xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision f5e9c916afed4a948fe5c03bfaee038d165e12ab)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/if_media.h>
68 #include <net/ifq.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/if_ether.h>
73 #include <netinet/ip.h>
74 #include <netinet/ip6.h>
75 #include <netinet/sctp.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_lro.h>
78 #include <netinet/udp.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 
83 #include "thunder_bgx.h"
84 #include "nic_reg.h"
85 #include "nic.h"
86 #include "q_struct.h"
87 #include "nicvf_queues.h"
88 
89 #define	DEBUG
90 #undef DEBUG
91 
92 #ifdef DEBUG
93 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
94 #else
95 #define	dprintf(dev, fmt, ...)
96 #endif
97 
98 MALLOC_DECLARE(M_NICVF);
99 
100 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
101 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
102 static void nicvf_sq_disable(struct nicvf *, int);
103 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
104 static void nicvf_put_sq_desc(struct snd_queue *, int);
105 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
106     boolean_t);
107 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
108 
109 static void nicvf_rbdr_task(void *, int);
110 static void nicvf_rbdr_task_nowait(void *, int);
111 
112 struct rbuf_info {
113 	bus_dma_tag_t	dmat;
114 	bus_dmamap_t	dmap;
115 	struct mbuf *	mbuf;
116 };
117 
118 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
119 
120 /* Poll a register for a specific value */
121 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
122 			  uint64_t reg, int bit_pos, int bits, int val)
123 {
124 	uint64_t bit_mask;
125 	uint64_t reg_val;
126 	int timeout = 10;
127 
128 	bit_mask = (1UL << bits) - 1;
129 	bit_mask = (bit_mask << bit_pos);
130 
131 	while (timeout) {
132 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
133 		if (((reg_val & bit_mask) >> bit_pos) == val)
134 			return (0);
135 
136 		DELAY(1000);
137 		timeout--;
138 	}
139 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
140 	return (ETIMEDOUT);
141 }
142 
143 /* Callback for bus_dmamap_load() */
144 static void
145 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
146 {
147 	bus_addr_t *paddr;
148 
149 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
150 	paddr = arg;
151 	*paddr = segs->ds_addr;
152 }
153 
154 /* Allocate memory for a queue's descriptors */
155 static int
156 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
157     int q_len, int desc_size, int align_bytes)
158 {
159 	int err, err_dmat;
160 
161 	/* Create DMA tag first */
162 	err = bus_dma_tag_create(
163 	    bus_get_dma_tag(nic->dev),		/* parent tag */
164 	    align_bytes,			/* alignment */
165 	    0,					/* boundary */
166 	    BUS_SPACE_MAXADDR,			/* lowaddr */
167 	    BUS_SPACE_MAXADDR,			/* highaddr */
168 	    NULL, NULL,				/* filtfunc, filtfuncarg */
169 	    (q_len * desc_size),		/* maxsize */
170 	    1,					/* nsegments */
171 	    (q_len * desc_size),		/* maxsegsize */
172 	    0,					/* flags */
173 	    NULL, NULL,				/* lockfunc, lockfuncarg */
174 	    &dmem->dmat);			/* dmat */
175 
176 	if (err != 0) {
177 		device_printf(nic->dev,
178 		    "Failed to create busdma tag for descriptors ring\n");
179 		return (err);
180 	}
181 
182 	/* Allocate segment of continuous DMA safe memory */
183 	err = bus_dmamem_alloc(
184 	    dmem->dmat,				/* DMA tag */
185 	    &dmem->base,			/* virtual address */
186 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
187 	    &dmem->dmap);			/* DMA map */
188 	if (err != 0) {
189 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
190 		    "descriptors ring\n");
191 		goto dmamem_fail;
192 	}
193 
194 	err = bus_dmamap_load(
195 	    dmem->dmat,
196 	    dmem->dmap,
197 	    dmem->base,
198 	    (q_len * desc_size),		/* allocation size */
199 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
200 	    &dmem->phys_base,			/* physical address */
201 	    BUS_DMA_NOWAIT);
202 	if (err != 0) {
203 		device_printf(nic->dev,
204 		    "Cannot load DMA map of descriptors ring\n");
205 		goto dmamap_fail;
206 	}
207 
208 	dmem->q_len = q_len;
209 	dmem->size = (desc_size * q_len);
210 
211 	return (0);
212 
213 dmamap_fail:
214 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
215 	dmem->phys_base = 0;
216 dmamem_fail:
217 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
218 	dmem->base = NULL;
219 	KASSERT(err_dmat == 0,
220 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
221 
222 	return (err);
223 }
224 
225 /* Free queue's descriptor memory */
226 static void
227 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
228 {
229 	int err;
230 
231 	if ((dmem == NULL) || (dmem->base == NULL))
232 		return;
233 
234 	/* Unload a map */
235 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
236 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
237 	/* Free DMA memory */
238 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
239 	/* Destroy DMA tag */
240 	err = bus_dma_tag_destroy(dmem->dmat);
241 
242 	KASSERT(err == 0,
243 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
244 
245 	dmem->phys_base = 0;
246 	dmem->base = NULL;
247 }
248 
249 /*
250  * Allocate buffer for packet reception
251  * HW returns memory address where packet is DMA'ed but not a pointer
252  * into RBDR ring, so save buffer address at the start of fragment and
253  * align the start address to a cache aligned address
254  */
255 static __inline int
256 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
257     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
258 {
259 	struct mbuf *mbuf;
260 	struct rbuf_info *rinfo;
261 	bus_dma_segment_t segs[1];
262 	int nsegs;
263 	int err;
264 
265 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
266 	if (mbuf == NULL)
267 		return (ENOMEM);
268 
269 	/*
270 	 * The length is equal to the actual length + one 128b line
271 	 * used as a room for rbuf_info structure.
272 	 */
273 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
274 
275 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
276 	    &nsegs, BUS_DMA_NOWAIT);
277 	if (err != 0) {
278 		device_printf(nic->dev,
279 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
280 		    err);
281 		m_freem(mbuf);
282 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
283 		return (err);
284 	}
285 	if (nsegs != 1)
286 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
287 	/*
288 	 * Now use the room for rbuf_info structure
289 	 * and adjust mbuf data and length.
290 	 */
291 	rinfo = (struct rbuf_info *)mbuf->m_data;
292 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
293 
294 	rinfo->dmat = rbdr->rbdr_buff_dmat;
295 	rinfo->dmap = dmap;
296 	rinfo->mbuf = mbuf;
297 
298 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
299 
300 	return (0);
301 }
302 
303 /* Retrieve mbuf for received packet */
304 static struct mbuf *
305 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
306 {
307 	struct mbuf *mbuf;
308 	struct rbuf_info *rinfo;
309 
310 	/* Get buffer start address and alignment offset */
311 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
312 
313 	/* Now retrieve mbuf to give to stack */
314 	mbuf = rinfo->mbuf;
315 	if (__predict_false(mbuf == NULL)) {
316 		panic("%s: Received packet fragment with NULL mbuf",
317 		    device_get_nameunit(nic->dev));
318 	}
319 	/*
320 	 * Clear the mbuf in the descriptor to indicate
321 	 * that this slot is processed and free to use.
322 	 */
323 	rinfo->mbuf = NULL;
324 
325 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
326 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
327 
328 	return (mbuf);
329 }
330 
331 /* Allocate RBDR ring and populate receive buffers */
332 static int
333 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
334     int buf_size, int qidx)
335 {
336 	bus_dmamap_t dmap;
337 	bus_addr_t rbuf;
338 	struct rbdr_entry_t *desc;
339 	int idx;
340 	int err;
341 
342 	/* Allocate rbdr descriptors ring */
343 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
344 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
345 	if (err != 0) {
346 		device_printf(nic->dev,
347 		    "Failed to create RBDR descriptors ring\n");
348 		return (err);
349 	}
350 
351 	rbdr->desc = rbdr->dmem.base;
352 	/*
353 	 * Buffer size has to be in multiples of 128 bytes.
354 	 * Make room for metadata of size of one line (128 bytes).
355 	 */
356 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
357 	rbdr->enable = TRUE;
358 	rbdr->thresh = RBDR_THRESH;
359 	rbdr->nic = nic;
360 	rbdr->idx = qidx;
361 
362 	/*
363 	 * Create DMA tag for Rx buffers.
364 	 * Each map created using this tag is intended to store Rx payload for
365 	 * one fragment and one header structure containing rbuf_info (thus
366 	 * additional 128 byte line since RB must be a multiple of 128 byte
367 	 * cache line).
368 	 */
369 	if (buf_size > MCLBYTES) {
370 		device_printf(nic->dev,
371 		    "Buffer size to large for mbuf cluster\n");
372 		return (EINVAL);
373 	}
374 	err = bus_dma_tag_create(
375 	    bus_get_dma_tag(nic->dev),		/* parent tag */
376 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
377 	    0,					/* boundary */
378 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
379 	    DMAP_MIN_PHYSADDR,			/* highaddr */
380 	    NULL, NULL,				/* filtfunc, filtfuncarg */
381 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
382 	    1,					/* nsegments */
383 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
384 	    0,					/* flags */
385 	    NULL, NULL,				/* lockfunc, lockfuncarg */
386 	    &rbdr->rbdr_buff_dmat);		/* dmat */
387 
388 	if (err != 0) {
389 		device_printf(nic->dev,
390 		    "Failed to create busdma tag for RBDR buffers\n");
391 		return (err);
392 	}
393 
394 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
395 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
396 
397 	for (idx = 0; idx < ring_len; idx++) {
398 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
399 		if (err != 0) {
400 			device_printf(nic->dev,
401 			    "Failed to create DMA map for RB\n");
402 			return (err);
403 		}
404 		rbdr->rbdr_buff_dmaps[idx] = dmap;
405 
406 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
407 		    DMA_BUFFER_LEN, &rbuf);
408 		if (err != 0)
409 			return (err);
410 
411 		desc = GET_RBDR_DESC(rbdr, idx);
412 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
413 	}
414 
415 	/* Allocate taskqueue */
416 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
417 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
418 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
419 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
420 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
421 	    device_get_nameunit(nic->dev));
422 
423 	return (0);
424 }
425 
426 /* Free RBDR ring and its receive buffers */
427 static void
428 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
429 {
430 	struct mbuf *mbuf;
431 	struct queue_set *qs;
432 	struct rbdr_entry_t *desc;
433 	struct rbuf_info *rinfo;
434 	bus_addr_t buf_addr;
435 	int head, tail, idx;
436 	int err;
437 
438 	qs = nic->qs;
439 
440 	if ((qs == NULL) || (rbdr == NULL))
441 		return;
442 
443 	rbdr->enable = FALSE;
444 	if (rbdr->rbdr_taskq != NULL) {
445 		/* Remove tasks */
446 		while (taskqueue_cancel(rbdr->rbdr_taskq,
447 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
448 			/* Finish the nowait task first */
449 			taskqueue_drain(rbdr->rbdr_taskq,
450 			    &rbdr->rbdr_task_nowait);
451 		}
452 		taskqueue_free(rbdr->rbdr_taskq);
453 		rbdr->rbdr_taskq = NULL;
454 
455 		while (taskqueue_cancel(taskqueue_thread,
456 		    &rbdr->rbdr_task, NULL) != 0) {
457 			/* Now finish the sleepable task */
458 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
459 		}
460 	}
461 
462 	/*
463 	 * Free all of the memory under the RB descriptors.
464 	 * There are assumptions here:
465 	 * 1. Corresponding RBDR is disabled
466 	 *    - it is safe to operate using head and tail indexes
467 	 * 2. All bffers that were received are properly freed by
468 	 *    the receive handler
469 	 *    - there is no need to unload DMA map and free MBUF for other
470 	 *      descriptors than unused ones
471 	 */
472 	if (rbdr->rbdr_buff_dmat != NULL) {
473 		head = rbdr->head;
474 		tail = rbdr->tail;
475 		while (head != tail) {
476 			desc = GET_RBDR_DESC(rbdr, head);
477 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
478 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
479 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
480 			mbuf = rinfo->mbuf;
481 			/* This will destroy everything including rinfo! */
482 			m_freem(mbuf);
483 			head++;
484 			head &= (rbdr->dmem.q_len - 1);
485 		}
486 		/* Free tail descriptor */
487 		desc = GET_RBDR_DESC(rbdr, tail);
488 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
489 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
490 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
491 		mbuf = rinfo->mbuf;
492 		/* This will destroy everything including rinfo! */
493 		m_freem(mbuf);
494 
495 		/* Destroy DMA maps */
496 		for (idx = 0; idx < qs->rbdr_len; idx++) {
497 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
498 				continue;
499 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
500 			    rbdr->rbdr_buff_dmaps[idx]);
501 			KASSERT(err == 0,
502 			    ("%s: Could not destroy DMA map for RB, desc: %d",
503 			    __func__, idx));
504 			rbdr->rbdr_buff_dmaps[idx] = NULL;
505 		}
506 
507 		/* Now destroy the tag */
508 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
509 		KASSERT(err == 0,
510 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
511 
512 		rbdr->head = 0;
513 		rbdr->tail = 0;
514 	}
515 
516 	/* Free RBDR ring */
517 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
518 }
519 
520 /*
521  * Refill receive buffer descriptors with new buffers.
522  */
523 static int
524 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
525 {
526 	struct nicvf *nic;
527 	struct queue_set *qs;
528 	int rbdr_idx;
529 	int tail, qcount;
530 	int refill_rb_cnt;
531 	struct rbdr_entry_t *desc;
532 	bus_dmamap_t dmap;
533 	bus_addr_t rbuf;
534 	boolean_t rb_alloc_fail;
535 	int new_rb;
536 
537 	rb_alloc_fail = TRUE;
538 	new_rb = 0;
539 	nic = rbdr->nic;
540 	qs = nic->qs;
541 	rbdr_idx = rbdr->idx;
542 
543 	/* Check if it's enabled */
544 	if (!rbdr->enable)
545 		return (0);
546 
547 	/* Get no of desc's to be refilled */
548 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
549 	qcount &= 0x7FFFF;
550 	/* Doorbell can be ringed with a max of ring size minus 1 */
551 	if (qcount >= (qs->rbdr_len - 1)) {
552 		rb_alloc_fail = FALSE;
553 		goto out;
554 	} else
555 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
556 
557 	/* Start filling descs from tail */
558 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
559 	while (refill_rb_cnt) {
560 		tail++;
561 		tail &= (rbdr->dmem.q_len - 1);
562 
563 		dmap = rbdr->rbdr_buff_dmaps[tail];
564 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
565 		    DMA_BUFFER_LEN, &rbuf)) {
566 			/* Something went wrong. Resign */
567 			break;
568 		}
569 		desc = GET_RBDR_DESC(rbdr, tail);
570 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
571 		refill_rb_cnt--;
572 		new_rb++;
573 	}
574 
575 	/* make sure all memory stores are done before ringing doorbell */
576 	wmb();
577 
578 	/* Check if buffer allocation failed */
579 	if (refill_rb_cnt == 0)
580 		rb_alloc_fail = FALSE;
581 
582 	/* Notify HW */
583 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
584 			      rbdr_idx, new_rb);
585 out:
586 	if (!rb_alloc_fail) {
587 		/*
588 		 * Re-enable RBDR interrupts only
589 		 * if buffer allocation is success.
590 		 */
591 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
592 
593 		return (0);
594 	}
595 
596 	return (ENOMEM);
597 }
598 
599 /* Refill RBs even if sleep is needed to reclaim memory */
600 static void
601 nicvf_rbdr_task(void *arg, int pending)
602 {
603 	struct rbdr *rbdr;
604 	int err;
605 
606 	rbdr = (struct rbdr *)arg;
607 
608 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
609 	if (__predict_false(err != 0)) {
610 		panic("%s: Failed to refill RBs even when sleep enabled",
611 		    __func__);
612 	}
613 }
614 
615 /* Refill RBs as soon as possible without waiting */
616 static void
617 nicvf_rbdr_task_nowait(void *arg, int pending)
618 {
619 	struct rbdr *rbdr;
620 	int err;
621 
622 	rbdr = (struct rbdr *)arg;
623 
624 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
625 	if (err != 0) {
626 		/*
627 		 * Schedule another, sleepable kernel thread
628 		 * that will for sure refill the buffers.
629 		 */
630 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
631 	}
632 }
633 
634 static int
635 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
636     struct cqe_rx_t *cqe_rx, int cqe_type)
637 {
638 	struct mbuf *mbuf;
639 	struct rcv_queue *rq;
640 	int rq_idx;
641 	int err = 0;
642 
643 	rq_idx = cqe_rx->rq_idx;
644 	rq = &nic->qs->rq[rq_idx];
645 
646 	/* Check for errors */
647 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
648 	if (err && !cqe_rx->rb_cnt)
649 		return (0);
650 
651 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
652 	if (mbuf == NULL) {
653 		dprintf(nic->dev, "Packet not received\n");
654 		return (0);
655 	}
656 
657 	/* If error packet */
658 	if (err != 0) {
659 		m_freem(mbuf);
660 		return (0);
661 	}
662 
663 	if (rq->lro_enabled &&
664 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
665 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
666             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
667 		/*
668 		 * At this point it is known that there are no errors in the
669 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
670 		 * or enqueue error.
671 		 */
672 		if ((rq->lro.lro_cnt != 0) &&
673 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
674 			return (0);
675 	}
676 	/*
677 	 * Push this packet to the stack later to avoid
678 	 * unlocking completion task in the middle of work.
679 	 */
680 	err = buf_ring_enqueue(cq->rx_br, mbuf);
681 	if (err != 0) {
682 		/*
683 		 * Failed to enqueue this mbuf.
684 		 * We don't drop it, just schedule another task.
685 		 */
686 		return (err);
687 	}
688 
689 	return (0);
690 }
691 
692 static int
693 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
694     struct cqe_send_t *cqe_tx, int cqe_type)
695 {
696 	bus_dmamap_t dmap;
697 	struct mbuf *mbuf;
698 	struct snd_queue *sq;
699 	struct sq_hdr_subdesc *hdr;
700 
701 	mbuf = NULL;
702 	sq = &nic->qs->sq[cqe_tx->sq_idx];
703 	/* Avoid blocking here since we hold a non-sleepable NICVF_CMP_LOCK */
704 	if (NICVF_TX_TRYLOCK(sq) == 0)
705 		return (EAGAIN);
706 
707 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
708 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
709 		NICVF_TX_UNLOCK(sq);
710 		return (0);
711 	}
712 
713 	dprintf(nic->dev,
714 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
715 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
716 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
717 
718 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
719 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
720 
721 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
722 	if (mbuf != NULL) {
723 		m_freem(mbuf);
724 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
725 	}
726 
727 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
728 	nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
729 
730 	NICVF_TX_UNLOCK(sq);
731 	return (0);
732 }
733 
734 static int
735 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
736 {
737 	struct mbuf *mbuf;
738 	struct ifnet *ifp;
739 	int processed_cqe, work_done = 0, tx_done = 0;
740 	int cqe_count, cqe_head;
741 	struct queue_set *qs = nic->qs;
742 	struct cmp_queue *cq = &qs->cq[cq_idx];
743 	struct rcv_queue *rq;
744 	struct cqe_rx_t *cq_desc;
745 	struct lro_ctrl	*lro;
746 	struct lro_entry *queued;
747 	int rq_idx;
748 	int cmp_err;
749 
750 	NICVF_CMP_LOCK(cq);
751 	cmp_err = 0;
752 	processed_cqe = 0;
753 	/* Get no of valid CQ entries to process */
754 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
755 	cqe_count &= CQ_CQE_COUNT;
756 	if (cqe_count == 0)
757 		goto out;
758 
759 	/* Get head of the valid CQ entries */
760 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
761 	cqe_head &= 0xFFFF;
762 
763 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
764 	    __func__, cq_idx, cqe_count, cqe_head);
765 	while (processed_cqe < cqe_count) {
766 		/* Get the CQ descriptor */
767 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
768 		cqe_head++;
769 		cqe_head &= (cq->dmem.q_len - 1);
770 		/* Prefetch next CQ descriptor */
771 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
772 
773 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
774 		    cq_desc->cqe_type);
775 		switch (cq_desc->cqe_type) {
776 		case CQE_TYPE_RX:
777 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
778 			    CQE_TYPE_RX);
779 			if (__predict_false(cmp_err != 0)) {
780 				/*
781 				 * Ups. Cannot finish now.
782 				 * Let's try again later.
783 				 */
784 				goto done;
785 			}
786 			work_done++;
787 			break;
788 		case CQE_TYPE_SEND:
789 			cmp_err = nicvf_snd_pkt_handler(nic, cq,
790 			    (void *)cq_desc, CQE_TYPE_SEND);
791 			if (__predict_false(cmp_err != 0)) {
792 				/*
793 				 * Ups. Cannot finish now.
794 				 * Let's try again later.
795 				 */
796 				goto done;
797 			}
798 
799 			tx_done++;
800 			break;
801 		case CQE_TYPE_INVALID:
802 		case CQE_TYPE_RX_SPLIT:
803 		case CQE_TYPE_RX_TCP:
804 		case CQE_TYPE_SEND_PTP:
805 			/* Ignore for now */
806 			break;
807 		}
808 		processed_cqe++;
809 	}
810 done:
811 	dprintf(nic->dev,
812 	    "%s CQ%d processed_cqe %d work_done %d\n",
813 	    __func__, cq_idx, processed_cqe, work_done);
814 
815 	/* Ring doorbell to inform H/W to reuse processed CQEs */
816 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
817 
818 	if ((tx_done > 0) &&
819 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
820 		/* Reenable TXQ if its stopped earlier due to SQ full */
821 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
822 	}
823 out:
824 	/*
825 	 * Flush any outstanding LRO work
826 	 */
827 	rq_idx = cq_idx;
828 	rq = &nic->qs->rq[rq_idx];
829 	lro = &rq->lro;
830 	while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
831 		SLIST_REMOVE_HEAD(&lro->lro_active, next);
832 		tcp_lro_flush(lro, queued);
833 	}
834 
835 	NICVF_CMP_UNLOCK(cq);
836 
837 	ifp = nic->ifp;
838 	/* Push received MBUFs to the stack */
839 	while (!buf_ring_empty(cq->rx_br)) {
840 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
841 		if (__predict_true(mbuf != NULL))
842 			(*ifp->if_input)(ifp, mbuf);
843 	}
844 
845 	return (cmp_err);
846 }
847 
848 /*
849  * Qset error interrupt handler
850  *
851  * As of now only CQ errors are handled
852  */
853 static void
854 nicvf_qs_err_task(void *arg, int pending)
855 {
856 	struct nicvf *nic;
857 	struct queue_set *qs;
858 	int qidx;
859 	uint64_t status;
860 	boolean_t enable = TRUE;
861 
862 	nic = (struct nicvf *)arg;
863 	qs = nic->qs;
864 
865 	/* Deactivate network interface */
866 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
867 
868 	/* Check if it is CQ err */
869 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
870 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
871 		    qidx);
872 		if ((status & CQ_ERR_MASK) == 0)
873 			continue;
874 		/* Process already queued CQEs and reconfig CQ */
875 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
876 		nicvf_sq_disable(nic, qidx);
877 		(void)nicvf_cq_intr_handler(nic, qidx);
878 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
879 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
880 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
881 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
882 	}
883 
884 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
885 	/* Re-enable Qset error interrupt */
886 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
887 }
888 
889 static void
890 nicvf_cmp_task(void *arg, int pending)
891 {
892 	uint64_t cq_head;
893 	struct cmp_queue *cq;
894 	struct nicvf *nic;
895 	int cmp_err;
896 
897 	cq = (struct cmp_queue *)arg;
898 	nic = cq->nic;
899 
900 	/* Handle CQ descriptors */
901 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
902 	/* Re-enable interrupts */
903 	cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq->idx);
904 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
905 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD, cq->idx, cq_head);
906 
907 	if (__predict_false(cmp_err != 0)) {
908 		/*
909 		 * Schedule another thread here since we did not
910 		 * process the entire CQ due to Tx or Rx CQ parse error.
911 		 */
912 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
913 
914 	}
915 
916 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
917 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
918 
919 }
920 
921 /* Initialize completion queue */
922 static int
923 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
924     int qidx)
925 {
926 	int err;
927 
928 	/* Initizalize lock */
929 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
930 	    device_get_nameunit(nic->dev), qidx);
931 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
932 
933 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
934 				     NICVF_CQ_BASE_ALIGN_BYTES);
935 
936 	if (err != 0) {
937 		device_printf(nic->dev,
938 		    "Could not allocate DMA memory for CQ\n");
939 		return (err);
940 	}
941 
942 	cq->desc = cq->dmem.base;
943 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
944 	cq->nic = nic;
945 	cq->idx = qidx;
946 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
947 
948 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
949 	    &cq->mtx);
950 
951 	/* Allocate taskqueue */
952 	TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
953 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
954 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
955 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
956 	    device_get_nameunit(nic->dev), qidx);
957 
958 	return (0);
959 }
960 
961 static void
962 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
963 {
964 
965 	if (cq == NULL)
966 		return;
967 	/*
968 	 * The completion queue itself should be disabled by now
969 	 * (ref. nicvf_snd_queue_config()).
970 	 * Ensure that it is safe to disable it or panic.
971 	 */
972 	if (cq->enable)
973 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
974 
975 	if (cq->cmp_taskq != NULL) {
976 		/* Remove task */
977 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
978 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
979 
980 		taskqueue_free(cq->cmp_taskq);
981 		cq->cmp_taskq = NULL;
982 	}
983 	/*
984 	 * Completion interrupt will possibly enable interrupts again
985 	 * so disable interrupting now after we finished processing
986 	 * completion task. It is safe to do so since the corresponding CQ
987 	 * was already disabled.
988 	 */
989 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
990 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
991 
992 	NICVF_CMP_LOCK(cq);
993 	nicvf_free_q_desc_mem(nic, &cq->dmem);
994 	drbr_free(cq->rx_br, M_DEVBUF);
995 	NICVF_CMP_UNLOCK(cq);
996 	mtx_destroy(&cq->mtx);
997 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
998 }
999 
1000 static void
1001 nicvf_snd_task(void *arg, int pending)
1002 {
1003 	struct snd_queue *sq = (struct snd_queue *)arg;
1004 	struct mbuf *mbuf;
1005 
1006 	NICVF_TX_LOCK(sq);
1007 	while (1) {
1008 		mbuf = drbr_dequeue(NULL, sq->br);
1009 		if (mbuf == NULL)
1010 			break;
1011 
1012 		if (nicvf_tx_mbuf_locked(sq, mbuf) != 0) {
1013 			/* XXX ARM64TODO: Increase Tx drop counter */
1014 			m_freem(mbuf);
1015 			break;
1016 		}
1017 	}
1018 	NICVF_TX_UNLOCK(sq);
1019 }
1020 
1021 /* Initialize transmit queue */
1022 static int
1023 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1024     int qidx)
1025 {
1026 	size_t i;
1027 	int err;
1028 
1029 	/* Initizalize TX lock for this queue */
1030 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1031 	    device_get_nameunit(nic->dev), qidx);
1032 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1033 
1034 	NICVF_TX_LOCK(sq);
1035 	/* Allocate buffer ring */
1036 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1037 	    M_NOWAIT, &sq->mtx);
1038 	if (sq->br == NULL) {
1039 		device_printf(nic->dev,
1040 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1041 		err = ENOMEM;
1042 		goto error;
1043 	}
1044 
1045 	/* Allocate DMA memory for Tx descriptors */
1046 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1047 				     NICVF_SQ_BASE_ALIGN_BYTES);
1048 	if (err != 0) {
1049 		device_printf(nic->dev,
1050 		    "Could not allocate DMA memory for SQ\n");
1051 		goto error;
1052 	}
1053 
1054 	sq->desc = sq->dmem.base;
1055 	sq->head = sq->tail = 0;
1056 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1057 	sq->thresh = SND_QUEUE_THRESH;
1058 	sq->idx = qidx;
1059 	sq->nic = nic;
1060 
1061 	/*
1062 	 * Allocate DMA maps for Tx buffers
1063 	 */
1064 
1065 	/* Create DMA tag first */
1066 	err = bus_dma_tag_create(
1067 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1068 	    1,					/* alignment */
1069 	    0,					/* boundary */
1070 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1071 	    BUS_SPACE_MAXADDR,			/* highaddr */
1072 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1073 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1074 	    NICVF_TSO_NSEGS,			/* nsegments */
1075 	    MCLBYTES,				/* maxsegsize */
1076 	    0,					/* flags */
1077 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1078 	    &sq->snd_buff_dmat);		/* dmat */
1079 
1080 	if (err != 0) {
1081 		device_printf(nic->dev,
1082 		    "Failed to create busdma tag for Tx buffers\n");
1083 		goto error;
1084 	}
1085 
1086 	/* Allocate send buffers array */
1087 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1088 	    (M_NOWAIT | M_ZERO));
1089 	if (sq->snd_buff == NULL) {
1090 		device_printf(nic->dev,
1091 		    "Could not allocate memory for Tx buffers array\n");
1092 		err = ENOMEM;
1093 		goto error;
1094 	}
1095 
1096 	/* Now populate maps */
1097 	for (i = 0; i < q_len; i++) {
1098 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1099 		    &sq->snd_buff[i].dmap);
1100 		if (err != 0) {
1101 			device_printf(nic->dev,
1102 			    "Failed to create DMA maps for Tx buffers\n");
1103 			goto error;
1104 		}
1105 	}
1106 	NICVF_TX_UNLOCK(sq);
1107 
1108 	/* Allocate taskqueue */
1109 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1110 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1111 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1112 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1113 	    device_get_nameunit(nic->dev), qidx);
1114 
1115 	return (0);
1116 error:
1117 	NICVF_TX_UNLOCK(sq);
1118 	return (err);
1119 }
1120 
1121 static void
1122 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1123 {
1124 	struct queue_set *qs = nic->qs;
1125 	size_t i;
1126 	int err;
1127 
1128 	if (sq == NULL)
1129 		return;
1130 
1131 	if (sq->snd_taskq != NULL) {
1132 		/* Remove task */
1133 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1134 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1135 
1136 		taskqueue_free(sq->snd_taskq);
1137 		sq->snd_taskq = NULL;
1138 	}
1139 
1140 	NICVF_TX_LOCK(sq);
1141 	if (sq->snd_buff_dmat != NULL) {
1142 		if (sq->snd_buff != NULL) {
1143 			for (i = 0; i < qs->sq_len; i++) {
1144 				m_freem(sq->snd_buff[i].mbuf);
1145 				sq->snd_buff[i].mbuf = NULL;
1146 
1147 				bus_dmamap_unload(sq->snd_buff_dmat,
1148 				    sq->snd_buff[i].dmap);
1149 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1150 				    sq->snd_buff[i].dmap);
1151 				/*
1152 				 * If bus_dmamap_destroy fails it can cause
1153 				 * random panic later if the tag is also
1154 				 * destroyed in the process.
1155 				 */
1156 				KASSERT(err == 0,
1157 				    ("%s: Could not destroy DMA map for SQ",
1158 				    __func__));
1159 			}
1160 		}
1161 
1162 		free(sq->snd_buff, M_NICVF);
1163 
1164 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1165 		KASSERT(err == 0,
1166 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1167 	}
1168 
1169 	/* Free private driver ring for this send queue */
1170 	if (sq->br != NULL)
1171 		drbr_free(sq->br, M_DEVBUF);
1172 
1173 	if (sq->dmem.base != NULL)
1174 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1175 
1176 	NICVF_TX_UNLOCK(sq);
1177 	/* Destroy Tx lock */
1178 	mtx_destroy(&sq->mtx);
1179 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1180 }
1181 
1182 static void
1183 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1184 {
1185 
1186 	/* Disable send queue */
1187 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1188 	/* Check if SQ is stopped */
1189 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1190 		return;
1191 	/* Reset send queue */
1192 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1193 }
1194 
1195 static void
1196 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1197 {
1198 	union nic_mbx mbx = {};
1199 
1200 	/* Make sure all packets in the pipeline are written back into mem */
1201 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1202 	nicvf_send_msg_to_pf(nic, &mbx);
1203 }
1204 
1205 static void
1206 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1207 {
1208 
1209 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1210 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1211 	/* Disable completion queue */
1212 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1213 	/* Reset completion queue */
1214 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1215 }
1216 
1217 static void
1218 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1219 {
1220 	uint64_t tmp, fifo_state;
1221 	int timeout = 10;
1222 
1223 	/* Save head and tail pointers for feeing up buffers */
1224 	rbdr->head =
1225 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1226 	rbdr->tail =
1227 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1228 
1229 	/*
1230 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1231 	 * before relaiming.
1232 	 */
1233 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1234 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1235 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1236 		    qidx, NICVF_RBDR_RESET);
1237 	}
1238 
1239 	/* Disable RBDR */
1240 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1241 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1242 		return;
1243 	while (1) {
1244 		tmp = nicvf_queue_reg_read(nic,
1245 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1246 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1247 			break;
1248 
1249 		DELAY(1000);
1250 		timeout--;
1251 		if (!timeout) {
1252 			device_printf(nic->dev,
1253 			    "Failed polling on prefetch status\n");
1254 			return;
1255 		}
1256 	}
1257 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1258 	    NICVF_RBDR_RESET);
1259 
1260 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1261 		return;
1262 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1263 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1264 		return;
1265 }
1266 
1267 /* Configures receive queue */
1268 static void
1269 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1270     int qidx, bool enable)
1271 {
1272 	union nic_mbx mbx = {};
1273 	struct rcv_queue *rq;
1274 	struct rq_cfg rq_cfg;
1275 	struct ifnet *ifp;
1276 	struct lro_ctrl	*lro;
1277 
1278 	ifp = nic->ifp;
1279 
1280 	rq = &qs->rq[qidx];
1281 	rq->enable = enable;
1282 
1283 	lro = &rq->lro;
1284 
1285 	/* Disable receive queue */
1286 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1287 
1288 	if (!rq->enable) {
1289 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1290 		/* Free LRO memory */
1291 		tcp_lro_free(lro);
1292 		rq->lro_enabled = FALSE;
1293 		return;
1294 	}
1295 
1296 	/* Configure LRO if enabled */
1297 	rq->lro_enabled = FALSE;
1298 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1299 		if (tcp_lro_init(lro) != 0) {
1300 			device_printf(nic->dev,
1301 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1302 		} else {
1303 			rq->lro_enabled = TRUE;
1304 			lro->ifp = nic->ifp;
1305 		}
1306 	}
1307 
1308 	rq->cq_qs = qs->vnic_id;
1309 	rq->cq_idx = qidx;
1310 	rq->start_rbdr_qs = qs->vnic_id;
1311 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1312 	rq->cont_rbdr_qs = qs->vnic_id;
1313 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1314 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1315 	rq->caching = 1;
1316 
1317 	/* Send a mailbox msg to PF to config RQ */
1318 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1319 	mbx.rq.qs_num = qs->vnic_id;
1320 	mbx.rq.rq_num = qidx;
1321 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1322 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1323 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1324 	    (rq->start_qs_rbdr_idx);
1325 	nicvf_send_msg_to_pf(nic, &mbx);
1326 
1327 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1328 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1329 	nicvf_send_msg_to_pf(nic, &mbx);
1330 
1331 	/*
1332 	 * RQ drop config
1333 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1334 	 */
1335 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1336 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1337 	nicvf_send_msg_to_pf(nic, &mbx);
1338 
1339 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1340 
1341 	/* Enable Receive queue */
1342 	rq_cfg.ena = 1;
1343 	rq_cfg.tcp_ena = 0;
1344 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1345 	    *(uint64_t *)&rq_cfg);
1346 }
1347 
1348 /* Configures completion queue */
1349 static void
1350 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1351     int qidx, boolean_t enable)
1352 {
1353 	struct cmp_queue *cq;
1354 	struct cq_cfg cq_cfg;
1355 
1356 	cq = &qs->cq[qidx];
1357 	cq->enable = enable;
1358 
1359 	if (!cq->enable) {
1360 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1361 		return;
1362 	}
1363 
1364 	/* Reset completion queue */
1365 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1366 
1367 	/* Set completion queue base address */
1368 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1369 	    (uint64_t)(cq->dmem.phys_base));
1370 
1371 	/* Enable Completion queue */
1372 	cq_cfg.ena = 1;
1373 	cq_cfg.reset = 0;
1374 	cq_cfg.caching = 0;
1375 	cq_cfg.qsize = CMP_QSIZE;
1376 	cq_cfg.avg_con = 0;
1377 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1378 
1379 	/* Set threshold value for interrupt generation */
1380 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1381 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1382 	    nic->cq_coalesce_usecs);
1383 }
1384 
1385 /* Configures transmit queue */
1386 static void
1387 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1388     boolean_t enable)
1389 {
1390 	union nic_mbx mbx = {};
1391 	struct snd_queue *sq;
1392 	struct sq_cfg sq_cfg;
1393 
1394 	sq = &qs->sq[qidx];
1395 	sq->enable = enable;
1396 
1397 	if (!sq->enable) {
1398 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1399 		return;
1400 	}
1401 
1402 	/* Reset send queue */
1403 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1404 
1405 	sq->cq_qs = qs->vnic_id;
1406 	sq->cq_idx = qidx;
1407 
1408 	/* Send a mailbox msg to PF to config SQ */
1409 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1410 	mbx.sq.qs_num = qs->vnic_id;
1411 	mbx.sq.sq_num = qidx;
1412 	mbx.sq.sqs_mode = nic->sqs_mode;
1413 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1414 	nicvf_send_msg_to_pf(nic, &mbx);
1415 
1416 	/* Set queue base address */
1417 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1418 	    (uint64_t)(sq->dmem.phys_base));
1419 
1420 	/* Enable send queue  & set queue size */
1421 	sq_cfg.ena = 1;
1422 	sq_cfg.reset = 0;
1423 	sq_cfg.ldwb = 0;
1424 	sq_cfg.qsize = SND_QSIZE;
1425 	sq_cfg.tstmp_bgx_intf = 0;
1426 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1427 
1428 	/* Set threshold value for interrupt generation */
1429 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1430 }
1431 
1432 /* Configures receive buffer descriptor ring */
1433 static void
1434 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1435     boolean_t enable)
1436 {
1437 	struct rbdr *rbdr;
1438 	struct rbdr_cfg rbdr_cfg;
1439 
1440 	rbdr = &qs->rbdr[qidx];
1441 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1442 	if (!enable)
1443 		return;
1444 
1445 	/* Set descriptor base address */
1446 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1447 	    (uint64_t)(rbdr->dmem.phys_base));
1448 
1449 	/* Enable RBDR  & set queue size */
1450 	/* Buffer size should be in multiples of 128 bytes */
1451 	rbdr_cfg.ena = 1;
1452 	rbdr_cfg.reset = 0;
1453 	rbdr_cfg.ldwb = 0;
1454 	rbdr_cfg.qsize = RBDR_SIZE;
1455 	rbdr_cfg.avg_con = 0;
1456 	rbdr_cfg.lines = rbdr->dma_size / 128;
1457 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1458 	    *(uint64_t *)&rbdr_cfg);
1459 
1460 	/* Notify HW */
1461 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1462 	    qs->rbdr_len - 1);
1463 
1464 	/* Set threshold value for interrupt generation */
1465 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1466 	    rbdr->thresh - 1);
1467 }
1468 
1469 /* Requests PF to assign and enable Qset */
1470 void
1471 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1472 {
1473 	union nic_mbx mbx = {};
1474 	struct queue_set *qs;
1475 	struct qs_cfg *qs_cfg;
1476 
1477 	qs = nic->qs;
1478 	if (qs == NULL) {
1479 		device_printf(nic->dev,
1480 		    "Qset is still not allocated, don't init queues\n");
1481 		return;
1482 	}
1483 
1484 	qs->enable = enable;
1485 	qs->vnic_id = nic->vf_id;
1486 
1487 	/* Send a mailbox msg to PF to config Qset */
1488 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1489 	mbx.qs.num = qs->vnic_id;
1490 
1491 	mbx.qs.cfg = 0;
1492 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1493 	if (qs->enable) {
1494 		qs_cfg->ena = 1;
1495 		qs_cfg->vnic = qs->vnic_id;
1496 	}
1497 	nicvf_send_msg_to_pf(nic, &mbx);
1498 }
1499 
1500 static void
1501 nicvf_free_resources(struct nicvf *nic)
1502 {
1503 	int qidx;
1504 	struct queue_set *qs;
1505 
1506 	qs = nic->qs;
1507 	/*
1508 	 * Remove QS error task first since it has to be dead
1509 	 * to safely free completion queue tasks.
1510 	 */
1511 	if (qs->qs_err_taskq != NULL) {
1512 		/* Shut down QS error tasks */
1513 		while (taskqueue_cancel(qs->qs_err_taskq,
1514 		    &qs->qs_err_task,  NULL) != 0) {
1515 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1516 
1517 		}
1518 		taskqueue_free(qs->qs_err_taskq);
1519 		qs->qs_err_taskq = NULL;
1520 	}
1521 	/* Free receive buffer descriptor ring */
1522 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1523 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1524 
1525 	/* Free completion queue */
1526 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1527 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1528 
1529 	/* Free send queue */
1530 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1531 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1532 }
1533 
1534 static int
1535 nicvf_alloc_resources(struct nicvf *nic)
1536 {
1537 	struct queue_set *qs = nic->qs;
1538 	int qidx;
1539 
1540 	/* Alloc receive buffer descriptor ring */
1541 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1542 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1543 				    DMA_BUFFER_LEN, qidx))
1544 			goto alloc_fail;
1545 	}
1546 
1547 	/* Alloc send queue */
1548 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1549 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1550 			goto alloc_fail;
1551 	}
1552 
1553 	/* Alloc completion queue */
1554 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1555 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1556 			goto alloc_fail;
1557 	}
1558 
1559 	/* Allocate QS error taskqueue */
1560 	TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1561 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1562 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1563 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1564 	    device_get_nameunit(nic->dev));
1565 
1566 	return (0);
1567 alloc_fail:
1568 	nicvf_free_resources(nic);
1569 	return (ENOMEM);
1570 }
1571 
1572 int
1573 nicvf_set_qset_resources(struct nicvf *nic)
1574 {
1575 	struct queue_set *qs;
1576 
1577 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1578 	nic->qs = qs;
1579 
1580 	/* Set count of each queue */
1581 	qs->rbdr_cnt = RBDR_CNT;
1582 	/* With no RSS we stay with single RQ */
1583 	qs->rq_cnt = 1;
1584 
1585 	qs->sq_cnt = SND_QUEUE_CNT;
1586 	qs->cq_cnt = CMP_QUEUE_CNT;
1587 
1588 	/* Set queue lengths */
1589 	qs->rbdr_len = RCV_BUF_COUNT;
1590 	qs->sq_len = SND_QUEUE_LEN;
1591 	qs->cq_len = CMP_QUEUE_LEN;
1592 
1593 	nic->rx_queues = qs->rq_cnt;
1594 	nic->tx_queues = qs->sq_cnt;
1595 
1596 	return (0);
1597 }
1598 
1599 int
1600 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1601 {
1602 	boolean_t disable = FALSE;
1603 	struct queue_set *qs;
1604 	int qidx;
1605 
1606 	qs = nic->qs;
1607 	if (qs == NULL)
1608 		return (0);
1609 
1610 	if (enable) {
1611 		if (nicvf_alloc_resources(nic) != 0)
1612 			return (ENOMEM);
1613 
1614 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1615 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1616 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1617 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1618 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1619 			nicvf_rbdr_config(nic, qs, qidx, enable);
1620 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1621 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1622 	} else {
1623 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1624 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1625 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1626 			nicvf_rbdr_config(nic, qs, qidx, disable);
1627 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1628 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1629 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1630 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1631 
1632 		nicvf_free_resources(nic);
1633 	}
1634 
1635 	return (0);
1636 }
1637 
1638 /*
1639  * Get a free desc from SQ
1640  * returns descriptor ponter & descriptor number
1641  */
1642 static __inline int
1643 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1644 {
1645 	int qentry;
1646 
1647 	qentry = sq->tail;
1648 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1649 	sq->tail += desc_cnt;
1650 	sq->tail &= (sq->dmem.q_len - 1);
1651 
1652 	return (qentry);
1653 }
1654 
1655 /* Free descriptor back to SQ for future use */
1656 static void
1657 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1658 {
1659 
1660 	atomic_add_int(&sq->free_cnt, desc_cnt);
1661 	sq->head += desc_cnt;
1662 	sq->head &= (sq->dmem.q_len - 1);
1663 }
1664 
1665 static __inline int
1666 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1667 {
1668 	qentry++;
1669 	qentry &= (sq->dmem.q_len - 1);
1670 	return (qentry);
1671 }
1672 
1673 static void
1674 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1675 {
1676 	uint64_t sq_cfg;
1677 
1678 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1679 	sq_cfg |= NICVF_SQ_EN;
1680 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1681 	/* Ring doorbell so that H/W restarts processing SQEs */
1682 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1683 }
1684 
1685 static void
1686 nicvf_sq_disable(struct nicvf *nic, int qidx)
1687 {
1688 	uint64_t sq_cfg;
1689 
1690 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1691 	sq_cfg &= ~NICVF_SQ_EN;
1692 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1693 }
1694 
1695 static void
1696 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1697 {
1698 	uint64_t head, tail;
1699 	struct snd_buff *snd_buff;
1700 	struct sq_hdr_subdesc *hdr;
1701 
1702 	NICVF_TX_LOCK(sq);
1703 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1704 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1705 	while (sq->head != head) {
1706 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1707 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1708 			nicvf_put_sq_desc(sq, 1);
1709 			continue;
1710 		}
1711 		snd_buff = &sq->snd_buff[sq->head];
1712 		if (snd_buff->mbuf != NULL) {
1713 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1714 			m_freem(snd_buff->mbuf);
1715 			sq->snd_buff[sq->head].mbuf = NULL;
1716 		}
1717 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1718 	}
1719 	NICVF_TX_UNLOCK(sq);
1720 }
1721 
1722 /*
1723  * Add SQ HEADER subdescriptor.
1724  * First subdescriptor for every send descriptor.
1725  */
1726 static __inline int
1727 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1728 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1729 {
1730 	struct nicvf *nic;
1731 	struct sq_hdr_subdesc *hdr;
1732 	struct ether_vlan_header *eh;
1733 #ifdef INET
1734 	struct ip *ip;
1735 	struct tcphdr *th;
1736 #endif
1737 	uint16_t etype;
1738 	int ehdrlen, iphlen, poff;
1739 
1740 	nic = sq->nic;
1741 
1742 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1743 	sq->snd_buff[qentry].mbuf = mbuf;
1744 
1745 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1746 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1747 	/* Enable notification via CQE after processing SQE */
1748 	hdr->post_cqe = 1;
1749 	/* No of subdescriptors following this */
1750 	hdr->subdesc_cnt = subdesc_cnt;
1751 	hdr->tot_len = len;
1752 
1753 	eh = mtod(mbuf, struct ether_vlan_header *);
1754 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1755 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1756 		etype = ntohs(eh->evl_proto);
1757 	} else {
1758 		ehdrlen = ETHER_HDR_LEN;
1759 		etype = ntohs(eh->evl_encap_proto);
1760 	}
1761 
1762 	switch (etype) {
1763 #ifdef INET6
1764 	case ETHERTYPE_IPV6:
1765 		/* ARM64TODO: Add support for IPv6 */
1766 		hdr->csum_l3 = 0;
1767 		sq->snd_buff[qentry].mbuf = NULL;
1768 		return (ENXIO);
1769 #endif
1770 #ifdef INET
1771 	case ETHERTYPE_IP:
1772 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1773 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1774 			sq->snd_buff[qentry].mbuf = mbuf;
1775 			if (mbuf == NULL)
1776 				return (ENOBUFS);
1777 		}
1778 
1779 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1780 		ip->ip_sum = 0;
1781 		iphlen = ip->ip_hl << 2;
1782 		poff = ehdrlen + iphlen;
1783 
1784 		if (mbuf->m_pkthdr.csum_flags != 0) {
1785 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1786 			switch (ip->ip_p) {
1787 			case IPPROTO_TCP:
1788 				if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1789 					break;
1790 
1791 				if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1792 					mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1793 					sq->snd_buff[qentry].mbuf = mbuf;
1794 					if (mbuf == NULL)
1795 						return (ENOBUFS);
1796 				}
1797 				hdr->csum_l4 = SEND_L4_CSUM_TCP;
1798 				break;
1799 			case IPPROTO_UDP:
1800 				if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1801 					break;
1802 
1803 				if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1804 					mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1805 					sq->snd_buff[qentry].mbuf = mbuf;
1806 					if (mbuf == NULL)
1807 						return (ENOBUFS);
1808 				}
1809 				hdr->csum_l4 = SEND_L4_CSUM_UDP;
1810 				break;
1811 			case IPPROTO_SCTP:
1812 				if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1813 					break;
1814 
1815 				if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1816 					mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1817 					sq->snd_buff[qentry].mbuf = mbuf;
1818 					if (mbuf == NULL)
1819 						return (ENOBUFS);
1820 				}
1821 				hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1822 				break;
1823 			default:
1824 				break;
1825 			}
1826 			hdr->l3_offset = ehdrlen;
1827 			hdr->l4_offset = ehdrlen + iphlen;
1828 		}
1829 
1830 		if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1831 			/*
1832 			 * Extract ip again as m_data could have been modified.
1833 			 */
1834 			ip = (struct ip *)(mbuf->m_data + ehdrlen);
1835 			th = (struct tcphdr *)((caddr_t)ip + iphlen);
1836 
1837 			hdr->tso = 1;
1838 			hdr->tso_start = ehdrlen + iphlen + (th->th_off * 4);
1839 			hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1840 			hdr->inner_l3_offset = ehdrlen - 2;
1841 			nic->drv_stats.tx_tso++;
1842 		}
1843 		break;
1844 #endif
1845 	default:
1846 		hdr->csum_l3 = 0;
1847 	}
1848 
1849 	return (0);
1850 }
1851 
1852 /*
1853  * SQ GATHER subdescriptor
1854  * Must follow HDR descriptor
1855  */
1856 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1857 					       int size, uint64_t data)
1858 {
1859 	struct sq_gather_subdesc *gather;
1860 
1861 	qentry &= (sq->dmem.q_len - 1);
1862 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1863 
1864 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1865 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1866 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1867 	gather->size = size;
1868 	gather->addr = data;
1869 }
1870 
1871 /* Put an mbuf to a SQ for packet transfer. */
1872 int
1873 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf *mbuf)
1874 {
1875 	bus_dma_segment_t segs[256];
1876 	struct nicvf *nic;
1877 	struct snd_buff *snd_buff;
1878 	size_t seg;
1879 	int nsegs, qentry;
1880 	int subdesc_cnt;
1881 	int err;
1882 
1883 	NICVF_TX_LOCK_ASSERT(sq);
1884 
1885 	if (sq->free_cnt == 0)
1886 		return (ENOBUFS);
1887 
1888 	snd_buff = &sq->snd_buff[sq->tail];
1889 
1890 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1891 	    mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1892 	if (err != 0) {
1893 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1894 		return (err);
1895 	}
1896 
1897 	/* Set how many subdescriptors is required */
1898 	nic = sq->nic;
1899 	if (mbuf->m_pkthdr.tso_segsz != 0 && nic->hw_tso)
1900 		subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1901 	else
1902 		subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1903 
1904 	if (subdesc_cnt > sq->free_cnt) {
1905 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1906 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1907 		return (ENOBUFS);
1908 	}
1909 
1910 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1911 
1912 	/* Add SQ header subdesc */
1913 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, mbuf,
1914 	    mbuf->m_pkthdr.len);
1915 	if (err != 0) {
1916 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1917 		return (err);
1918 	}
1919 
1920 	/* Add SQ gather subdescs */
1921 	for (seg = 0; seg < nsegs; seg++) {
1922 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1923 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1924 		    segs[seg].ds_addr);
1925 	}
1926 
1927 	/* make sure all memory stores are done before ringing doorbell */
1928 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1929 
1930 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1931 	    __func__, sq->idx, subdesc_cnt);
1932 	/* Inform HW to xmit new packet */
1933 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1934 	    sq->idx, subdesc_cnt);
1935 	return (0);
1936 }
1937 
1938 static __inline u_int
1939 frag_num(u_int i)
1940 {
1941 #if BYTE_ORDER == BIG_ENDIAN
1942 	return ((i & ~3) + 3 - (i & 3));
1943 #else
1944 	return (i);
1945 #endif
1946 }
1947 
1948 /* Returns MBUF for a received packet */
1949 struct mbuf *
1950 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1951 {
1952 	int frag;
1953 	int payload_len = 0;
1954 	struct mbuf *mbuf;
1955 	struct mbuf *mbuf_frag;
1956 	uint16_t *rb_lens = NULL;
1957 	uint64_t *rb_ptrs = NULL;
1958 
1959 	mbuf = NULL;
1960 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1961 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1962 
1963 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1964 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1965 
1966 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1967 		payload_len = rb_lens[frag_num(frag)];
1968 		if (frag == 0) {
1969 			/* First fragment */
1970 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1971 			    (*rb_ptrs - cqe_rx->align_pad));
1972 			mbuf->m_len = payload_len;
1973 			mbuf->m_data += cqe_rx->align_pad;
1974 			if_setrcvif(mbuf, nic->ifp);
1975 		} else {
1976 			/* Add fragments */
1977 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
1978 			m_append(mbuf, payload_len, mbuf_frag->m_data);
1979 			m_freem(mbuf_frag);
1980 		}
1981 		/* Next buffer pointer */
1982 		rb_ptrs++;
1983 	}
1984 
1985 	if (__predict_true(mbuf != NULL)) {
1986 		m_fixhdr(mbuf);
1987 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
1988 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1989 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
1990 			/*
1991 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
1992 			 */
1993 
1994 			/* XXX: Do we need to include IP with options too? */
1995 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4 ||
1996 			    cqe_rx->l3_type == L3TYPE_IPV6)) {
1997 				mbuf->m_pkthdr.csum_flags =
1998 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
1999 			}
2000 			if (cqe_rx->l4_type == L4TYPE_TCP ||
2001 			    cqe_rx->l4_type == L4TYPE_UDP ||
2002 			    cqe_rx->l4_type == L4TYPE_SCTP) {
2003 				mbuf->m_pkthdr.csum_flags |=
2004 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2005 				mbuf->m_pkthdr.csum_data = htons(0xffff);
2006 			}
2007 		}
2008 	}
2009 
2010 	return (mbuf);
2011 }
2012 
2013 /* Enable interrupt */
2014 void
2015 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2016 {
2017 	uint64_t reg_val;
2018 
2019 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2020 
2021 	switch (int_type) {
2022 	case NICVF_INTR_CQ:
2023 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2024 		break;
2025 	case NICVF_INTR_SQ:
2026 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2027 		break;
2028 	case NICVF_INTR_RBDR:
2029 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2030 		break;
2031 	case NICVF_INTR_PKT_DROP:
2032 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2033 		break;
2034 	case NICVF_INTR_TCP_TIMER:
2035 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2036 		break;
2037 	case NICVF_INTR_MBOX:
2038 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2039 		break;
2040 	case NICVF_INTR_QS_ERR:
2041 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2042 		break;
2043 	default:
2044 		device_printf(nic->dev,
2045 			   "Failed to enable interrupt: unknown type\n");
2046 		break;
2047 	}
2048 
2049 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2050 }
2051 
2052 /* Disable interrupt */
2053 void
2054 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2055 {
2056 	uint64_t reg_val = 0;
2057 
2058 	switch (int_type) {
2059 	case NICVF_INTR_CQ:
2060 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2061 		break;
2062 	case NICVF_INTR_SQ:
2063 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2064 		break;
2065 	case NICVF_INTR_RBDR:
2066 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2067 		break;
2068 	case NICVF_INTR_PKT_DROP:
2069 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2070 		break;
2071 	case NICVF_INTR_TCP_TIMER:
2072 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2073 		break;
2074 	case NICVF_INTR_MBOX:
2075 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2076 		break;
2077 	case NICVF_INTR_QS_ERR:
2078 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2079 		break;
2080 	default:
2081 		device_printf(nic->dev,
2082 			   "Failed to disable interrupt: unknown type\n");
2083 		break;
2084 	}
2085 
2086 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2087 }
2088 
2089 /* Clear interrupt */
2090 void
2091 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2092 {
2093 	uint64_t reg_val = 0;
2094 
2095 	switch (int_type) {
2096 	case NICVF_INTR_CQ:
2097 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2098 		break;
2099 	case NICVF_INTR_SQ:
2100 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2101 		break;
2102 	case NICVF_INTR_RBDR:
2103 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2104 		break;
2105 	case NICVF_INTR_PKT_DROP:
2106 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2107 		break;
2108 	case NICVF_INTR_TCP_TIMER:
2109 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2110 		break;
2111 	case NICVF_INTR_MBOX:
2112 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2113 		break;
2114 	case NICVF_INTR_QS_ERR:
2115 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2116 		break;
2117 	default:
2118 		device_printf(nic->dev,
2119 			   "Failed to clear interrupt: unknown type\n");
2120 		break;
2121 	}
2122 
2123 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2124 }
2125 
2126 /* Check if interrupt is enabled */
2127 int
2128 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2129 {
2130 	uint64_t reg_val;
2131 	uint64_t mask = 0xff;
2132 
2133 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2134 
2135 	switch (int_type) {
2136 	case NICVF_INTR_CQ:
2137 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2138 		break;
2139 	case NICVF_INTR_SQ:
2140 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2141 		break;
2142 	case NICVF_INTR_RBDR:
2143 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2144 		break;
2145 	case NICVF_INTR_PKT_DROP:
2146 		mask = NICVF_INTR_PKT_DROP_MASK;
2147 		break;
2148 	case NICVF_INTR_TCP_TIMER:
2149 		mask = NICVF_INTR_TCP_TIMER_MASK;
2150 		break;
2151 	case NICVF_INTR_MBOX:
2152 		mask = NICVF_INTR_MBOX_MASK;
2153 		break;
2154 	case NICVF_INTR_QS_ERR:
2155 		mask = NICVF_INTR_QS_ERR_MASK;
2156 		break;
2157 	default:
2158 		device_printf(nic->dev,
2159 			   "Failed to check interrupt enable: unknown type\n");
2160 		break;
2161 	}
2162 
2163 	return (reg_val & mask);
2164 }
2165 
2166 void
2167 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2168 {
2169 	struct rcv_queue *rq;
2170 
2171 #define GET_RQ_STATS(reg) \
2172 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2173 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2174 
2175 	rq = &nic->qs->rq[rq_idx];
2176 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2177 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2178 }
2179 
2180 void
2181 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2182 {
2183 	struct snd_queue *sq;
2184 
2185 #define GET_SQ_STATS(reg) \
2186 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2187 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2188 
2189 	sq = &nic->qs->sq[sq_idx];
2190 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2191 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2192 }
2193 
2194 /* Check for errors in the receive cmp.queue entry */
2195 int
2196 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2197     struct cqe_rx_t *cqe_rx)
2198 {
2199 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2200 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2201 
2202 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2203 		drv_stats->rx_frames_ok++;
2204 		return (0);
2205 	}
2206 
2207 	switch (cqe_rx->err_opcode) {
2208 	case CQ_RX_ERROP_RE_PARTIAL:
2209 		stats->rx_bgx_truncated_pkts++;
2210 		break;
2211 	case CQ_RX_ERROP_RE_JABBER:
2212 		stats->rx_jabber_errs++;
2213 		break;
2214 	case CQ_RX_ERROP_RE_FCS:
2215 		stats->rx_fcs_errs++;
2216 		break;
2217 	case CQ_RX_ERROP_RE_RX_CTL:
2218 		stats->rx_bgx_errs++;
2219 		break;
2220 	case CQ_RX_ERROP_PREL2_ERR:
2221 		stats->rx_prel2_errs++;
2222 		break;
2223 	case CQ_RX_ERROP_L2_MAL:
2224 		stats->rx_l2_hdr_malformed++;
2225 		break;
2226 	case CQ_RX_ERROP_L2_OVERSIZE:
2227 		stats->rx_oversize++;
2228 		break;
2229 	case CQ_RX_ERROP_L2_UNDERSIZE:
2230 		stats->rx_undersize++;
2231 		break;
2232 	case CQ_RX_ERROP_L2_LENMISM:
2233 		stats->rx_l2_len_mismatch++;
2234 		break;
2235 	case CQ_RX_ERROP_L2_PCLP:
2236 		stats->rx_l2_pclp++;
2237 		break;
2238 	case CQ_RX_ERROP_IP_NOT:
2239 		stats->rx_ip_ver_errs++;
2240 		break;
2241 	case CQ_RX_ERROP_IP_CSUM_ERR:
2242 		stats->rx_ip_csum_errs++;
2243 		break;
2244 	case CQ_RX_ERROP_IP_MAL:
2245 		stats->rx_ip_hdr_malformed++;
2246 		break;
2247 	case CQ_RX_ERROP_IP_MALD:
2248 		stats->rx_ip_payload_malformed++;
2249 		break;
2250 	case CQ_RX_ERROP_IP_HOP:
2251 		stats->rx_ip_ttl_errs++;
2252 		break;
2253 	case CQ_RX_ERROP_L3_PCLP:
2254 		stats->rx_l3_pclp++;
2255 		break;
2256 	case CQ_RX_ERROP_L4_MAL:
2257 		stats->rx_l4_malformed++;
2258 		break;
2259 	case CQ_RX_ERROP_L4_CHK:
2260 		stats->rx_l4_csum_errs++;
2261 		break;
2262 	case CQ_RX_ERROP_UDP_LEN:
2263 		stats->rx_udp_len_errs++;
2264 		break;
2265 	case CQ_RX_ERROP_L4_PORT:
2266 		stats->rx_l4_port_errs++;
2267 		break;
2268 	case CQ_RX_ERROP_TCP_FLAG:
2269 		stats->rx_tcp_flag_errs++;
2270 		break;
2271 	case CQ_RX_ERROP_TCP_OFFSET:
2272 		stats->rx_tcp_offset_errs++;
2273 		break;
2274 	case CQ_RX_ERROP_L4_PCLP:
2275 		stats->rx_l4_pclp++;
2276 		break;
2277 	case CQ_RX_ERROP_RBDR_TRUNC:
2278 		stats->rx_truncated_pkts++;
2279 		break;
2280 	}
2281 
2282 	return (1);
2283 }
2284 
2285 /* Check for errors in the send cmp.queue entry */
2286 int
2287 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2288     struct cqe_send_t *cqe_tx)
2289 {
2290 	struct cmp_queue_stats *stats = &cq->stats;
2291 
2292 	switch (cqe_tx->send_status) {
2293 	case CQ_TX_ERROP_GOOD:
2294 		stats->tx.good++;
2295 		return (0);
2296 	case CQ_TX_ERROP_DESC_FAULT:
2297 		stats->tx.desc_fault++;
2298 		break;
2299 	case CQ_TX_ERROP_HDR_CONS_ERR:
2300 		stats->tx.hdr_cons_err++;
2301 		break;
2302 	case CQ_TX_ERROP_SUBDC_ERR:
2303 		stats->tx.subdesc_err++;
2304 		break;
2305 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2306 		stats->tx.imm_size_oflow++;
2307 		break;
2308 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2309 		stats->tx.data_seq_err++;
2310 		break;
2311 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2312 		stats->tx.mem_seq_err++;
2313 		break;
2314 	case CQ_TX_ERROP_LOCK_VIOL:
2315 		stats->tx.lock_viol++;
2316 		break;
2317 	case CQ_TX_ERROP_DATA_FAULT:
2318 		stats->tx.data_fault++;
2319 		break;
2320 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2321 		stats->tx.tstmp_conflict++;
2322 		break;
2323 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2324 		stats->tx.tstmp_timeout++;
2325 		break;
2326 	case CQ_TX_ERROP_MEM_FAULT:
2327 		stats->tx.mem_fault++;
2328 		break;
2329 	case CQ_TX_ERROP_CK_OVERLAP:
2330 		stats->tx.csum_overlap++;
2331 		break;
2332 	case CQ_TX_ERROP_CK_OFLOW:
2333 		stats->tx.csum_overflow++;
2334 		break;
2335 	}
2336 
2337 	return (1);
2338 }
2339