1 /*- 2 * Copyright (c) 1997, 1998 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * VIA Rhine fast ethernet PCI NIC driver 38 * 39 * Supports various network adapters based on the VIA Rhine 40 * and Rhine II PCI controllers, including the D-Link DFE530TX. 41 * Datasheets are available at http://www.via.com.tw. 42 * 43 * Written by Bill Paul <wpaul@ctr.columbia.edu> 44 * Electrical Engineering Department 45 * Columbia University, New York City 46 */ 47 48 /* 49 * The VIA Rhine controllers are similar in some respects to the 50 * the DEC tulip chips, except less complicated. The controller 51 * uses an MII bus and an external physical layer interface. The 52 * receiver has a one entry perfect filter and a 64-bit hash table 53 * multicast filter. Transmit and receive descriptors are similar 54 * to the tulip. 55 * 56 * Some Rhine chips has a serious flaw in its transmit DMA mechanism: 57 * transmit buffers must be longword aligned. Unfortunately, 58 * FreeBSD doesn't guarantee that mbufs will be filled in starting 59 * at longword boundaries, so we have to do a buffer copy before 60 * transmission. 61 */ 62 63 #ifdef HAVE_KERNEL_OPTION_HEADERS 64 #include "opt_device_polling.h" 65 #endif 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bus.h> 70 #include <sys/endian.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/module.h> 75 #include <sys/rman.h> 76 #include <sys/socket.h> 77 #include <sys/sockio.h> 78 #include <sys/sysctl.h> 79 #include <sys/taskqueue.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 #include <net/if_types.h> 87 #include <net/if_vlan_var.h> 88 89 #include <dev/mii/mii.h> 90 #include <dev/mii/miivar.h> 91 92 #include <dev/pci/pcireg.h> 93 #include <dev/pci/pcivar.h> 94 95 #include <machine/bus.h> 96 97 #include <dev/vr/if_vrreg.h> 98 99 /* "device miibus" required. See GENERIC if you get errors here. */ 100 #include "miibus_if.h" 101 102 MODULE_DEPEND(vr, pci, 1, 1, 1); 103 MODULE_DEPEND(vr, ether, 1, 1, 1); 104 MODULE_DEPEND(vr, miibus, 1, 1, 1); 105 106 /* Define to show Rx/Tx error status. */ 107 #undef VR_SHOW_ERRORS 108 #define VR_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 109 110 /* 111 * Various supported device vendors/types, their names & quirks. 112 */ 113 #define VR_Q_NEEDALIGN (1<<0) 114 #define VR_Q_CSUM (1<<1) 115 #define VR_Q_CAM (1<<2) 116 117 static struct vr_type { 118 u_int16_t vr_vid; 119 u_int16_t vr_did; 120 int vr_quirks; 121 char *vr_name; 122 } vr_devs[] = { 123 { VIA_VENDORID, VIA_DEVICEID_RHINE, 124 VR_Q_NEEDALIGN, 125 "VIA VT3043 Rhine I 10/100BaseTX" }, 126 { VIA_VENDORID, VIA_DEVICEID_RHINE_II, 127 VR_Q_NEEDALIGN, 128 "VIA VT86C100A Rhine II 10/100BaseTX" }, 129 { VIA_VENDORID, VIA_DEVICEID_RHINE_II_2, 130 0, 131 "VIA VT6102 Rhine II 10/100BaseTX" }, 132 { VIA_VENDORID, VIA_DEVICEID_RHINE_III, 133 0, 134 "VIA VT6105 Rhine III 10/100BaseTX" }, 135 { VIA_VENDORID, VIA_DEVICEID_RHINE_III_M, 136 VR_Q_CSUM, 137 "VIA VT6105M Rhine III 10/100BaseTX" }, 138 { DELTA_VENDORID, DELTA_DEVICEID_RHINE_II, 139 VR_Q_NEEDALIGN, 140 "Delta Electronics Rhine II 10/100BaseTX" }, 141 { ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II, 142 VR_Q_NEEDALIGN, 143 "Addtron Technology Rhine II 10/100BaseTX" }, 144 { 0, 0, 0, NULL } 145 }; 146 147 static int vr_probe(device_t); 148 static int vr_attach(device_t); 149 static int vr_detach(device_t); 150 static int vr_shutdown(device_t); 151 static int vr_suspend(device_t); 152 static int vr_resume(device_t); 153 154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int); 155 static int vr_dma_alloc(struct vr_softc *); 156 static void vr_dma_free(struct vr_softc *); 157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *); 158 static int vr_newbuf(struct vr_softc *, int); 159 160 #ifndef __NO_STRICT_ALIGNMENT 161 static __inline void vr_fixup_rx(struct mbuf *); 162 #endif 163 static void vr_rxeof(struct vr_softc *); 164 static void vr_txeof(struct vr_softc *); 165 static void vr_tick(void *); 166 static int vr_error(struct vr_softc *, uint16_t); 167 static void vr_tx_underrun(struct vr_softc *); 168 static void vr_intr(void *); 169 static void vr_start(struct ifnet *); 170 static void vr_start_locked(struct ifnet *); 171 static int vr_encap(struct vr_softc *, struct mbuf **); 172 static int vr_ioctl(struct ifnet *, u_long, caddr_t); 173 static void vr_init(void *); 174 static void vr_init_locked(struct vr_softc *); 175 static void vr_tx_start(struct vr_softc *); 176 static void vr_rx_start(struct vr_softc *); 177 static int vr_tx_stop(struct vr_softc *); 178 static int vr_rx_stop(struct vr_softc *); 179 static void vr_stop(struct vr_softc *); 180 static void vr_watchdog(struct vr_softc *); 181 static int vr_ifmedia_upd(struct ifnet *); 182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *); 183 184 static int vr_miibus_readreg(device_t, int, int); 185 static int vr_miibus_writereg(device_t, int, int, int); 186 static void vr_miibus_statchg(device_t); 187 188 static void vr_link_task(void *, int); 189 static void vr_cam_mask(struct vr_softc *, uint32_t, int); 190 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *); 191 static void vr_set_filter(struct vr_softc *); 192 static void vr_reset(const struct vr_softc *); 193 static int vr_tx_ring_init(struct vr_softc *); 194 static int vr_rx_ring_init(struct vr_softc *); 195 static void vr_setwol(struct vr_softc *); 196 static void vr_clrwol(struct vr_softc *); 197 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS); 198 199 static struct vr_tx_threshold_table { 200 int tx_cfg; 201 int bcr_cfg; 202 int value; 203 } vr_tx_threshold_tables[] = { 204 { VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES, 64 }, 205 { VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 }, 206 { VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 }, 207 { VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 }, 208 { VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 }, 209 { VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 } 210 }; 211 212 static device_method_t vr_methods[] = { 213 /* Device interface */ 214 DEVMETHOD(device_probe, vr_probe), 215 DEVMETHOD(device_attach, vr_attach), 216 DEVMETHOD(device_detach, vr_detach), 217 DEVMETHOD(device_shutdown, vr_shutdown), 218 DEVMETHOD(device_suspend, vr_suspend), 219 DEVMETHOD(device_resume, vr_resume), 220 221 /* bus interface */ 222 DEVMETHOD(bus_print_child, bus_generic_print_child), 223 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 224 225 /* MII interface */ 226 DEVMETHOD(miibus_readreg, vr_miibus_readreg), 227 DEVMETHOD(miibus_writereg, vr_miibus_writereg), 228 DEVMETHOD(miibus_statchg, vr_miibus_statchg), 229 DEVMETHOD(miibus_linkchg, vr_miibus_statchg), 230 231 { NULL, NULL } 232 }; 233 234 static driver_t vr_driver = { 235 "vr", 236 vr_methods, 237 sizeof(struct vr_softc) 238 }; 239 240 static devclass_t vr_devclass; 241 242 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0); 243 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0); 244 245 static int 246 vr_miibus_readreg(device_t dev, int phy, int reg) 247 { 248 struct vr_softc *sc; 249 int i; 250 251 sc = device_get_softc(dev); 252 if (sc->vr_phyaddr != phy) 253 return (0); 254 255 /* Set the register address. */ 256 CSR_WRITE_1(sc, VR_MIIADDR, reg); 257 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB); 258 259 for (i = 0; i < VR_MII_TIMEOUT; i++) { 260 DELAY(1); 261 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0) 262 break; 263 } 264 if (i == VR_MII_TIMEOUT) 265 device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg); 266 267 return (CSR_READ_2(sc, VR_MIIDATA)); 268 } 269 270 static int 271 vr_miibus_writereg(device_t dev, int phy, int reg, int data) 272 { 273 struct vr_softc *sc; 274 int i; 275 276 sc = device_get_softc(dev); 277 if (sc->vr_phyaddr != phy) 278 return (0); 279 280 /* Set the register address and data to write. */ 281 CSR_WRITE_1(sc, VR_MIIADDR, reg); 282 CSR_WRITE_2(sc, VR_MIIDATA, data); 283 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB); 284 285 for (i = 0; i < VR_MII_TIMEOUT; i++) { 286 DELAY(1); 287 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0) 288 break; 289 } 290 if (i == VR_MII_TIMEOUT) 291 device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy, 292 reg); 293 294 return (0); 295 } 296 297 static void 298 vr_miibus_statchg(device_t dev) 299 { 300 struct vr_softc *sc; 301 302 sc = device_get_softc(dev); 303 taskqueue_enqueue(taskqueue_swi, &sc->vr_link_task); 304 } 305 306 /* 307 * In order to fiddle with the 308 * 'full-duplex' and '100Mbps' bits in the netconfig register, we 309 * first have to put the transmit and/or receive logic in the idle state. 310 */ 311 static void 312 vr_link_task(void *arg, int pending) 313 { 314 struct vr_softc *sc; 315 struct mii_data *mii; 316 struct ifnet *ifp; 317 int lfdx, mfdx; 318 uint8_t cr0, cr1, fc; 319 320 sc = (struct vr_softc *)arg; 321 322 VR_LOCK(sc); 323 mii = device_get_softc(sc->vr_miibus); 324 ifp = sc->vr_ifp; 325 if (mii == NULL || ifp == NULL || 326 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 327 VR_UNLOCK(sc); 328 return; 329 } 330 331 if (mii->mii_media_status & IFM_ACTIVE) { 332 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 333 sc->vr_link = 1; 334 } else 335 sc->vr_link = 0; 336 337 if (sc->vr_link != 0) { 338 cr0 = CSR_READ_1(sc, VR_CR0); 339 cr1 = CSR_READ_1(sc, VR_CR1); 340 mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0; 341 lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0; 342 if (mfdx != lfdx) { 343 if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) { 344 if (vr_tx_stop(sc) != 0 || 345 vr_rx_stop(sc) != 0) { 346 device_printf(sc->vr_dev, 347 "%s: Tx/Rx shutdown error -- " 348 "resetting\n", __func__); 349 sc->vr_flags |= VR_F_RESTART; 350 VR_UNLOCK(sc); 351 return; 352 } 353 } 354 if (lfdx) 355 cr1 |= VR_CR1_FULLDUPLEX; 356 else 357 cr1 &= ~VR_CR1_FULLDUPLEX; 358 CSR_WRITE_1(sc, VR_CR1, cr1); 359 } 360 fc = 0; 361 #ifdef notyet 362 /* Configure flow-control. */ 363 if (sc->vr_revid >= REV_ID_VT6105_A0) { 364 fc = CSR_READ_1(sc, VR_FLOWCR1); 365 fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE); 366 if ((IFM_OPTIONS(mii->mii_media_active) & 367 IFM_ETH_RXPAUSE) != 0) 368 fc |= VR_FLOWCR1_RXPAUSE; 369 if ((IFM_OPTIONS(mii->mii_media_active) & 370 IFM_ETH_TXPAUSE) != 0) 371 fc |= VR_FLOWCR1_TXPAUSE; 372 CSR_WRITE_1(sc, VR_FLOWCR1, fc); 373 } else if (sc->vr_revid >= REV_ID_VT6102_A) { 374 /* No Tx puase capability available for Rhine II. */ 375 fc = CSR_READ_1(sc, VR_MISC_CR0); 376 fc &= ~VR_MISCCR0_RXPAUSE; 377 if ((IFM_OPTIONS(mii->mii_media_active) & 378 IFM_ETH_RXPAUSE) != 0) 379 fc |= VR_MISCCR0_RXPAUSE; 380 CSR_WRITE_1(sc, VR_MISC_CR0, fc); 381 } 382 #endif 383 vr_rx_start(sc); 384 vr_tx_start(sc); 385 } else { 386 if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) { 387 device_printf(sc->vr_dev, 388 "%s: Tx/Rx shutdown error -- resetting\n", 389 __func__); 390 sc->vr_flags |= VR_F_RESTART; 391 VR_UNLOCK(sc); 392 return; 393 } 394 } 395 VR_UNLOCK(sc); 396 } 397 398 399 static void 400 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type) 401 { 402 403 if (type == VR_MCAST_CAM) 404 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST); 405 else 406 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN); 407 CSR_WRITE_4(sc, VR_CAMMASK, mask); 408 CSR_WRITE_1(sc, VR_CAMCTL, 0); 409 } 410 411 static int 412 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac) 413 { 414 int i; 415 416 if (type == VR_MCAST_CAM) { 417 if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL) 418 return (EINVAL); 419 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST); 420 } else 421 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN); 422 423 /* Set CAM entry address. */ 424 CSR_WRITE_1(sc, VR_CAMADDR, idx); 425 /* Set CAM entry data. */ 426 if (type == VR_MCAST_CAM) { 427 for (i = 0; i < ETHER_ADDR_LEN; i++) 428 CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]); 429 } else { 430 CSR_WRITE_1(sc, VR_VCAM0, mac[0]); 431 CSR_WRITE_1(sc, VR_VCAM1, mac[1]); 432 } 433 DELAY(10); 434 /* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */ 435 CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE); 436 for (i = 0; i < VR_TIMEOUT; i++) { 437 DELAY(1); 438 if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0) 439 break; 440 } 441 442 if (i == VR_TIMEOUT) 443 device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n", 444 __func__); 445 CSR_WRITE_1(sc, VR_CAMCTL, 0); 446 447 return (i == VR_TIMEOUT ? ETIMEDOUT : 0); 448 } 449 450 /* 451 * Program the 64-bit multicast hash filter. 452 */ 453 static void 454 vr_set_filter(struct vr_softc *sc) 455 { 456 struct ifnet *ifp; 457 int h; 458 uint32_t hashes[2] = { 0, 0 }; 459 struct ifmultiaddr *ifma; 460 uint8_t rxfilt; 461 int error, mcnt; 462 uint32_t cam_mask; 463 464 VR_LOCK_ASSERT(sc); 465 466 ifp = sc->vr_ifp; 467 rxfilt = CSR_READ_1(sc, VR_RXCFG); 468 rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD | 469 VR_RXCFG_RX_MULTI); 470 if (ifp->if_flags & IFF_BROADCAST) 471 rxfilt |= VR_RXCFG_RX_BROAD; 472 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 473 rxfilt |= VR_RXCFG_RX_MULTI; 474 if (ifp->if_flags & IFF_PROMISC) 475 rxfilt |= VR_RXCFG_RX_PROMISC; 476 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 477 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); 478 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); 479 return; 480 } 481 482 /* Now program new ones. */ 483 error = 0; 484 mcnt = 0; 485 IF_ADDR_LOCK(ifp); 486 if ((sc->vr_quirks & VR_Q_CAM) != 0) { 487 /* 488 * For hardwares that have CAM capability, use 489 * 32 entries multicast perfect filter. 490 */ 491 cam_mask = 0; 492 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 493 if (ifma->ifma_addr->sa_family != AF_LINK) 494 continue; 495 error = vr_cam_data(sc, VR_MCAST_CAM, mcnt, 496 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 497 if (error != 0) { 498 cam_mask = 0; 499 break; 500 } 501 cam_mask |= 1 << mcnt; 502 mcnt++; 503 } 504 vr_cam_mask(sc, VR_MCAST_CAM, cam_mask); 505 } 506 507 if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) { 508 /* 509 * If there are too many multicast addresses or 510 * setting multicast CAM filter failed, use hash 511 * table based filtering. 512 */ 513 mcnt = 0; 514 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 515 if (ifma->ifma_addr->sa_family != AF_LINK) 516 continue; 517 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 518 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 519 if (h < 32) 520 hashes[0] |= (1 << h); 521 else 522 hashes[1] |= (1 << (h - 32)); 523 mcnt++; 524 } 525 } 526 IF_ADDR_UNLOCK(ifp); 527 528 if (mcnt > 0) 529 rxfilt |= VR_RXCFG_RX_MULTI; 530 531 CSR_WRITE_4(sc, VR_MAR0, hashes[0]); 532 CSR_WRITE_4(sc, VR_MAR1, hashes[1]); 533 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 534 } 535 536 static void 537 vr_reset(const struct vr_softc *sc) 538 { 539 int i; 540 541 /*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */ 542 543 CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET); 544 if (sc->vr_revid < REV_ID_VT6102_A) { 545 /* VT86C100A needs more delay after reset. */ 546 DELAY(100); 547 } 548 for (i = 0; i < VR_TIMEOUT; i++) { 549 DELAY(10); 550 if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET)) 551 break; 552 } 553 if (i == VR_TIMEOUT) { 554 if (sc->vr_revid < REV_ID_VT6102_A) 555 device_printf(sc->vr_dev, "reset never completed!\n"); 556 else { 557 /* Use newer force reset command. */ 558 device_printf(sc->vr_dev, 559 "Using force reset command.\n"); 560 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); 561 /* 562 * Wait a little while for the chip to get its brains 563 * in order. 564 */ 565 DELAY(2000); 566 } 567 } 568 569 } 570 571 /* 572 * Probe for a VIA Rhine chip. Check the PCI vendor and device 573 * IDs against our list and return a match or NULL 574 */ 575 static struct vr_type * 576 vr_match(device_t dev) 577 { 578 struct vr_type *t = vr_devs; 579 580 for (t = vr_devs; t->vr_name != NULL; t++) 581 if ((pci_get_vendor(dev) == t->vr_vid) && 582 (pci_get_device(dev) == t->vr_did)) 583 return (t); 584 return (NULL); 585 } 586 587 /* 588 * Probe for a VIA Rhine chip. Check the PCI vendor and device 589 * IDs against our list and return a device name if we find a match. 590 */ 591 static int 592 vr_probe(device_t dev) 593 { 594 struct vr_type *t; 595 596 t = vr_match(dev); 597 if (t != NULL) { 598 device_set_desc(dev, t->vr_name); 599 return (BUS_PROBE_DEFAULT); 600 } 601 return (ENXIO); 602 } 603 604 /* 605 * Attach the interface. Allocate softc structures, do ifmedia 606 * setup and ethernet/BPF attach. 607 */ 608 static int 609 vr_attach(device_t dev) 610 { 611 struct vr_softc *sc; 612 struct ifnet *ifp; 613 struct vr_type *t; 614 uint8_t eaddr[ETHER_ADDR_LEN]; 615 int error, rid; 616 int i, pmc; 617 618 sc = device_get_softc(dev); 619 sc->vr_dev = dev; 620 t = vr_match(dev); 621 KASSERT(t != NULL, ("Lost if_vr device match")); 622 sc->vr_quirks = t->vr_quirks; 623 device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks); 624 625 mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 626 MTX_DEF); 627 callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0); 628 TASK_INIT(&sc->vr_link_task, 0, vr_link_task, sc); 629 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 630 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 631 OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 632 vr_sysctl_stats, "I", "Statistics"); 633 634 error = 0; 635 636 /* 637 * Map control/status registers. 638 */ 639 pci_enable_busmaster(dev); 640 sc->vr_revid = pci_get_revid(dev); 641 device_printf(dev, "Revision: 0x%x\n", sc->vr_revid); 642 643 sc->vr_res_id = PCIR_BAR(0); 644 sc->vr_res_type = SYS_RES_IOPORT; 645 sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type, 646 &sc->vr_res_id, RF_ACTIVE); 647 if (sc->vr_res == NULL) { 648 device_printf(dev, "couldn't map ports\n"); 649 error = ENXIO; 650 goto fail; 651 } 652 653 /* Allocate interrupt. */ 654 rid = 0; 655 sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 656 RF_SHAREABLE | RF_ACTIVE); 657 658 if (sc->vr_irq == NULL) { 659 device_printf(dev, "couldn't map interrupt\n"); 660 error = ENXIO; 661 goto fail; 662 } 663 664 /* Allocate ifnet structure. */ 665 ifp = sc->vr_ifp = if_alloc(IFT_ETHER); 666 if (ifp == NULL) { 667 device_printf(dev, "couldn't allocate ifnet structure\n"); 668 error = ENOSPC; 669 goto fail; 670 } 671 ifp->if_softc = sc; 672 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 673 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 674 ifp->if_ioctl = vr_ioctl; 675 ifp->if_start = vr_start; 676 ifp->if_init = vr_init; 677 IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1); 678 ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1; 679 IFQ_SET_READY(&ifp->if_snd); 680 681 /* Configure Tx FIFO threshold. */ 682 sc->vr_txthresh = VR_TXTHRESH_MIN; 683 if (sc->vr_revid < REV_ID_VT6105_A0) { 684 /* 685 * Use store and forward mode for Rhine I/II. 686 * Otherwise they produce a lot of Tx underruns and 687 * it would take a while to get working FIFO threshold 688 * value. 689 */ 690 sc->vr_txthresh = VR_TXTHRESH_MAX; 691 } 692 if ((sc->vr_quirks & VR_Q_CSUM) != 0) { 693 ifp->if_hwassist = VR_CSUM_FEATURES; 694 ifp->if_capabilities |= IFCAP_HWCSUM; 695 /* 696 * To update checksum field the hardware may need to 697 * store entire frames into FIFO before transmitting. 698 */ 699 sc->vr_txthresh = VR_TXTHRESH_MAX; 700 } 701 702 if (sc->vr_revid >= REV_ID_VT6102_A && 703 pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) 704 ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC; 705 706 /* Rhine supports oversized VLAN frame. */ 707 ifp->if_capabilities |= IFCAP_VLAN_MTU; 708 ifp->if_capenable = ifp->if_capabilities; 709 #ifdef DEVICE_POLLING 710 ifp->if_capabilities |= IFCAP_POLLING; 711 #endif 712 713 /* 714 * Windows may put the chip in suspend mode when it 715 * shuts down. Be sure to kick it in the head to wake it 716 * up again. 717 */ 718 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) 719 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); 720 721 /* 722 * Get station address. The way the Rhine chips work, 723 * you're not allowed to directly access the EEPROM once 724 * they've been programmed a special way. Consequently, 725 * we need to read the node address from the PAR0 and PAR1 726 * registers. 727 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB, 728 * VR_CFGC and VR_CFGD such that memory mapped IO configured 729 * by driver is reset to default state. 730 */ 731 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); 732 for (i = VR_TIMEOUT; i > 0; i--) { 733 DELAY(1); 734 if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0) 735 break; 736 } 737 if (i == 0) 738 device_printf(dev, "Reloading EEPROM timeout!\n"); 739 for (i = 0; i < ETHER_ADDR_LEN; i++) 740 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); 741 742 /* Reset the adapter. */ 743 vr_reset(sc); 744 /* Ack intr & disable further interrupts. */ 745 CSR_WRITE_2(sc, VR_ISR, 0xFFFF); 746 CSR_WRITE_2(sc, VR_IMR, 0); 747 if (sc->vr_revid >= REV_ID_VT6102_A) 748 CSR_WRITE_2(sc, VR_MII_IMR, 0); 749 750 if (sc->vr_revid < REV_ID_VT6102_A) { 751 pci_write_config(dev, VR_PCI_MODE2, 752 pci_read_config(dev, VR_PCI_MODE2, 1) | 753 VR_MODE2_MODE10T, 1); 754 } else { 755 /* Report error instead of retrying forever. */ 756 pci_write_config(dev, VR_PCI_MODE2, 757 pci_read_config(dev, VR_PCI_MODE2, 1) | 758 VR_MODE2_PCEROPT, 1); 759 /* Detect MII coding error. */ 760 pci_write_config(dev, VR_PCI_MODE3, 761 pci_read_config(dev, VR_PCI_MODE3, 1) | 762 VR_MODE3_MIION, 1); 763 if (sc->vr_revid >= REV_ID_VT6105_LOM && 764 sc->vr_revid < REV_ID_VT6105M_A0) 765 pci_write_config(dev, VR_PCI_MODE2, 766 pci_read_config(dev, VR_PCI_MODE2, 1) | 767 VR_MODE2_MODE10T, 1); 768 /* Enable Memory-Read-Multiple. */ 769 if (sc->vr_revid >= REV_ID_VT6107_A1 && 770 sc->vr_revid < REV_ID_VT6105M_A0) 771 pci_write_config(dev, VR_PCI_MODE2, 772 pci_read_config(dev, VR_PCI_MODE2, 1) | 773 VR_MODE2_MRDPL, 1); 774 } 775 /* Disable MII AUTOPOLL. */ 776 VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL); 777 778 if (vr_dma_alloc(sc) != 0) { 779 error = ENXIO; 780 goto fail; 781 } 782 783 /* Save PHY address. */ 784 if (sc->vr_revid >= REV_ID_VT6105_A0) 785 sc->vr_phyaddr = 1; 786 else 787 sc->vr_phyaddr = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK; 788 789 /* Do MII setup. */ 790 if (mii_phy_probe(dev, &sc->vr_miibus, 791 vr_ifmedia_upd, vr_ifmedia_sts)) { 792 device_printf(dev, "MII without any phy!\n"); 793 error = ENXIO; 794 goto fail; 795 } 796 797 /* Call MI attach routine. */ 798 ether_ifattach(ifp, eaddr); 799 /* 800 * Tell the upper layer(s) we support long frames. 801 * Must appear after the call to ether_ifattach() because 802 * ether_ifattach() sets ifi_hdrlen to the default value. 803 */ 804 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 805 806 /* Hook interrupt last to avoid having to lock softc. */ 807 error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE, 808 NULL, vr_intr, sc, &sc->vr_intrhand); 809 810 if (error) { 811 device_printf(dev, "couldn't set up irq\n"); 812 ether_ifdetach(ifp); 813 goto fail; 814 } 815 816 fail: 817 if (error) 818 vr_detach(dev); 819 820 return (error); 821 } 822 823 /* 824 * Shutdown hardware and free up resources. This can be called any 825 * time after the mutex has been initialized. It is called in both 826 * the error case in attach and the normal detach case so it needs 827 * to be careful about only freeing resources that have actually been 828 * allocated. 829 */ 830 static int 831 vr_detach(device_t dev) 832 { 833 struct vr_softc *sc = device_get_softc(dev); 834 struct ifnet *ifp = sc->vr_ifp; 835 836 KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized")); 837 838 #ifdef DEVICE_POLLING 839 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 840 ether_poll_deregister(ifp); 841 #endif 842 843 /* These should only be active if attach succeeded. */ 844 if (device_is_attached(dev)) { 845 VR_LOCK(sc); 846 sc->vr_detach = 1; 847 vr_stop(sc); 848 VR_UNLOCK(sc); 849 callout_drain(&sc->vr_stat_callout); 850 taskqueue_drain(taskqueue_swi, &sc->vr_link_task); 851 ether_ifdetach(ifp); 852 } 853 if (sc->vr_miibus) 854 device_delete_child(dev, sc->vr_miibus); 855 bus_generic_detach(dev); 856 857 if (sc->vr_intrhand) 858 bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); 859 if (sc->vr_irq) 860 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); 861 if (sc->vr_res) 862 bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id, 863 sc->vr_res); 864 865 if (ifp) 866 if_free(ifp); 867 868 vr_dma_free(sc); 869 870 mtx_destroy(&sc->vr_mtx); 871 872 return (0); 873 } 874 875 struct vr_dmamap_arg { 876 bus_addr_t vr_busaddr; 877 }; 878 879 static void 880 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 881 { 882 struct vr_dmamap_arg *ctx; 883 884 if (error != 0) 885 return; 886 ctx = arg; 887 ctx->vr_busaddr = segs[0].ds_addr; 888 } 889 890 static int 891 vr_dma_alloc(struct vr_softc *sc) 892 { 893 struct vr_dmamap_arg ctx; 894 struct vr_txdesc *txd; 895 struct vr_rxdesc *rxd; 896 bus_size_t tx_alignment; 897 int error, i; 898 899 /* Create parent DMA tag. */ 900 error = bus_dma_tag_create( 901 bus_get_dma_tag(sc->vr_dev), /* parent */ 902 1, 0, /* alignment, boundary */ 903 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 904 BUS_SPACE_MAXADDR, /* highaddr */ 905 NULL, NULL, /* filter, filterarg */ 906 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 907 0, /* nsegments */ 908 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 909 0, /* flags */ 910 NULL, NULL, /* lockfunc, lockarg */ 911 &sc->vr_cdata.vr_parent_tag); 912 if (error != 0) { 913 device_printf(sc->vr_dev, "failed to create parent DMA tag\n"); 914 goto fail; 915 } 916 /* Create tag for Tx ring. */ 917 error = bus_dma_tag_create( 918 sc->vr_cdata.vr_parent_tag, /* parent */ 919 VR_RING_ALIGN, 0, /* alignment, boundary */ 920 BUS_SPACE_MAXADDR, /* lowaddr */ 921 BUS_SPACE_MAXADDR, /* highaddr */ 922 NULL, NULL, /* filter, filterarg */ 923 VR_TX_RING_SIZE, /* maxsize */ 924 1, /* nsegments */ 925 VR_TX_RING_SIZE, /* maxsegsize */ 926 0, /* flags */ 927 NULL, NULL, /* lockfunc, lockarg */ 928 &sc->vr_cdata.vr_tx_ring_tag); 929 if (error != 0) { 930 device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n"); 931 goto fail; 932 } 933 934 /* Create tag for Rx ring. */ 935 error = bus_dma_tag_create( 936 sc->vr_cdata.vr_parent_tag, /* parent */ 937 VR_RING_ALIGN, 0, /* alignment, boundary */ 938 BUS_SPACE_MAXADDR, /* lowaddr */ 939 BUS_SPACE_MAXADDR, /* highaddr */ 940 NULL, NULL, /* filter, filterarg */ 941 VR_RX_RING_SIZE, /* maxsize */ 942 1, /* nsegments */ 943 VR_RX_RING_SIZE, /* maxsegsize */ 944 0, /* flags */ 945 NULL, NULL, /* lockfunc, lockarg */ 946 &sc->vr_cdata.vr_rx_ring_tag); 947 if (error != 0) { 948 device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n"); 949 goto fail; 950 } 951 952 if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) 953 tx_alignment = sizeof(uint32_t); 954 else 955 tx_alignment = 1; 956 /* Create tag for Tx buffers. */ 957 error = bus_dma_tag_create( 958 sc->vr_cdata.vr_parent_tag, /* parent */ 959 tx_alignment, 0, /* alignment, boundary */ 960 BUS_SPACE_MAXADDR, /* lowaddr */ 961 BUS_SPACE_MAXADDR, /* highaddr */ 962 NULL, NULL, /* filter, filterarg */ 963 MCLBYTES * VR_MAXFRAGS, /* maxsize */ 964 VR_MAXFRAGS, /* nsegments */ 965 MCLBYTES, /* maxsegsize */ 966 0, /* flags */ 967 NULL, NULL, /* lockfunc, lockarg */ 968 &sc->vr_cdata.vr_tx_tag); 969 if (error != 0) { 970 device_printf(sc->vr_dev, "failed to create Tx DMA tag\n"); 971 goto fail; 972 } 973 974 /* Create tag for Rx buffers. */ 975 error = bus_dma_tag_create( 976 sc->vr_cdata.vr_parent_tag, /* parent */ 977 VR_RX_ALIGN, 0, /* alignment, boundary */ 978 BUS_SPACE_MAXADDR, /* lowaddr */ 979 BUS_SPACE_MAXADDR, /* highaddr */ 980 NULL, NULL, /* filter, filterarg */ 981 MCLBYTES, /* maxsize */ 982 1, /* nsegments */ 983 MCLBYTES, /* maxsegsize */ 984 0, /* flags */ 985 NULL, NULL, /* lockfunc, lockarg */ 986 &sc->vr_cdata.vr_rx_tag); 987 if (error != 0) { 988 device_printf(sc->vr_dev, "failed to create Rx DMA tag\n"); 989 goto fail; 990 } 991 992 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 993 error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag, 994 (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK | 995 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map); 996 if (error != 0) { 997 device_printf(sc->vr_dev, 998 "failed to allocate DMA'able memory for Tx ring\n"); 999 goto fail; 1000 } 1001 1002 ctx.vr_busaddr = 0; 1003 error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag, 1004 sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring, 1005 VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0); 1006 if (error != 0 || ctx.vr_busaddr == 0) { 1007 device_printf(sc->vr_dev, 1008 "failed to load DMA'able memory for Tx ring\n"); 1009 goto fail; 1010 } 1011 sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr; 1012 1013 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1014 error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag, 1015 (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK | 1016 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map); 1017 if (error != 0) { 1018 device_printf(sc->vr_dev, 1019 "failed to allocate DMA'able memory for Rx ring\n"); 1020 goto fail; 1021 } 1022 1023 ctx.vr_busaddr = 0; 1024 error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag, 1025 sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring, 1026 VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0); 1027 if (error != 0 || ctx.vr_busaddr == 0) { 1028 device_printf(sc->vr_dev, 1029 "failed to load DMA'able memory for Rx ring\n"); 1030 goto fail; 1031 } 1032 sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr; 1033 1034 /* Create DMA maps for Tx buffers. */ 1035 for (i = 0; i < VR_TX_RING_CNT; i++) { 1036 txd = &sc->vr_cdata.vr_txdesc[i]; 1037 txd->tx_m = NULL; 1038 txd->tx_dmamap = NULL; 1039 error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0, 1040 &txd->tx_dmamap); 1041 if (error != 0) { 1042 device_printf(sc->vr_dev, 1043 "failed to create Tx dmamap\n"); 1044 goto fail; 1045 } 1046 } 1047 /* Create DMA maps for Rx buffers. */ 1048 if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0, 1049 &sc->vr_cdata.vr_rx_sparemap)) != 0) { 1050 device_printf(sc->vr_dev, 1051 "failed to create spare Rx dmamap\n"); 1052 goto fail; 1053 } 1054 for (i = 0; i < VR_RX_RING_CNT; i++) { 1055 rxd = &sc->vr_cdata.vr_rxdesc[i]; 1056 rxd->rx_m = NULL; 1057 rxd->rx_dmamap = NULL; 1058 error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0, 1059 &rxd->rx_dmamap); 1060 if (error != 0) { 1061 device_printf(sc->vr_dev, 1062 "failed to create Rx dmamap\n"); 1063 goto fail; 1064 } 1065 } 1066 1067 fail: 1068 return (error); 1069 } 1070 1071 static void 1072 vr_dma_free(struct vr_softc *sc) 1073 { 1074 struct vr_txdesc *txd; 1075 struct vr_rxdesc *rxd; 1076 int i; 1077 1078 /* Tx ring. */ 1079 if (sc->vr_cdata.vr_tx_ring_tag) { 1080 if (sc->vr_cdata.vr_tx_ring_map) 1081 bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag, 1082 sc->vr_cdata.vr_tx_ring_map); 1083 if (sc->vr_cdata.vr_tx_ring_map && 1084 sc->vr_rdata.vr_tx_ring) 1085 bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag, 1086 sc->vr_rdata.vr_tx_ring, 1087 sc->vr_cdata.vr_tx_ring_map); 1088 sc->vr_rdata.vr_tx_ring = NULL; 1089 sc->vr_cdata.vr_tx_ring_map = NULL; 1090 bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag); 1091 sc->vr_cdata.vr_tx_ring_tag = NULL; 1092 } 1093 /* Rx ring. */ 1094 if (sc->vr_cdata.vr_rx_ring_tag) { 1095 if (sc->vr_cdata.vr_rx_ring_map) 1096 bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag, 1097 sc->vr_cdata.vr_rx_ring_map); 1098 if (sc->vr_cdata.vr_rx_ring_map && 1099 sc->vr_rdata.vr_rx_ring) 1100 bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag, 1101 sc->vr_rdata.vr_rx_ring, 1102 sc->vr_cdata.vr_rx_ring_map); 1103 sc->vr_rdata.vr_rx_ring = NULL; 1104 sc->vr_cdata.vr_rx_ring_map = NULL; 1105 bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag); 1106 sc->vr_cdata.vr_rx_ring_tag = NULL; 1107 } 1108 /* Tx buffers. */ 1109 if (sc->vr_cdata.vr_tx_tag) { 1110 for (i = 0; i < VR_TX_RING_CNT; i++) { 1111 txd = &sc->vr_cdata.vr_txdesc[i]; 1112 if (txd->tx_dmamap) { 1113 bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag, 1114 txd->tx_dmamap); 1115 txd->tx_dmamap = NULL; 1116 } 1117 } 1118 bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag); 1119 sc->vr_cdata.vr_tx_tag = NULL; 1120 } 1121 /* Rx buffers. */ 1122 if (sc->vr_cdata.vr_rx_tag) { 1123 for (i = 0; i < VR_RX_RING_CNT; i++) { 1124 rxd = &sc->vr_cdata.vr_rxdesc[i]; 1125 if (rxd->rx_dmamap) { 1126 bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag, 1127 rxd->rx_dmamap); 1128 rxd->rx_dmamap = NULL; 1129 } 1130 } 1131 if (sc->vr_cdata.vr_rx_sparemap) { 1132 bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag, 1133 sc->vr_cdata.vr_rx_sparemap); 1134 sc->vr_cdata.vr_rx_sparemap = 0; 1135 } 1136 bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag); 1137 sc->vr_cdata.vr_rx_tag = NULL; 1138 } 1139 1140 if (sc->vr_cdata.vr_parent_tag) { 1141 bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag); 1142 sc->vr_cdata.vr_parent_tag = NULL; 1143 } 1144 } 1145 1146 /* 1147 * Initialize the transmit descriptors. 1148 */ 1149 static int 1150 vr_tx_ring_init(struct vr_softc *sc) 1151 { 1152 struct vr_ring_data *rd; 1153 struct vr_txdesc *txd; 1154 bus_addr_t addr; 1155 int i; 1156 1157 sc->vr_cdata.vr_tx_prod = 0; 1158 sc->vr_cdata.vr_tx_cons = 0; 1159 sc->vr_cdata.vr_tx_cnt = 0; 1160 sc->vr_cdata.vr_tx_pkts = 0; 1161 1162 rd = &sc->vr_rdata; 1163 bzero(rd->vr_tx_ring, VR_TX_RING_SIZE); 1164 for (i = 0; i < VR_TX_RING_CNT; i++) { 1165 if (i == VR_TX_RING_CNT - 1) 1166 addr = VR_TX_RING_ADDR(sc, 0); 1167 else 1168 addr = VR_TX_RING_ADDR(sc, i + 1); 1169 rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr)); 1170 txd = &sc->vr_cdata.vr_txdesc[i]; 1171 txd->tx_m = NULL; 1172 } 1173 1174 bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag, 1175 sc->vr_cdata.vr_tx_ring_map, 1176 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1177 1178 return (0); 1179 } 1180 1181 /* 1182 * Initialize the RX descriptors and allocate mbufs for them. Note that 1183 * we arrange the descriptors in a closed ring, so that the last descriptor 1184 * points back to the first. 1185 */ 1186 static int 1187 vr_rx_ring_init(struct vr_softc *sc) 1188 { 1189 struct vr_ring_data *rd; 1190 struct vr_rxdesc *rxd; 1191 bus_addr_t addr; 1192 int i; 1193 1194 sc->vr_cdata.vr_rx_cons = 0; 1195 1196 rd = &sc->vr_rdata; 1197 bzero(rd->vr_rx_ring, VR_RX_RING_SIZE); 1198 for (i = 0; i < VR_RX_RING_CNT; i++) { 1199 rxd = &sc->vr_cdata.vr_rxdesc[i]; 1200 rxd->rx_m = NULL; 1201 rxd->desc = &rd->vr_rx_ring[i]; 1202 if (i == VR_RX_RING_CNT - 1) 1203 addr = VR_RX_RING_ADDR(sc, 0); 1204 else 1205 addr = VR_RX_RING_ADDR(sc, i + 1); 1206 rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr)); 1207 if (vr_newbuf(sc, i) != 0) 1208 return (ENOBUFS); 1209 } 1210 1211 bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag, 1212 sc->vr_cdata.vr_rx_ring_map, 1213 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1214 1215 return (0); 1216 } 1217 1218 static __inline void 1219 vr_discard_rxbuf(struct vr_rxdesc *rxd) 1220 { 1221 struct vr_desc *desc; 1222 1223 desc = rxd->desc; 1224 desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t))); 1225 desc->vr_status = htole32(VR_RXSTAT_OWN); 1226 } 1227 1228 /* 1229 * Initialize an RX descriptor and attach an MBUF cluster. 1230 * Note: the length fields are only 11 bits wide, which means the 1231 * largest size we can specify is 2047. This is important because 1232 * MCLBYTES is 2048, so we have to subtract one otherwise we'll 1233 * overflow the field and make a mess. 1234 */ 1235 static int 1236 vr_newbuf(struct vr_softc *sc, int idx) 1237 { 1238 struct vr_desc *desc; 1239 struct vr_rxdesc *rxd; 1240 struct mbuf *m; 1241 bus_dma_segment_t segs[1]; 1242 bus_dmamap_t map; 1243 int nsegs; 1244 1245 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1246 if (m == NULL) 1247 return (ENOBUFS); 1248 m->m_len = m->m_pkthdr.len = MCLBYTES; 1249 m_adj(m, sizeof(uint64_t)); 1250 1251 if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag, 1252 sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1253 m_freem(m); 1254 return (ENOBUFS); 1255 } 1256 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1257 1258 rxd = &sc->vr_cdata.vr_rxdesc[idx]; 1259 if (rxd->rx_m != NULL) { 1260 bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap, 1261 BUS_DMASYNC_POSTREAD); 1262 bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap); 1263 } 1264 map = rxd->rx_dmamap; 1265 rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap; 1266 sc->vr_cdata.vr_rx_sparemap = map; 1267 bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap, 1268 BUS_DMASYNC_PREREAD); 1269 rxd->rx_m = m; 1270 desc = rxd->desc; 1271 desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr)); 1272 desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len); 1273 desc->vr_status = htole32(VR_RXSTAT_OWN); 1274 1275 return (0); 1276 } 1277 1278 #ifndef __NO_STRICT_ALIGNMENT 1279 static __inline void 1280 vr_fixup_rx(struct mbuf *m) 1281 { 1282 uint16_t *src, *dst; 1283 int i; 1284 1285 src = mtod(m, uint16_t *); 1286 dst = src - 1; 1287 1288 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1289 *dst++ = *src++; 1290 1291 m->m_data -= ETHER_ALIGN; 1292 } 1293 #endif 1294 1295 /* 1296 * A frame has been uploaded: pass the resulting mbuf chain up to 1297 * the higher level protocols. 1298 */ 1299 static void 1300 vr_rxeof(struct vr_softc *sc) 1301 { 1302 struct vr_rxdesc *rxd; 1303 struct mbuf *m; 1304 struct ifnet *ifp; 1305 struct vr_desc *cur_rx; 1306 int cons, prog, total_len; 1307 uint32_t rxstat, rxctl; 1308 1309 VR_LOCK_ASSERT(sc); 1310 ifp = sc->vr_ifp; 1311 cons = sc->vr_cdata.vr_rx_cons; 1312 1313 bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag, 1314 sc->vr_cdata.vr_rx_ring_map, 1315 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1316 1317 for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) { 1318 #ifdef DEVICE_POLLING 1319 if (ifp->if_capenable & IFCAP_POLLING) { 1320 if (sc->rxcycles <= 0) 1321 break; 1322 sc->rxcycles--; 1323 } 1324 #endif 1325 cur_rx = &sc->vr_rdata.vr_rx_ring[cons]; 1326 rxstat = le32toh(cur_rx->vr_status); 1327 rxctl = le32toh(cur_rx->vr_ctl); 1328 if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN) 1329 break; 1330 1331 prog++; 1332 rxd = &sc->vr_cdata.vr_rxdesc[cons]; 1333 m = rxd->rx_m; 1334 1335 /* 1336 * If an error occurs, update stats, clear the 1337 * status word and leave the mbuf cluster in place: 1338 * it should simply get re-used next time this descriptor 1339 * comes up in the ring. 1340 * We don't support SG in Rx path yet, so discard 1341 * partial frame. 1342 */ 1343 if ((rxstat & VR_RXSTAT_RX_OK) == 0 || 1344 (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) != 1345 (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) { 1346 ifp->if_ierrors++; 1347 sc->vr_stat.rx_errors++; 1348 if (rxstat & VR_RXSTAT_CRCERR) 1349 sc->vr_stat.rx_crc_errors++; 1350 if (rxstat & VR_RXSTAT_FRAMEALIGNERR) 1351 sc->vr_stat.rx_alignment++; 1352 if (rxstat & VR_RXSTAT_FIFOOFLOW) 1353 sc->vr_stat.rx_fifo_overflows++; 1354 if (rxstat & VR_RXSTAT_GIANT) 1355 sc->vr_stat.rx_giants++; 1356 if (rxstat & VR_RXSTAT_RUNT) 1357 sc->vr_stat.rx_runts++; 1358 if (rxstat & VR_RXSTAT_BUFFERR) 1359 sc->vr_stat.rx_no_buffers++; 1360 #ifdef VR_SHOW_ERRORS 1361 device_printf(sc->vr_dev, "%s: receive error = 0x%b\n", 1362 __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS); 1363 #endif 1364 vr_discard_rxbuf(rxd); 1365 continue; 1366 } 1367 1368 if (vr_newbuf(sc, cons) != 0) { 1369 ifp->if_iqdrops++; 1370 sc->vr_stat.rx_errors++; 1371 sc->vr_stat.rx_no_mbufs++; 1372 vr_discard_rxbuf(rxd); 1373 continue; 1374 } 1375 1376 /* 1377 * XXX The VIA Rhine chip includes the CRC with every 1378 * received frame, and there's no way to turn this 1379 * behavior off (at least, I can't find anything in 1380 * the manual that explains how to do it) so we have 1381 * to trim off the CRC manually. 1382 */ 1383 total_len = VR_RXBYTES(rxstat); 1384 total_len -= ETHER_CRC_LEN; 1385 m->m_pkthdr.len = m->m_len = total_len; 1386 #ifndef __NO_STRICT_ALIGNMENT 1387 /* 1388 * RX buffers must be 32-bit aligned. 1389 * Ignore the alignment problems on the non-strict alignment 1390 * platform. The performance hit incurred due to unaligned 1391 * accesses is much smaller than the hit produced by forcing 1392 * buffer copies all the time. 1393 */ 1394 vr_fixup_rx(m); 1395 #endif 1396 m->m_pkthdr.rcvif = ifp; 1397 ifp->if_ipackets++; 1398 sc->vr_stat.rx_ok++; 1399 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 1400 (rxstat & VR_RXSTAT_FRAG) == 0 && 1401 (rxctl & VR_RXCTL_IP) != 0) { 1402 /* Checksum is valid for non-fragmented IP packets. */ 1403 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1404 if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) { 1405 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1406 if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) { 1407 m->m_pkthdr.csum_flags |= 1408 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1409 if ((rxctl & VR_RXCTL_TCPUDPOK) != 0) 1410 m->m_pkthdr.csum_data = 0xffff; 1411 } 1412 } 1413 } 1414 VR_UNLOCK(sc); 1415 (*ifp->if_input)(ifp, m); 1416 VR_LOCK(sc); 1417 } 1418 1419 if (prog > 0) { 1420 sc->vr_cdata.vr_rx_cons = cons; 1421 bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag, 1422 sc->vr_cdata.vr_rx_ring_map, 1423 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1424 } 1425 } 1426 1427 /* 1428 * A frame was downloaded to the chip. It's safe for us to clean up 1429 * the list buffers. 1430 */ 1431 static void 1432 vr_txeof(struct vr_softc *sc) 1433 { 1434 struct vr_txdesc *txd; 1435 struct vr_desc *cur_tx; 1436 struct ifnet *ifp; 1437 uint32_t txctl, txstat; 1438 int cons, prod; 1439 1440 VR_LOCK_ASSERT(sc); 1441 1442 cons = sc->vr_cdata.vr_tx_cons; 1443 prod = sc->vr_cdata.vr_tx_prod; 1444 if (cons == prod) 1445 return; 1446 1447 bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag, 1448 sc->vr_cdata.vr_tx_ring_map, 1449 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1450 1451 ifp = sc->vr_ifp; 1452 /* 1453 * Go through our tx list and free mbufs for those 1454 * frames that have been transmitted. 1455 */ 1456 for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) { 1457 cur_tx = &sc->vr_rdata.vr_tx_ring[cons]; 1458 txctl = le32toh(cur_tx->vr_ctl); 1459 txstat = le32toh(cur_tx->vr_status); 1460 if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN) 1461 break; 1462 1463 sc->vr_cdata.vr_tx_cnt--; 1464 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1465 /* Only the first descriptor in the chain is valid. */ 1466 if ((txctl & VR_TXCTL_FIRSTFRAG) == 0) 1467 continue; 1468 1469 txd = &sc->vr_cdata.vr_txdesc[cons]; 1470 KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n", 1471 __func__)); 1472 1473 if ((txstat & VR_TXSTAT_ERRSUM) != 0) { 1474 ifp->if_oerrors++; 1475 sc->vr_stat.tx_errors++; 1476 if ((txstat & VR_TXSTAT_ABRT) != 0) { 1477 /* Give up and restart Tx. */ 1478 sc->vr_stat.tx_abort++; 1479 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, 1480 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 1481 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, 1482 txd->tx_dmamap); 1483 m_freem(txd->tx_m); 1484 txd->tx_m = NULL; 1485 VR_INC(cons, VR_TX_RING_CNT); 1486 sc->vr_cdata.vr_tx_cons = cons; 1487 if (vr_tx_stop(sc) != 0) { 1488 device_printf(sc->vr_dev, 1489 "%s: Tx shutdown error -- " 1490 "resetting\n", __func__); 1491 sc->vr_flags |= VR_F_RESTART; 1492 return; 1493 } 1494 vr_tx_start(sc); 1495 break; 1496 } 1497 if ((sc->vr_revid < REV_ID_VT3071_A && 1498 (txstat & VR_TXSTAT_UNDERRUN)) || 1499 (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) { 1500 sc->vr_stat.tx_underrun++; 1501 /* Retry and restart Tx. */ 1502 sc->vr_cdata.vr_tx_cnt++; 1503 sc->vr_cdata.vr_tx_cons = cons; 1504 cur_tx->vr_status = htole32(VR_TXSTAT_OWN); 1505 bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag, 1506 sc->vr_cdata.vr_tx_ring_map, 1507 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1508 vr_tx_underrun(sc); 1509 return; 1510 } 1511 if ((txstat & VR_TXSTAT_DEFER) != 0) { 1512 ifp->if_collisions++; 1513 sc->vr_stat.tx_collisions++; 1514 } 1515 if ((txstat & VR_TXSTAT_LATECOLL) != 0) { 1516 ifp->if_collisions++; 1517 sc->vr_stat.tx_late_collisions++; 1518 } 1519 } else { 1520 sc->vr_stat.tx_ok++; 1521 ifp->if_opackets++; 1522 } 1523 1524 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap, 1525 BUS_DMASYNC_POSTWRITE); 1526 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap); 1527 if (sc->vr_revid < REV_ID_VT3071_A) { 1528 ifp->if_collisions += 1529 (txstat & VR_TXSTAT_COLLCNT) >> 3; 1530 sc->vr_stat.tx_collisions += 1531 (txstat & VR_TXSTAT_COLLCNT) >> 3; 1532 } else { 1533 ifp->if_collisions += (txstat & 0x0f); 1534 sc->vr_stat.tx_collisions += (txstat & 0x0f); 1535 } 1536 m_freem(txd->tx_m); 1537 txd->tx_m = NULL; 1538 } 1539 1540 sc->vr_cdata.vr_tx_cons = cons; 1541 if (sc->vr_cdata.vr_tx_cnt == 0) 1542 sc->vr_watchdog_timer = 0; 1543 } 1544 1545 static void 1546 vr_tick(void *xsc) 1547 { 1548 struct vr_softc *sc; 1549 struct mii_data *mii; 1550 1551 sc = (struct vr_softc *)xsc; 1552 1553 VR_LOCK_ASSERT(sc); 1554 1555 if ((sc->vr_flags & VR_F_RESTART) != 0) { 1556 device_printf(sc->vr_dev, "restarting\n"); 1557 sc->vr_stat.num_restart++; 1558 vr_stop(sc); 1559 vr_reset(sc); 1560 vr_init_locked(sc); 1561 sc->vr_flags &= ~VR_F_RESTART; 1562 } 1563 1564 mii = device_get_softc(sc->vr_miibus); 1565 mii_tick(mii); 1566 vr_watchdog(sc); 1567 callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc); 1568 } 1569 1570 #ifdef DEVICE_POLLING 1571 static poll_handler_t vr_poll; 1572 static poll_handler_t vr_poll_locked; 1573 1574 static void 1575 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1576 { 1577 struct vr_softc *sc; 1578 1579 sc = ifp->if_softc; 1580 1581 VR_LOCK(sc); 1582 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1583 vr_poll_locked(ifp, cmd, count); 1584 VR_UNLOCK(sc); 1585 } 1586 1587 static void 1588 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 1589 { 1590 struct vr_softc *sc; 1591 1592 sc = ifp->if_softc; 1593 1594 VR_LOCK_ASSERT(sc); 1595 1596 sc->rxcycles = count; 1597 vr_rxeof(sc); 1598 vr_txeof(sc); 1599 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1600 vr_start_locked(ifp); 1601 1602 if (cmd == POLL_AND_CHECK_STATUS) { 1603 uint16_t status; 1604 1605 /* Also check status register. */ 1606 status = CSR_READ_2(sc, VR_ISR); 1607 if (status) 1608 CSR_WRITE_2(sc, VR_ISR, status); 1609 1610 if ((status & VR_INTRS) == 0) 1611 return; 1612 1613 if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | 1614 VR_ISR_STATSOFLOW)) != 0) { 1615 if (vr_error(sc, status) != 0) 1616 return; 1617 } 1618 if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) { 1619 #ifdef VR_SHOW_ERRORS 1620 device_printf(sc->vr_dev, "%s: receive error : 0x%b\n", 1621 __func__, status, VR_ISR_ERR_BITS); 1622 #endif 1623 vr_rx_start(sc); 1624 } 1625 } 1626 } 1627 #endif /* DEVICE_POLLING */ 1628 1629 /* Back off the transmit threshold. */ 1630 static void 1631 vr_tx_underrun(struct vr_softc *sc) 1632 { 1633 int thresh; 1634 1635 device_printf(sc->vr_dev, "Tx underrun -- "); 1636 if (sc->vr_txthresh < VR_TXTHRESH_MAX) { 1637 thresh = sc->vr_txthresh; 1638 sc->vr_txthresh++; 1639 if (sc->vr_txthresh >= VR_TXTHRESH_MAX) { 1640 sc->vr_txthresh = VR_TXTHRESH_MAX; 1641 printf("using store and forward mode\n"); 1642 } else 1643 printf("increasing Tx threshold(%d -> %d)\n", 1644 vr_tx_threshold_tables[thresh].value, 1645 vr_tx_threshold_tables[thresh + 1].value); 1646 } else 1647 printf("\n"); 1648 sc->vr_stat.tx_underrun++; 1649 if (vr_tx_stop(sc) != 0) { 1650 device_printf(sc->vr_dev, "%s: Tx shutdown error -- " 1651 "resetting\n", __func__); 1652 sc->vr_flags |= VR_F_RESTART; 1653 return; 1654 } 1655 vr_tx_start(sc); 1656 } 1657 1658 static void 1659 vr_intr(void *arg) 1660 { 1661 struct vr_softc *sc; 1662 struct ifnet *ifp; 1663 uint16_t status; 1664 1665 sc = (struct vr_softc *)arg; 1666 1667 VR_LOCK(sc); 1668 1669 if (sc->vr_suspended != 0) 1670 goto done_locked; 1671 1672 status = CSR_READ_2(sc, VR_ISR); 1673 if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0) 1674 goto done_locked; 1675 1676 ifp = sc->vr_ifp; 1677 #ifdef DEVICE_POLLING 1678 if ((ifp->if_capenable & IFCAP_POLLING) != 0) 1679 goto done_locked; 1680 #endif 1681 1682 /* Suppress unwanted interrupts. */ 1683 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1684 (sc->vr_flags & VR_F_RESTART) != 0) { 1685 CSR_WRITE_2(sc, VR_IMR, 0); 1686 CSR_WRITE_2(sc, VR_ISR, status); 1687 goto done_locked; 1688 } 1689 1690 /* Disable interrupts. */ 1691 CSR_WRITE_2(sc, VR_IMR, 0x0000); 1692 1693 for (; (status & VR_INTRS) != 0;) { 1694 CSR_WRITE_2(sc, VR_ISR, status); 1695 if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | 1696 VR_ISR_STATSOFLOW)) != 0) { 1697 if (vr_error(sc, status) != 0) { 1698 VR_UNLOCK(sc); 1699 return; 1700 } 1701 } 1702 vr_rxeof(sc); 1703 if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) { 1704 #ifdef VR_SHOW_ERRORS 1705 device_printf(sc->vr_dev, "%s: receive error = 0x%b\n", 1706 __func__, status, VR_ISR_ERR_BITS); 1707 #endif 1708 /* Restart Rx if RxDMA SM was stopped. */ 1709 vr_rx_start(sc); 1710 } 1711 vr_txeof(sc); 1712 status = CSR_READ_2(sc, VR_ISR); 1713 } 1714 1715 /* Re-enable interrupts. */ 1716 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 1717 1718 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1719 vr_start_locked(ifp); 1720 1721 done_locked: 1722 VR_UNLOCK(sc); 1723 } 1724 1725 static int 1726 vr_error(struct vr_softc *sc, uint16_t status) 1727 { 1728 uint16_t pcis; 1729 1730 status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW; 1731 if ((status & VR_ISR_BUSERR) != 0) { 1732 status &= ~VR_ISR_BUSERR; 1733 sc->vr_stat.bus_errors++; 1734 /* Disable further interrupts. */ 1735 CSR_WRITE_2(sc, VR_IMR, 0); 1736 pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2); 1737 device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- " 1738 "resetting\n", pcis); 1739 pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2); 1740 sc->vr_flags |= VR_F_RESTART; 1741 return (EAGAIN); 1742 } 1743 if ((status & VR_ISR_LINKSTAT2) != 0) { 1744 /* Link state change, duplex changes etc. */ 1745 status &= ~VR_ISR_LINKSTAT2; 1746 } 1747 if ((status & VR_ISR_STATSOFLOW) != 0) { 1748 status &= ~VR_ISR_STATSOFLOW; 1749 if (sc->vr_revid >= REV_ID_VT6105M_A0) { 1750 /* Update MIB counters. */ 1751 } 1752 } 1753 1754 if (status != 0) 1755 device_printf(sc->vr_dev, 1756 "unhandled interrupt, status = 0x%04x\n", status); 1757 return (0); 1758 } 1759 1760 /* 1761 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1762 * pointers to the fragment pointers. 1763 */ 1764 static int 1765 vr_encap(struct vr_softc *sc, struct mbuf **m_head) 1766 { 1767 struct vr_txdesc *txd; 1768 struct vr_desc *desc; 1769 struct mbuf *m; 1770 bus_dma_segment_t txsegs[VR_MAXFRAGS]; 1771 uint32_t csum_flags, txctl; 1772 int error, i, nsegs, prod, si; 1773 int padlen; 1774 1775 VR_LOCK_ASSERT(sc); 1776 1777 M_ASSERTPKTHDR((*m_head)); 1778 1779 /* 1780 * Some VIA Rhine wants packet buffers to be longword 1781 * aligned, but very often our mbufs aren't. Rather than 1782 * waste time trying to decide when to copy and when not 1783 * to copy, just do it all the time. 1784 */ 1785 if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) { 1786 m = m_defrag(*m_head, M_DONTWAIT); 1787 if (m == NULL) { 1788 m_freem(*m_head); 1789 *m_head = NULL; 1790 return (ENOBUFS); 1791 } 1792 *m_head = m; 1793 } 1794 1795 /* 1796 * The Rhine chip doesn't auto-pad, so we have to make 1797 * sure to pad short frames out to the minimum frame length 1798 * ourselves. 1799 */ 1800 if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) { 1801 m = *m_head; 1802 padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len; 1803 if (M_WRITABLE(m) == 0) { 1804 /* Get a writable copy. */ 1805 m = m_dup(*m_head, M_DONTWAIT); 1806 m_freem(*m_head); 1807 if (m == NULL) { 1808 *m_head = NULL; 1809 return (ENOBUFS); 1810 } 1811 *m_head = m; 1812 } 1813 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { 1814 m = m_defrag(m, M_DONTWAIT); 1815 if (m == NULL) { 1816 m_freem(*m_head); 1817 *m_head = NULL; 1818 return (ENOBUFS); 1819 } 1820 } 1821 /* 1822 * Manually pad short frames, and zero the pad space 1823 * to avoid leaking data. 1824 */ 1825 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1826 m->m_pkthdr.len += padlen; 1827 m->m_len = m->m_pkthdr.len; 1828 *m_head = m; 1829 } 1830 1831 prod = sc->vr_cdata.vr_tx_prod; 1832 txd = &sc->vr_cdata.vr_txdesc[prod]; 1833 error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap, 1834 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1835 if (error == EFBIG) { 1836 m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS); 1837 if (m == NULL) { 1838 m_freem(*m_head); 1839 *m_head = NULL; 1840 return (ENOBUFS); 1841 } 1842 *m_head = m; 1843 error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, 1844 txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1845 if (error != 0) { 1846 m_freem(*m_head); 1847 *m_head = NULL; 1848 return (error); 1849 } 1850 } else if (error != 0) 1851 return (error); 1852 if (nsegs == 0) { 1853 m_freem(*m_head); 1854 *m_head = NULL; 1855 return (EIO); 1856 } 1857 1858 /* Check number of available descriptors. */ 1859 if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) { 1860 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap); 1861 return (ENOBUFS); 1862 } 1863 1864 txd->tx_m = *m_head; 1865 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap, 1866 BUS_DMASYNC_PREWRITE); 1867 1868 /* Set checksum offload. */ 1869 csum_flags = 0; 1870 if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) { 1871 if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) 1872 csum_flags |= VR_TXCTL_IPCSUM; 1873 if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) 1874 csum_flags |= VR_TXCTL_TCPCSUM; 1875 if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) 1876 csum_flags |= VR_TXCTL_UDPCSUM; 1877 } 1878 1879 /* 1880 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit 1881 * is required for all descriptors regardless of single or 1882 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for 1883 * the first descriptor for a multi-fragmented frames. Without 1884 * that VIA Rhine chip generates Tx underrun interrupts and can't 1885 * send any frames. 1886 */ 1887 si = prod; 1888 for (i = 0; i < nsegs; i++) { 1889 desc = &sc->vr_rdata.vr_tx_ring[prod]; 1890 desc->vr_status = 0; 1891 txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags; 1892 if (i == 0) 1893 txctl |= VR_TXCTL_FIRSTFRAG; 1894 desc->vr_ctl = htole32(txctl); 1895 desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr)); 1896 sc->vr_cdata.vr_tx_cnt++; 1897 VR_INC(prod, VR_TX_RING_CNT); 1898 } 1899 /* Update producer index. */ 1900 sc->vr_cdata.vr_tx_prod = prod; 1901 1902 prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT; 1903 desc = &sc->vr_rdata.vr_tx_ring[prod]; 1904 1905 /* 1906 * Set EOP on the last desciptor and reuqest Tx completion 1907 * interrupt for every VR_TX_INTR_THRESH-th frames. 1908 */ 1909 VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH); 1910 if (sc->vr_cdata.vr_tx_pkts == 0) 1911 desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT); 1912 else 1913 desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG); 1914 1915 /* Lastly turn the first descriptor ownership to hardware. */ 1916 desc = &sc->vr_rdata.vr_tx_ring[si]; 1917 desc->vr_status |= htole32(VR_TXSTAT_OWN); 1918 1919 /* Sync descriptors. */ 1920 bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag, 1921 sc->vr_cdata.vr_tx_ring_map, 1922 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1923 1924 return (0); 1925 } 1926 1927 static void 1928 vr_start(struct ifnet *ifp) 1929 { 1930 struct vr_softc *sc; 1931 1932 sc = ifp->if_softc; 1933 VR_LOCK(sc); 1934 vr_start_locked(ifp); 1935 VR_UNLOCK(sc); 1936 } 1937 1938 static void 1939 vr_start_locked(struct ifnet *ifp) 1940 { 1941 struct vr_softc *sc; 1942 struct mbuf *m_head; 1943 int enq; 1944 1945 sc = ifp->if_softc; 1946 1947 VR_LOCK_ASSERT(sc); 1948 1949 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1950 IFF_DRV_RUNNING || sc->vr_link == 0) 1951 return; 1952 1953 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1954 sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) { 1955 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1956 if (m_head == NULL) 1957 break; 1958 /* 1959 * Pack the data into the transmit ring. If we 1960 * don't have room, set the OACTIVE flag and wait 1961 * for the NIC to drain the ring. 1962 */ 1963 if (vr_encap(sc, &m_head)) { 1964 if (m_head == NULL) 1965 break; 1966 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1967 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1968 break; 1969 } 1970 1971 enq++; 1972 /* 1973 * If there's a BPF listener, bounce a copy of this frame 1974 * to him. 1975 */ 1976 ETHER_BPF_MTAP(ifp, m_head); 1977 } 1978 1979 if (enq > 0) { 1980 /* Tell the chip to start transmitting. */ 1981 VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO); 1982 /* Set a timeout in case the chip goes out to lunch. */ 1983 sc->vr_watchdog_timer = 5; 1984 } 1985 } 1986 1987 static void 1988 vr_init(void *xsc) 1989 { 1990 struct vr_softc *sc; 1991 1992 sc = (struct vr_softc *)xsc; 1993 VR_LOCK(sc); 1994 vr_init_locked(sc); 1995 VR_UNLOCK(sc); 1996 } 1997 1998 static void 1999 vr_init_locked(struct vr_softc *sc) 2000 { 2001 struct ifnet *ifp; 2002 struct mii_data *mii; 2003 bus_addr_t addr; 2004 int i; 2005 2006 VR_LOCK_ASSERT(sc); 2007 2008 ifp = sc->vr_ifp; 2009 mii = device_get_softc(sc->vr_miibus); 2010 2011 /* Cancel pending I/O and free all RX/TX buffers. */ 2012 vr_stop(sc); 2013 vr_reset(sc); 2014 2015 /* Set our station address. */ 2016 for (i = 0; i < ETHER_ADDR_LEN; i++) 2017 CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]); 2018 2019 /* Set DMA size. */ 2020 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); 2021 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); 2022 2023 /* 2024 * BCR0 and BCR1 can override the RXCFG and TXCFG registers, 2025 * so we must set both. 2026 */ 2027 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); 2028 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES); 2029 2030 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); 2031 VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg); 2032 2033 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); 2034 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); 2035 2036 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); 2037 VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg); 2038 2039 /* Init circular RX list. */ 2040 if (vr_rx_ring_init(sc) != 0) { 2041 device_printf(sc->vr_dev, 2042 "initialization failed: no memory for rx buffers\n"); 2043 vr_stop(sc); 2044 return; 2045 } 2046 2047 /* Init tx descriptors. */ 2048 vr_tx_ring_init(sc); 2049 2050 if ((sc->vr_quirks & VR_Q_CAM) != 0) { 2051 uint8_t vcam[2] = { 0, 0 }; 2052 2053 /* Disable VLAN hardware tag insertion/stripping. */ 2054 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL); 2055 /* Disable VLAN hardware filtering. */ 2056 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB); 2057 /* Disable all CAM entries. */ 2058 vr_cam_mask(sc, VR_MCAST_CAM, 0); 2059 vr_cam_mask(sc, VR_VLAN_CAM, 0); 2060 /* Enable the first VLAN CAM. */ 2061 vr_cam_data(sc, VR_VLAN_CAM, 0, vcam); 2062 vr_cam_mask(sc, VR_VLAN_CAM, 1); 2063 } 2064 2065 /* 2066 * Set up receive filter. 2067 */ 2068 vr_set_filter(sc); 2069 2070 /* 2071 * Load the address of the RX ring. 2072 */ 2073 addr = VR_RX_RING_ADDR(sc, 0); 2074 CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr)); 2075 /* 2076 * Load the address of the TX ring. 2077 */ 2078 addr = VR_TX_RING_ADDR(sc, 0); 2079 CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr)); 2080 /* Default : full-duplex, no Tx poll. */ 2081 CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL); 2082 2083 /* Set flow-control parameters for Rhine III. */ 2084 if (sc->vr_revid >= REV_ID_VT6105_A0) { 2085 /* Rx buffer count available for incoming packet. */ 2086 CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT); 2087 /* 2088 * Tx pause low threshold : 16 free receive buffers 2089 * Tx pause XON high threshold : 48 free receive buffers 2090 */ 2091 CSR_WRITE_1(sc, VR_FLOWCR1, 2092 VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF); 2093 /* Set Tx pause timer. */ 2094 CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff); 2095 } 2096 2097 /* Enable receiver and transmitter. */ 2098 CSR_WRITE_1(sc, VR_CR0, 2099 VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO); 2100 2101 CSR_WRITE_2(sc, VR_ISR, 0xFFFF); 2102 #ifdef DEVICE_POLLING 2103 /* 2104 * Disable interrupts if we are polling. 2105 */ 2106 if (ifp->if_capenable & IFCAP_POLLING) 2107 CSR_WRITE_2(sc, VR_IMR, 0); 2108 else 2109 #endif 2110 /* 2111 * Enable interrupts and disable MII intrs. 2112 */ 2113 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 2114 if (sc->vr_revid > REV_ID_VT6102_A) 2115 CSR_WRITE_2(sc, VR_MII_IMR, 0); 2116 2117 sc->vr_link = 0; 2118 mii_mediachg(mii); 2119 2120 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2121 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2122 2123 callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc); 2124 } 2125 2126 /* 2127 * Set media options. 2128 */ 2129 static int 2130 vr_ifmedia_upd(struct ifnet *ifp) 2131 { 2132 struct vr_softc *sc; 2133 struct mii_data *mii; 2134 struct mii_softc *miisc; 2135 int error; 2136 2137 sc = ifp->if_softc; 2138 VR_LOCK(sc); 2139 mii = device_get_softc(sc->vr_miibus); 2140 if (mii->mii_instance) { 2141 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2142 mii_phy_reset(miisc); 2143 } 2144 error = mii_mediachg(mii); 2145 VR_UNLOCK(sc); 2146 2147 return (error); 2148 } 2149 2150 /* 2151 * Report current media status. 2152 */ 2153 static void 2154 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2155 { 2156 struct vr_softc *sc; 2157 struct mii_data *mii; 2158 2159 sc = ifp->if_softc; 2160 mii = device_get_softc(sc->vr_miibus); 2161 VR_LOCK(sc); 2162 mii_pollstat(mii); 2163 VR_UNLOCK(sc); 2164 ifmr->ifm_active = mii->mii_media_active; 2165 ifmr->ifm_status = mii->mii_media_status; 2166 } 2167 2168 static int 2169 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2170 { 2171 struct vr_softc *sc; 2172 struct ifreq *ifr; 2173 struct mii_data *mii; 2174 int error, mask; 2175 2176 sc = ifp->if_softc; 2177 ifr = (struct ifreq *)data; 2178 error = 0; 2179 2180 switch (command) { 2181 case SIOCSIFFLAGS: 2182 VR_LOCK(sc); 2183 if (ifp->if_flags & IFF_UP) { 2184 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2185 if ((ifp->if_flags ^ sc->vr_if_flags) & 2186 (IFF_PROMISC | IFF_ALLMULTI)) 2187 vr_set_filter(sc); 2188 } else { 2189 if (sc->vr_detach == 0) 2190 vr_init_locked(sc); 2191 } 2192 } else { 2193 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2194 vr_stop(sc); 2195 } 2196 sc->vr_if_flags = ifp->if_flags; 2197 VR_UNLOCK(sc); 2198 break; 2199 case SIOCADDMULTI: 2200 case SIOCDELMULTI: 2201 VR_LOCK(sc); 2202 vr_set_filter(sc); 2203 VR_UNLOCK(sc); 2204 break; 2205 case SIOCGIFMEDIA: 2206 case SIOCSIFMEDIA: 2207 mii = device_get_softc(sc->vr_miibus); 2208 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2209 break; 2210 case SIOCSIFCAP: 2211 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2212 #ifdef DEVICE_POLLING 2213 if (mask & IFCAP_POLLING) { 2214 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2215 error = ether_poll_register(vr_poll, ifp); 2216 if (error != 0) 2217 break; 2218 VR_LOCK(sc); 2219 /* Disable interrupts. */ 2220 CSR_WRITE_2(sc, VR_IMR, 0x0000); 2221 ifp->if_capenable |= IFCAP_POLLING; 2222 VR_UNLOCK(sc); 2223 } else { 2224 error = ether_poll_deregister(ifp); 2225 /* Enable interrupts. */ 2226 VR_LOCK(sc); 2227 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 2228 ifp->if_capenable &= ~IFCAP_POLLING; 2229 VR_UNLOCK(sc); 2230 } 2231 } 2232 #endif /* DEVICE_POLLING */ 2233 if ((mask & IFCAP_TXCSUM) != 0 && 2234 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 2235 ifp->if_capenable ^= IFCAP_TXCSUM; 2236 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 2237 ifp->if_hwassist |= VR_CSUM_FEATURES; 2238 else 2239 ifp->if_hwassist &= ~VR_CSUM_FEATURES; 2240 } 2241 if ((mask & IFCAP_RXCSUM) != 0 && 2242 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 2243 ifp->if_capenable ^= IFCAP_RXCSUM; 2244 if ((mask & IFCAP_WOL_UCAST) != 0 && 2245 (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0) 2246 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2247 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2248 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2249 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2250 break; 2251 default: 2252 error = ether_ioctl(ifp, command, data); 2253 break; 2254 } 2255 2256 return (error); 2257 } 2258 2259 static void 2260 vr_watchdog(struct vr_softc *sc) 2261 { 2262 struct ifnet *ifp; 2263 2264 VR_LOCK_ASSERT(sc); 2265 2266 if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer) 2267 return; 2268 2269 ifp = sc->vr_ifp; 2270 /* 2271 * Reclaim first as we don't request interrupt for every packets. 2272 */ 2273 vr_txeof(sc); 2274 if (sc->vr_cdata.vr_tx_cnt == 0) 2275 return; 2276 2277 if (sc->vr_link == 0) { 2278 if (bootverbose) 2279 if_printf(sc->vr_ifp, "watchdog timeout " 2280 "(missed link)\n"); 2281 ifp->if_oerrors++; 2282 vr_init_locked(sc); 2283 return; 2284 } 2285 2286 ifp->if_oerrors++; 2287 if_printf(ifp, "watchdog timeout\n"); 2288 2289 vr_stop(sc); 2290 vr_reset(sc); 2291 vr_init_locked(sc); 2292 2293 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2294 vr_start_locked(ifp); 2295 } 2296 2297 static void 2298 vr_tx_start(struct vr_softc *sc) 2299 { 2300 bus_addr_t addr; 2301 uint8_t cmd; 2302 2303 cmd = CSR_READ_1(sc, VR_CR0); 2304 if ((cmd & VR_CR0_TX_ON) == 0) { 2305 addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons); 2306 CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr)); 2307 cmd |= VR_CR0_TX_ON; 2308 CSR_WRITE_1(sc, VR_CR0, cmd); 2309 } 2310 if (sc->vr_cdata.vr_tx_cnt != 0) { 2311 sc->vr_watchdog_timer = 5; 2312 VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO); 2313 } 2314 } 2315 2316 static void 2317 vr_rx_start(struct vr_softc *sc) 2318 { 2319 bus_addr_t addr; 2320 uint8_t cmd; 2321 2322 cmd = CSR_READ_1(sc, VR_CR0); 2323 if ((cmd & VR_CR0_RX_ON) == 0) { 2324 addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons); 2325 CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr)); 2326 cmd |= VR_CR0_RX_ON; 2327 CSR_WRITE_1(sc, VR_CR0, cmd); 2328 } 2329 CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO); 2330 } 2331 2332 static int 2333 vr_tx_stop(struct vr_softc *sc) 2334 { 2335 int i; 2336 uint8_t cmd; 2337 2338 cmd = CSR_READ_1(sc, VR_CR0); 2339 if ((cmd & VR_CR0_TX_ON) != 0) { 2340 cmd &= ~VR_CR0_TX_ON; 2341 CSR_WRITE_1(sc, VR_CR0, cmd); 2342 for (i = VR_TIMEOUT; i > 0; i--) { 2343 DELAY(5); 2344 cmd = CSR_READ_1(sc, VR_CR0); 2345 if ((cmd & VR_CR0_TX_ON) == 0) 2346 break; 2347 } 2348 if (i == 0) 2349 return (ETIMEDOUT); 2350 } 2351 return (0); 2352 } 2353 2354 static int 2355 vr_rx_stop(struct vr_softc *sc) 2356 { 2357 int i; 2358 uint8_t cmd; 2359 2360 cmd = CSR_READ_1(sc, VR_CR0); 2361 if ((cmd & VR_CR0_RX_ON) != 0) { 2362 cmd &= ~VR_CR0_RX_ON; 2363 CSR_WRITE_1(sc, VR_CR0, cmd); 2364 for (i = VR_TIMEOUT; i > 0; i--) { 2365 DELAY(5); 2366 cmd = CSR_READ_1(sc, VR_CR0); 2367 if ((cmd & VR_CR0_RX_ON) == 0) 2368 break; 2369 } 2370 if (i == 0) 2371 return (ETIMEDOUT); 2372 } 2373 return (0); 2374 } 2375 2376 /* 2377 * Stop the adapter and free any mbufs allocated to the 2378 * RX and TX lists. 2379 */ 2380 static void 2381 vr_stop(struct vr_softc *sc) 2382 { 2383 struct vr_txdesc *txd; 2384 struct vr_rxdesc *rxd; 2385 struct ifnet *ifp; 2386 int i; 2387 2388 VR_LOCK_ASSERT(sc); 2389 2390 ifp = sc->vr_ifp; 2391 sc->vr_watchdog_timer = 0; 2392 2393 callout_stop(&sc->vr_stat_callout); 2394 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2395 2396 CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP); 2397 if (vr_rx_stop(sc) != 0) 2398 device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__); 2399 if (vr_tx_stop(sc) != 0) 2400 device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__); 2401 /* Clear pending interrupts. */ 2402 CSR_WRITE_2(sc, VR_ISR, 0xFFFF); 2403 CSR_WRITE_2(sc, VR_IMR, 0x0000); 2404 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); 2405 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); 2406 2407 /* 2408 * Free RX and TX mbufs still in the queues. 2409 */ 2410 for (i = 0; i < VR_RX_RING_CNT; i++) { 2411 rxd = &sc->vr_cdata.vr_rxdesc[i]; 2412 if (rxd->rx_m != NULL) { 2413 bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, 2414 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2415 bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, 2416 rxd->rx_dmamap); 2417 m_freem(rxd->rx_m); 2418 rxd->rx_m = NULL; 2419 } 2420 } 2421 for (i = 0; i < VR_TX_RING_CNT; i++) { 2422 txd = &sc->vr_cdata.vr_txdesc[i]; 2423 if (txd->tx_m != NULL) { 2424 bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, 2425 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2426 bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, 2427 txd->tx_dmamap); 2428 m_freem(txd->tx_m); 2429 txd->tx_m = NULL; 2430 } 2431 } 2432 } 2433 2434 /* 2435 * Stop all chip I/O so that the kernel's probe routines don't 2436 * get confused by errant DMAs when rebooting. 2437 */ 2438 static int 2439 vr_shutdown(device_t dev) 2440 { 2441 2442 return (vr_suspend(dev)); 2443 } 2444 2445 static int 2446 vr_suspend(device_t dev) 2447 { 2448 struct vr_softc *sc; 2449 2450 sc = device_get_softc(dev); 2451 2452 VR_LOCK(sc); 2453 vr_stop(sc); 2454 vr_setwol(sc); 2455 sc->vr_suspended = 1; 2456 VR_UNLOCK(sc); 2457 2458 return (0); 2459 } 2460 2461 static int 2462 vr_resume(device_t dev) 2463 { 2464 struct vr_softc *sc; 2465 struct ifnet *ifp; 2466 2467 sc = device_get_softc(dev); 2468 2469 VR_LOCK(sc); 2470 ifp = sc->vr_ifp; 2471 vr_clrwol(sc); 2472 vr_reset(sc); 2473 if (ifp->if_flags & IFF_UP) 2474 vr_init_locked(sc); 2475 2476 sc->vr_suspended = 0; 2477 VR_UNLOCK(sc); 2478 2479 return (0); 2480 } 2481 2482 static void 2483 vr_setwol(struct vr_softc *sc) 2484 { 2485 struct ifnet *ifp; 2486 int pmc; 2487 uint16_t pmstat; 2488 uint8_t v; 2489 2490 VR_LOCK_ASSERT(sc); 2491 2492 if (sc->vr_revid < REV_ID_VT6102_A || 2493 pci_find_extcap(sc->vr_dev, PCIY_PMG, &pmc) != 0) 2494 return; 2495 2496 ifp = sc->vr_ifp; 2497 2498 /* Clear WOL configuration. */ 2499 CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF); 2500 CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM); 2501 CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF); 2502 CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN); 2503 if (sc->vr_revid > REV_ID_VT6105_B0) { 2504 /* Newer Rhine III supports two additional patterns. */ 2505 CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE); 2506 CSR_WRITE_1(sc, VR_TESTREG_CLR, 3); 2507 CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3); 2508 } 2509 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2510 CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST); 2511 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2512 CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC); 2513 /* 2514 * It seems that multicast wakeup frames require programming pattern 2515 * registers and valid CRC as well as pattern mask for each pattern. 2516 * While it's possible to setup such a pattern it would complicate 2517 * WOL configuration so ignore multicast wakeup frames. 2518 */ 2519 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 2520 CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM); 2521 v = CSR_READ_1(sc, VR_STICKHW); 2522 CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB); 2523 CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN); 2524 } 2525 2526 /* Put hardware into sleep. */ 2527 v = CSR_READ_1(sc, VR_STICKHW); 2528 v |= VR_STICKHW_DS0 | VR_STICKHW_DS1; 2529 CSR_WRITE_1(sc, VR_STICKHW, v); 2530 2531 /* Request PME if WOL is requested. */ 2532 pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2); 2533 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2534 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2535 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2536 pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 2537 } 2538 2539 static void 2540 vr_clrwol(struct vr_softc *sc) 2541 { 2542 uint8_t v; 2543 2544 VR_LOCK_ASSERT(sc); 2545 2546 if (sc->vr_revid < REV_ID_VT6102_A) 2547 return; 2548 2549 /* Take hardware out of sleep. */ 2550 v = CSR_READ_1(sc, VR_STICKHW); 2551 v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB); 2552 CSR_WRITE_1(sc, VR_STICKHW, v); 2553 2554 /* Clear WOL configuration as WOL may interfere normal operation. */ 2555 CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF); 2556 CSR_WRITE_1(sc, VR_WOLCFG_CLR, 2557 VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR); 2558 CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF); 2559 CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN); 2560 if (sc->vr_revid > REV_ID_VT6105_B0) { 2561 /* Newer Rhine III supports two additional patterns. */ 2562 CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE); 2563 CSR_WRITE_1(sc, VR_TESTREG_CLR, 3); 2564 CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3); 2565 } 2566 } 2567 2568 static int 2569 vr_sysctl_stats(SYSCTL_HANDLER_ARGS) 2570 { 2571 struct vr_softc *sc; 2572 struct vr_statistics *stat; 2573 int error; 2574 int result; 2575 2576 result = -1; 2577 error = sysctl_handle_int(oidp, &result, 0, req); 2578 2579 if (error != 0 || req->newptr == NULL) 2580 return (error); 2581 2582 if (result == 1) { 2583 sc = (struct vr_softc *)arg1; 2584 stat = &sc->vr_stat; 2585 2586 printf("%s statistics:\n", device_get_nameunit(sc->vr_dev)); 2587 printf("Outbound good frames : %ju\n", 2588 (uintmax_t)stat->tx_ok); 2589 printf("Inbound good frames : %ju\n", 2590 (uintmax_t)stat->rx_ok); 2591 printf("Outbound errors : %u\n", stat->tx_errors); 2592 printf("Inbound errors : %u\n", stat->rx_errors); 2593 printf("Inbound no buffers : %u\n", stat->rx_no_buffers); 2594 printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs); 2595 printf("Inbound FIFO overflows : %d\n", 2596 stat->rx_fifo_overflows); 2597 printf("Inbound CRC errors : %u\n", stat->rx_crc_errors); 2598 printf("Inbound frame alignment errors : %u\n", 2599 stat->rx_alignment); 2600 printf("Inbound giant frames : %u\n", stat->rx_giants); 2601 printf("Inbound runt frames : %u\n", stat->rx_runts); 2602 printf("Outbound aborted with excessive collisions : %u\n", 2603 stat->tx_abort); 2604 printf("Outbound collisions : %u\n", stat->tx_collisions); 2605 printf("Outbound late collisions : %u\n", 2606 stat->tx_late_collisions); 2607 printf("Outbound underrun : %u\n", stat->tx_underrun); 2608 printf("PCI bus errors : %u\n", stat->bus_errors); 2609 printf("driver restarted due to Rx/Tx shutdown failure : %u\n", 2610 stat->num_restart); 2611 } 2612 2613 return (error); 2614 } 2615