xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/cpuset.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/smp.h>
55 #include <sys/taskqueue.h>
56 
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 
60 #include <machine/bus.h>
61 #include <machine/vmparam.h>
62 
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_media.h>
66 #include <net/ifq.h>
67 #include <net/bpf.h>
68 #include <net/ethernet.h>
69 
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/if_ether.h>
73 #include <netinet/ip.h>
74 #include <netinet/ip6.h>
75 #include <netinet/sctp.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_lro.h>
78 #include <netinet/udp.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 
83 #include "thunder_bgx.h"
84 #include "nic_reg.h"
85 #include "nic.h"
86 #include "q_struct.h"
87 #include "nicvf_queues.h"
88 
89 #define	DEBUG
90 #undef DEBUG
91 
92 #ifdef DEBUG
93 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
94 #else
95 #define	dprintf(dev, fmt, ...)
96 #endif
97 
98 MALLOC_DECLARE(M_NICVF);
99 
100 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
101 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
102 static void nicvf_sq_disable(struct nicvf *, int);
103 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
104 static void nicvf_put_sq_desc(struct snd_queue *, int);
105 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
106     boolean_t);
107 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
108 
109 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
110 
111 static void nicvf_rbdr_task(void *, int);
112 static void nicvf_rbdr_task_nowait(void *, int);
113 
114 struct rbuf_info {
115 	bus_dma_tag_t	dmat;
116 	bus_dmamap_t	dmap;
117 	struct mbuf *	mbuf;
118 };
119 
120 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
121 
122 /* Poll a register for a specific value */
123 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
124 			  uint64_t reg, int bit_pos, int bits, int val)
125 {
126 	uint64_t bit_mask;
127 	uint64_t reg_val;
128 	int timeout = 10;
129 
130 	bit_mask = (1UL << bits) - 1;
131 	bit_mask = (bit_mask << bit_pos);
132 
133 	while (timeout) {
134 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
135 		if (((reg_val & bit_mask) >> bit_pos) == val)
136 			return (0);
137 
138 		DELAY(1000);
139 		timeout--;
140 	}
141 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
142 	return (ETIMEDOUT);
143 }
144 
145 /* Callback for bus_dmamap_load() */
146 static void
147 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
148 {
149 	bus_addr_t *paddr;
150 
151 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
152 	paddr = arg;
153 	*paddr = segs->ds_addr;
154 }
155 
156 /* Allocate memory for a queue's descriptors */
157 static int
158 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
159     int q_len, int desc_size, int align_bytes)
160 {
161 	int err, err_dmat;
162 
163 	/* Create DMA tag first */
164 	err = bus_dma_tag_create(
165 	    bus_get_dma_tag(nic->dev),		/* parent tag */
166 	    align_bytes,			/* alignment */
167 	    0,					/* boundary */
168 	    BUS_SPACE_MAXADDR,			/* lowaddr */
169 	    BUS_SPACE_MAXADDR,			/* highaddr */
170 	    NULL, NULL,				/* filtfunc, filtfuncarg */
171 	    (q_len * desc_size),		/* maxsize */
172 	    1,					/* nsegments */
173 	    (q_len * desc_size),		/* maxsegsize */
174 	    0,					/* flags */
175 	    NULL, NULL,				/* lockfunc, lockfuncarg */
176 	    &dmem->dmat);			/* dmat */
177 
178 	if (err != 0) {
179 		device_printf(nic->dev,
180 		    "Failed to create busdma tag for descriptors ring\n");
181 		return (err);
182 	}
183 
184 	/* Allocate segment of continuous DMA safe memory */
185 	err = bus_dmamem_alloc(
186 	    dmem->dmat,				/* DMA tag */
187 	    &dmem->base,			/* virtual address */
188 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
189 	    &dmem->dmap);			/* DMA map */
190 	if (err != 0) {
191 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
192 		    "descriptors ring\n");
193 		goto dmamem_fail;
194 	}
195 
196 	err = bus_dmamap_load(
197 	    dmem->dmat,
198 	    dmem->dmap,
199 	    dmem->base,
200 	    (q_len * desc_size),		/* allocation size */
201 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
202 	    &dmem->phys_base,			/* physical address */
203 	    BUS_DMA_NOWAIT);
204 	if (err != 0) {
205 		device_printf(nic->dev,
206 		    "Cannot load DMA map of descriptors ring\n");
207 		goto dmamap_fail;
208 	}
209 
210 	dmem->q_len = q_len;
211 	dmem->size = (desc_size * q_len);
212 
213 	return (0);
214 
215 dmamap_fail:
216 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
217 	dmem->phys_base = 0;
218 dmamem_fail:
219 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
220 	dmem->base = NULL;
221 	KASSERT(err_dmat == 0,
222 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
223 
224 	return (err);
225 }
226 
227 /* Free queue's descriptor memory */
228 static void
229 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
230 {
231 	int err;
232 
233 	if ((dmem == NULL) || (dmem->base == NULL))
234 		return;
235 
236 	/* Unload a map */
237 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
238 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
239 	/* Free DMA memory */
240 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
241 	/* Destroy DMA tag */
242 	err = bus_dma_tag_destroy(dmem->dmat);
243 
244 	KASSERT(err == 0,
245 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
246 
247 	dmem->phys_base = 0;
248 	dmem->base = NULL;
249 }
250 
251 /*
252  * Allocate buffer for packet reception
253  * HW returns memory address where packet is DMA'ed but not a pointer
254  * into RBDR ring, so save buffer address at the start of fragment and
255  * align the start address to a cache aligned address
256  */
257 static __inline int
258 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
259     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
260 {
261 	struct mbuf *mbuf;
262 	struct rbuf_info *rinfo;
263 	bus_dma_segment_t segs[1];
264 	int nsegs;
265 	int err;
266 
267 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
268 	if (mbuf == NULL)
269 		return (ENOMEM);
270 
271 	/*
272 	 * The length is equal to the actual length + one 128b line
273 	 * used as a room for rbuf_info structure.
274 	 */
275 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
276 
277 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
278 	    &nsegs, BUS_DMA_NOWAIT);
279 	if (err != 0) {
280 		device_printf(nic->dev,
281 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
282 		    err);
283 		m_freem(mbuf);
284 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
285 		return (err);
286 	}
287 	if (nsegs != 1)
288 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
289 	/*
290 	 * Now use the room for rbuf_info structure
291 	 * and adjust mbuf data and length.
292 	 */
293 	rinfo = (struct rbuf_info *)mbuf->m_data;
294 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
295 
296 	rinfo->dmat = rbdr->rbdr_buff_dmat;
297 	rinfo->dmap = dmap;
298 	rinfo->mbuf = mbuf;
299 
300 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
301 
302 	return (0);
303 }
304 
305 /* Retrieve mbuf for received packet */
306 static struct mbuf *
307 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
308 {
309 	struct mbuf *mbuf;
310 	struct rbuf_info *rinfo;
311 
312 	/* Get buffer start address and alignment offset */
313 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
314 
315 	/* Now retrieve mbuf to give to stack */
316 	mbuf = rinfo->mbuf;
317 	if (__predict_false(mbuf == NULL)) {
318 		panic("%s: Received packet fragment with NULL mbuf",
319 		    device_get_nameunit(nic->dev));
320 	}
321 	/*
322 	 * Clear the mbuf in the descriptor to indicate
323 	 * that this slot is processed and free to use.
324 	 */
325 	rinfo->mbuf = NULL;
326 
327 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
328 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
329 
330 	return (mbuf);
331 }
332 
333 /* Allocate RBDR ring and populate receive buffers */
334 static int
335 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
336     int buf_size, int qidx)
337 {
338 	bus_dmamap_t dmap;
339 	bus_addr_t rbuf;
340 	struct rbdr_entry_t *desc;
341 	int idx;
342 	int err;
343 
344 	/* Allocate rbdr descriptors ring */
345 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
346 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
347 	if (err != 0) {
348 		device_printf(nic->dev,
349 		    "Failed to create RBDR descriptors ring\n");
350 		return (err);
351 	}
352 
353 	rbdr->desc = rbdr->dmem.base;
354 	/*
355 	 * Buffer size has to be in multiples of 128 bytes.
356 	 * Make room for metadata of size of one line (128 bytes).
357 	 */
358 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
359 	rbdr->enable = TRUE;
360 	rbdr->thresh = RBDR_THRESH;
361 	rbdr->nic = nic;
362 	rbdr->idx = qidx;
363 
364 	/*
365 	 * Create DMA tag for Rx buffers.
366 	 * Each map created using this tag is intended to store Rx payload for
367 	 * one fragment and one header structure containing rbuf_info (thus
368 	 * additional 128 byte line since RB must be a multiple of 128 byte
369 	 * cache line).
370 	 */
371 	if (buf_size > MCLBYTES) {
372 		device_printf(nic->dev,
373 		    "Buffer size to large for mbuf cluster\n");
374 		return (EINVAL);
375 	}
376 	err = bus_dma_tag_create(
377 	    bus_get_dma_tag(nic->dev),		/* parent tag */
378 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
379 	    0,					/* boundary */
380 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
381 	    DMAP_MIN_PHYSADDR,			/* highaddr */
382 	    NULL, NULL,				/* filtfunc, filtfuncarg */
383 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
384 	    1,					/* nsegments */
385 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
386 	    0,					/* flags */
387 	    NULL, NULL,				/* lockfunc, lockfuncarg */
388 	    &rbdr->rbdr_buff_dmat);		/* dmat */
389 
390 	if (err != 0) {
391 		device_printf(nic->dev,
392 		    "Failed to create busdma tag for RBDR buffers\n");
393 		return (err);
394 	}
395 
396 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
397 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
398 
399 	for (idx = 0; idx < ring_len; idx++) {
400 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
401 		if (err != 0) {
402 			device_printf(nic->dev,
403 			    "Failed to create DMA map for RB\n");
404 			return (err);
405 		}
406 		rbdr->rbdr_buff_dmaps[idx] = dmap;
407 
408 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
409 		    DMA_BUFFER_LEN, &rbuf);
410 		if (err != 0)
411 			return (err);
412 
413 		desc = GET_RBDR_DESC(rbdr, idx);
414 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
415 	}
416 
417 	/* Allocate taskqueue */
418 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
419 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
420 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
421 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
422 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
423 	    device_get_nameunit(nic->dev));
424 
425 	return (0);
426 }
427 
428 /* Free RBDR ring and its receive buffers */
429 static void
430 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
431 {
432 	struct mbuf *mbuf;
433 	struct queue_set *qs;
434 	struct rbdr_entry_t *desc;
435 	struct rbuf_info *rinfo;
436 	bus_addr_t buf_addr;
437 	int head, tail, idx;
438 	int err;
439 
440 	qs = nic->qs;
441 
442 	if ((qs == NULL) || (rbdr == NULL))
443 		return;
444 
445 	rbdr->enable = FALSE;
446 	if (rbdr->rbdr_taskq != NULL) {
447 		/* Remove tasks */
448 		while (taskqueue_cancel(rbdr->rbdr_taskq,
449 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
450 			/* Finish the nowait task first */
451 			taskqueue_drain(rbdr->rbdr_taskq,
452 			    &rbdr->rbdr_task_nowait);
453 		}
454 		taskqueue_free(rbdr->rbdr_taskq);
455 		rbdr->rbdr_taskq = NULL;
456 
457 		while (taskqueue_cancel(taskqueue_thread,
458 		    &rbdr->rbdr_task, NULL) != 0) {
459 			/* Now finish the sleepable task */
460 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
461 		}
462 	}
463 
464 	/*
465 	 * Free all of the memory under the RB descriptors.
466 	 * There are assumptions here:
467 	 * 1. Corresponding RBDR is disabled
468 	 *    - it is safe to operate using head and tail indexes
469 	 * 2. All bffers that were received are properly freed by
470 	 *    the receive handler
471 	 *    - there is no need to unload DMA map and free MBUF for other
472 	 *      descriptors than unused ones
473 	 */
474 	if (rbdr->rbdr_buff_dmat != NULL) {
475 		head = rbdr->head;
476 		tail = rbdr->tail;
477 		while (head != tail) {
478 			desc = GET_RBDR_DESC(rbdr, head);
479 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
480 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
481 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
482 			mbuf = rinfo->mbuf;
483 			/* This will destroy everything including rinfo! */
484 			m_freem(mbuf);
485 			head++;
486 			head &= (rbdr->dmem.q_len - 1);
487 		}
488 		/* Free tail descriptor */
489 		desc = GET_RBDR_DESC(rbdr, tail);
490 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
491 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
492 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
493 		mbuf = rinfo->mbuf;
494 		/* This will destroy everything including rinfo! */
495 		m_freem(mbuf);
496 
497 		/* Destroy DMA maps */
498 		for (idx = 0; idx < qs->rbdr_len; idx++) {
499 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
500 				continue;
501 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
502 			    rbdr->rbdr_buff_dmaps[idx]);
503 			KASSERT(err == 0,
504 			    ("%s: Could not destroy DMA map for RB, desc: %d",
505 			    __func__, idx));
506 			rbdr->rbdr_buff_dmaps[idx] = NULL;
507 		}
508 
509 		/* Now destroy the tag */
510 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
511 		KASSERT(err == 0,
512 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
513 
514 		rbdr->head = 0;
515 		rbdr->tail = 0;
516 	}
517 
518 	/* Free RBDR ring */
519 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
520 }
521 
522 /*
523  * Refill receive buffer descriptors with new buffers.
524  */
525 static int
526 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
527 {
528 	struct nicvf *nic;
529 	struct queue_set *qs;
530 	int rbdr_idx;
531 	int tail, qcount;
532 	int refill_rb_cnt;
533 	struct rbdr_entry_t *desc;
534 	bus_dmamap_t dmap;
535 	bus_addr_t rbuf;
536 	boolean_t rb_alloc_fail;
537 	int new_rb;
538 
539 	rb_alloc_fail = TRUE;
540 	new_rb = 0;
541 	nic = rbdr->nic;
542 	qs = nic->qs;
543 	rbdr_idx = rbdr->idx;
544 
545 	/* Check if it's enabled */
546 	if (!rbdr->enable)
547 		return (0);
548 
549 	/* Get no of desc's to be refilled */
550 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
551 	qcount &= 0x7FFFF;
552 	/* Doorbell can be ringed with a max of ring size minus 1 */
553 	if (qcount >= (qs->rbdr_len - 1)) {
554 		rb_alloc_fail = FALSE;
555 		goto out;
556 	} else
557 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
558 
559 	/* Start filling descs from tail */
560 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
561 	while (refill_rb_cnt) {
562 		tail++;
563 		tail &= (rbdr->dmem.q_len - 1);
564 
565 		dmap = rbdr->rbdr_buff_dmaps[tail];
566 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
567 		    DMA_BUFFER_LEN, &rbuf)) {
568 			/* Something went wrong. Resign */
569 			break;
570 		}
571 		desc = GET_RBDR_DESC(rbdr, tail);
572 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
573 		refill_rb_cnt--;
574 		new_rb++;
575 	}
576 
577 	/* make sure all memory stores are done before ringing doorbell */
578 	wmb();
579 
580 	/* Check if buffer allocation failed */
581 	if (refill_rb_cnt == 0)
582 		rb_alloc_fail = FALSE;
583 
584 	/* Notify HW */
585 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
586 			      rbdr_idx, new_rb);
587 out:
588 	if (!rb_alloc_fail) {
589 		/*
590 		 * Re-enable RBDR interrupts only
591 		 * if buffer allocation is success.
592 		 */
593 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
594 
595 		return (0);
596 	}
597 
598 	return (ENOMEM);
599 }
600 
601 /* Refill RBs even if sleep is needed to reclaim memory */
602 static void
603 nicvf_rbdr_task(void *arg, int pending)
604 {
605 	struct rbdr *rbdr;
606 	int err;
607 
608 	rbdr = (struct rbdr *)arg;
609 
610 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
611 	if (__predict_false(err != 0)) {
612 		panic("%s: Failed to refill RBs even when sleep enabled",
613 		    __func__);
614 	}
615 }
616 
617 /* Refill RBs as soon as possible without waiting */
618 static void
619 nicvf_rbdr_task_nowait(void *arg, int pending)
620 {
621 	struct rbdr *rbdr;
622 	int err;
623 
624 	rbdr = (struct rbdr *)arg;
625 
626 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
627 	if (err != 0) {
628 		/*
629 		 * Schedule another, sleepable kernel thread
630 		 * that will for sure refill the buffers.
631 		 */
632 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
633 	}
634 }
635 
636 static int
637 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
638     struct cqe_rx_t *cqe_rx, int cqe_type)
639 {
640 	struct mbuf *mbuf;
641 	struct rcv_queue *rq;
642 	int rq_idx;
643 	int err = 0;
644 
645 	rq_idx = cqe_rx->rq_idx;
646 	rq = &nic->qs->rq[rq_idx];
647 
648 	/* Check for errors */
649 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
650 	if (err && !cqe_rx->rb_cnt)
651 		return (0);
652 
653 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
654 	if (mbuf == NULL) {
655 		dprintf(nic->dev, "Packet not received\n");
656 		return (0);
657 	}
658 
659 	/* If error packet */
660 	if (err != 0) {
661 		m_freem(mbuf);
662 		return (0);
663 	}
664 
665 	if (rq->lro_enabled &&
666 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
667 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
668             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
669 		/*
670 		 * At this point it is known that there are no errors in the
671 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
672 		 * or enqueue error.
673 		 */
674 		if ((rq->lro.lro_cnt != 0) &&
675 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
676 			return (0);
677 	}
678 	/*
679 	 * Push this packet to the stack later to avoid
680 	 * unlocking completion task in the middle of work.
681 	 */
682 	err = buf_ring_enqueue(cq->rx_br, mbuf);
683 	if (err != 0) {
684 		/*
685 		 * Failed to enqueue this mbuf.
686 		 * We don't drop it, just schedule another task.
687 		 */
688 		return (err);
689 	}
690 
691 	return (0);
692 }
693 
694 static int
695 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
696     struct cqe_send_t *cqe_tx, int cqe_type)
697 {
698 	bus_dmamap_t dmap;
699 	struct mbuf *mbuf;
700 	struct snd_queue *sq;
701 	struct sq_hdr_subdesc *hdr;
702 
703 	mbuf = NULL;
704 	sq = &nic->qs->sq[cqe_tx->sq_idx];
705 	/* Avoid blocking here since we hold a non-sleepable NICVF_CMP_LOCK */
706 	if (NICVF_TX_TRYLOCK(sq) == 0)
707 		return (EAGAIN);
708 
709 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
711 		NICVF_TX_UNLOCK(sq);
712 		return (0);
713 	}
714 
715 	dprintf(nic->dev,
716 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
717 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
718 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
719 
720 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
721 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
722 
723 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
724 	if (mbuf != NULL) {
725 		m_freem(mbuf);
726 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
727 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
728 	}
729 
730 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
731 
732 	NICVF_TX_UNLOCK(sq);
733 	return (0);
734 }
735 
736 static int
737 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
738 {
739 	struct mbuf *mbuf;
740 	struct ifnet *ifp;
741 	int processed_cqe, work_done = 0, tx_done = 0;
742 	int cqe_count, cqe_head;
743 	struct queue_set *qs = nic->qs;
744 	struct cmp_queue *cq = &qs->cq[cq_idx];
745 	struct snd_queue *sq = &qs->sq[cq_idx];
746 	struct rcv_queue *rq;
747 	struct cqe_rx_t *cq_desc;
748 	struct lro_ctrl	*lro;
749 	int rq_idx;
750 	int cmp_err;
751 
752 	NICVF_CMP_LOCK(cq);
753 	cmp_err = 0;
754 	processed_cqe = 0;
755 	/* Get no of valid CQ entries to process */
756 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
757 	cqe_count &= CQ_CQE_COUNT;
758 	if (cqe_count == 0)
759 		goto out;
760 
761 	/* Get head of the valid CQ entries */
762 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
763 	cqe_head &= 0xFFFF;
764 
765 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
766 	    __func__, cq_idx, cqe_count, cqe_head);
767 	while (processed_cqe < cqe_count) {
768 		/* Get the CQ descriptor */
769 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
770 		cqe_head++;
771 		cqe_head &= (cq->dmem.q_len - 1);
772 		/* Prefetch next CQ descriptor */
773 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
774 
775 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
776 		    cq_desc->cqe_type);
777 		switch (cq_desc->cqe_type) {
778 		case CQE_TYPE_RX:
779 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
780 			    CQE_TYPE_RX);
781 			if (__predict_false(cmp_err != 0)) {
782 				/*
783 				 * Ups. Cannot finish now.
784 				 * Let's try again later.
785 				 */
786 				goto done;
787 			}
788 			work_done++;
789 			break;
790 		case CQE_TYPE_SEND:
791 			cmp_err = nicvf_snd_pkt_handler(nic, cq,
792 			    (void *)cq_desc, CQE_TYPE_SEND);
793 			if (__predict_false(cmp_err != 0)) {
794 				/*
795 				 * Ups. Cannot finish now.
796 				 * Let's try again later.
797 				 */
798 				goto done;
799 			}
800 
801 			tx_done++;
802 			break;
803 		case CQE_TYPE_INVALID:
804 		case CQE_TYPE_RX_SPLIT:
805 		case CQE_TYPE_RX_TCP:
806 		case CQE_TYPE_SEND_PTP:
807 			/* Ignore for now */
808 			break;
809 		}
810 		processed_cqe++;
811 	}
812 done:
813 	dprintf(nic->dev,
814 	    "%s CQ%d processed_cqe %d work_done %d\n",
815 	    __func__, cq_idx, processed_cqe, work_done);
816 
817 	/* Ring doorbell to inform H/W to reuse processed CQEs */
818 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
819 
820 	if ((tx_done > 0) &&
821 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
822 		/* Reenable TXQ if its stopped earlier due to SQ full */
823 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
824 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
825 	}
826 out:
827 	/*
828 	 * Flush any outstanding LRO work
829 	 */
830 	rq_idx = cq_idx;
831 	rq = &nic->qs->rq[rq_idx];
832 	lro = &rq->lro;
833 	tcp_lro_flush_all(lro);
834 
835 	NICVF_CMP_UNLOCK(cq);
836 
837 	ifp = nic->ifp;
838 	/* Push received MBUFs to the stack */
839 	while (!buf_ring_empty(cq->rx_br)) {
840 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
841 		if (__predict_true(mbuf != NULL))
842 			(*ifp->if_input)(ifp, mbuf);
843 	}
844 
845 	return (cmp_err);
846 }
847 
848 /*
849  * Qset error interrupt handler
850  *
851  * As of now only CQ errors are handled
852  */
853 static void
854 nicvf_qs_err_task(void *arg, int pending)
855 {
856 	struct nicvf *nic;
857 	struct queue_set *qs;
858 	int qidx;
859 	uint64_t status;
860 	boolean_t enable = TRUE;
861 
862 	nic = (struct nicvf *)arg;
863 	qs = nic->qs;
864 
865 	/* Deactivate network interface */
866 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
867 
868 	/* Check if it is CQ err */
869 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
870 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
871 		    qidx);
872 		if ((status & CQ_ERR_MASK) == 0)
873 			continue;
874 		/* Process already queued CQEs and reconfig CQ */
875 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
876 		nicvf_sq_disable(nic, qidx);
877 		(void)nicvf_cq_intr_handler(nic, qidx);
878 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
879 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
880 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
881 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
882 	}
883 
884 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
885 	/* Re-enable Qset error interrupt */
886 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
887 }
888 
889 static void
890 nicvf_cmp_task(void *arg, int pending)
891 {
892 	struct cmp_queue *cq;
893 	struct nicvf *nic;
894 	int cmp_err;
895 
896 	cq = (struct cmp_queue *)arg;
897 	nic = cq->nic;
898 
899 	/* Handle CQ descriptors */
900 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
901 	if (__predict_false(cmp_err != 0)) {
902 		/*
903 		 * Schedule another thread here since we did not
904 		 * process the entire CQ due to Tx or Rx CQ parse error.
905 		 */
906 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
907 
908 	}
909 
910 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
911 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
912 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
913 
914 }
915 
916 /* Initialize completion queue */
917 static int
918 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
919     int qidx)
920 {
921 	int err;
922 
923 	/* Initizalize lock */
924 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
925 	    device_get_nameunit(nic->dev), qidx);
926 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
927 
928 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
929 				     NICVF_CQ_BASE_ALIGN_BYTES);
930 
931 	if (err != 0) {
932 		device_printf(nic->dev,
933 		    "Could not allocate DMA memory for CQ\n");
934 		return (err);
935 	}
936 
937 	cq->desc = cq->dmem.base;
938 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
939 	cq->nic = nic;
940 	cq->idx = qidx;
941 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
942 
943 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
944 	    &cq->mtx);
945 
946 	/* Allocate taskqueue */
947 	TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
948 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
949 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
950 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
951 	    device_get_nameunit(nic->dev), qidx);
952 
953 	return (0);
954 }
955 
956 static void
957 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
958 {
959 
960 	if (cq == NULL)
961 		return;
962 	/*
963 	 * The completion queue itself should be disabled by now
964 	 * (ref. nicvf_snd_queue_config()).
965 	 * Ensure that it is safe to disable it or panic.
966 	 */
967 	if (cq->enable)
968 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
969 
970 	if (cq->cmp_taskq != NULL) {
971 		/* Remove task */
972 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
973 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
974 
975 		taskqueue_free(cq->cmp_taskq);
976 		cq->cmp_taskq = NULL;
977 	}
978 	/*
979 	 * Completion interrupt will possibly enable interrupts again
980 	 * so disable interrupting now after we finished processing
981 	 * completion task. It is safe to do so since the corresponding CQ
982 	 * was already disabled.
983 	 */
984 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
985 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
986 
987 	NICVF_CMP_LOCK(cq);
988 	nicvf_free_q_desc_mem(nic, &cq->dmem);
989 	drbr_free(cq->rx_br, M_DEVBUF);
990 	NICVF_CMP_UNLOCK(cq);
991 	mtx_destroy(&cq->mtx);
992 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
993 }
994 
995 int
996 nicvf_xmit_locked(struct snd_queue *sq)
997 {
998 	struct nicvf *nic;
999 	struct ifnet *ifp;
1000 	struct mbuf *next;
1001 	int err;
1002 
1003 	NICVF_TX_LOCK_ASSERT(sq);
1004 
1005 	nic = sq->nic;
1006 	ifp = nic->ifp;
1007 	err = 0;
1008 
1009 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
1010 		err = nicvf_tx_mbuf_locked(sq, &next);
1011 		if (err != 0) {
1012 			if (next == NULL)
1013 				drbr_advance(ifp, sq->br);
1014 			else
1015 				drbr_putback(ifp, sq->br, next);
1016 
1017 			break;
1018 		}
1019 		drbr_advance(ifp, sq->br);
1020 		/* Send a copy of the frame to the BPF listener */
1021 		ETHER_BPF_MTAP(ifp, next);
1022 	}
1023 	return (err);
1024 }
1025 
1026 static void
1027 nicvf_snd_task(void *arg, int pending)
1028 {
1029 	struct snd_queue *sq = (struct snd_queue *)arg;
1030 	struct nicvf *nic;
1031 	struct ifnet *ifp;
1032 	int err;
1033 
1034 	nic = sq->nic;
1035 	ifp = nic->ifp;
1036 
1037 	/*
1038 	 * Skip sending anything if the driver is not running,
1039 	 * SQ full or link is down.
1040 	 */
1041 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1042 	    IFF_DRV_RUNNING) || !nic->link_up)
1043 		return;
1044 
1045 	NICVF_TX_LOCK(sq);
1046 	err = nicvf_xmit_locked(sq);
1047 	NICVF_TX_UNLOCK(sq);
1048 	/* Try again */
1049 	if (err != 0)
1050 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1051 }
1052 
1053 /* Initialize transmit queue */
1054 static int
1055 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1056     int qidx)
1057 {
1058 	size_t i;
1059 	int err;
1060 
1061 	/* Initizalize TX lock for this queue */
1062 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1063 	    device_get_nameunit(nic->dev), qidx);
1064 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1065 
1066 	NICVF_TX_LOCK(sq);
1067 	/* Allocate buffer ring */
1068 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1069 	    M_NOWAIT, &sq->mtx);
1070 	if (sq->br == NULL) {
1071 		device_printf(nic->dev,
1072 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1073 		err = ENOMEM;
1074 		goto error;
1075 	}
1076 
1077 	/* Allocate DMA memory for Tx descriptors */
1078 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1079 				     NICVF_SQ_BASE_ALIGN_BYTES);
1080 	if (err != 0) {
1081 		device_printf(nic->dev,
1082 		    "Could not allocate DMA memory for SQ\n");
1083 		goto error;
1084 	}
1085 
1086 	sq->desc = sq->dmem.base;
1087 	sq->head = sq->tail = 0;
1088 	sq->free_cnt = q_len - 1;
1089 	sq->thresh = SND_QUEUE_THRESH;
1090 	sq->idx = qidx;
1091 	sq->nic = nic;
1092 
1093 	/*
1094 	 * Allocate DMA maps for Tx buffers
1095 	 */
1096 
1097 	/* Create DMA tag first */
1098 	err = bus_dma_tag_create(
1099 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1100 	    1,					/* alignment */
1101 	    0,					/* boundary */
1102 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1103 	    BUS_SPACE_MAXADDR,			/* highaddr */
1104 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1105 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1106 	    NICVF_TSO_NSEGS,			/* nsegments */
1107 	    MCLBYTES,				/* maxsegsize */
1108 	    0,					/* flags */
1109 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1110 	    &sq->snd_buff_dmat);		/* dmat */
1111 
1112 	if (err != 0) {
1113 		device_printf(nic->dev,
1114 		    "Failed to create busdma tag for Tx buffers\n");
1115 		goto error;
1116 	}
1117 
1118 	/* Allocate send buffers array */
1119 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1120 	    (M_NOWAIT | M_ZERO));
1121 	if (sq->snd_buff == NULL) {
1122 		device_printf(nic->dev,
1123 		    "Could not allocate memory for Tx buffers array\n");
1124 		err = ENOMEM;
1125 		goto error;
1126 	}
1127 
1128 	/* Now populate maps */
1129 	for (i = 0; i < q_len; i++) {
1130 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1131 		    &sq->snd_buff[i].dmap);
1132 		if (err != 0) {
1133 			device_printf(nic->dev,
1134 			    "Failed to create DMA maps for Tx buffers\n");
1135 			goto error;
1136 		}
1137 	}
1138 	NICVF_TX_UNLOCK(sq);
1139 
1140 	/* Allocate taskqueue */
1141 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1142 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1143 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1144 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1145 	    device_get_nameunit(nic->dev), qidx);
1146 
1147 	return (0);
1148 error:
1149 	NICVF_TX_UNLOCK(sq);
1150 	return (err);
1151 }
1152 
1153 static void
1154 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1155 {
1156 	struct queue_set *qs = nic->qs;
1157 	size_t i;
1158 	int err;
1159 
1160 	if (sq == NULL)
1161 		return;
1162 
1163 	if (sq->snd_taskq != NULL) {
1164 		/* Remove task */
1165 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1166 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1167 
1168 		taskqueue_free(sq->snd_taskq);
1169 		sq->snd_taskq = NULL;
1170 	}
1171 
1172 	NICVF_TX_LOCK(sq);
1173 	if (sq->snd_buff_dmat != NULL) {
1174 		if (sq->snd_buff != NULL) {
1175 			for (i = 0; i < qs->sq_len; i++) {
1176 				m_freem(sq->snd_buff[i].mbuf);
1177 				sq->snd_buff[i].mbuf = NULL;
1178 
1179 				bus_dmamap_unload(sq->snd_buff_dmat,
1180 				    sq->snd_buff[i].dmap);
1181 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1182 				    sq->snd_buff[i].dmap);
1183 				/*
1184 				 * If bus_dmamap_destroy fails it can cause
1185 				 * random panic later if the tag is also
1186 				 * destroyed in the process.
1187 				 */
1188 				KASSERT(err == 0,
1189 				    ("%s: Could not destroy DMA map for SQ",
1190 				    __func__));
1191 			}
1192 		}
1193 
1194 		free(sq->snd_buff, M_NICVF);
1195 
1196 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1197 		KASSERT(err == 0,
1198 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1199 	}
1200 
1201 	/* Free private driver ring for this send queue */
1202 	if (sq->br != NULL)
1203 		drbr_free(sq->br, M_DEVBUF);
1204 
1205 	if (sq->dmem.base != NULL)
1206 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1207 
1208 	NICVF_TX_UNLOCK(sq);
1209 	/* Destroy Tx lock */
1210 	mtx_destroy(&sq->mtx);
1211 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1212 }
1213 
1214 static void
1215 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1216 {
1217 
1218 	/* Disable send queue */
1219 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1220 	/* Check if SQ is stopped */
1221 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1222 		return;
1223 	/* Reset send queue */
1224 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1225 }
1226 
1227 static void
1228 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1229 {
1230 	union nic_mbx mbx = {};
1231 
1232 	/* Make sure all packets in the pipeline are written back into mem */
1233 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1234 	nicvf_send_msg_to_pf(nic, &mbx);
1235 }
1236 
1237 static void
1238 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1239 {
1240 
1241 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1242 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1243 	/* Disable completion queue */
1244 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1245 	/* Reset completion queue */
1246 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1247 }
1248 
1249 static void
1250 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1251 {
1252 	uint64_t tmp, fifo_state;
1253 	int timeout = 10;
1254 
1255 	/* Save head and tail pointers for feeing up buffers */
1256 	rbdr->head =
1257 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1258 	rbdr->tail =
1259 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1260 
1261 	/*
1262 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1263 	 * before relaiming.
1264 	 */
1265 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1266 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1267 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1268 		    qidx, NICVF_RBDR_RESET);
1269 	}
1270 
1271 	/* Disable RBDR */
1272 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1273 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1274 		return;
1275 	while (1) {
1276 		tmp = nicvf_queue_reg_read(nic,
1277 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1278 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1279 			break;
1280 
1281 		DELAY(1000);
1282 		timeout--;
1283 		if (!timeout) {
1284 			device_printf(nic->dev,
1285 			    "Failed polling on prefetch status\n");
1286 			return;
1287 		}
1288 	}
1289 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1290 	    NICVF_RBDR_RESET);
1291 
1292 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1293 		return;
1294 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1295 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1296 		return;
1297 }
1298 
1299 /* Configures receive queue */
1300 static void
1301 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1302     int qidx, bool enable)
1303 {
1304 	union nic_mbx mbx = {};
1305 	struct rcv_queue *rq;
1306 	struct rq_cfg rq_cfg;
1307 	struct ifnet *ifp;
1308 	struct lro_ctrl	*lro;
1309 
1310 	ifp = nic->ifp;
1311 
1312 	rq = &qs->rq[qidx];
1313 	rq->enable = enable;
1314 
1315 	lro = &rq->lro;
1316 
1317 	/* Disable receive queue */
1318 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1319 
1320 	if (!rq->enable) {
1321 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1322 		/* Free LRO memory */
1323 		tcp_lro_free(lro);
1324 		rq->lro_enabled = FALSE;
1325 		return;
1326 	}
1327 
1328 	/* Configure LRO if enabled */
1329 	rq->lro_enabled = FALSE;
1330 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1331 		if (tcp_lro_init(lro) != 0) {
1332 			device_printf(nic->dev,
1333 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1334 		} else {
1335 			rq->lro_enabled = TRUE;
1336 			lro->ifp = nic->ifp;
1337 		}
1338 	}
1339 
1340 	rq->cq_qs = qs->vnic_id;
1341 	rq->cq_idx = qidx;
1342 	rq->start_rbdr_qs = qs->vnic_id;
1343 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1344 	rq->cont_rbdr_qs = qs->vnic_id;
1345 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1346 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1347 	rq->caching = 1;
1348 
1349 	/* Send a mailbox msg to PF to config RQ */
1350 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1351 	mbx.rq.qs_num = qs->vnic_id;
1352 	mbx.rq.rq_num = qidx;
1353 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1354 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1355 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1356 	    (rq->start_qs_rbdr_idx);
1357 	nicvf_send_msg_to_pf(nic, &mbx);
1358 
1359 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1360 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1361 	nicvf_send_msg_to_pf(nic, &mbx);
1362 
1363 	/*
1364 	 * RQ drop config
1365 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1366 	 */
1367 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1368 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1369 	nicvf_send_msg_to_pf(nic, &mbx);
1370 
1371 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1372 
1373 	/* Enable Receive queue */
1374 	rq_cfg.ena = 1;
1375 	rq_cfg.tcp_ena = 0;
1376 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1377 	    *(uint64_t *)&rq_cfg);
1378 }
1379 
1380 /* Configures completion queue */
1381 static void
1382 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1383     int qidx, boolean_t enable)
1384 {
1385 	struct cmp_queue *cq;
1386 	struct cq_cfg cq_cfg;
1387 
1388 	cq = &qs->cq[qidx];
1389 	cq->enable = enable;
1390 
1391 	if (!cq->enable) {
1392 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1393 		return;
1394 	}
1395 
1396 	/* Reset completion queue */
1397 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1398 
1399 	/* Set completion queue base address */
1400 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1401 	    (uint64_t)(cq->dmem.phys_base));
1402 
1403 	/* Enable Completion queue */
1404 	cq_cfg.ena = 1;
1405 	cq_cfg.reset = 0;
1406 	cq_cfg.caching = 0;
1407 	cq_cfg.qsize = CMP_QSIZE;
1408 	cq_cfg.avg_con = 0;
1409 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1410 
1411 	/* Set threshold value for interrupt generation */
1412 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1413 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1414 	    nic->cq_coalesce_usecs);
1415 }
1416 
1417 /* Configures transmit queue */
1418 static void
1419 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1420     boolean_t enable)
1421 {
1422 	union nic_mbx mbx = {};
1423 	struct snd_queue *sq;
1424 	struct sq_cfg sq_cfg;
1425 
1426 	sq = &qs->sq[qidx];
1427 	sq->enable = enable;
1428 
1429 	if (!sq->enable) {
1430 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1431 		return;
1432 	}
1433 
1434 	/* Reset send queue */
1435 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1436 
1437 	sq->cq_qs = qs->vnic_id;
1438 	sq->cq_idx = qidx;
1439 
1440 	/* Send a mailbox msg to PF to config SQ */
1441 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1442 	mbx.sq.qs_num = qs->vnic_id;
1443 	mbx.sq.sq_num = qidx;
1444 	mbx.sq.sqs_mode = nic->sqs_mode;
1445 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1446 	nicvf_send_msg_to_pf(nic, &mbx);
1447 
1448 	/* Set queue base address */
1449 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1450 	    (uint64_t)(sq->dmem.phys_base));
1451 
1452 	/* Enable send queue  & set queue size */
1453 	sq_cfg.ena = 1;
1454 	sq_cfg.reset = 0;
1455 	sq_cfg.ldwb = 0;
1456 	sq_cfg.qsize = SND_QSIZE;
1457 	sq_cfg.tstmp_bgx_intf = 0;
1458 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1459 
1460 	/* Set threshold value for interrupt generation */
1461 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1462 }
1463 
1464 /* Configures receive buffer descriptor ring */
1465 static void
1466 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1467     boolean_t enable)
1468 {
1469 	struct rbdr *rbdr;
1470 	struct rbdr_cfg rbdr_cfg;
1471 
1472 	rbdr = &qs->rbdr[qidx];
1473 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1474 	if (!enable)
1475 		return;
1476 
1477 	/* Set descriptor base address */
1478 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1479 	    (uint64_t)(rbdr->dmem.phys_base));
1480 
1481 	/* Enable RBDR  & set queue size */
1482 	/* Buffer size should be in multiples of 128 bytes */
1483 	rbdr_cfg.ena = 1;
1484 	rbdr_cfg.reset = 0;
1485 	rbdr_cfg.ldwb = 0;
1486 	rbdr_cfg.qsize = RBDR_SIZE;
1487 	rbdr_cfg.avg_con = 0;
1488 	rbdr_cfg.lines = rbdr->dma_size / 128;
1489 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1490 	    *(uint64_t *)&rbdr_cfg);
1491 
1492 	/* Notify HW */
1493 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1494 	    qs->rbdr_len - 1);
1495 
1496 	/* Set threshold value for interrupt generation */
1497 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1498 	    rbdr->thresh - 1);
1499 }
1500 
1501 /* Requests PF to assign and enable Qset */
1502 void
1503 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1504 {
1505 	union nic_mbx mbx = {};
1506 	struct queue_set *qs;
1507 	struct qs_cfg *qs_cfg;
1508 
1509 	qs = nic->qs;
1510 	if (qs == NULL) {
1511 		device_printf(nic->dev,
1512 		    "Qset is still not allocated, don't init queues\n");
1513 		return;
1514 	}
1515 
1516 	qs->enable = enable;
1517 	qs->vnic_id = nic->vf_id;
1518 
1519 	/* Send a mailbox msg to PF to config Qset */
1520 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1521 	mbx.qs.num = qs->vnic_id;
1522 
1523 	mbx.qs.cfg = 0;
1524 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1525 	if (qs->enable) {
1526 		qs_cfg->ena = 1;
1527 		qs_cfg->vnic = qs->vnic_id;
1528 	}
1529 	nicvf_send_msg_to_pf(nic, &mbx);
1530 }
1531 
1532 static void
1533 nicvf_free_resources(struct nicvf *nic)
1534 {
1535 	int qidx;
1536 	struct queue_set *qs;
1537 
1538 	qs = nic->qs;
1539 	/*
1540 	 * Remove QS error task first since it has to be dead
1541 	 * to safely free completion queue tasks.
1542 	 */
1543 	if (qs->qs_err_taskq != NULL) {
1544 		/* Shut down QS error tasks */
1545 		while (taskqueue_cancel(qs->qs_err_taskq,
1546 		    &qs->qs_err_task,  NULL) != 0) {
1547 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1548 
1549 		}
1550 		taskqueue_free(qs->qs_err_taskq);
1551 		qs->qs_err_taskq = NULL;
1552 	}
1553 	/* Free receive buffer descriptor ring */
1554 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1555 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1556 
1557 	/* Free completion queue */
1558 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1559 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1560 
1561 	/* Free send queue */
1562 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1563 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1564 }
1565 
1566 static int
1567 nicvf_alloc_resources(struct nicvf *nic)
1568 {
1569 	struct queue_set *qs = nic->qs;
1570 	int qidx;
1571 
1572 	/* Alloc receive buffer descriptor ring */
1573 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1574 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1575 				    DMA_BUFFER_LEN, qidx))
1576 			goto alloc_fail;
1577 	}
1578 
1579 	/* Alloc send queue */
1580 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1581 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1582 			goto alloc_fail;
1583 	}
1584 
1585 	/* Alloc completion queue */
1586 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1587 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1588 			goto alloc_fail;
1589 	}
1590 
1591 	/* Allocate QS error taskqueue */
1592 	TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1593 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1594 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1595 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1596 	    device_get_nameunit(nic->dev));
1597 
1598 	return (0);
1599 alloc_fail:
1600 	nicvf_free_resources(nic);
1601 	return (ENOMEM);
1602 }
1603 
1604 int
1605 nicvf_set_qset_resources(struct nicvf *nic)
1606 {
1607 	struct queue_set *qs;
1608 
1609 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1610 	nic->qs = qs;
1611 
1612 	/* Set count of each queue */
1613 	qs->rbdr_cnt = RBDR_CNT;
1614 	/* With no RSS we stay with single RQ */
1615 	qs->rq_cnt = 1;
1616 
1617 	qs->sq_cnt = SND_QUEUE_CNT;
1618 	qs->cq_cnt = CMP_QUEUE_CNT;
1619 
1620 	/* Set queue lengths */
1621 	qs->rbdr_len = RCV_BUF_COUNT;
1622 	qs->sq_len = SND_QUEUE_LEN;
1623 	qs->cq_len = CMP_QUEUE_LEN;
1624 
1625 	nic->rx_queues = qs->rq_cnt;
1626 	nic->tx_queues = qs->sq_cnt;
1627 
1628 	return (0);
1629 }
1630 
1631 int
1632 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1633 {
1634 	boolean_t disable = FALSE;
1635 	struct queue_set *qs;
1636 	int qidx;
1637 
1638 	qs = nic->qs;
1639 	if (qs == NULL)
1640 		return (0);
1641 
1642 	if (enable) {
1643 		if (nicvf_alloc_resources(nic) != 0)
1644 			return (ENOMEM);
1645 
1646 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1647 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1648 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1649 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1650 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1651 			nicvf_rbdr_config(nic, qs, qidx, enable);
1652 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1653 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1654 	} else {
1655 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1656 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1657 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1658 			nicvf_rbdr_config(nic, qs, qidx, disable);
1659 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1660 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1661 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1662 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1663 
1664 		nicvf_free_resources(nic);
1665 	}
1666 
1667 	return (0);
1668 }
1669 
1670 /*
1671  * Get a free desc from SQ
1672  * returns descriptor ponter & descriptor number
1673  */
1674 static __inline int
1675 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1676 {
1677 	int qentry;
1678 
1679 	qentry = sq->tail;
1680 	sq->free_cnt -= desc_cnt;
1681 	sq->tail += desc_cnt;
1682 	sq->tail &= (sq->dmem.q_len - 1);
1683 
1684 	return (qentry);
1685 }
1686 
1687 /* Free descriptor back to SQ for future use */
1688 static void
1689 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1690 {
1691 
1692 	sq->free_cnt += desc_cnt;
1693 	sq->head += desc_cnt;
1694 	sq->head &= (sq->dmem.q_len - 1);
1695 }
1696 
1697 static __inline int
1698 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1699 {
1700 	qentry++;
1701 	qentry &= (sq->dmem.q_len - 1);
1702 	return (qentry);
1703 }
1704 
1705 static void
1706 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1707 {
1708 	uint64_t sq_cfg;
1709 
1710 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1711 	sq_cfg |= NICVF_SQ_EN;
1712 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1713 	/* Ring doorbell so that H/W restarts processing SQEs */
1714 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1715 }
1716 
1717 static void
1718 nicvf_sq_disable(struct nicvf *nic, int qidx)
1719 {
1720 	uint64_t sq_cfg;
1721 
1722 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1723 	sq_cfg &= ~NICVF_SQ_EN;
1724 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1725 }
1726 
1727 static void
1728 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1729 {
1730 	uint64_t head, tail;
1731 	struct snd_buff *snd_buff;
1732 	struct sq_hdr_subdesc *hdr;
1733 
1734 	NICVF_TX_LOCK(sq);
1735 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1736 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1737 	while (sq->head != head) {
1738 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1739 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1740 			nicvf_put_sq_desc(sq, 1);
1741 			continue;
1742 		}
1743 		snd_buff = &sq->snd_buff[sq->head];
1744 		if (snd_buff->mbuf != NULL) {
1745 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1746 			m_freem(snd_buff->mbuf);
1747 			sq->snd_buff[sq->head].mbuf = NULL;
1748 		}
1749 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1750 	}
1751 	NICVF_TX_UNLOCK(sq);
1752 }
1753 
1754 /*
1755  * Add SQ HEADER subdescriptor.
1756  * First subdescriptor for every send descriptor.
1757  */
1758 static __inline int
1759 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1760 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1761 {
1762 	struct nicvf *nic;
1763 	struct sq_hdr_subdesc *hdr;
1764 	struct ether_vlan_header *eh;
1765 #ifdef INET
1766 	struct ip *ip;
1767 	struct tcphdr *th;
1768 #endif
1769 	uint16_t etype;
1770 	int ehdrlen, iphlen, poff;
1771 
1772 	nic = sq->nic;
1773 
1774 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1775 	sq->snd_buff[qentry].mbuf = mbuf;
1776 
1777 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1778 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1779 	/* Enable notification via CQE after processing SQE */
1780 	hdr->post_cqe = 1;
1781 	/* No of subdescriptors following this */
1782 	hdr->subdesc_cnt = subdesc_cnt;
1783 	hdr->tot_len = len;
1784 
1785 	eh = mtod(mbuf, struct ether_vlan_header *);
1786 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1787 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1788 		etype = ntohs(eh->evl_proto);
1789 	} else {
1790 		ehdrlen = ETHER_HDR_LEN;
1791 		etype = ntohs(eh->evl_encap_proto);
1792 	}
1793 
1794 	switch (etype) {
1795 #ifdef INET6
1796 	case ETHERTYPE_IPV6:
1797 		/* ARM64TODO: Add support for IPv6 */
1798 		hdr->csum_l3 = 0;
1799 		sq->snd_buff[qentry].mbuf = NULL;
1800 		return (ENXIO);
1801 #endif
1802 #ifdef INET
1803 	case ETHERTYPE_IP:
1804 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1805 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1806 			sq->snd_buff[qentry].mbuf = mbuf;
1807 			if (mbuf == NULL)
1808 				return (ENOBUFS);
1809 		}
1810 
1811 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1812 		iphlen = ip->ip_hl << 2;
1813 		poff = ehdrlen + iphlen;
1814 
1815 		if (mbuf->m_pkthdr.csum_flags != 0) {
1816 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1817 			switch (ip->ip_p) {
1818 			case IPPROTO_TCP:
1819 				if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1820 					break;
1821 
1822 				if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1823 					mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1824 					sq->snd_buff[qentry].mbuf = mbuf;
1825 					if (mbuf == NULL)
1826 						return (ENOBUFS);
1827 				}
1828 				hdr->csum_l4 = SEND_L4_CSUM_TCP;
1829 				break;
1830 			case IPPROTO_UDP:
1831 				if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1832 					break;
1833 
1834 				if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1835 					mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1836 					sq->snd_buff[qentry].mbuf = mbuf;
1837 					if (mbuf == NULL)
1838 						return (ENOBUFS);
1839 				}
1840 				hdr->csum_l4 = SEND_L4_CSUM_UDP;
1841 				break;
1842 			case IPPROTO_SCTP:
1843 				if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1844 					break;
1845 
1846 				if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1847 					mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1848 					sq->snd_buff[qentry].mbuf = mbuf;
1849 					if (mbuf == NULL)
1850 						return (ENOBUFS);
1851 				}
1852 				hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1853 				break;
1854 			default:
1855 				break;
1856 			}
1857 			hdr->l3_offset = ehdrlen;
1858 			hdr->l4_offset = ehdrlen + iphlen;
1859 		}
1860 
1861 		if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1862 			/*
1863 			 * Extract ip again as m_data could have been modified.
1864 			 */
1865 			ip = (struct ip *)(mbuf->m_data + ehdrlen);
1866 			th = (struct tcphdr *)((caddr_t)ip + iphlen);
1867 
1868 			hdr->tso = 1;
1869 			hdr->tso_start = ehdrlen + iphlen + (th->th_off * 4);
1870 			hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1871 			hdr->inner_l3_offset = ehdrlen - 2;
1872 			nic->drv_stats.tx_tso++;
1873 		}
1874 		break;
1875 #endif
1876 	default:
1877 		hdr->csum_l3 = 0;
1878 	}
1879 
1880 	return (0);
1881 }
1882 
1883 /*
1884  * SQ GATHER subdescriptor
1885  * Must follow HDR descriptor
1886  */
1887 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1888 					       int size, uint64_t data)
1889 {
1890 	struct sq_gather_subdesc *gather;
1891 
1892 	qentry &= (sq->dmem.q_len - 1);
1893 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1894 
1895 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1896 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1897 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1898 	gather->size = size;
1899 	gather->addr = data;
1900 }
1901 
1902 /* Put an mbuf to a SQ for packet transfer. */
1903 static int
1904 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1905 {
1906 	bus_dma_segment_t segs[256];
1907 	struct snd_buff *snd_buff;
1908 	size_t seg;
1909 	int nsegs, qentry;
1910 	int subdesc_cnt;
1911 	int err;
1912 
1913 	NICVF_TX_LOCK_ASSERT(sq);
1914 
1915 	if (sq->free_cnt == 0)
1916 		return (ENOBUFS);
1917 
1918 	snd_buff = &sq->snd_buff[sq->tail];
1919 
1920 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1921 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1922 	if (__predict_false(err != 0)) {
1923 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1924 		m_freem(*mbufp);
1925 		*mbufp = NULL;
1926 		return (err);
1927 	}
1928 
1929 	/* Set how many subdescriptors is required */
1930 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1931 	if (subdesc_cnt > sq->free_cnt) {
1932 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1933 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1934 		return (ENOBUFS);
1935 	}
1936 
1937 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1938 
1939 	/* Add SQ header subdesc */
1940 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1941 	    (*mbufp)->m_pkthdr.len);
1942 	if (err != 0) {
1943 		nicvf_put_sq_desc(sq, subdesc_cnt);
1944 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1945 		if (err == ENOBUFS) {
1946 			m_freem(*mbufp);
1947 			*mbufp = NULL;
1948 		}
1949 		return (err);
1950 	}
1951 
1952 	/* Add SQ gather subdescs */
1953 	for (seg = 0; seg < nsegs; seg++) {
1954 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1955 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1956 		    segs[seg].ds_addr);
1957 	}
1958 
1959 	/* make sure all memory stores are done before ringing doorbell */
1960 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1961 
1962 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1963 	    __func__, sq->idx, subdesc_cnt);
1964 	/* Inform HW to xmit new packet */
1965 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1966 	    sq->idx, subdesc_cnt);
1967 	return (0);
1968 }
1969 
1970 static __inline u_int
1971 frag_num(u_int i)
1972 {
1973 #if BYTE_ORDER == BIG_ENDIAN
1974 	return ((i & ~3) + 3 - (i & 3));
1975 #else
1976 	return (i);
1977 #endif
1978 }
1979 
1980 /* Returns MBUF for a received packet */
1981 struct mbuf *
1982 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1983 {
1984 	int frag;
1985 	int payload_len = 0;
1986 	struct mbuf *mbuf;
1987 	struct mbuf *mbuf_frag;
1988 	uint16_t *rb_lens = NULL;
1989 	uint64_t *rb_ptrs = NULL;
1990 
1991 	mbuf = NULL;
1992 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1993 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1994 
1995 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1996 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1997 
1998 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1999 		payload_len = rb_lens[frag_num(frag)];
2000 		if (frag == 0) {
2001 			/* First fragment */
2002 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
2003 			    (*rb_ptrs - cqe_rx->align_pad));
2004 			mbuf->m_len = payload_len;
2005 			mbuf->m_data += cqe_rx->align_pad;
2006 			if_setrcvif(mbuf, nic->ifp);
2007 		} else {
2008 			/* Add fragments */
2009 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2010 			m_append(mbuf, payload_len, mbuf_frag->m_data);
2011 			m_freem(mbuf_frag);
2012 		}
2013 		/* Next buffer pointer */
2014 		rb_ptrs++;
2015 	}
2016 
2017 	if (__predict_true(mbuf != NULL)) {
2018 		m_fixhdr(mbuf);
2019 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2020 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2021 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2022 			/*
2023 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2024 			 */
2025 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2026 				mbuf->m_pkthdr.csum_flags =
2027 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2028 			}
2029 
2030 			switch (cqe_rx->l4_type) {
2031 			case L4TYPE_UDP:
2032 			case L4TYPE_TCP: /* fall through */
2033 				mbuf->m_pkthdr.csum_flags |=
2034 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2035 				mbuf->m_pkthdr.csum_data = 0xffff;
2036 				break;
2037 			case L4TYPE_SCTP:
2038 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2039 				break;
2040 			default:
2041 				break;
2042 			}
2043 		}
2044 	}
2045 
2046 	return (mbuf);
2047 }
2048 
2049 /* Enable interrupt */
2050 void
2051 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2052 {
2053 	uint64_t reg_val;
2054 
2055 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2056 
2057 	switch (int_type) {
2058 	case NICVF_INTR_CQ:
2059 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2060 		break;
2061 	case NICVF_INTR_SQ:
2062 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2063 		break;
2064 	case NICVF_INTR_RBDR:
2065 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2066 		break;
2067 	case NICVF_INTR_PKT_DROP:
2068 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2069 		break;
2070 	case NICVF_INTR_TCP_TIMER:
2071 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2072 		break;
2073 	case NICVF_INTR_MBOX:
2074 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2075 		break;
2076 	case NICVF_INTR_QS_ERR:
2077 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2078 		break;
2079 	default:
2080 		device_printf(nic->dev,
2081 			   "Failed to enable interrupt: unknown type\n");
2082 		break;
2083 	}
2084 
2085 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2086 }
2087 
2088 /* Disable interrupt */
2089 void
2090 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2091 {
2092 	uint64_t reg_val = 0;
2093 
2094 	switch (int_type) {
2095 	case NICVF_INTR_CQ:
2096 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2097 		break;
2098 	case NICVF_INTR_SQ:
2099 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2100 		break;
2101 	case NICVF_INTR_RBDR:
2102 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2103 		break;
2104 	case NICVF_INTR_PKT_DROP:
2105 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2106 		break;
2107 	case NICVF_INTR_TCP_TIMER:
2108 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2109 		break;
2110 	case NICVF_INTR_MBOX:
2111 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2112 		break;
2113 	case NICVF_INTR_QS_ERR:
2114 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2115 		break;
2116 	default:
2117 		device_printf(nic->dev,
2118 			   "Failed to disable interrupt: unknown type\n");
2119 		break;
2120 	}
2121 
2122 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2123 }
2124 
2125 /* Clear interrupt */
2126 void
2127 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2128 {
2129 	uint64_t reg_val = 0;
2130 
2131 	switch (int_type) {
2132 	case NICVF_INTR_CQ:
2133 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2134 		break;
2135 	case NICVF_INTR_SQ:
2136 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2137 		break;
2138 	case NICVF_INTR_RBDR:
2139 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2140 		break;
2141 	case NICVF_INTR_PKT_DROP:
2142 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2143 		break;
2144 	case NICVF_INTR_TCP_TIMER:
2145 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2146 		break;
2147 	case NICVF_INTR_MBOX:
2148 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2149 		break;
2150 	case NICVF_INTR_QS_ERR:
2151 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2152 		break;
2153 	default:
2154 		device_printf(nic->dev,
2155 			   "Failed to clear interrupt: unknown type\n");
2156 		break;
2157 	}
2158 
2159 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2160 }
2161 
2162 /* Check if interrupt is enabled */
2163 int
2164 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2165 {
2166 	uint64_t reg_val;
2167 	uint64_t mask = 0xff;
2168 
2169 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2170 
2171 	switch (int_type) {
2172 	case NICVF_INTR_CQ:
2173 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2174 		break;
2175 	case NICVF_INTR_SQ:
2176 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2177 		break;
2178 	case NICVF_INTR_RBDR:
2179 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2180 		break;
2181 	case NICVF_INTR_PKT_DROP:
2182 		mask = NICVF_INTR_PKT_DROP_MASK;
2183 		break;
2184 	case NICVF_INTR_TCP_TIMER:
2185 		mask = NICVF_INTR_TCP_TIMER_MASK;
2186 		break;
2187 	case NICVF_INTR_MBOX:
2188 		mask = NICVF_INTR_MBOX_MASK;
2189 		break;
2190 	case NICVF_INTR_QS_ERR:
2191 		mask = NICVF_INTR_QS_ERR_MASK;
2192 		break;
2193 	default:
2194 		device_printf(nic->dev,
2195 			   "Failed to check interrupt enable: unknown type\n");
2196 		break;
2197 	}
2198 
2199 	return (reg_val & mask);
2200 }
2201 
2202 void
2203 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2204 {
2205 	struct rcv_queue *rq;
2206 
2207 #define GET_RQ_STATS(reg) \
2208 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2209 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2210 
2211 	rq = &nic->qs->rq[rq_idx];
2212 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2213 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2214 }
2215 
2216 void
2217 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2218 {
2219 	struct snd_queue *sq;
2220 
2221 #define GET_SQ_STATS(reg) \
2222 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2223 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2224 
2225 	sq = &nic->qs->sq[sq_idx];
2226 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2227 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2228 }
2229 
2230 /* Check for errors in the receive cmp.queue entry */
2231 int
2232 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2233     struct cqe_rx_t *cqe_rx)
2234 {
2235 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2236 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2237 
2238 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2239 		drv_stats->rx_frames_ok++;
2240 		return (0);
2241 	}
2242 
2243 	switch (cqe_rx->err_opcode) {
2244 	case CQ_RX_ERROP_RE_PARTIAL:
2245 		stats->rx_bgx_truncated_pkts++;
2246 		break;
2247 	case CQ_RX_ERROP_RE_JABBER:
2248 		stats->rx_jabber_errs++;
2249 		break;
2250 	case CQ_RX_ERROP_RE_FCS:
2251 		stats->rx_fcs_errs++;
2252 		break;
2253 	case CQ_RX_ERROP_RE_RX_CTL:
2254 		stats->rx_bgx_errs++;
2255 		break;
2256 	case CQ_RX_ERROP_PREL2_ERR:
2257 		stats->rx_prel2_errs++;
2258 		break;
2259 	case CQ_RX_ERROP_L2_MAL:
2260 		stats->rx_l2_hdr_malformed++;
2261 		break;
2262 	case CQ_RX_ERROP_L2_OVERSIZE:
2263 		stats->rx_oversize++;
2264 		break;
2265 	case CQ_RX_ERROP_L2_UNDERSIZE:
2266 		stats->rx_undersize++;
2267 		break;
2268 	case CQ_RX_ERROP_L2_LENMISM:
2269 		stats->rx_l2_len_mismatch++;
2270 		break;
2271 	case CQ_RX_ERROP_L2_PCLP:
2272 		stats->rx_l2_pclp++;
2273 		break;
2274 	case CQ_RX_ERROP_IP_NOT:
2275 		stats->rx_ip_ver_errs++;
2276 		break;
2277 	case CQ_RX_ERROP_IP_CSUM_ERR:
2278 		stats->rx_ip_csum_errs++;
2279 		break;
2280 	case CQ_RX_ERROP_IP_MAL:
2281 		stats->rx_ip_hdr_malformed++;
2282 		break;
2283 	case CQ_RX_ERROP_IP_MALD:
2284 		stats->rx_ip_payload_malformed++;
2285 		break;
2286 	case CQ_RX_ERROP_IP_HOP:
2287 		stats->rx_ip_ttl_errs++;
2288 		break;
2289 	case CQ_RX_ERROP_L3_PCLP:
2290 		stats->rx_l3_pclp++;
2291 		break;
2292 	case CQ_RX_ERROP_L4_MAL:
2293 		stats->rx_l4_malformed++;
2294 		break;
2295 	case CQ_RX_ERROP_L4_CHK:
2296 		stats->rx_l4_csum_errs++;
2297 		break;
2298 	case CQ_RX_ERROP_UDP_LEN:
2299 		stats->rx_udp_len_errs++;
2300 		break;
2301 	case CQ_RX_ERROP_L4_PORT:
2302 		stats->rx_l4_port_errs++;
2303 		break;
2304 	case CQ_RX_ERROP_TCP_FLAG:
2305 		stats->rx_tcp_flag_errs++;
2306 		break;
2307 	case CQ_RX_ERROP_TCP_OFFSET:
2308 		stats->rx_tcp_offset_errs++;
2309 		break;
2310 	case CQ_RX_ERROP_L4_PCLP:
2311 		stats->rx_l4_pclp++;
2312 		break;
2313 	case CQ_RX_ERROP_RBDR_TRUNC:
2314 		stats->rx_truncated_pkts++;
2315 		break;
2316 	}
2317 
2318 	return (1);
2319 }
2320 
2321 /* Check for errors in the send cmp.queue entry */
2322 int
2323 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2324     struct cqe_send_t *cqe_tx)
2325 {
2326 	struct cmp_queue_stats *stats = &cq->stats;
2327 
2328 	switch (cqe_tx->send_status) {
2329 	case CQ_TX_ERROP_GOOD:
2330 		stats->tx.good++;
2331 		return (0);
2332 	case CQ_TX_ERROP_DESC_FAULT:
2333 		stats->tx.desc_fault++;
2334 		break;
2335 	case CQ_TX_ERROP_HDR_CONS_ERR:
2336 		stats->tx.hdr_cons_err++;
2337 		break;
2338 	case CQ_TX_ERROP_SUBDC_ERR:
2339 		stats->tx.subdesc_err++;
2340 		break;
2341 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2342 		stats->tx.imm_size_oflow++;
2343 		break;
2344 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2345 		stats->tx.data_seq_err++;
2346 		break;
2347 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2348 		stats->tx.mem_seq_err++;
2349 		break;
2350 	case CQ_TX_ERROP_LOCK_VIOL:
2351 		stats->tx.lock_viol++;
2352 		break;
2353 	case CQ_TX_ERROP_DATA_FAULT:
2354 		stats->tx.data_fault++;
2355 		break;
2356 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2357 		stats->tx.tstmp_conflict++;
2358 		break;
2359 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2360 		stats->tx.tstmp_timeout++;
2361 		break;
2362 	case CQ_TX_ERROP_MEM_FAULT:
2363 		stats->tx.mem_fault++;
2364 		break;
2365 	case CQ_TX_ERROP_CK_OVERLAP:
2366 		stats->tx.csum_overlap++;
2367 		break;
2368 	case CQ_TX_ERROP_CK_OFLOW:
2369 		stats->tx.csum_overflow++;
2370 		break;
2371 	}
2372 
2373 	return (1);
2374 }
2375