
1307 	uint32_t		rxstat, rxctl;
1308 
1309 	VR_LOCK_ASSERT(sc);
1310 	ifp = sc->vr_ifp;
1311 	cons = sc->vr_cdata.vr_rx_cons;
1312 
1313 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1314 	    sc->vr_cdata.vr_rx_ring_map,
1315 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1316 
1317 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1318 #ifdef DEVICE_POLLING
1319 		if (ifp->if_capenable & IFCAP_POLLING) {
1320 			if (sc->rxcycles <= 0)
1321 				break;
1322 			sc->rxcycles--;
1323 		}
1324 #endif
1325 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1326 		rxstat = le32toh(cur_rx->vr_status);
1327 		rxctl = le32toh(cur_rx->vr_ctl);
1328 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1329 			break;
1330 
1331 		prog++;
1332 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1333 		m = rxd->rx_m;
1334 
1335 		/*
1336 		 * If an error occurs, update stats, clear the
1337 		 * status word and leave the mbuf cluster in place:
1338 		 * it should simply get re-used next time this descriptor
1339 		 * comes up in the ring.
1340 		 * We don't support SG in Rx path yet, so discard
1341 		 * partial frame.
1342 		 */
1343 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1344 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1345 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1346 			ifp->if_ierrors++;
1347 			sc->vr_stat.rx_errors++;
1348 			if (rxstat & VR_RXSTAT_CRCERR)
1349 				sc->vr_stat.rx_crc_errors++;
1350 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1351 				sc->vr_stat.rx_alignment++;
1352 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1353 				sc->vr_stat.rx_fifo_overflows++;
1354 			if (rxstat & VR_RXSTAT_GIANT)
1355 				sc->vr_stat.rx_giants++;
1356 			if (rxstat & VR_RXSTAT_RUNT)
1357 				sc->vr_stat.rx_runts++;
1358 			if (rxstat & VR_RXSTAT_BUFFERR)
1359 				sc->vr_stat.rx_no_buffers++;
1360 #ifdef	VR_SHOW_ERRORS
1361 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1362 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1363 #endif
1364 			vr_discard_rxbuf(rxd);
1365 			continue;
1366 		}
1367 
1368 		if (vr_newbuf(sc, cons) != 0) {
1369 			ifp->if_iqdrops++;
1370 			sc->vr_stat.rx_errors++;
1371 			sc->vr_stat.rx_no_mbufs++;
1372 			vr_discard_rxbuf(rxd);
1373 			continue;
1374 		}
1375 
1376 		/*
1377 		 * XXX The VIA Rhine chip includes the CRC with every
1378 		 * received frame, and there's no way to turn this
1379 		 * behavior off (at least, I can't find anything in
1380 		 * the manual that explains how to do it) so we have
1381 		 * to trim off the CRC manually.
1382 		 */
1383 		total_len = VR_RXBYTES(rxstat);
1384 		total_len -= ETHER_CRC_LEN;
1385 		m->m_pkthdr.len = m->m_len = total_len;
1386 #ifndef	__NO_STRICT_ALIGNMENT
1387 		/*
1388 		 * RX buffers must be 32-bit aligned.
1389 		 * Ignore the alignment problems on the non-strict alignment
1390 		 * platform. The performance hit incurred due to unaligned
1391 		 * accesses is much smaller than the hit produced by forcing
1392 		 * buffer copies all the time.
1393 		 */
1394 		vr_fixup_rx(m);
1395 #endif
1396 		m->m_pkthdr.rcvif = ifp;
1397 		ifp->if_ipackets++;
1398 		sc->vr_stat.rx_ok++;
1399 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1400 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1401 		    (rxctl & VR_RXCTL_IP) != 0) {
1402 			/* Checksum is valid for non-fragmented IP packets. */
1403 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1404 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1405 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1406 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1407 					m->m_pkthdr.csum_flags |=
1408 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1409 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1410 						m->m_pkthdr.csum_data = 0xffff;
1411 				}
1412 			}
1413 		}
1414 		VR_UNLOCK(sc);
1415 		(*ifp->if_input)(ifp, m);
1416 		VR_LOCK(sc);
1417 	}
1418 
1419 	if (prog > 0) {
1420 		sc->vr_cdata.vr_rx_cons = cons;
1421 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1422 		    sc->vr_cdata.vr_rx_ring_map,
1423 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1424 	}
1425 }
1426 
1427 /*
1428  * A frame was downloaded to the chip. It's safe for us to clean up
1429  * the list buffers.
1430  */
1431 static void
1432 vr_txeof(struct vr_softc *sc)
1433 {
1434 	struct vr_txdesc	*txd;
1435 	struct vr_desc		*cur_tx;
1436 	struct ifnet		*ifp;
1437 	uint32_t		txctl, txstat;
1438 	int			cons, prod;
1439 
1440 	VR_LOCK_ASSERT(sc);
1441 
1442 	cons = sc->vr_cdata.vr_tx_cons;
1443 	prod = sc->vr_cdata.vr_tx_prod;
1444 	if (cons == prod)
1445 		return;
1446 
1447 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1448 	    sc->vr_cdata.vr_tx_ring_map,
1449 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450 
1451 	ifp = sc->vr_ifp;
1452 	/*
1453 	 * Go through our tx list and free mbufs for those
1454 	 * frames that have been transmitted.
1455 	 */
1456 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1457 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1458 		txctl = le32toh(cur_tx->vr_ctl);
1459 		txstat = le32toh(cur_tx->vr_status);
1460 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1461 			break;
1462 
1463 		sc->vr_cdata.vr_tx_cnt--;
1464 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1465 		/* Only the first descriptor in the chain is valid. */
1466 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1467 			continue;
1468 
1469 		txd = &sc->vr_cdata.vr_txdesc[cons];
1470 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1471 		    __func__));
1472 
1473 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1474 			ifp->if_oerrors++;
1475 			sc->vr_stat.tx_errors++;
1476 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1477 				/* Give up and restart Tx. */
1478 				sc->vr_stat.tx_abort++;
1479 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1480 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1481 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1482 				    txd->tx_dmamap);
1483 				m_freem(txd->tx_m);
1484 				txd->tx_m = NULL;
1485 				VR_INC(cons, VR_TX_RING_CNT);
1486 				sc->vr_cdata.vr_tx_cons = cons;
1487 				if (vr_tx_stop(sc) != 0) {
1488 					device_printf(sc->vr_dev,
1489 					    "%s: Tx shutdown error -- "
1490 					    "resetting\n", __func__);
1491 					sc->vr_flags |= VR_F_RESTART;
1492 					return;
1493 				}
1494 				vr_tx_start(sc);
1495 				break;
1496 			}
1497 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1498 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1499 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1500 				sc->vr_stat.tx_underrun++;
1501 				/* Retry and restart Tx. */
1502 				sc->vr_cdata.vr_tx_cnt++;
1503 				sc->vr_cdata.vr_tx_cons = cons;
1504 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1505 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1506 				    sc->vr_cdata.vr_tx_ring_map,
1507 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1508 				vr_tx_underrun(sc);
1509 				return;
1510 			}
1511 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1512 				ifp->if_collisions++;
1513 				sc->vr_stat.tx_collisions++;
1514 			}
1515 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1516 				ifp->if_collisions++;
1517 				sc->vr_stat.tx_late_collisions++;
1518 			}
1519 		} else {
1520 			sc->vr_stat.tx_ok++;
1521 			ifp->if_opackets++;
1522 		}
1523 
1524 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1525 		    BUS_DMASYNC_POSTWRITE);
1526 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1527 		if (sc->vr_revid < REV_ID_VT3071_A) {
1528 			ifp->if_collisions +=
1529 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1530 			sc->vr_stat.tx_collisions +=
1531 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1532 		} else {
1533 			ifp->if_collisions += (txstat & 0x0f);
1534 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1535 		}
1536 		m_freem(txd->tx_m);
1537 		txd->tx_m = NULL;
1538 	}
1539 
1540 	sc->vr_cdata.vr_tx_cons = cons;
1541 	if (sc->vr_cdata.vr_tx_cnt == 0)
1542 		sc->vr_watchdog_timer = 0;
1543 }
1544 
1545 static void
1546 vr_tick(void *xsc)
1547 {
1548 	struct vr_softc		*sc;
1549 	struct mii_data		*mii;
1550 
1551 	sc = (struct vr_softc *)xsc;
1552 
1553 	VR_LOCK_ASSERT(sc);
1554 
1555 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1556 		device_printf(sc->vr_dev, "restarting\n");
1557 		sc->vr_stat.num_restart++;
1558 		vr_stop(sc);
1559 		vr_reset(sc);
1560 		vr_init_locked(sc);
1561 		sc->vr_flags &= ~VR_F_RESTART;
1562 	}
1563 
1564 	mii = device_get_softc(sc->vr_miibus);
1565 	mii_tick(mii);
1566 	vr_watchdog(sc);
1567 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1568 }
1569 
1570 #ifdef DEVICE_POLLING
1571 static poll_handler_t vr_poll;
1572 static poll_handler_t vr_poll_locked;
1573 
1574 static void
1575 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1576 {
1577 	struct vr_softc *sc;
1578 
1579 	sc = ifp->if_softc;
1580 
1581 	VR_LOCK(sc);
1582 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1583 		vr_poll_locked(ifp, cmd, count);
1584 	VR_UNLOCK(sc);
1585 }
1586 
1587 static void
1588 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1589 {
1590 	struct vr_softc *sc;
1591 
1592 	sc = ifp->if_softc;
1593 
1594 	VR_LOCK_ASSERT(sc);
1595 
1596 	sc->rxcycles = count;
1597 	vr_rxeof(sc);
1598 	vr_txeof(sc);
1599 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 		vr_start_locked(ifp);
1601 
1602 	if (cmd == POLL_AND_CHECK_STATUS) {
1603 		uint16_t status;
1604 
1605 		/* Also check status register. */
1606 		status = CSR_READ_2(sc, VR_ISR);
1607 		if (status)
1608 			CSR_WRITE_2(sc, VR_ISR, status);
1609 
1610 		if ((status & VR_INTRS) == 0)
1611 			return;
1612 
1613 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1614 		    VR_ISR_STATSOFLOW)) != 0) {
1615 			if (vr_error(sc, status) != 0)
1616 				return;
1617 		}
1618 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1619 #ifdef	VR_SHOW_ERRORS
1620 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1621 			    __func__, status, VR_ISR_ERR_BITS);
1622 #endif
1623 			vr_rx_start(sc);
1624 		}
1625 	}
1626 }
1627 #endif /* DEVICE_POLLING */
1628 
1629 /* Back off the transmit threshold. */
1630 static void
1631 vr_tx_underrun(struct vr_softc *sc)
1632 {
1633 	int	thresh;
1634 
1635 	device_printf(sc->vr_dev, "Tx underrun -- ");
1636 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1637 		thresh = sc->vr_txthresh;
1638 		sc->vr_txthresh++;
1639 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1640 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1641 			printf("using store and forward mode\n");
1642 		} else
1643 			printf("increasing Tx threshold(%d -> %d)\n",
1644 			    vr_tx_threshold_tables[thresh].value,
1645 			    vr_tx_threshold_tables[thresh + 1].value);
1646 	} else
1647 		printf("\n");
1648 	sc->vr_stat.tx_underrun++;
1649 	if (vr_tx_stop(sc) != 0) {
1650 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1651 		    "resetting\n", __func__);
1652 		sc->vr_flags |= VR_F_RESTART;
1653 		return;
1654 	}
1655 	vr_tx_start(sc);
1656 }
1657 
1658 static void
1659 vr_intr(void *arg)
1660 {
1661 	struct vr_softc		*sc;
1662 	struct ifnet		*ifp;
1663 	uint16_t		status;
1664 
1665 	sc = (struct vr_softc *)arg;
1666 
1667 	VR_LOCK(sc);
1668 
1669 	if (sc->vr_suspended != 0)
1670 		goto done_locked;
1671 
1672 	status = CSR_READ_2(sc, VR_ISR);
1673 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1674 		goto done_locked;
1675 
1676 	ifp = sc->vr_ifp;
1677 #ifdef DEVICE_POLLING
1678 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1679 		goto done_locked;
1680 #endif
1681 
1682 	/* Suppress unwanted interrupts. */
1683 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1684 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1685 		CSR_WRITE_2(sc, VR_IMR, 0);
1686 		CSR_WRITE_2(sc, VR_ISR, status);
1687 		goto done_locked;
1688 	}
1689 
1690 	/* Disable interrupts. */
1691 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1692 
1693 	for (; (status & VR_INTRS) != 0;) {
1694 		CSR_WRITE_2(sc, VR_ISR, status);
1695 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1696 		    VR_ISR_STATSOFLOW)) != 0) {
1697 			if (vr_error(sc, status) != 0) {
1698 				VR_UNLOCK(sc);
1699 				return;
1700 			}
1701 		}
1702 		vr_rxeof(sc);
1703 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1704 #ifdef	VR_SHOW_ERRORS
1705 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1706 			    __func__, status, VR_ISR_ERR_BITS);
1707 #endif
1708 			/* Restart Rx if RxDMA SM was stopped. */
1709 			vr_rx_start(sc);
1710 		}
1711 		vr_txeof(sc);
1712 		status = CSR_READ_2(sc, VR_ISR);
1713 	}
1714 
1715 	/* Re-enable interrupts. */
1716 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1717 
1718 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1719 		vr_start_locked(ifp);
1720 
1721 done_locked:
1722 	VR_UNLOCK(sc);
1723 }
1724 
1725 static int
1726 vr_error(struct vr_softc *sc, uint16_t status)
1727 {
1728 	uint16_t pcis;
1729 
1730 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1731 	if ((status & VR_ISR_BUSERR) != 0) {
1732 		status &= ~VR_ISR_BUSERR;
1733 		sc->vr_stat.bus_errors++;
1734 		/* Disable further interrupts. */
1735 		CSR_WRITE_2(sc, VR_IMR, 0);
1736 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1737 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1738 		    "resetting\n", pcis);
1739 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1740 		sc->vr_flags |= VR_F_RESTART;
1741 		return (EAGAIN);
1742 	}
1743 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1744 		/* Link state change, duplex changes etc. */
1745 		status &= ~VR_ISR_LINKSTAT2;
1746 	}
1747 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1748 		status &= ~VR_ISR_STATSOFLOW;
1749 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1750 			/* Update MIB counters. */
1751 		}
1752 	}
1753 
1754 	if (status != 0)
1755 		device_printf(sc->vr_dev,
1756 		    "unhandled interrupt, status = 0x%04x\n", status);
1757 	return (0);
1758 }
1759 
1760 /*
1761  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1762  * pointers to the fragment pointers.
1763  */
1764 static int
1765 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1766 {
1767 	struct vr_txdesc	*txd;
1768 	struct vr_desc		*desc;
1769 	struct mbuf		*m;
1770 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1771 	uint32_t		csum_flags, txctl;
1772 	int			error, i, nsegs, prod, si;
1773 	int			padlen;
1774 
1775 	VR_LOCK_ASSERT(sc);
1776 
1777 	M_ASSERTPKTHDR((*m_head));
1778 
1779 	/*
1780 	 * Some VIA Rhine wants packet buffers to be longword
1781 	 * aligned, but very often our mbufs aren't. Rather than
1782 	 * waste time trying to decide when to copy and when not
1783 	 * to copy, just do it all the time.
1784 	 */
1785 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1786 		m = m_defrag(*m_head, M_DONTWAIT);
1787 		if (m == NULL) {
1788 			m_freem(*m_head);
1789 			*m_head = NULL;
1790 			return (ENOBUFS);
1791 		}
1792 		*m_head = m;
1793 	}
1794 
1795 	/*
1796 	 * The Rhine chip doesn't auto-pad, so we have to make
1797 	 * sure to pad short frames out to the minimum frame length
1798 	 * ourselves.
1799 	 */
1800 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1801 		m = *m_head;
1802 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1803 		if (M_WRITABLE(m) == 0) {
1804 			/* Get a writable copy. */
1805 			m = m_dup(*m_head, M_DONTWAIT);
1806 			m_freem(*m_head);
1807 			if (m == NULL) {
1808 				*m_head = NULL;
1809 				return (ENOBUFS);
1810 			}
1811 			*m_head = m;
1812 		}
1813 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1814 			m = m_defrag(m, M_DONTWAIT);
1815 			if (m == NULL) {
1816 				m_freem(*m_head);
1817 				*m_head = NULL;
1818 				return (ENOBUFS);
1819 			}
1820 		}
1821 		/*
1822 		 * Manually pad short frames, and zero the pad space
1823 		 * to avoid leaking data.
1824 		 */
1825 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1826 		m->m_pkthdr.len += padlen;
1827 		m->m_len = m->m_pkthdr.len;
1828 		*m_head = m;
1829 	}
1830 
1831 	prod = sc->vr_cdata.vr_tx_prod;
1832 	txd = &sc->vr_cdata.vr_txdesc[prod];
1833 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1834 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1835 	if (error == EFBIG) {
1836 		m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
1837 		if (m == NULL) {
1838 			m_freem(*m_head);
1839 			*m_head = NULL;
1840 			return (ENOBUFS);
1841 		}
1842 		*m_head = m;
1843 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1844 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1845 		if (error != 0) {
1846 			m_freem(*m_head);
1847 			*m_head = NULL;
1848 			return (error);
1849 		}
1850 	} else if (error != 0)
1851 		return (error);
1852 	if (nsegs == 0) {
1853 		m_freem(*m_head);
1854 		*m_head = NULL;
1855 		return (EIO);
1856 	}
1857 
1858 	/* Check number of available descriptors. */
1859 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1860 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1861 		return (ENOBUFS);
1862 	}
1863 
1864 	txd->tx_m = *m_head;
1865 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1866 	    BUS_DMASYNC_PREWRITE);
1867 
1868 	/* Set checksum offload. */
1869 	csum_flags = 0;
1870 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1871 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1872 			csum_flags |= VR_TXCTL_IPCSUM;
1873 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1874 			csum_flags |= VR_TXCTL_TCPCSUM;
1875 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1876 			csum_flags |= VR_TXCTL_UDPCSUM;
1877 	}
1878 
1879 	/*
1880 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1881 	 * is required for all descriptors regardless of single or
1882 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1883 	 * the first descriptor for a multi-fragmented frames. Without
1884 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1885 	 * send any frames.
1886 	 */
1887 	si = prod;
1888 	for (i = 0; i < nsegs; i++) {
1889 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1890 		desc->vr_status = 0;
1891 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1892 		if (i == 0)
1893 			txctl |= VR_TXCTL_FIRSTFRAG;
1894 		desc->vr_ctl = htole32(txctl);
1895 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1896 		sc->vr_cdata.vr_tx_cnt++;
1897 		VR_INC(prod, VR_TX_RING_CNT);
1898 	}
1899 	/* Update producer index. */
1900 	sc->vr_cdata.vr_tx_prod = prod;
1901 
1902 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1903 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1904 
1905 	/*
1906 	 * Set EOP on the last desciptor and reuqest Tx completion
1907 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1908 	 */
1909 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1910 	if (sc->vr_cdata.vr_tx_pkts == 0)
1911 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1912 	else
1913 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1914 
1915 	/* Lastly turn the first descriptor ownership to hardware. */
1916 	desc = &sc->vr_rdata.vr_tx_ring[si];
1917 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1918 
1919 	/* Sync descriptors. */
1920 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1921 	    sc->vr_cdata.vr_tx_ring_map,
1922 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1923 
1924 	return (0);
1925 }
1926 
1927 static void
1928 vr_start(struct ifnet *ifp)
1929 {
1930 	struct vr_softc		*sc;
1931 
1932 	sc = ifp->if_softc;
1933 	VR_LOCK(sc);
1934 	vr_start_locked(ifp);
1935 	VR_UNLOCK(sc);
1936 }
1937 
1938 static void
1939 vr_start_locked(struct ifnet *ifp)
1940 {
1941 	struct vr_softc		*sc;
1942 	struct mbuf		*m_head;
1943 	int			enq;
1944 
1945 	sc = ifp->if_softc;
1946 
1947 	VR_LOCK_ASSERT(sc);
1948 
1949 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1950 	    IFF_DRV_RUNNING || sc->vr_link == 0)
1951 		return;
1952 
1953 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1954 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1955 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1956 		if (m_head == NULL)
1957 			break;
1958 		/*
1959 		 * Pack the data into the transmit ring. If we
1960 		 * don't have room, set the OACTIVE flag and wait
1961 		 * for the NIC to drain the ring.
1962 		 */
1963 		if (vr_encap(sc, &m_head)) {
1964 			if (m_head == NULL)
1965 				break;
1966 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1967 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1968 			break;
1969 		}
1970 
1971 		enq++;
1972 		/*
1973 		 * If there's a BPF listener, bounce a copy of this frame
1974 		 * to him.
1975 		 */
1976 		ETHER_BPF_MTAP(ifp, m_head);
1977 	}
1978 
1979 	if (enq > 0) {
1980 		/* Tell the chip to start transmitting. */
1981 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1982 		/* Set a timeout in case the chip goes out to lunch. */
1983 		sc->vr_watchdog_timer = 5;
1984 	}
1985 }
1986 
1987 static void
1988 vr_init(void *xsc)
1989 {
1990 	struct vr_softc		*sc;
1991 
1992 	sc = (struct vr_softc *)xsc;
1993 	VR_LOCK(sc);
1994 	vr_init_locked(sc);
1995 	VR_UNLOCK(sc);
1996 }
1997 
1998 static void
1999 vr_init_locked(struct vr_softc *sc)
2000 {
2001 	struct ifnet		*ifp;
2002 	struct mii_data		*mii;
2003 	bus_addr_t		addr;
2004 	int			i;
2005 
2006 	VR_LOCK_ASSERT(sc);
2007 
2008 	ifp = sc->vr_ifp;
2009 	mii = device_get_softc(sc->vr_miibus);
2010 
2011 	/* Cancel pending I/O and free all RX/TX buffers. */
2012 	vr_stop(sc);
2013 	vr_reset(sc);
2014 
2015 	/* Set our station address. */
2016 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2017 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2018 
2019 	/* Set DMA size. */
2020 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2021 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2022 
2023 	/*
2024 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2025 	 * so we must set both.
2026 	 */
2027 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2028 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2029 
2030 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2031 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2032 
2033 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2034 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2035 
2036 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2037 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2038 
2039 	/* Init circular RX list. */
2040 	if (vr_rx_ring_init(sc) != 0) {
2041 		device_printf(sc->vr_dev,
2042 		    "initialization failed: no memory for rx buffers\n");
2043 		vr_stop(sc);
2044 		return;
2045 	}
2046 
2047 	/* Init tx descriptors. */
2048 	vr_tx_ring_init(sc);
2049 
2050 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2051 		uint8_t vcam[2] = { 0, 0 };
2052 
2053 		/* Disable VLAN hardware tag insertion/stripping. */
2054 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2055 		/* Disable VLAN hardware filtering. */
2056 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2057 		/* Disable all CAM entries. */
2058 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2059 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2060 		/* Enable the first VLAN CAM. */
2061 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2062 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2063 	}
2064 
2065 	/*
2066 	 * Set up receive filter.
2067 	 */
2068 	vr_set_filter(sc);
2069 
2070 	/*
2071 	 * Load the address of the RX ring.
2072 	 */
2073 	addr = VR_RX_RING_ADDR(sc, 0);
2074 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2075 	/*
2076 	 * Load the address of the TX ring.
2077 	 */
2078 	addr = VR_TX_RING_ADDR(sc, 0);
2079 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2080 	/* Default : full-duplex, no Tx poll. */
2081 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2082 
2083 	/* Set flow-control parameters for Rhine III. */
2084 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2085  		/* Rx buffer count available for incoming packet. */
2086 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
2087 		/*
2088 		 * Tx pause low threshold : 16 free receive buffers
2089 		 * Tx pause XON high threshold : 48 free receive buffers
2090 		 */
2091 		CSR_WRITE_1(sc, VR_FLOWCR1,
2092 		    VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
2093 		/* Set Tx pause timer. */
2094 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2095 	}
2096 
2097 	/* Enable receiver and transmitter. */
2098 	CSR_WRITE_1(sc, VR_CR0,
2099 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2100 
2101 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2102 #ifdef DEVICE_POLLING
2103 	/*
2104 	 * Disable interrupts if we are polling.
2105 	 */
2106 	if (ifp->if_capenable & IFCAP_POLLING)
2107 		CSR_WRITE_2(sc, VR_IMR, 0);
2108 	else
2109 #endif
2110 	/*
2111 	 * Enable interrupts and disable MII intrs.
2112 	 */
2113 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2114 	if (sc->vr_revid > REV_ID_VT6102_A)
2115 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2116 
2117 	sc->vr_link = 0;
2118 	mii_mediachg(mii);
2119 
2120 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2121 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2122 
2123 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2124 }
2125 
2126 /*
2127  * Set media options.
2128  */
2129 static int
2130 vr_ifmedia_upd(struct ifnet *ifp)
2131 {
2132 	struct vr_softc		*sc;
2133 	struct mii_data		*mii;
2134 	struct mii_softc	*miisc;
2135 	int			error;
2136 
2137 	sc = ifp->if_softc;
2138 	VR_LOCK(sc);
2139 	mii = device_get_softc(sc->vr_miibus);
2140 	if (mii->mii_instance) {
2141 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2142 			mii_phy_reset(miisc);
2143 	}
2144 	error = mii_mediachg(mii);
2145 	VR_UNLOCK(sc);
2146 
2147 	return (error);
2148 }
2149 
2150 /*
2151  * Report current media status.
2152  */
2153 static void
2154 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2155 {
2156 	struct vr_softc		*sc;
2157 	struct mii_data		*mii;
2158 
2159 	sc = ifp->if_softc;
2160 	mii = device_get_softc(sc->vr_miibus);
2161 	VR_LOCK(sc);
2162 	mii_pollstat(mii);
2163 	VR_UNLOCK(sc);
2164 	ifmr->ifm_active = mii->mii_media_active;
2165 	ifmr->ifm_status = mii->mii_media_status;
2166 }
2167 
2168 static int
2169 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2170 {
2171 	struct vr_softc		*sc;
2172 	struct ifreq		*ifr;
2173 	struct mii_data		*mii;
2174 	int			error, mask;
2175 
2176 	sc = ifp->if_softc;
2177 	ifr = (struct ifreq *)data;
2178 	error = 0;
2179 
2180 	switch (command) {
2181 	case SIOCSIFFLAGS:
2182 		VR_LOCK(sc);
2183 		if (ifp->if_flags & IFF_UP) {
2184 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2185 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2186 				    (IFF_PROMISC | IFF_ALLMULTI))
2187 					vr_set_filter(sc);
2188 			} else {
2189 				if (sc->vr_detach == 0)
2190 					vr_init_locked(sc);
2191 			}
2192 		} else {
2193 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2194 				vr_stop(sc);
2195 		}
2196 		sc->vr_if_flags = ifp->if_flags;
2197 		VR_UNLOCK(sc);
2198 		break;
2199 	case SIOCADDMULTI:
2200 	case SIOCDELMULTI:
2201 		VR_LOCK(sc);
2202 		vr_set_filter(sc);
2203 		VR_UNLOCK(sc);
2204 		break;
2205 	case SIOCGIFMEDIA:
2206 	case SIOCSIFMEDIA:
2207 		mii = device_get_softc(sc->vr_miibus);
2208 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2209 		break;
2210 	case SIOCSIFCAP:
2211 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2212 #ifdef DEVICE_POLLING
2213 		if (mask & IFCAP_POLLING) {
2214 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2215 				error = ether_poll_register(vr_poll, ifp);
2216 				if (error != 0)
2217 					break;
2218 				VR_LOCK(sc);
2219 				/* Disable interrupts. */
2220 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2221 				ifp->if_capenable |= IFCAP_POLLING;
2222 				VR_UNLOCK(sc);
2223 			} else {
2224 				error = ether_poll_deregister(ifp);
2225 				/* Enable interrupts. */
2226 				VR_LOCK(sc);
2227 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2228 				ifp->if_capenable &= ~IFCAP_POLLING;
2229 				VR_UNLOCK(sc);
2230 			}
2231 		}
2232 #endif /* DEVICE_POLLING */
2233 		if ((mask & IFCAP_TXCSUM) != 0 &&
2234 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2235 			ifp->if_capenable ^= IFCAP_TXCSUM;
2236 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2237 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2238 			else
2239 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2240 		}
2241 		if ((mask & IFCAP_RXCSUM) != 0 &&
2242 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2243 			ifp->if_capenable ^= IFCAP_RXCSUM;
2244 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2245 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2246 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2247 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2248 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2249 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2250 		break;
2251 	default:
2252 		error = ether_ioctl(ifp, command, data);
2253 		break;
2254 	}
2255 
2256 	return (error);
2257 }
2258 
2259 static void
2260 vr_watchdog(struct vr_softc *sc)
2261 {
2262 	struct ifnet		*ifp;
2263 
2264 	VR_LOCK_ASSERT(sc);
2265 
2266 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2267 		return;
2268 
2269 	ifp = sc->vr_ifp;
2270 	/*
2271 	 * Reclaim first as we don't request interrupt for every packets.
2272 	 */
2273 	vr_txeof(sc);
2274 	if (sc->vr_cdata.vr_tx_cnt == 0)
2275 		return;
2276 
2277 	if (sc->vr_link == 0) {
2278 		if (bootverbose)
2279 			if_printf(sc->vr_ifp, "watchdog timeout "
2280 			   "(missed link)\n");
2281 		ifp->if_oerrors++;
2282 		vr_init_locked(sc);
2283 		return;
2284 	}
2285 
2286 	ifp->if_oerrors++;
2287 	if_printf(ifp, "watchdog timeout\n");
2288 
2289 	vr_stop(sc);
2290 	vr_reset(sc);
2291 	vr_init_locked(sc);
2292 
2293 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2294 		vr_start_locked(ifp);
2295 }
2296 
2297 static void
2298 vr_tx_start(struct vr_softc *sc)
2299 {
2300 	bus_addr_t	addr;
2301 	uint8_t		cmd;
2302 
2303 	cmd = CSR_READ_1(sc, VR_CR0);
2304 	if ((cmd & VR_CR0_TX_ON) == 0) {
2305 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2306 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2307 		cmd |= VR_CR0_TX_ON;
2308 		CSR_WRITE_1(sc, VR_CR0, cmd);
2309 	}
2310 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2311 		sc->vr_watchdog_timer = 5;
2312 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2313 	}
2314 }
2315 
2316 static void
2317 vr_rx_start(struct vr_softc *sc)
2318 {
2319 	bus_addr_t	addr;
2320 	uint8_t		cmd;
2321 
2322 	cmd = CSR_READ_1(sc, VR_CR0);
2323 	if ((cmd & VR_CR0_RX_ON) == 0) {
2324 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2325 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2326 		cmd |= VR_CR0_RX_ON;
2327 		CSR_WRITE_1(sc, VR_CR0, cmd);
2328 	}
2329 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2330 }
2331 
2332 static int
2333 vr_tx_stop(struct vr_softc *sc)
2334 {
2335 	int		i;
2336 	uint8_t		cmd;
2337 
2338 	cmd = CSR_READ_1(sc, VR_CR0);
2339 	if ((cmd & VR_CR0_TX_ON) != 0) {
2340 		cmd &= ~VR_CR0_TX_ON;
2341 		CSR_WRITE_1(sc, VR_CR0, cmd);
2342 		for (i = VR_TIMEOUT; i > 0; i--) {
2343 			DELAY(5);
2344 			cmd = CSR_READ_1(sc, VR_CR0);
2345 			if ((cmd & VR_CR0_TX_ON) == 0)
2346 				break;
2347 		}
2348 		if (i == 0)
2349 			return (ETIMEDOUT);
2350 	}
2351 	return (0);
2352 }
2353 
2354 static int
2355 vr_rx_stop(struct vr_softc *sc)
2356 {
2357 	int		i;
2358 	uint8_t		cmd;
2359 
2360 	cmd = CSR_READ_1(sc, VR_CR0);
2361 	if ((cmd & VR_CR0_RX_ON) != 0) {
2362 		cmd &= ~VR_CR0_RX_ON;
2363 		CSR_WRITE_1(sc, VR_CR0, cmd);
2364 		for (i = VR_TIMEOUT; i > 0; i--) {
2365 			DELAY(5);
2366 			cmd = CSR_READ_1(sc, VR_CR0);
2367 			if ((cmd & VR_CR0_RX_ON) == 0)
2368 				break;
2369 		}
2370 		if (i == 0)
2371 			return (ETIMEDOUT);
2372 	}
2373 	return (0);
2374 }
2375 
2376 /*
2377  * Stop the adapter and free any mbufs allocated to the
2378  * RX and TX lists.
2379  */
2380 static void
2381 vr_stop(struct vr_softc *sc)
2382 {
2383 	struct vr_txdesc	*txd;
2384 	struct vr_rxdesc	*rxd;
2385 	struct ifnet		*ifp;
2386 	int			i;
2387 
2388 	VR_LOCK_ASSERT(sc);
2389 
2390 	ifp = sc->vr_ifp;
2391 	sc->vr_watchdog_timer = 0;
2392 
2393 	callout_stop(&sc->vr_stat_callout);
2394 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2395 
2396 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2397 	if (vr_rx_stop(sc) != 0)
2398 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2399 	if (vr_tx_stop(sc) != 0)
2400 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2401 	/* Clear pending interrupts. */
2402 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2403 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2404 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2405 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2406 
2407 	/*
2408 	 * Free RX and TX mbufs still in the queues.
2409 	 */
2410 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2411 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2412 		if (rxd->rx_m != NULL) {
2413 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2414 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2415 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2416 			    rxd->rx_dmamap);
2417 			m_freem(rxd->rx_m);
2418 			rxd->rx_m = NULL;
2419 		}
2420         }
2421 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2422 		txd = &sc->vr_cdata.vr_txdesc[i];
2423 		if (txd->tx_m != NULL) {
2424 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2425 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2426 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2427 			    txd->tx_dmamap);
2428 			m_freem(txd->tx_m);
2429 			txd->tx_m = NULL;
2430 		}
2431         }
2432 }
2433 
2434 /*
2435  * Stop all chip I/O so that the kernel's probe routines don't
2436  * get confused by errant DMAs when rebooting.
2437  */
2438 static int
2439 vr_shutdown(device_t dev)
2440 {
2441 
2442 	return (vr_suspend(dev));
2443 }
2444 
2445 static int
2446 vr_suspend(device_t dev)
2447 {
2448 	struct vr_softc		*sc;
2449 
2450 	sc = device_get_softc(dev);
2451 
2452 	VR_LOCK(sc);
2453 	vr_stop(sc);
2454 	vr_setwol(sc);
2455 	sc->vr_suspended = 1;
2456 	VR_UNLOCK(sc);
2457 
2458 	return (0);
2459 }
2460 
2461 static int
2462 vr_resume(device_t dev)
2463 {
2464 	struct vr_softc		*sc;
2465 	struct ifnet		*ifp;
2466 
2467 	sc = device_get_softc(dev);
2468 
2469 	VR_LOCK(sc);
2470 	ifp = sc->vr_ifp;
2471 	vr_clrwol(sc);
2472 	vr_reset(sc);
2473 	if (ifp->if_flags & IFF_UP)
2474 		vr_init_locked(sc);
2475 
2476 	sc->vr_suspended = 0;
2477 	VR_UNLOCK(sc);
2478 
2479 	return (0);
2480 }
2481 
2482 static void
2483 vr_setwol(struct vr_softc *sc)
2484 {
2485 	struct ifnet		*ifp;
2486 	int			pmc;
2487 	uint16_t		pmstat;
2488 	uint8_t			v;
2489 
2490 	VR_LOCK_ASSERT(sc);
2491 
2492 	if (sc->vr_revid < REV_ID_VT6102_A ||
2493 	    pci_find_extcap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2494 		return;
2495 
2496 	ifp = sc->vr_ifp;
2497 
2498 	/* Clear WOL configuration. */
2499 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2500 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2501 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2502 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2503 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2504 		/* Newer Rhine III supports two additional patterns. */
2505 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2506 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2507 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2508 	}
2509 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2510 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2511 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2512 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2513 	/*
2514 	 * It seems that multicast wakeup frames require programming pattern
2515 	 * registers and valid CRC as well as pattern mask for each pattern.
2516 	 * While it's possible to setup such a pattern it would complicate
2517 	 * WOL configuration so ignore multicast wakeup frames.
2518 	 */
2519 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2520 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2521 		v = CSR_READ_1(sc, VR_STICKHW);
2522 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2523 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2524 	}
2525 
2526 	/* Put hardware into sleep. */
2527 	v = CSR_READ_1(sc, VR_STICKHW);
2528 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2529 	CSR_WRITE_1(sc, VR_STICKHW, v);
2530 
2531 	/* Request PME if WOL is requested. */
2532 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2533 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2534 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2535 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2536 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2537 }
2538 
2539 static void
2540 vr_clrwol(struct vr_softc *sc)
2541 {
2542 	uint8_t			v;
2543 
2544 	VR_LOCK_ASSERT(sc);
2545 
2546 	if (sc->vr_revid < REV_ID_VT6102_A)
2547 		return;
2548 
2549 	/* Take hardware out of sleep. */
2550 	v = CSR_READ_1(sc, VR_STICKHW);
2551 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2552 	CSR_WRITE_1(sc, VR_STICKHW, v);
2553 
2554 	/* Clear WOL configuration as WOL may interfere normal operation. */
2555 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2556 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2557 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2558 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2559 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2560 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2561 		/* Newer Rhine III supports two additional patterns. */
2562 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2563 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2564 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2565 	}
2566 }
2567 
2568 static int
2569 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2570 {
2571 	struct vr_softc		*sc;
2572 	struct vr_statistics	*stat;
2573 	int			error;
2574 	int			result;
2575 
2576 	result = -1;
2577 	error = sysctl_handle_int(oidp, &result, 0, req);
2578 
2579 	if (error != 0 || req->newptr == NULL)
2580 		return (error);
2581 
2582 	if (result == 1) {
2583 		sc = (struct vr_softc *)arg1;
2584 		stat = &sc->vr_stat;
2585 
2586 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2587 		printf("Outbound good frames : %ju\n",
2588 		    (uintmax_t)stat->tx_ok);
2589 		printf("Inbound good frames : %ju\n",
2590 		    (uintmax_t)stat->rx_ok);
2591 		printf("Outbound errors : %u\n", stat->tx_errors);
2592 		printf("Inbound errors : %u\n", stat->rx_errors);
2593 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2594 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2595 		printf("Inbound FIFO overflows : %d\n",
2596 		    stat->rx_fifo_overflows);
2597 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2598 		printf("Inbound frame alignment errors : %u\n",
2599 		    stat->rx_alignment);
2600 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2601 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2602 		printf("Outbound aborted with excessive collisions : %u\n",
2603 		    stat->tx_abort);
2604 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2605 		printf("Outbound late collisions : %u\n",
2606 		    stat->tx_late_collisions);
2607 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2608 		printf("PCI bus errors : %u\n", stat->bus_errors);
2609 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2610 		    stat->num_restart);
2611 	}
2612 
2613 	return (error);
2614 }
2615