xref: /freebsd/sys/dev/vr/if_vr.c (revision 36daf0495aa68d669ac6abf004940ec1b1e83e42)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static const struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	const char		*vr_name;
122 } const vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static int vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static void vr_intr(void *);
169 static void vr_start(struct ifnet *);
170 static void vr_start_locked(struct ifnet *);
171 static int vr_encap(struct vr_softc *, struct mbuf **);
172 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
173 static void vr_init(void *);
174 static void vr_init_locked(struct vr_softc *);
175 static void vr_tx_start(struct vr_softc *);
176 static void vr_rx_start(struct vr_softc *);
177 static int vr_tx_stop(struct vr_softc *);
178 static int vr_rx_stop(struct vr_softc *);
179 static void vr_stop(struct vr_softc *);
180 static void vr_watchdog(struct vr_softc *);
181 static int vr_ifmedia_upd(struct ifnet *);
182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
183 
184 static int vr_miibus_readreg(device_t, int, int);
185 static int vr_miibus_writereg(device_t, int, int, int);
186 static void vr_miibus_statchg(device_t);
187 
188 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
189 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
190 static void vr_set_filter(struct vr_softc *);
191 static void vr_reset(const struct vr_softc *);
192 static int vr_tx_ring_init(struct vr_softc *);
193 static int vr_rx_ring_init(struct vr_softc *);
194 static void vr_setwol(struct vr_softc *);
195 static void vr_clrwol(struct vr_softc *);
196 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
197 
198 static const struct vr_tx_threshold_table {
199 	int tx_cfg;
200 	int bcr_cfg;
201 	int value;
202 } const vr_tx_threshold_tables[] = {
203 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
204 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
205 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
206 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
207 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
208 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
209 };
210 
211 static device_method_t vr_methods[] = {
212 	/* Device interface */
213 	DEVMETHOD(device_probe,		vr_probe),
214 	DEVMETHOD(device_attach,	vr_attach),
215 	DEVMETHOD(device_detach, 	vr_detach),
216 	DEVMETHOD(device_shutdown,	vr_shutdown),
217 	DEVMETHOD(device_suspend,	vr_suspend),
218 	DEVMETHOD(device_resume,	vr_resume),
219 
220 	/* bus interface */
221 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
222 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	{ NULL, NULL }
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 static devclass_t vr_devclass;
239 
240 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
241 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
242 
243 static int
244 vr_miibus_readreg(device_t dev, int phy, int reg)
245 {
246 	struct vr_softc		*sc;
247 	int			i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* Set the register address. */
252 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
253 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
254 
255 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
256 		DELAY(1);
257 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
258 			break;
259 	}
260 	if (i == VR_MII_TIMEOUT)
261 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
262 
263 	return (CSR_READ_2(sc, VR_MIIDATA));
264 }
265 
266 static int
267 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
268 {
269 	struct vr_softc		*sc;
270 	int			i;
271 
272 	sc = device_get_softc(dev);
273 
274 	/* Set the register address and data to write. */
275 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
276 	CSR_WRITE_2(sc, VR_MIIDATA, data);
277 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
278 
279 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
280 		DELAY(1);
281 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
282 			break;
283 	}
284 	if (i == VR_MII_TIMEOUT)
285 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
286 		    reg);
287 
288 	return (0);
289 }
290 
291 /*
292  * In order to fiddle with the
293  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
294  * first have to put the transmit and/or receive logic in the idle state.
295  */
296 static void
297 vr_miibus_statchg(device_t dev)
298 {
299 	struct vr_softc		*sc;
300 	struct mii_data		*mii;
301 	struct ifnet		*ifp;
302 	int			lfdx, mfdx;
303 	uint8_t			cr0, cr1, fc;
304 
305 	sc = device_get_softc(dev);
306 	mii = device_get_softc(sc->vr_miibus);
307 	ifp = sc->vr_ifp;
308 	if (mii == NULL || ifp == NULL ||
309 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
310 		return;
311 
312 	sc->vr_link = 0;
313 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
314 	    (IFM_ACTIVE | IFM_AVALID)) {
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_10_T:
317 		case IFM_100_TX:
318 			sc->vr_link = 1;
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 
325 	if (sc->vr_link != 0) {
326 		cr0 = CSR_READ_1(sc, VR_CR0);
327 		cr1 = CSR_READ_1(sc, VR_CR1);
328 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
329 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
330 		if (mfdx != lfdx) {
331 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
332 				if (vr_tx_stop(sc) != 0 ||
333 				    vr_rx_stop(sc) != 0) {
334 					device_printf(sc->vr_dev,
335 					    "%s: Tx/Rx shutdown error -- "
336 					    "resetting\n", __func__);
337 					sc->vr_flags |= VR_F_RESTART;
338 					VR_UNLOCK(sc);
339 					return;
340 				}
341 			}
342 			if (lfdx)
343 				cr1 |= VR_CR1_FULLDUPLEX;
344 			else
345 				cr1 &= ~VR_CR1_FULLDUPLEX;
346 			CSR_WRITE_1(sc, VR_CR1, cr1);
347 		}
348 		fc = 0;
349 #ifdef notyet
350 		/* Configure flow-control. */
351 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
352 			fc = CSR_READ_1(sc, VR_FLOWCR1);
353 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
354 			if ((IFM_OPTIONS(mii->mii_media_active) &
355 			    IFM_ETH_RXPAUSE) != 0)
356 				fc |= VR_FLOWCR1_RXPAUSE;
357 			if ((IFM_OPTIONS(mii->mii_media_active) &
358 			    IFM_ETH_TXPAUSE) != 0)
359 				fc |= VR_FLOWCR1_TXPAUSE;
360 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
361 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
362 			/* No Tx puase capability available for Rhine II. */
363 			fc = CSR_READ_1(sc, VR_MISC_CR0);
364 			fc &= ~VR_MISCCR0_RXPAUSE;
365 			if ((IFM_OPTIONS(mii->mii_media_active) &
366 			    IFM_ETH_RXPAUSE) != 0)
367 				fc |= VR_MISCCR0_RXPAUSE;
368 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
369 		}
370 #endif
371 		vr_rx_start(sc);
372 		vr_tx_start(sc);
373 	} else {
374 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
375 			device_printf(sc->vr_dev,
376 			    "%s: Tx/Rx shutdown error -- resetting\n",
377 			    __func__);
378 			sc->vr_flags |= VR_F_RESTART;
379 		}
380 	}
381 }
382 
383 
384 static void
385 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
386 {
387 
388 	if (type == VR_MCAST_CAM)
389 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
390 	else
391 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
392 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
393 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
394 }
395 
396 static int
397 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
398 {
399 	int	i;
400 
401 	if (type == VR_MCAST_CAM) {
402 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
403 			return (EINVAL);
404 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
405 	} else
406 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
407 
408 	/* Set CAM entry address. */
409 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
410 	/* Set CAM entry data. */
411 	if (type == VR_MCAST_CAM) {
412 		for (i = 0; i < ETHER_ADDR_LEN; i++)
413 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
414 	} else {
415 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
416 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
417 	}
418 	DELAY(10);
419 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
420 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
421 	for (i = 0; i < VR_TIMEOUT; i++) {
422 		DELAY(1);
423 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
424 			break;
425 	}
426 
427 	if (i == VR_TIMEOUT)
428 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
429 		    __func__);
430 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
431 
432 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
433 }
434 
435 /*
436  * Program the 64-bit multicast hash filter.
437  */
438 static void
439 vr_set_filter(struct vr_softc *sc)
440 {
441 	struct ifnet		*ifp;
442 	int			h;
443 	uint32_t		hashes[2] = { 0, 0 };
444 	struct ifmultiaddr	*ifma;
445 	uint8_t			rxfilt;
446 	int			error, mcnt;
447 	uint32_t		cam_mask;
448 
449 	VR_LOCK_ASSERT(sc);
450 
451 	ifp = sc->vr_ifp;
452 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
453 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
454 	    VR_RXCFG_RX_MULTI);
455 	if (ifp->if_flags & IFF_BROADCAST)
456 		rxfilt |= VR_RXCFG_RX_BROAD;
457 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
458 		rxfilt |= VR_RXCFG_RX_MULTI;
459 		if (ifp->if_flags & IFF_PROMISC)
460 			rxfilt |= VR_RXCFG_RX_PROMISC;
461 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
462 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
463 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
464 		return;
465 	}
466 
467 	/* Now program new ones. */
468 	error = 0;
469 	mcnt = 0;
470 	if_maddr_rlock(ifp);
471 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
472 		/*
473 		 * For hardwares that have CAM capability, use
474 		 * 32 entries multicast perfect filter.
475 		 */
476 		cam_mask = 0;
477 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
478 			if (ifma->ifma_addr->sa_family != AF_LINK)
479 				continue;
480 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
481 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
482 			if (error != 0) {
483 				cam_mask = 0;
484 				break;
485 			}
486 			cam_mask |= 1 << mcnt;
487 			mcnt++;
488 		}
489 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
490 	}
491 
492 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
493 		/*
494 		 * If there are too many multicast addresses or
495 		 * setting multicast CAM filter failed, use hash
496 		 * table based filtering.
497 		 */
498 		mcnt = 0;
499 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
500 			if (ifma->ifma_addr->sa_family != AF_LINK)
501 				continue;
502 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
503 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
504 			if (h < 32)
505 				hashes[0] |= (1 << h);
506 			else
507 				hashes[1] |= (1 << (h - 32));
508 			mcnt++;
509 		}
510 	}
511 	if_maddr_runlock(ifp);
512 
513 	if (mcnt > 0)
514 		rxfilt |= VR_RXCFG_RX_MULTI;
515 
516 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
517 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
518 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
519 }
520 
521 static void
522 vr_reset(const struct vr_softc *sc)
523 {
524 	int		i;
525 
526 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
527 
528 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
529 	if (sc->vr_revid < REV_ID_VT6102_A) {
530 		/* VT86C100A needs more delay after reset. */
531 		DELAY(100);
532 	}
533 	for (i = 0; i < VR_TIMEOUT; i++) {
534 		DELAY(10);
535 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
536 			break;
537 	}
538 	if (i == VR_TIMEOUT) {
539 		if (sc->vr_revid < REV_ID_VT6102_A)
540 			device_printf(sc->vr_dev, "reset never completed!\n");
541 		else {
542 			/* Use newer force reset command. */
543 			device_printf(sc->vr_dev,
544 			    "Using force reset command.\n");
545 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
546 			/*
547 			 * Wait a little while for the chip to get its brains
548 			 * in order.
549 			 */
550 			DELAY(2000);
551 		}
552 	}
553 
554 }
555 
556 /*
557  * Probe for a VIA Rhine chip. Check the PCI vendor and device
558  * IDs against our list and return a match or NULL
559  */
560 static const struct vr_type *
561 vr_match(device_t dev)
562 {
563 	const struct vr_type	*t = vr_devs;
564 
565 	for (t = vr_devs; t->vr_name != NULL; t++)
566 		if ((pci_get_vendor(dev) == t->vr_vid) &&
567 		    (pci_get_device(dev) == t->vr_did))
568 			return (t);
569 	return (NULL);
570 }
571 
572 /*
573  * Probe for a VIA Rhine chip. Check the PCI vendor and device
574  * IDs against our list and return a device name if we find a match.
575  */
576 static int
577 vr_probe(device_t dev)
578 {
579 	const struct vr_type	*t;
580 
581 	t = vr_match(dev);
582 	if (t != NULL) {
583 		device_set_desc(dev, t->vr_name);
584 		return (BUS_PROBE_DEFAULT);
585 	}
586 	return (ENXIO);
587 }
588 
589 /*
590  * Attach the interface. Allocate softc structures, do ifmedia
591  * setup and ethernet/BPF attach.
592  */
593 static int
594 vr_attach(device_t dev)
595 {
596 	struct vr_softc		*sc;
597 	struct ifnet		*ifp;
598 	const struct vr_type	*t;
599 	uint8_t			eaddr[ETHER_ADDR_LEN];
600 	int			error, rid;
601 	int			i, phy, pmc;
602 
603 	sc = device_get_softc(dev);
604 	sc->vr_dev = dev;
605 	t = vr_match(dev);
606 	KASSERT(t != NULL, ("Lost if_vr device match"));
607 	sc->vr_quirks = t->vr_quirks;
608 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
609 
610 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
611 	    MTX_DEF);
612 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
613 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
614 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
615 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
616 	    vr_sysctl_stats, "I", "Statistics");
617 
618 	error = 0;
619 
620 	/*
621 	 * Map control/status registers.
622 	 */
623 	pci_enable_busmaster(dev);
624 	sc->vr_revid = pci_get_revid(dev);
625 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
626 
627 	sc->vr_res_id = PCIR_BAR(0);
628 	sc->vr_res_type = SYS_RES_IOPORT;
629 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
630 	    &sc->vr_res_id, RF_ACTIVE);
631 	if (sc->vr_res == NULL) {
632 		device_printf(dev, "couldn't map ports\n");
633 		error = ENXIO;
634 		goto fail;
635 	}
636 
637 	/* Allocate interrupt. */
638 	rid = 0;
639 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
640 	    RF_SHAREABLE | RF_ACTIVE);
641 
642 	if (sc->vr_irq == NULL) {
643 		device_printf(dev, "couldn't map interrupt\n");
644 		error = ENXIO;
645 		goto fail;
646 	}
647 
648 	/* Allocate ifnet structure. */
649 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
650 	if (ifp == NULL) {
651 		device_printf(dev, "couldn't allocate ifnet structure\n");
652 		error = ENOSPC;
653 		goto fail;
654 	}
655 	ifp->if_softc = sc;
656 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 	ifp->if_ioctl = vr_ioctl;
659 	ifp->if_start = vr_start;
660 	ifp->if_init = vr_init;
661 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
662 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
663 	IFQ_SET_READY(&ifp->if_snd);
664 
665 	/* Configure Tx FIFO threshold. */
666 	sc->vr_txthresh = VR_TXTHRESH_MIN;
667 	if (sc->vr_revid < REV_ID_VT6105_A0) {
668 		/*
669 		 * Use store and forward mode for Rhine I/II.
670 		 * Otherwise they produce a lot of Tx underruns and
671 		 * it would take a while to get working FIFO threshold
672 		 * value.
673 		 */
674 		sc->vr_txthresh = VR_TXTHRESH_MAX;
675 	}
676 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
677 		ifp->if_hwassist = VR_CSUM_FEATURES;
678 		ifp->if_capabilities |= IFCAP_HWCSUM;
679 		/*
680 		 * To update checksum field the hardware may need to
681 		 * store entire frames into FIFO before transmitting.
682 		 */
683 		sc->vr_txthresh = VR_TXTHRESH_MAX;
684 	}
685 
686 	if (sc->vr_revid >= REV_ID_VT6102_A &&
687 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
688 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
689 
690 	/* Rhine supports oversized VLAN frame. */
691 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
692 	ifp->if_capenable = ifp->if_capabilities;
693 #ifdef DEVICE_POLLING
694 	ifp->if_capabilities |= IFCAP_POLLING;
695 #endif
696 
697 	/*
698 	 * Windows may put the chip in suspend mode when it
699 	 * shuts down. Be sure to kick it in the head to wake it
700 	 * up again.
701 	 */
702 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
703 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
704 
705 	/*
706 	 * Get station address. The way the Rhine chips work,
707 	 * you're not allowed to directly access the EEPROM once
708 	 * they've been programmed a special way. Consequently,
709 	 * we need to read the node address from the PAR0 and PAR1
710 	 * registers.
711 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
712 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
713 	 * by driver is reset to default state.
714 	 */
715 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
716 	for (i = VR_TIMEOUT; i > 0; i--) {
717 		DELAY(1);
718 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
719 			break;
720 	}
721 	if (i == 0)
722 		device_printf(dev, "Reloading EEPROM timeout!\n");
723 	for (i = 0; i < ETHER_ADDR_LEN; i++)
724 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
725 
726 	/* Reset the adapter. */
727 	vr_reset(sc);
728 	/* Ack intr & disable further interrupts. */
729 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
730 	CSR_WRITE_2(sc, VR_IMR, 0);
731 	if (sc->vr_revid >= REV_ID_VT6102_A)
732 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
733 
734 	if (sc->vr_revid < REV_ID_VT6102_A) {
735 		pci_write_config(dev, VR_PCI_MODE2,
736 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
737 		    VR_MODE2_MODE10T, 1);
738 	} else {
739 		/* Report error instead of retrying forever. */
740 		pci_write_config(dev, VR_PCI_MODE2,
741 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
742 		    VR_MODE2_PCEROPT, 1);
743         	/* Detect MII coding error. */
744 		pci_write_config(dev, VR_PCI_MODE3,
745 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
746 		    VR_MODE3_MIION, 1);
747 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
748 		    sc->vr_revid < REV_ID_VT6105M_A0)
749 			pci_write_config(dev, VR_PCI_MODE2,
750 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
751 			    VR_MODE2_MODE10T, 1);
752 		/* Enable Memory-Read-Multiple. */
753 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
754 		    sc->vr_revid < REV_ID_VT6105M_A0)
755 			pci_write_config(dev, VR_PCI_MODE2,
756 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
757 			    VR_MODE2_MRDPL, 1);
758 	}
759 	/* Disable MII AUTOPOLL. */
760 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
761 
762 	if (vr_dma_alloc(sc) != 0) {
763 		error = ENXIO;
764 		goto fail;
765 	}
766 
767 	/* Do MII setup. */
768 	if (sc->vr_revid >= REV_ID_VT6105_A0)
769 		phy = 1;
770 	else
771 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
772 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
773 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
774 	if (error != 0) {
775 		device_printf(dev, "attaching PHYs failed\n");
776 		goto fail;
777 	}
778 
779 	/* Call MI attach routine. */
780 	ether_ifattach(ifp, eaddr);
781 	/*
782 	 * Tell the upper layer(s) we support long frames.
783 	 * Must appear after the call to ether_ifattach() because
784 	 * ether_ifattach() sets ifi_hdrlen to the default value.
785 	 */
786 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
787 
788 	/* Hook interrupt last to avoid having to lock softc. */
789 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
790 	    NULL, vr_intr, sc, &sc->vr_intrhand);
791 
792 	if (error) {
793 		device_printf(dev, "couldn't set up irq\n");
794 		ether_ifdetach(ifp);
795 		goto fail;
796 	}
797 
798 fail:
799 	if (error)
800 		vr_detach(dev);
801 
802 	return (error);
803 }
804 
805 /*
806  * Shutdown hardware and free up resources. This can be called any
807  * time after the mutex has been initialized. It is called in both
808  * the error case in attach and the normal detach case so it needs
809  * to be careful about only freeing resources that have actually been
810  * allocated.
811  */
812 static int
813 vr_detach(device_t dev)
814 {
815 	struct vr_softc		*sc = device_get_softc(dev);
816 	struct ifnet		*ifp = sc->vr_ifp;
817 
818 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
819 
820 #ifdef DEVICE_POLLING
821 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
822 		ether_poll_deregister(ifp);
823 #endif
824 
825 	/* These should only be active if attach succeeded. */
826 	if (device_is_attached(dev)) {
827 		VR_LOCK(sc);
828 		sc->vr_detach = 1;
829 		vr_stop(sc);
830 		VR_UNLOCK(sc);
831 		callout_drain(&sc->vr_stat_callout);
832 		ether_ifdetach(ifp);
833 	}
834 	if (sc->vr_miibus)
835 		device_delete_child(dev, sc->vr_miibus);
836 	bus_generic_detach(dev);
837 
838 	if (sc->vr_intrhand)
839 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
840 	if (sc->vr_irq)
841 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
842 	if (sc->vr_res)
843 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
844 		    sc->vr_res);
845 
846 	if (ifp)
847 		if_free(ifp);
848 
849 	vr_dma_free(sc);
850 
851 	mtx_destroy(&sc->vr_mtx);
852 
853 	return (0);
854 }
855 
856 struct vr_dmamap_arg {
857 	bus_addr_t	vr_busaddr;
858 };
859 
860 static void
861 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
862 {
863 	struct vr_dmamap_arg	*ctx;
864 
865 	if (error != 0)
866 		return;
867 	ctx = arg;
868 	ctx->vr_busaddr = segs[0].ds_addr;
869 }
870 
871 static int
872 vr_dma_alloc(struct vr_softc *sc)
873 {
874 	struct vr_dmamap_arg	ctx;
875 	struct vr_txdesc	*txd;
876 	struct vr_rxdesc	*rxd;
877 	bus_size_t		tx_alignment;
878 	int			error, i;
879 
880 	/* Create parent DMA tag. */
881 	error = bus_dma_tag_create(
882 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
883 	    1, 0,			/* alignment, boundary */
884 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
885 	    BUS_SPACE_MAXADDR,		/* highaddr */
886 	    NULL, NULL,			/* filter, filterarg */
887 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
888 	    0,				/* nsegments */
889 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
890 	    0,				/* flags */
891 	    NULL, NULL,			/* lockfunc, lockarg */
892 	    &sc->vr_cdata.vr_parent_tag);
893 	if (error != 0) {
894 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
895 		goto fail;
896 	}
897 	/* Create tag for Tx ring. */
898 	error = bus_dma_tag_create(
899 	    sc->vr_cdata.vr_parent_tag,	/* parent */
900 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
901 	    BUS_SPACE_MAXADDR,		/* lowaddr */
902 	    BUS_SPACE_MAXADDR,		/* highaddr */
903 	    NULL, NULL,			/* filter, filterarg */
904 	    VR_TX_RING_SIZE,		/* maxsize */
905 	    1,				/* nsegments */
906 	    VR_TX_RING_SIZE,		/* maxsegsize */
907 	    0,				/* flags */
908 	    NULL, NULL,			/* lockfunc, lockarg */
909 	    &sc->vr_cdata.vr_tx_ring_tag);
910 	if (error != 0) {
911 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
912 		goto fail;
913 	}
914 
915 	/* Create tag for Rx ring. */
916 	error = bus_dma_tag_create(
917 	    sc->vr_cdata.vr_parent_tag,	/* parent */
918 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
919 	    BUS_SPACE_MAXADDR,		/* lowaddr */
920 	    BUS_SPACE_MAXADDR,		/* highaddr */
921 	    NULL, NULL,			/* filter, filterarg */
922 	    VR_RX_RING_SIZE,		/* maxsize */
923 	    1,				/* nsegments */
924 	    VR_RX_RING_SIZE,		/* maxsegsize */
925 	    0,				/* flags */
926 	    NULL, NULL,			/* lockfunc, lockarg */
927 	    &sc->vr_cdata.vr_rx_ring_tag);
928 	if (error != 0) {
929 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
930 		goto fail;
931 	}
932 
933 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
934 		tx_alignment = sizeof(uint32_t);
935 	else
936 		tx_alignment = 1;
937 	/* Create tag for Tx buffers. */
938 	error = bus_dma_tag_create(
939 	    sc->vr_cdata.vr_parent_tag,	/* parent */
940 	    tx_alignment, 0,		/* alignment, boundary */
941 	    BUS_SPACE_MAXADDR,		/* lowaddr */
942 	    BUS_SPACE_MAXADDR,		/* highaddr */
943 	    NULL, NULL,			/* filter, filterarg */
944 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
945 	    VR_MAXFRAGS,		/* nsegments */
946 	    MCLBYTES,			/* maxsegsize */
947 	    0,				/* flags */
948 	    NULL, NULL,			/* lockfunc, lockarg */
949 	    &sc->vr_cdata.vr_tx_tag);
950 	if (error != 0) {
951 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
952 		goto fail;
953 	}
954 
955 	/* Create tag for Rx buffers. */
956 	error = bus_dma_tag_create(
957 	    sc->vr_cdata.vr_parent_tag,	/* parent */
958 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
959 	    BUS_SPACE_MAXADDR,		/* lowaddr */
960 	    BUS_SPACE_MAXADDR,		/* highaddr */
961 	    NULL, NULL,			/* filter, filterarg */
962 	    MCLBYTES,			/* maxsize */
963 	    1,				/* nsegments */
964 	    MCLBYTES,			/* maxsegsize */
965 	    0,				/* flags */
966 	    NULL, NULL,			/* lockfunc, lockarg */
967 	    &sc->vr_cdata.vr_rx_tag);
968 	if (error != 0) {
969 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
970 		goto fail;
971 	}
972 
973 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
974 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
975 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
976 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
977 	if (error != 0) {
978 		device_printf(sc->vr_dev,
979 		    "failed to allocate DMA'able memory for Tx ring\n");
980 		goto fail;
981 	}
982 
983 	ctx.vr_busaddr = 0;
984 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
985 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
986 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
987 	if (error != 0 || ctx.vr_busaddr == 0) {
988 		device_printf(sc->vr_dev,
989 		    "failed to load DMA'able memory for Tx ring\n");
990 		goto fail;
991 	}
992 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
993 
994 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
995 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
996 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
997 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
998 	if (error != 0) {
999 		device_printf(sc->vr_dev,
1000 		    "failed to allocate DMA'able memory for Rx ring\n");
1001 		goto fail;
1002 	}
1003 
1004 	ctx.vr_busaddr = 0;
1005 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1006 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1007 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1008 	if (error != 0 || ctx.vr_busaddr == 0) {
1009 		device_printf(sc->vr_dev,
1010 		    "failed to load DMA'able memory for Rx ring\n");
1011 		goto fail;
1012 	}
1013 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1014 
1015 	/* Create DMA maps for Tx buffers. */
1016 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1017 		txd = &sc->vr_cdata.vr_txdesc[i];
1018 		txd->tx_m = NULL;
1019 		txd->tx_dmamap = NULL;
1020 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1021 		    &txd->tx_dmamap);
1022 		if (error != 0) {
1023 			device_printf(sc->vr_dev,
1024 			    "failed to create Tx dmamap\n");
1025 			goto fail;
1026 		}
1027 	}
1028 	/* Create DMA maps for Rx buffers. */
1029 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1030 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1031 		device_printf(sc->vr_dev,
1032 		    "failed to create spare Rx dmamap\n");
1033 		goto fail;
1034 	}
1035 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1036 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1037 		rxd->rx_m = NULL;
1038 		rxd->rx_dmamap = NULL;
1039 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1040 		    &rxd->rx_dmamap);
1041 		if (error != 0) {
1042 			device_printf(sc->vr_dev,
1043 			    "failed to create Rx dmamap\n");
1044 			goto fail;
1045 		}
1046 	}
1047 
1048 fail:
1049 	return (error);
1050 }
1051 
1052 static void
1053 vr_dma_free(struct vr_softc *sc)
1054 {
1055 	struct vr_txdesc	*txd;
1056 	struct vr_rxdesc	*rxd;
1057 	int			i;
1058 
1059 	/* Tx ring. */
1060 	if (sc->vr_cdata.vr_tx_ring_tag) {
1061 		if (sc->vr_cdata.vr_tx_ring_map)
1062 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1063 			    sc->vr_cdata.vr_tx_ring_map);
1064 		if (sc->vr_cdata.vr_tx_ring_map &&
1065 		    sc->vr_rdata.vr_tx_ring)
1066 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1067 			    sc->vr_rdata.vr_tx_ring,
1068 			    sc->vr_cdata.vr_tx_ring_map);
1069 		sc->vr_rdata.vr_tx_ring = NULL;
1070 		sc->vr_cdata.vr_tx_ring_map = NULL;
1071 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1072 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1073 	}
1074 	/* Rx ring. */
1075 	if (sc->vr_cdata.vr_rx_ring_tag) {
1076 		if (sc->vr_cdata.vr_rx_ring_map)
1077 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1078 			    sc->vr_cdata.vr_rx_ring_map);
1079 		if (sc->vr_cdata.vr_rx_ring_map &&
1080 		    sc->vr_rdata.vr_rx_ring)
1081 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1082 			    sc->vr_rdata.vr_rx_ring,
1083 			    sc->vr_cdata.vr_rx_ring_map);
1084 		sc->vr_rdata.vr_rx_ring = NULL;
1085 		sc->vr_cdata.vr_rx_ring_map = NULL;
1086 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1087 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1088 	}
1089 	/* Tx buffers. */
1090 	if (sc->vr_cdata.vr_tx_tag) {
1091 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1092 			txd = &sc->vr_cdata.vr_txdesc[i];
1093 			if (txd->tx_dmamap) {
1094 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1095 				    txd->tx_dmamap);
1096 				txd->tx_dmamap = NULL;
1097 			}
1098 		}
1099 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1100 		sc->vr_cdata.vr_tx_tag = NULL;
1101 	}
1102 	/* Rx buffers. */
1103 	if (sc->vr_cdata.vr_rx_tag) {
1104 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1105 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1106 			if (rxd->rx_dmamap) {
1107 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1108 				    rxd->rx_dmamap);
1109 				rxd->rx_dmamap = NULL;
1110 			}
1111 		}
1112 		if (sc->vr_cdata.vr_rx_sparemap) {
1113 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1114 			    sc->vr_cdata.vr_rx_sparemap);
1115 			sc->vr_cdata.vr_rx_sparemap = 0;
1116 		}
1117 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1118 		sc->vr_cdata.vr_rx_tag = NULL;
1119 	}
1120 
1121 	if (sc->vr_cdata.vr_parent_tag) {
1122 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1123 		sc->vr_cdata.vr_parent_tag = NULL;
1124 	}
1125 }
1126 
1127 /*
1128  * Initialize the transmit descriptors.
1129  */
1130 static int
1131 vr_tx_ring_init(struct vr_softc *sc)
1132 {
1133 	struct vr_ring_data	*rd;
1134 	struct vr_txdesc	*txd;
1135 	bus_addr_t		addr;
1136 	int			i;
1137 
1138 	sc->vr_cdata.vr_tx_prod = 0;
1139 	sc->vr_cdata.vr_tx_cons = 0;
1140 	sc->vr_cdata.vr_tx_cnt = 0;
1141 	sc->vr_cdata.vr_tx_pkts = 0;
1142 
1143 	rd = &sc->vr_rdata;
1144 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1145 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1146 		if (i == VR_TX_RING_CNT - 1)
1147 			addr = VR_TX_RING_ADDR(sc, 0);
1148 		else
1149 			addr = VR_TX_RING_ADDR(sc, i + 1);
1150 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1151 		txd = &sc->vr_cdata.vr_txdesc[i];
1152 		txd->tx_m = NULL;
1153 	}
1154 
1155 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1156 	    sc->vr_cdata.vr_tx_ring_map,
1157 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1158 
1159 	return (0);
1160 }
1161 
1162 /*
1163  * Initialize the RX descriptors and allocate mbufs for them. Note that
1164  * we arrange the descriptors in a closed ring, so that the last descriptor
1165  * points back to the first.
1166  */
1167 static int
1168 vr_rx_ring_init(struct vr_softc *sc)
1169 {
1170 	struct vr_ring_data	*rd;
1171 	struct vr_rxdesc	*rxd;
1172 	bus_addr_t		addr;
1173 	int			i;
1174 
1175 	sc->vr_cdata.vr_rx_cons = 0;
1176 
1177 	rd = &sc->vr_rdata;
1178 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1179 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1180 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1181 		rxd->rx_m = NULL;
1182 		rxd->desc = &rd->vr_rx_ring[i];
1183 		if (i == VR_RX_RING_CNT - 1)
1184 			addr = VR_RX_RING_ADDR(sc, 0);
1185 		else
1186 			addr = VR_RX_RING_ADDR(sc, i + 1);
1187 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1188 		if (vr_newbuf(sc, i) != 0)
1189 			return (ENOBUFS);
1190 	}
1191 
1192 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1193 	    sc->vr_cdata.vr_rx_ring_map,
1194 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1195 
1196 	return (0);
1197 }
1198 
1199 static __inline void
1200 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1201 {
1202 	struct vr_desc	*desc;
1203 
1204 	desc = rxd->desc;
1205 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1206 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1207 }
1208 
1209 /*
1210  * Initialize an RX descriptor and attach an MBUF cluster.
1211  * Note: the length fields are only 11 bits wide, which means the
1212  * largest size we can specify is 2047. This is important because
1213  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1214  * overflow the field and make a mess.
1215  */
1216 static int
1217 vr_newbuf(struct vr_softc *sc, int idx)
1218 {
1219 	struct vr_desc		*desc;
1220 	struct vr_rxdesc	*rxd;
1221 	struct mbuf		*m;
1222 	bus_dma_segment_t	segs[1];
1223 	bus_dmamap_t		map;
1224 	int			nsegs;
1225 
1226 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1227 	if (m == NULL)
1228 		return (ENOBUFS);
1229 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1230 	m_adj(m, sizeof(uint64_t));
1231 
1232 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1233 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1234 		m_freem(m);
1235 		return (ENOBUFS);
1236 	}
1237 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1238 
1239 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1240 	if (rxd->rx_m != NULL) {
1241 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1242 		    BUS_DMASYNC_POSTREAD);
1243 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1244 	}
1245 	map = rxd->rx_dmamap;
1246 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1247 	sc->vr_cdata.vr_rx_sparemap = map;
1248 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1249 	    BUS_DMASYNC_PREREAD);
1250 	rxd->rx_m = m;
1251 	desc = rxd->desc;
1252 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1253 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1254 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1255 
1256 	return (0);
1257 }
1258 
1259 #ifndef __NO_STRICT_ALIGNMENT
1260 static __inline void
1261 vr_fixup_rx(struct mbuf *m)
1262 {
1263         uint16_t		*src, *dst;
1264         int			i;
1265 
1266 	src = mtod(m, uint16_t *);
1267 	dst = src - 1;
1268 
1269 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1270 		*dst++ = *src++;
1271 
1272 	m->m_data -= ETHER_ALIGN;
1273 }
1274 #endif
1275 
1276 /*
1277  * A frame has been uploaded: pass the resulting mbuf chain up to
1278  * the higher level protocols.
1279  */
1280 static int
1281 vr_rxeof(struct vr_softc *sc)
1282 {
1283 	struct vr_rxdesc	*rxd;
1284 	struct mbuf		*m;
1285 	struct ifnet		*ifp;
1286 	struct vr_desc		*cur_rx;
1287 	int			cons, prog, total_len, rx_npkts;
1288 	uint32_t		rxstat, rxctl;
1289 
1290 	VR_LOCK_ASSERT(sc);
1291 	ifp = sc->vr_ifp;
1292 	cons = sc->vr_cdata.vr_rx_cons;
1293 	rx_npkts = 0;
1294 
1295 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1296 	    sc->vr_cdata.vr_rx_ring_map,
1297 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1298 
1299 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1300 #ifdef DEVICE_POLLING
1301 		if (ifp->if_capenable & IFCAP_POLLING) {
1302 			if (sc->rxcycles <= 0)
1303 				break;
1304 			sc->rxcycles--;
1305 		}
1306 #endif
1307 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1308 		rxstat = le32toh(cur_rx->vr_status);
1309 		rxctl = le32toh(cur_rx->vr_ctl);
1310 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1311 			break;
1312 
1313 		prog++;
1314 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1315 		m = rxd->rx_m;
1316 
1317 		/*
1318 		 * If an error occurs, update stats, clear the
1319 		 * status word and leave the mbuf cluster in place:
1320 		 * it should simply get re-used next time this descriptor
1321 		 * comes up in the ring.
1322 		 * We don't support SG in Rx path yet, so discard
1323 		 * partial frame.
1324 		 */
1325 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1326 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1327 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1328 			ifp->if_ierrors++;
1329 			sc->vr_stat.rx_errors++;
1330 			if (rxstat & VR_RXSTAT_CRCERR)
1331 				sc->vr_stat.rx_crc_errors++;
1332 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1333 				sc->vr_stat.rx_alignment++;
1334 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1335 				sc->vr_stat.rx_fifo_overflows++;
1336 			if (rxstat & VR_RXSTAT_GIANT)
1337 				sc->vr_stat.rx_giants++;
1338 			if (rxstat & VR_RXSTAT_RUNT)
1339 				sc->vr_stat.rx_runts++;
1340 			if (rxstat & VR_RXSTAT_BUFFERR)
1341 				sc->vr_stat.rx_no_buffers++;
1342 #ifdef	VR_SHOW_ERRORS
1343 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1344 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1345 #endif
1346 			vr_discard_rxbuf(rxd);
1347 			continue;
1348 		}
1349 
1350 		if (vr_newbuf(sc, cons) != 0) {
1351 			ifp->if_iqdrops++;
1352 			sc->vr_stat.rx_errors++;
1353 			sc->vr_stat.rx_no_mbufs++;
1354 			vr_discard_rxbuf(rxd);
1355 			continue;
1356 		}
1357 
1358 		/*
1359 		 * XXX The VIA Rhine chip includes the CRC with every
1360 		 * received frame, and there's no way to turn this
1361 		 * behavior off (at least, I can't find anything in
1362 		 * the manual that explains how to do it) so we have
1363 		 * to trim off the CRC manually.
1364 		 */
1365 		total_len = VR_RXBYTES(rxstat);
1366 		total_len -= ETHER_CRC_LEN;
1367 		m->m_pkthdr.len = m->m_len = total_len;
1368 #ifndef	__NO_STRICT_ALIGNMENT
1369 		/*
1370 		 * RX buffers must be 32-bit aligned.
1371 		 * Ignore the alignment problems on the non-strict alignment
1372 		 * platform. The performance hit incurred due to unaligned
1373 		 * accesses is much smaller than the hit produced by forcing
1374 		 * buffer copies all the time.
1375 		 */
1376 		vr_fixup_rx(m);
1377 #endif
1378 		m->m_pkthdr.rcvif = ifp;
1379 		ifp->if_ipackets++;
1380 		sc->vr_stat.rx_ok++;
1381 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1382 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1383 		    (rxctl & VR_RXCTL_IP) != 0) {
1384 			/* Checksum is valid for non-fragmented IP packets. */
1385 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1386 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1387 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1388 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1389 					m->m_pkthdr.csum_flags |=
1390 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1391 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1392 						m->m_pkthdr.csum_data = 0xffff;
1393 				}
1394 			}
1395 		}
1396 		VR_UNLOCK(sc);
1397 		(*ifp->if_input)(ifp, m);
1398 		VR_LOCK(sc);
1399 		rx_npkts++;
1400 	}
1401 
1402 	if (prog > 0) {
1403 		sc->vr_cdata.vr_rx_cons = cons;
1404 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1405 		    sc->vr_cdata.vr_rx_ring_map,
1406 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1407 	}
1408 	return (rx_npkts);
1409 }
1410 
1411 /*
1412  * A frame was downloaded to the chip. It's safe for us to clean up
1413  * the list buffers.
1414  */
1415 static void
1416 vr_txeof(struct vr_softc *sc)
1417 {
1418 	struct vr_txdesc	*txd;
1419 	struct vr_desc		*cur_tx;
1420 	struct ifnet		*ifp;
1421 	uint32_t		txctl, txstat;
1422 	int			cons, prod;
1423 
1424 	VR_LOCK_ASSERT(sc);
1425 
1426 	cons = sc->vr_cdata.vr_tx_cons;
1427 	prod = sc->vr_cdata.vr_tx_prod;
1428 	if (cons == prod)
1429 		return;
1430 
1431 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1432 	    sc->vr_cdata.vr_tx_ring_map,
1433 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1434 
1435 	ifp = sc->vr_ifp;
1436 	/*
1437 	 * Go through our tx list and free mbufs for those
1438 	 * frames that have been transmitted.
1439 	 */
1440 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1441 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1442 		txctl = le32toh(cur_tx->vr_ctl);
1443 		txstat = le32toh(cur_tx->vr_status);
1444 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1445 			break;
1446 
1447 		sc->vr_cdata.vr_tx_cnt--;
1448 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1449 		/* Only the first descriptor in the chain is valid. */
1450 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1451 			continue;
1452 
1453 		txd = &sc->vr_cdata.vr_txdesc[cons];
1454 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1455 		    __func__));
1456 
1457 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1458 			ifp->if_oerrors++;
1459 			sc->vr_stat.tx_errors++;
1460 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1461 				/* Give up and restart Tx. */
1462 				sc->vr_stat.tx_abort++;
1463 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1464 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1465 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1466 				    txd->tx_dmamap);
1467 				m_freem(txd->tx_m);
1468 				txd->tx_m = NULL;
1469 				VR_INC(cons, VR_TX_RING_CNT);
1470 				sc->vr_cdata.vr_tx_cons = cons;
1471 				if (vr_tx_stop(sc) != 0) {
1472 					device_printf(sc->vr_dev,
1473 					    "%s: Tx shutdown error -- "
1474 					    "resetting\n", __func__);
1475 					sc->vr_flags |= VR_F_RESTART;
1476 					return;
1477 				}
1478 				vr_tx_start(sc);
1479 				break;
1480 			}
1481 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1482 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1483 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1484 				sc->vr_stat.tx_underrun++;
1485 				/* Retry and restart Tx. */
1486 				sc->vr_cdata.vr_tx_cnt++;
1487 				sc->vr_cdata.vr_tx_cons = cons;
1488 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1489 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1490 				    sc->vr_cdata.vr_tx_ring_map,
1491 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1492 				vr_tx_underrun(sc);
1493 				return;
1494 			}
1495 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1496 				ifp->if_collisions++;
1497 				sc->vr_stat.tx_collisions++;
1498 			}
1499 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1500 				ifp->if_collisions++;
1501 				sc->vr_stat.tx_late_collisions++;
1502 			}
1503 		} else {
1504 			sc->vr_stat.tx_ok++;
1505 			ifp->if_opackets++;
1506 		}
1507 
1508 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1509 		    BUS_DMASYNC_POSTWRITE);
1510 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1511 		if (sc->vr_revid < REV_ID_VT3071_A) {
1512 			ifp->if_collisions +=
1513 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1514 			sc->vr_stat.tx_collisions +=
1515 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1516 		} else {
1517 			ifp->if_collisions += (txstat & 0x0f);
1518 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1519 		}
1520 		m_freem(txd->tx_m);
1521 		txd->tx_m = NULL;
1522 	}
1523 
1524 	sc->vr_cdata.vr_tx_cons = cons;
1525 	if (sc->vr_cdata.vr_tx_cnt == 0)
1526 		sc->vr_watchdog_timer = 0;
1527 }
1528 
1529 static void
1530 vr_tick(void *xsc)
1531 {
1532 	struct vr_softc		*sc;
1533 	struct mii_data		*mii;
1534 
1535 	sc = (struct vr_softc *)xsc;
1536 
1537 	VR_LOCK_ASSERT(sc);
1538 
1539 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1540 		device_printf(sc->vr_dev, "restarting\n");
1541 		sc->vr_stat.num_restart++;
1542 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1543 		vr_init_locked(sc);
1544 		sc->vr_flags &= ~VR_F_RESTART;
1545 	}
1546 
1547 	mii = device_get_softc(sc->vr_miibus);
1548 	mii_tick(mii);
1549 	if (sc->vr_link == 0)
1550 		vr_miibus_statchg(sc->vr_dev);
1551 	vr_watchdog(sc);
1552 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1553 }
1554 
1555 #ifdef DEVICE_POLLING
1556 static poll_handler_t vr_poll;
1557 static poll_handler_t vr_poll_locked;
1558 
1559 static int
1560 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1561 {
1562 	struct vr_softc *sc;
1563 	int rx_npkts;
1564 
1565 	sc = ifp->if_softc;
1566 	rx_npkts = 0;
1567 
1568 	VR_LOCK(sc);
1569 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1570 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1571 	VR_UNLOCK(sc);
1572 	return (rx_npkts);
1573 }
1574 
1575 static int
1576 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1577 {
1578 	struct vr_softc *sc;
1579 	int rx_npkts;
1580 
1581 	sc = ifp->if_softc;
1582 
1583 	VR_LOCK_ASSERT(sc);
1584 
1585 	sc->rxcycles = count;
1586 	rx_npkts = vr_rxeof(sc);
1587 	vr_txeof(sc);
1588 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1589 		vr_start_locked(ifp);
1590 
1591 	if (cmd == POLL_AND_CHECK_STATUS) {
1592 		uint16_t status;
1593 
1594 		/* Also check status register. */
1595 		status = CSR_READ_2(sc, VR_ISR);
1596 		if (status)
1597 			CSR_WRITE_2(sc, VR_ISR, status);
1598 
1599 		if ((status & VR_INTRS) == 0)
1600 			return (rx_npkts);
1601 
1602 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1603 		    VR_ISR_STATSOFLOW)) != 0) {
1604 			if (vr_error(sc, status) != 0)
1605 				return (rx_npkts);
1606 		}
1607 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1608 #ifdef	VR_SHOW_ERRORS
1609 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1610 			    __func__, status, VR_ISR_ERR_BITS);
1611 #endif
1612 			vr_rx_start(sc);
1613 		}
1614 	}
1615 	return (rx_npkts);
1616 }
1617 #endif /* DEVICE_POLLING */
1618 
1619 /* Back off the transmit threshold. */
1620 static void
1621 vr_tx_underrun(struct vr_softc *sc)
1622 {
1623 	int	thresh;
1624 
1625 	device_printf(sc->vr_dev, "Tx underrun -- ");
1626 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1627 		thresh = sc->vr_txthresh;
1628 		sc->vr_txthresh++;
1629 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1630 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1631 			printf("using store and forward mode\n");
1632 		} else
1633 			printf("increasing Tx threshold(%d -> %d)\n",
1634 			    vr_tx_threshold_tables[thresh].value,
1635 			    vr_tx_threshold_tables[thresh + 1].value);
1636 	} else
1637 		printf("\n");
1638 	sc->vr_stat.tx_underrun++;
1639 	if (vr_tx_stop(sc) != 0) {
1640 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1641 		    "resetting\n", __func__);
1642 		sc->vr_flags |= VR_F_RESTART;
1643 		return;
1644 	}
1645 	vr_tx_start(sc);
1646 }
1647 
1648 static void
1649 vr_intr(void *arg)
1650 {
1651 	struct vr_softc		*sc;
1652 	struct ifnet		*ifp;
1653 	uint16_t		status;
1654 
1655 	sc = (struct vr_softc *)arg;
1656 
1657 	VR_LOCK(sc);
1658 
1659 	if (sc->vr_suspended != 0)
1660 		goto done_locked;
1661 
1662 	status = CSR_READ_2(sc, VR_ISR);
1663 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1664 		goto done_locked;
1665 
1666 	ifp = sc->vr_ifp;
1667 #ifdef DEVICE_POLLING
1668 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1669 		goto done_locked;
1670 #endif
1671 
1672 	/* Suppress unwanted interrupts. */
1673 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1674 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1675 		CSR_WRITE_2(sc, VR_IMR, 0);
1676 		CSR_WRITE_2(sc, VR_ISR, status);
1677 		goto done_locked;
1678 	}
1679 
1680 	/* Disable interrupts. */
1681 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1682 
1683 	for (; (status & VR_INTRS) != 0;) {
1684 		CSR_WRITE_2(sc, VR_ISR, status);
1685 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1686 		    VR_ISR_STATSOFLOW)) != 0) {
1687 			if (vr_error(sc, status) != 0) {
1688 				VR_UNLOCK(sc);
1689 				return;
1690 			}
1691 		}
1692 		vr_rxeof(sc);
1693 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1694 #ifdef	VR_SHOW_ERRORS
1695 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1696 			    __func__, status, VR_ISR_ERR_BITS);
1697 #endif
1698 			/* Restart Rx if RxDMA SM was stopped. */
1699 			vr_rx_start(sc);
1700 		}
1701 		vr_txeof(sc);
1702 		status = CSR_READ_2(sc, VR_ISR);
1703 	}
1704 
1705 	/* Re-enable interrupts. */
1706 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1707 
1708 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1709 		vr_start_locked(ifp);
1710 
1711 done_locked:
1712 	VR_UNLOCK(sc);
1713 }
1714 
1715 static int
1716 vr_error(struct vr_softc *sc, uint16_t status)
1717 {
1718 	uint16_t pcis;
1719 
1720 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1721 	if ((status & VR_ISR_BUSERR) != 0) {
1722 		status &= ~VR_ISR_BUSERR;
1723 		sc->vr_stat.bus_errors++;
1724 		/* Disable further interrupts. */
1725 		CSR_WRITE_2(sc, VR_IMR, 0);
1726 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1727 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1728 		    "resetting\n", pcis);
1729 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1730 		sc->vr_flags |= VR_F_RESTART;
1731 		return (EAGAIN);
1732 	}
1733 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1734 		/* Link state change, duplex changes etc. */
1735 		status &= ~VR_ISR_LINKSTAT2;
1736 	}
1737 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1738 		status &= ~VR_ISR_STATSOFLOW;
1739 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1740 			/* Update MIB counters. */
1741 		}
1742 	}
1743 
1744 	if (status != 0)
1745 		device_printf(sc->vr_dev,
1746 		    "unhandled interrupt, status = 0x%04x\n", status);
1747 	return (0);
1748 }
1749 
1750 /*
1751  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1752  * pointers to the fragment pointers.
1753  */
1754 static int
1755 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1756 {
1757 	struct vr_txdesc	*txd;
1758 	struct vr_desc		*desc;
1759 	struct mbuf		*m;
1760 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1761 	uint32_t		csum_flags, txctl;
1762 	int			error, i, nsegs, prod, si;
1763 	int			padlen;
1764 
1765 	VR_LOCK_ASSERT(sc);
1766 
1767 	M_ASSERTPKTHDR((*m_head));
1768 
1769 	/*
1770 	 * Some VIA Rhine wants packet buffers to be longword
1771 	 * aligned, but very often our mbufs aren't. Rather than
1772 	 * waste time trying to decide when to copy and when not
1773 	 * to copy, just do it all the time.
1774 	 */
1775 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1776 		m = m_defrag(*m_head, M_DONTWAIT);
1777 		if (m == NULL) {
1778 			m_freem(*m_head);
1779 			*m_head = NULL;
1780 			return (ENOBUFS);
1781 		}
1782 		*m_head = m;
1783 	}
1784 
1785 	/*
1786 	 * The Rhine chip doesn't auto-pad, so we have to make
1787 	 * sure to pad short frames out to the minimum frame length
1788 	 * ourselves.
1789 	 */
1790 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1791 		m = *m_head;
1792 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1793 		if (M_WRITABLE(m) == 0) {
1794 			/* Get a writable copy. */
1795 			m = m_dup(*m_head, M_DONTWAIT);
1796 			m_freem(*m_head);
1797 			if (m == NULL) {
1798 				*m_head = NULL;
1799 				return (ENOBUFS);
1800 			}
1801 			*m_head = m;
1802 		}
1803 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1804 			m = m_defrag(m, M_DONTWAIT);
1805 			if (m == NULL) {
1806 				m_freem(*m_head);
1807 				*m_head = NULL;
1808 				return (ENOBUFS);
1809 			}
1810 		}
1811 		/*
1812 		 * Manually pad short frames, and zero the pad space
1813 		 * to avoid leaking data.
1814 		 */
1815 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1816 		m->m_pkthdr.len += padlen;
1817 		m->m_len = m->m_pkthdr.len;
1818 		*m_head = m;
1819 	}
1820 
1821 	prod = sc->vr_cdata.vr_tx_prod;
1822 	txd = &sc->vr_cdata.vr_txdesc[prod];
1823 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1824 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1825 	if (error == EFBIG) {
1826 		m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
1827 		if (m == NULL) {
1828 			m_freem(*m_head);
1829 			*m_head = NULL;
1830 			return (ENOBUFS);
1831 		}
1832 		*m_head = m;
1833 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1834 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1835 		if (error != 0) {
1836 			m_freem(*m_head);
1837 			*m_head = NULL;
1838 			return (error);
1839 		}
1840 	} else if (error != 0)
1841 		return (error);
1842 	if (nsegs == 0) {
1843 		m_freem(*m_head);
1844 		*m_head = NULL;
1845 		return (EIO);
1846 	}
1847 
1848 	/* Check number of available descriptors. */
1849 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1850 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1851 		return (ENOBUFS);
1852 	}
1853 
1854 	txd->tx_m = *m_head;
1855 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1856 	    BUS_DMASYNC_PREWRITE);
1857 
1858 	/* Set checksum offload. */
1859 	csum_flags = 0;
1860 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1861 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1862 			csum_flags |= VR_TXCTL_IPCSUM;
1863 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1864 			csum_flags |= VR_TXCTL_TCPCSUM;
1865 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1866 			csum_flags |= VR_TXCTL_UDPCSUM;
1867 	}
1868 
1869 	/*
1870 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1871 	 * is required for all descriptors regardless of single or
1872 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1873 	 * the first descriptor for a multi-fragmented frames. Without
1874 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1875 	 * send any frames.
1876 	 */
1877 	si = prod;
1878 	for (i = 0; i < nsegs; i++) {
1879 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1880 		desc->vr_status = 0;
1881 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1882 		if (i == 0)
1883 			txctl |= VR_TXCTL_FIRSTFRAG;
1884 		desc->vr_ctl = htole32(txctl);
1885 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1886 		sc->vr_cdata.vr_tx_cnt++;
1887 		VR_INC(prod, VR_TX_RING_CNT);
1888 	}
1889 	/* Update producer index. */
1890 	sc->vr_cdata.vr_tx_prod = prod;
1891 
1892 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1893 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1894 
1895 	/*
1896 	 * Set EOP on the last desciptor and reuqest Tx completion
1897 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1898 	 */
1899 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1900 	if (sc->vr_cdata.vr_tx_pkts == 0)
1901 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1902 	else
1903 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1904 
1905 	/* Lastly turn the first descriptor ownership to hardware. */
1906 	desc = &sc->vr_rdata.vr_tx_ring[si];
1907 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1908 
1909 	/* Sync descriptors. */
1910 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1911 	    sc->vr_cdata.vr_tx_ring_map,
1912 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1913 
1914 	return (0);
1915 }
1916 
1917 static void
1918 vr_start(struct ifnet *ifp)
1919 {
1920 	struct vr_softc		*sc;
1921 
1922 	sc = ifp->if_softc;
1923 	VR_LOCK(sc);
1924 	vr_start_locked(ifp);
1925 	VR_UNLOCK(sc);
1926 }
1927 
1928 static void
1929 vr_start_locked(struct ifnet *ifp)
1930 {
1931 	struct vr_softc		*sc;
1932 	struct mbuf		*m_head;
1933 	int			enq;
1934 
1935 	sc = ifp->if_softc;
1936 
1937 	VR_LOCK_ASSERT(sc);
1938 
1939 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1940 	    IFF_DRV_RUNNING || sc->vr_link == 0)
1941 		return;
1942 
1943 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1944 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1945 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1946 		if (m_head == NULL)
1947 			break;
1948 		/*
1949 		 * Pack the data into the transmit ring. If we
1950 		 * don't have room, set the OACTIVE flag and wait
1951 		 * for the NIC to drain the ring.
1952 		 */
1953 		if (vr_encap(sc, &m_head)) {
1954 			if (m_head == NULL)
1955 				break;
1956 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1957 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1958 			break;
1959 		}
1960 
1961 		enq++;
1962 		/*
1963 		 * If there's a BPF listener, bounce a copy of this frame
1964 		 * to him.
1965 		 */
1966 		ETHER_BPF_MTAP(ifp, m_head);
1967 	}
1968 
1969 	if (enq > 0) {
1970 		/* Tell the chip to start transmitting. */
1971 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1972 		/* Set a timeout in case the chip goes out to lunch. */
1973 		sc->vr_watchdog_timer = 5;
1974 	}
1975 }
1976 
1977 static void
1978 vr_init(void *xsc)
1979 {
1980 	struct vr_softc		*sc;
1981 
1982 	sc = (struct vr_softc *)xsc;
1983 	VR_LOCK(sc);
1984 	vr_init_locked(sc);
1985 	VR_UNLOCK(sc);
1986 }
1987 
1988 static void
1989 vr_init_locked(struct vr_softc *sc)
1990 {
1991 	struct ifnet		*ifp;
1992 	struct mii_data		*mii;
1993 	bus_addr_t		addr;
1994 	int			i;
1995 
1996 	VR_LOCK_ASSERT(sc);
1997 
1998 	ifp = sc->vr_ifp;
1999 	mii = device_get_softc(sc->vr_miibus);
2000 
2001 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2002 		return;
2003 
2004 	/* Cancel pending I/O and free all RX/TX buffers. */
2005 	vr_stop(sc);
2006 	vr_reset(sc);
2007 
2008 	/* Set our station address. */
2009 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2010 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2011 
2012 	/* Set DMA size. */
2013 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2014 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2015 
2016 	/*
2017 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2018 	 * so we must set both.
2019 	 */
2020 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2021 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2022 
2023 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2024 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2025 
2026 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2027 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2028 
2029 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2030 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2031 
2032 	/* Init circular RX list. */
2033 	if (vr_rx_ring_init(sc) != 0) {
2034 		device_printf(sc->vr_dev,
2035 		    "initialization failed: no memory for rx buffers\n");
2036 		vr_stop(sc);
2037 		return;
2038 	}
2039 
2040 	/* Init tx descriptors. */
2041 	vr_tx_ring_init(sc);
2042 
2043 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2044 		uint8_t vcam[2] = { 0, 0 };
2045 
2046 		/* Disable VLAN hardware tag insertion/stripping. */
2047 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2048 		/* Disable VLAN hardware filtering. */
2049 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2050 		/* Disable all CAM entries. */
2051 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2052 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2053 		/* Enable the first VLAN CAM. */
2054 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2055 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2056 	}
2057 
2058 	/*
2059 	 * Set up receive filter.
2060 	 */
2061 	vr_set_filter(sc);
2062 
2063 	/*
2064 	 * Load the address of the RX ring.
2065 	 */
2066 	addr = VR_RX_RING_ADDR(sc, 0);
2067 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2068 	/*
2069 	 * Load the address of the TX ring.
2070 	 */
2071 	addr = VR_TX_RING_ADDR(sc, 0);
2072 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2073 	/* Default : full-duplex, no Tx poll. */
2074 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2075 
2076 	/* Set flow-control parameters for Rhine III. */
2077 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2078  		/* Rx buffer count available for incoming packet. */
2079 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
2080 		/*
2081 		 * Tx pause low threshold : 16 free receive buffers
2082 		 * Tx pause XON high threshold : 48 free receive buffers
2083 		 */
2084 		CSR_WRITE_1(sc, VR_FLOWCR1,
2085 		    VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
2086 		/* Set Tx pause timer. */
2087 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2088 	}
2089 
2090 	/* Enable receiver and transmitter. */
2091 	CSR_WRITE_1(sc, VR_CR0,
2092 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2093 
2094 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2095 #ifdef DEVICE_POLLING
2096 	/*
2097 	 * Disable interrupts if we are polling.
2098 	 */
2099 	if (ifp->if_capenable & IFCAP_POLLING)
2100 		CSR_WRITE_2(sc, VR_IMR, 0);
2101 	else
2102 #endif
2103 	/*
2104 	 * Enable interrupts and disable MII intrs.
2105 	 */
2106 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2107 	if (sc->vr_revid > REV_ID_VT6102_A)
2108 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2109 
2110 	sc->vr_link = 0;
2111 	mii_mediachg(mii);
2112 
2113 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2114 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2115 
2116 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2117 }
2118 
2119 /*
2120  * Set media options.
2121  */
2122 static int
2123 vr_ifmedia_upd(struct ifnet *ifp)
2124 {
2125 	struct vr_softc		*sc;
2126 	struct mii_data		*mii;
2127 	struct mii_softc	*miisc;
2128 	int			error;
2129 
2130 	sc = ifp->if_softc;
2131 	VR_LOCK(sc);
2132 	mii = device_get_softc(sc->vr_miibus);
2133 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2134 		PHY_RESET(miisc);
2135 	error = mii_mediachg(mii);
2136 	VR_UNLOCK(sc);
2137 
2138 	return (error);
2139 }
2140 
2141 /*
2142  * Report current media status.
2143  */
2144 static void
2145 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2146 {
2147 	struct vr_softc		*sc;
2148 	struct mii_data		*mii;
2149 
2150 	sc = ifp->if_softc;
2151 	mii = device_get_softc(sc->vr_miibus);
2152 	VR_LOCK(sc);
2153 	if ((ifp->if_flags & IFF_UP) == 0) {
2154 		VR_UNLOCK(sc);
2155 		return;
2156 	}
2157 	mii_pollstat(mii);
2158 	VR_UNLOCK(sc);
2159 	ifmr->ifm_active = mii->mii_media_active;
2160 	ifmr->ifm_status = mii->mii_media_status;
2161 }
2162 
2163 static int
2164 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2165 {
2166 	struct vr_softc		*sc;
2167 	struct ifreq		*ifr;
2168 	struct mii_data		*mii;
2169 	int			error, mask;
2170 
2171 	sc = ifp->if_softc;
2172 	ifr = (struct ifreq *)data;
2173 	error = 0;
2174 
2175 	switch (command) {
2176 	case SIOCSIFFLAGS:
2177 		VR_LOCK(sc);
2178 		if (ifp->if_flags & IFF_UP) {
2179 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2180 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2181 				    (IFF_PROMISC | IFF_ALLMULTI))
2182 					vr_set_filter(sc);
2183 			} else {
2184 				if (sc->vr_detach == 0)
2185 					vr_init_locked(sc);
2186 			}
2187 		} else {
2188 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2189 				vr_stop(sc);
2190 		}
2191 		sc->vr_if_flags = ifp->if_flags;
2192 		VR_UNLOCK(sc);
2193 		break;
2194 	case SIOCADDMULTI:
2195 	case SIOCDELMULTI:
2196 		VR_LOCK(sc);
2197 		vr_set_filter(sc);
2198 		VR_UNLOCK(sc);
2199 		break;
2200 	case SIOCGIFMEDIA:
2201 	case SIOCSIFMEDIA:
2202 		mii = device_get_softc(sc->vr_miibus);
2203 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2204 		break;
2205 	case SIOCSIFCAP:
2206 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2207 #ifdef DEVICE_POLLING
2208 		if (mask & IFCAP_POLLING) {
2209 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2210 				error = ether_poll_register(vr_poll, ifp);
2211 				if (error != 0)
2212 					break;
2213 				VR_LOCK(sc);
2214 				/* Disable interrupts. */
2215 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2216 				ifp->if_capenable |= IFCAP_POLLING;
2217 				VR_UNLOCK(sc);
2218 			} else {
2219 				error = ether_poll_deregister(ifp);
2220 				/* Enable interrupts. */
2221 				VR_LOCK(sc);
2222 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2223 				ifp->if_capenable &= ~IFCAP_POLLING;
2224 				VR_UNLOCK(sc);
2225 			}
2226 		}
2227 #endif /* DEVICE_POLLING */
2228 		if ((mask & IFCAP_TXCSUM) != 0 &&
2229 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2230 			ifp->if_capenable ^= IFCAP_TXCSUM;
2231 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2232 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2233 			else
2234 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2235 		}
2236 		if ((mask & IFCAP_RXCSUM) != 0 &&
2237 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2238 			ifp->if_capenable ^= IFCAP_RXCSUM;
2239 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2240 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2241 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2242 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2243 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2244 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2245 		break;
2246 	default:
2247 		error = ether_ioctl(ifp, command, data);
2248 		break;
2249 	}
2250 
2251 	return (error);
2252 }
2253 
2254 static void
2255 vr_watchdog(struct vr_softc *sc)
2256 {
2257 	struct ifnet		*ifp;
2258 
2259 	VR_LOCK_ASSERT(sc);
2260 
2261 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2262 		return;
2263 
2264 	ifp = sc->vr_ifp;
2265 	/*
2266 	 * Reclaim first as we don't request interrupt for every packets.
2267 	 */
2268 	vr_txeof(sc);
2269 	if (sc->vr_cdata.vr_tx_cnt == 0)
2270 		return;
2271 
2272 	if (sc->vr_link == 0) {
2273 		if (bootverbose)
2274 			if_printf(sc->vr_ifp, "watchdog timeout "
2275 			   "(missed link)\n");
2276 		ifp->if_oerrors++;
2277 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2278 		vr_init_locked(sc);
2279 		return;
2280 	}
2281 
2282 	ifp->if_oerrors++;
2283 	if_printf(ifp, "watchdog timeout\n");
2284 
2285 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2286 	vr_init_locked(sc);
2287 
2288 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2289 		vr_start_locked(ifp);
2290 }
2291 
2292 static void
2293 vr_tx_start(struct vr_softc *sc)
2294 {
2295 	bus_addr_t	addr;
2296 	uint8_t		cmd;
2297 
2298 	cmd = CSR_READ_1(sc, VR_CR0);
2299 	if ((cmd & VR_CR0_TX_ON) == 0) {
2300 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2301 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2302 		cmd |= VR_CR0_TX_ON;
2303 		CSR_WRITE_1(sc, VR_CR0, cmd);
2304 	}
2305 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2306 		sc->vr_watchdog_timer = 5;
2307 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2308 	}
2309 }
2310 
2311 static void
2312 vr_rx_start(struct vr_softc *sc)
2313 {
2314 	bus_addr_t	addr;
2315 	uint8_t		cmd;
2316 
2317 	cmd = CSR_READ_1(sc, VR_CR0);
2318 	if ((cmd & VR_CR0_RX_ON) == 0) {
2319 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2320 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2321 		cmd |= VR_CR0_RX_ON;
2322 		CSR_WRITE_1(sc, VR_CR0, cmd);
2323 	}
2324 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2325 }
2326 
2327 static int
2328 vr_tx_stop(struct vr_softc *sc)
2329 {
2330 	int		i;
2331 	uint8_t		cmd;
2332 
2333 	cmd = CSR_READ_1(sc, VR_CR0);
2334 	if ((cmd & VR_CR0_TX_ON) != 0) {
2335 		cmd &= ~VR_CR0_TX_ON;
2336 		CSR_WRITE_1(sc, VR_CR0, cmd);
2337 		for (i = VR_TIMEOUT; i > 0; i--) {
2338 			DELAY(5);
2339 			cmd = CSR_READ_1(sc, VR_CR0);
2340 			if ((cmd & VR_CR0_TX_ON) == 0)
2341 				break;
2342 		}
2343 		if (i == 0)
2344 			return (ETIMEDOUT);
2345 	}
2346 	return (0);
2347 }
2348 
2349 static int
2350 vr_rx_stop(struct vr_softc *sc)
2351 {
2352 	int		i;
2353 	uint8_t		cmd;
2354 
2355 	cmd = CSR_READ_1(sc, VR_CR0);
2356 	if ((cmd & VR_CR0_RX_ON) != 0) {
2357 		cmd &= ~VR_CR0_RX_ON;
2358 		CSR_WRITE_1(sc, VR_CR0, cmd);
2359 		for (i = VR_TIMEOUT; i > 0; i--) {
2360 			DELAY(5);
2361 			cmd = CSR_READ_1(sc, VR_CR0);
2362 			if ((cmd & VR_CR0_RX_ON) == 0)
2363 				break;
2364 		}
2365 		if (i == 0)
2366 			return (ETIMEDOUT);
2367 	}
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Stop the adapter and free any mbufs allocated to the
2373  * RX and TX lists.
2374  */
2375 static void
2376 vr_stop(struct vr_softc *sc)
2377 {
2378 	struct vr_txdesc	*txd;
2379 	struct vr_rxdesc	*rxd;
2380 	struct ifnet		*ifp;
2381 	int			i;
2382 
2383 	VR_LOCK_ASSERT(sc);
2384 
2385 	ifp = sc->vr_ifp;
2386 	sc->vr_watchdog_timer = 0;
2387 
2388 	callout_stop(&sc->vr_stat_callout);
2389 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2390 
2391 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2392 	if (vr_rx_stop(sc) != 0)
2393 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2394 	if (vr_tx_stop(sc) != 0)
2395 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2396 	/* Clear pending interrupts. */
2397 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2398 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2399 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2400 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2401 
2402 	/*
2403 	 * Free RX and TX mbufs still in the queues.
2404 	 */
2405 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2406 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2407 		if (rxd->rx_m != NULL) {
2408 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2409 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2410 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2411 			    rxd->rx_dmamap);
2412 			m_freem(rxd->rx_m);
2413 			rxd->rx_m = NULL;
2414 		}
2415         }
2416 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2417 		txd = &sc->vr_cdata.vr_txdesc[i];
2418 		if (txd->tx_m != NULL) {
2419 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2420 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2421 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2422 			    txd->tx_dmamap);
2423 			m_freem(txd->tx_m);
2424 			txd->tx_m = NULL;
2425 		}
2426         }
2427 }
2428 
2429 /*
2430  * Stop all chip I/O so that the kernel's probe routines don't
2431  * get confused by errant DMAs when rebooting.
2432  */
2433 static int
2434 vr_shutdown(device_t dev)
2435 {
2436 
2437 	return (vr_suspend(dev));
2438 }
2439 
2440 static int
2441 vr_suspend(device_t dev)
2442 {
2443 	struct vr_softc		*sc;
2444 
2445 	sc = device_get_softc(dev);
2446 
2447 	VR_LOCK(sc);
2448 	vr_stop(sc);
2449 	vr_setwol(sc);
2450 	sc->vr_suspended = 1;
2451 	VR_UNLOCK(sc);
2452 
2453 	return (0);
2454 }
2455 
2456 static int
2457 vr_resume(device_t dev)
2458 {
2459 	struct vr_softc		*sc;
2460 	struct ifnet		*ifp;
2461 
2462 	sc = device_get_softc(dev);
2463 
2464 	VR_LOCK(sc);
2465 	ifp = sc->vr_ifp;
2466 	vr_clrwol(sc);
2467 	vr_reset(sc);
2468 	if (ifp->if_flags & IFF_UP)
2469 		vr_init_locked(sc);
2470 
2471 	sc->vr_suspended = 0;
2472 	VR_UNLOCK(sc);
2473 
2474 	return (0);
2475 }
2476 
2477 static void
2478 vr_setwol(struct vr_softc *sc)
2479 {
2480 	struct ifnet		*ifp;
2481 	int			pmc;
2482 	uint16_t		pmstat;
2483 	uint8_t			v;
2484 
2485 	VR_LOCK_ASSERT(sc);
2486 
2487 	if (sc->vr_revid < REV_ID_VT6102_A ||
2488 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2489 		return;
2490 
2491 	ifp = sc->vr_ifp;
2492 
2493 	/* Clear WOL configuration. */
2494 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2495 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2496 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2497 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2498 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2499 		/* Newer Rhine III supports two additional patterns. */
2500 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2501 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2502 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2503 	}
2504 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2505 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2506 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2507 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2508 	/*
2509 	 * It seems that multicast wakeup frames require programming pattern
2510 	 * registers and valid CRC as well as pattern mask for each pattern.
2511 	 * While it's possible to setup such a pattern it would complicate
2512 	 * WOL configuration so ignore multicast wakeup frames.
2513 	 */
2514 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2515 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2516 		v = CSR_READ_1(sc, VR_STICKHW);
2517 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2518 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2519 	}
2520 
2521 	/* Put hardware into sleep. */
2522 	v = CSR_READ_1(sc, VR_STICKHW);
2523 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2524 	CSR_WRITE_1(sc, VR_STICKHW, v);
2525 
2526 	/* Request PME if WOL is requested. */
2527 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2528 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2529 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2530 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2531 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2532 }
2533 
2534 static void
2535 vr_clrwol(struct vr_softc *sc)
2536 {
2537 	uint8_t			v;
2538 
2539 	VR_LOCK_ASSERT(sc);
2540 
2541 	if (sc->vr_revid < REV_ID_VT6102_A)
2542 		return;
2543 
2544 	/* Take hardware out of sleep. */
2545 	v = CSR_READ_1(sc, VR_STICKHW);
2546 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2547 	CSR_WRITE_1(sc, VR_STICKHW, v);
2548 
2549 	/* Clear WOL configuration as WOL may interfere normal operation. */
2550 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2551 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2552 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2553 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2554 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2555 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2556 		/* Newer Rhine III supports two additional patterns. */
2557 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2558 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2559 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2560 	}
2561 }
2562 
2563 static int
2564 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2565 {
2566 	struct vr_softc		*sc;
2567 	struct vr_statistics	*stat;
2568 	int			error;
2569 	int			result;
2570 
2571 	result = -1;
2572 	error = sysctl_handle_int(oidp, &result, 0, req);
2573 
2574 	if (error != 0 || req->newptr == NULL)
2575 		return (error);
2576 
2577 	if (result == 1) {
2578 		sc = (struct vr_softc *)arg1;
2579 		stat = &sc->vr_stat;
2580 
2581 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2582 		printf("Outbound good frames : %ju\n",
2583 		    (uintmax_t)stat->tx_ok);
2584 		printf("Inbound good frames : %ju\n",
2585 		    (uintmax_t)stat->rx_ok);
2586 		printf("Outbound errors : %u\n", stat->tx_errors);
2587 		printf("Inbound errors : %u\n", stat->rx_errors);
2588 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2589 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2590 		printf("Inbound FIFO overflows : %d\n",
2591 		    stat->rx_fifo_overflows);
2592 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2593 		printf("Inbound frame alignment errors : %u\n",
2594 		    stat->rx_alignment);
2595 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2596 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2597 		printf("Outbound aborted with excessive collisions : %u\n",
2598 		    stat->tx_abort);
2599 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2600 		printf("Outbound late collisions : %u\n",
2601 		    stat->tx_late_collisions);
2602 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2603 		printf("PCI bus errors : %u\n", stat->bus_errors);
2604 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2605 		    stat->num_restart);
2606 	}
2607 
2608 	return (error);
2609 }
2610