xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_media.h>
67 #include <net/ifq.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/sctp.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_lro.h>
79 #include <netinet/udp.h>
80 
81 #include <netinet6/ip6_var.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include "thunder_bgx.h"
87 #include "nic_reg.h"
88 #include "nic.h"
89 #include "q_struct.h"
90 #include "nicvf_queues.h"
91 
92 #define	DEBUG
93 #undef DEBUG
94 
95 #ifdef DEBUG
96 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
97 #else
98 #define	dprintf(dev, fmt, ...)
99 #endif
100 
101 MALLOC_DECLARE(M_NICVF);
102 
103 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
104 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
105 static void nicvf_sq_disable(struct nicvf *, int);
106 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
107 static void nicvf_put_sq_desc(struct snd_queue *, int);
108 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
109     boolean_t);
110 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
111 
112 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
113 
114 static void nicvf_rbdr_task(void *, int);
115 static void nicvf_rbdr_task_nowait(void *, int);
116 
117 struct rbuf_info {
118 	bus_dma_tag_t	dmat;
119 	bus_dmamap_t	dmap;
120 	struct mbuf *	mbuf;
121 };
122 
123 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
124 
125 /* Poll a register for a specific value */
126 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
127 			  uint64_t reg, int bit_pos, int bits, int val)
128 {
129 	uint64_t bit_mask;
130 	uint64_t reg_val;
131 	int timeout = 10;
132 
133 	bit_mask = (1UL << bits) - 1;
134 	bit_mask = (bit_mask << bit_pos);
135 
136 	while (timeout) {
137 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
138 		if (((reg_val & bit_mask) >> bit_pos) == val)
139 			return (0);
140 
141 		DELAY(1000);
142 		timeout--;
143 	}
144 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
145 	return (ETIMEDOUT);
146 }
147 
148 /* Callback for bus_dmamap_load() */
149 static void
150 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
151 {
152 	bus_addr_t *paddr;
153 
154 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
155 	paddr = arg;
156 	*paddr = segs->ds_addr;
157 }
158 
159 /* Allocate memory for a queue's descriptors */
160 static int
161 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
162     int q_len, int desc_size, int align_bytes)
163 {
164 	int err, err_dmat __diagused;
165 
166 	/* Create DMA tag first */
167 	err = bus_dma_tag_create(
168 	    bus_get_dma_tag(nic->dev),		/* parent tag */
169 	    align_bytes,			/* alignment */
170 	    0,					/* boundary */
171 	    BUS_SPACE_MAXADDR,			/* lowaddr */
172 	    BUS_SPACE_MAXADDR,			/* highaddr */
173 	    NULL, NULL,				/* filtfunc, filtfuncarg */
174 	    (q_len * desc_size),		/* maxsize */
175 	    1,					/* nsegments */
176 	    (q_len * desc_size),		/* maxsegsize */
177 	    0,					/* flags */
178 	    NULL, NULL,				/* lockfunc, lockfuncarg */
179 	    &dmem->dmat);			/* dmat */
180 
181 	if (err != 0) {
182 		device_printf(nic->dev,
183 		    "Failed to create busdma tag for descriptors ring\n");
184 		return (err);
185 	}
186 
187 	/* Allocate segment of continuous DMA safe memory */
188 	err = bus_dmamem_alloc(
189 	    dmem->dmat,				/* DMA tag */
190 	    &dmem->base,			/* virtual address */
191 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
192 	    &dmem->dmap);			/* DMA map */
193 	if (err != 0) {
194 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
195 		    "descriptors ring\n");
196 		goto dmamem_fail;
197 	}
198 
199 	err = bus_dmamap_load(
200 	    dmem->dmat,
201 	    dmem->dmap,
202 	    dmem->base,
203 	    (q_len * desc_size),		/* allocation size */
204 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
205 	    &dmem->phys_base,			/* physical address */
206 	    BUS_DMA_NOWAIT);
207 	if (err != 0) {
208 		device_printf(nic->dev,
209 		    "Cannot load DMA map of descriptors ring\n");
210 		goto dmamap_fail;
211 	}
212 
213 	dmem->q_len = q_len;
214 	dmem->size = (desc_size * q_len);
215 
216 	return (0);
217 
218 dmamap_fail:
219 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
220 	dmem->phys_base = 0;
221 dmamem_fail:
222 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
223 	dmem->base = NULL;
224 	KASSERT(err_dmat == 0,
225 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
226 
227 	return (err);
228 }
229 
230 /* Free queue's descriptor memory */
231 static void
232 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
233 {
234 	int err __diagused;
235 
236 	if ((dmem == NULL) || (dmem->base == NULL))
237 		return;
238 
239 	/* Unload a map */
240 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
241 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
242 	/* Free DMA memory */
243 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
244 	/* Destroy DMA tag */
245 	err = bus_dma_tag_destroy(dmem->dmat);
246 
247 	KASSERT(err == 0,
248 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
249 
250 	dmem->phys_base = 0;
251 	dmem->base = NULL;
252 }
253 
254 /*
255  * Allocate buffer for packet reception
256  * HW returns memory address where packet is DMA'ed but not a pointer
257  * into RBDR ring, so save buffer address at the start of fragment and
258  * align the start address to a cache aligned address
259  */
260 static __inline int
261 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
262     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
263 {
264 	struct mbuf *mbuf;
265 	struct rbuf_info *rinfo;
266 	bus_dma_segment_t segs[1];
267 	int nsegs;
268 	int err;
269 
270 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
271 	if (mbuf == NULL)
272 		return (ENOMEM);
273 
274 	/*
275 	 * The length is equal to the actual length + one 128b line
276 	 * used as a room for rbuf_info structure.
277 	 */
278 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
279 
280 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
281 	    &nsegs, BUS_DMA_NOWAIT);
282 	if (err != 0) {
283 		device_printf(nic->dev,
284 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
285 		    err);
286 		m_freem(mbuf);
287 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
288 		return (err);
289 	}
290 	if (nsegs != 1)
291 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
292 	/*
293 	 * Now use the room for rbuf_info structure
294 	 * and adjust mbuf data and length.
295 	 */
296 	rinfo = (struct rbuf_info *)mbuf->m_data;
297 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
298 
299 	rinfo->dmat = rbdr->rbdr_buff_dmat;
300 	rinfo->dmap = dmap;
301 	rinfo->mbuf = mbuf;
302 
303 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
304 
305 	return (0);
306 }
307 
308 /* Retrieve mbuf for received packet */
309 static struct mbuf *
310 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
311 {
312 	struct mbuf *mbuf;
313 	struct rbuf_info *rinfo;
314 
315 	/* Get buffer start address and alignment offset */
316 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
317 
318 	/* Now retrieve mbuf to give to stack */
319 	mbuf = rinfo->mbuf;
320 	if (__predict_false(mbuf == NULL)) {
321 		panic("%s: Received packet fragment with NULL mbuf",
322 		    device_get_nameunit(nic->dev));
323 	}
324 	/*
325 	 * Clear the mbuf in the descriptor to indicate
326 	 * that this slot is processed and free to use.
327 	 */
328 	rinfo->mbuf = NULL;
329 
330 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
331 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
332 
333 	return (mbuf);
334 }
335 
336 /* Allocate RBDR ring and populate receive buffers */
337 static int
338 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
339     int buf_size, int qidx)
340 {
341 	bus_dmamap_t dmap;
342 	bus_addr_t rbuf;
343 	struct rbdr_entry_t *desc;
344 	int idx;
345 	int err;
346 
347 	/* Allocate rbdr descriptors ring */
348 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
349 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
350 	if (err != 0) {
351 		device_printf(nic->dev,
352 		    "Failed to create RBDR descriptors ring\n");
353 		return (err);
354 	}
355 
356 	rbdr->desc = rbdr->dmem.base;
357 	/*
358 	 * Buffer size has to be in multiples of 128 bytes.
359 	 * Make room for metadata of size of one line (128 bytes).
360 	 */
361 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
362 	rbdr->enable = TRUE;
363 	rbdr->thresh = RBDR_THRESH;
364 	rbdr->nic = nic;
365 	rbdr->idx = qidx;
366 
367 	/*
368 	 * Create DMA tag for Rx buffers.
369 	 * Each map created using this tag is intended to store Rx payload for
370 	 * one fragment and one header structure containing rbuf_info (thus
371 	 * additional 128 byte line since RB must be a multiple of 128 byte
372 	 * cache line).
373 	 */
374 	if (buf_size > MCLBYTES) {
375 		device_printf(nic->dev,
376 		    "Buffer size to large for mbuf cluster\n");
377 		return (EINVAL);
378 	}
379 	err = bus_dma_tag_create(
380 	    bus_get_dma_tag(nic->dev),		/* parent tag */
381 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
382 	    0,					/* boundary */
383 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
384 	    DMAP_MIN_PHYSADDR,			/* highaddr */
385 	    NULL, NULL,				/* filtfunc, filtfuncarg */
386 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
387 	    1,					/* nsegments */
388 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
389 	    0,					/* flags */
390 	    NULL, NULL,				/* lockfunc, lockfuncarg */
391 	    &rbdr->rbdr_buff_dmat);		/* dmat */
392 
393 	if (err != 0) {
394 		device_printf(nic->dev,
395 		    "Failed to create busdma tag for RBDR buffers\n");
396 		return (err);
397 	}
398 
399 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
400 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
401 
402 	for (idx = 0; idx < ring_len; idx++) {
403 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
404 		if (err != 0) {
405 			device_printf(nic->dev,
406 			    "Failed to create DMA map for RB\n");
407 			return (err);
408 		}
409 		rbdr->rbdr_buff_dmaps[idx] = dmap;
410 
411 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
412 		    DMA_BUFFER_LEN, &rbuf);
413 		if (err != 0)
414 			return (err);
415 
416 		desc = GET_RBDR_DESC(rbdr, idx);
417 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
418 	}
419 
420 	/* Allocate taskqueue */
421 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
422 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
423 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
424 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
425 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
426 	    device_get_nameunit(nic->dev));
427 
428 	return (0);
429 }
430 
431 /* Free RBDR ring and its receive buffers */
432 static void
433 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
434 {
435 	struct mbuf *mbuf;
436 	struct queue_set *qs;
437 	struct rbdr_entry_t *desc;
438 	struct rbuf_info *rinfo;
439 	bus_addr_t buf_addr;
440 	int head, tail, idx;
441 	int err __diagused;
442 
443 	qs = nic->qs;
444 
445 	if ((qs == NULL) || (rbdr == NULL))
446 		return;
447 
448 	rbdr->enable = FALSE;
449 	if (rbdr->rbdr_taskq != NULL) {
450 		/* Remove tasks */
451 		while (taskqueue_cancel(rbdr->rbdr_taskq,
452 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
453 			/* Finish the nowait task first */
454 			taskqueue_drain(rbdr->rbdr_taskq,
455 			    &rbdr->rbdr_task_nowait);
456 		}
457 		taskqueue_free(rbdr->rbdr_taskq);
458 		rbdr->rbdr_taskq = NULL;
459 
460 		while (taskqueue_cancel(taskqueue_thread,
461 		    &rbdr->rbdr_task, NULL) != 0) {
462 			/* Now finish the sleepable task */
463 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
464 		}
465 	}
466 
467 	/*
468 	 * Free all of the memory under the RB descriptors.
469 	 * There are assumptions here:
470 	 * 1. Corresponding RBDR is disabled
471 	 *    - it is safe to operate using head and tail indexes
472 	 * 2. All bffers that were received are properly freed by
473 	 *    the receive handler
474 	 *    - there is no need to unload DMA map and free MBUF for other
475 	 *      descriptors than unused ones
476 	 */
477 	if (rbdr->rbdr_buff_dmat != NULL) {
478 		head = rbdr->head;
479 		tail = rbdr->tail;
480 		while (head != tail) {
481 			desc = GET_RBDR_DESC(rbdr, head);
482 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
483 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
484 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
485 			mbuf = rinfo->mbuf;
486 			/* This will destroy everything including rinfo! */
487 			m_freem(mbuf);
488 			head++;
489 			head &= (rbdr->dmem.q_len - 1);
490 		}
491 		/* Free tail descriptor */
492 		desc = GET_RBDR_DESC(rbdr, tail);
493 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
494 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
495 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
496 		mbuf = rinfo->mbuf;
497 		/* This will destroy everything including rinfo! */
498 		m_freem(mbuf);
499 
500 		/* Destroy DMA maps */
501 		for (idx = 0; idx < qs->rbdr_len; idx++) {
502 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
503 				continue;
504 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
505 			    rbdr->rbdr_buff_dmaps[idx]);
506 			KASSERT(err == 0,
507 			    ("%s: Could not destroy DMA map for RB, desc: %d",
508 			    __func__, idx));
509 			rbdr->rbdr_buff_dmaps[idx] = NULL;
510 		}
511 
512 		/* Now destroy the tag */
513 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
514 		KASSERT(err == 0,
515 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
516 
517 		rbdr->head = 0;
518 		rbdr->tail = 0;
519 	}
520 
521 	/* Free RBDR ring */
522 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
523 }
524 
525 /*
526  * Refill receive buffer descriptors with new buffers.
527  */
528 static int
529 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
530 {
531 	struct nicvf *nic;
532 	struct queue_set *qs;
533 	int rbdr_idx;
534 	int tail, qcount;
535 	int refill_rb_cnt;
536 	struct rbdr_entry_t *desc;
537 	bus_dmamap_t dmap;
538 	bus_addr_t rbuf;
539 	boolean_t rb_alloc_fail;
540 	int new_rb;
541 
542 	rb_alloc_fail = TRUE;
543 	new_rb = 0;
544 	nic = rbdr->nic;
545 	qs = nic->qs;
546 	rbdr_idx = rbdr->idx;
547 
548 	/* Check if it's enabled */
549 	if (!rbdr->enable)
550 		return (0);
551 
552 	/* Get no of desc's to be refilled */
553 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
554 	qcount &= 0x7FFFF;
555 	/* Doorbell can be ringed with a max of ring size minus 1 */
556 	if (qcount >= (qs->rbdr_len - 1)) {
557 		rb_alloc_fail = FALSE;
558 		goto out;
559 	} else
560 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
561 
562 	/* Start filling descs from tail */
563 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
564 	while (refill_rb_cnt) {
565 		tail++;
566 		tail &= (rbdr->dmem.q_len - 1);
567 
568 		dmap = rbdr->rbdr_buff_dmaps[tail];
569 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
570 		    DMA_BUFFER_LEN, &rbuf)) {
571 			/* Something went wrong. Resign */
572 			break;
573 		}
574 		desc = GET_RBDR_DESC(rbdr, tail);
575 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
576 		refill_rb_cnt--;
577 		new_rb++;
578 	}
579 
580 	/* make sure all memory stores are done before ringing doorbell */
581 	wmb();
582 
583 	/* Check if buffer allocation failed */
584 	if (refill_rb_cnt == 0)
585 		rb_alloc_fail = FALSE;
586 
587 	/* Notify HW */
588 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
589 			      rbdr_idx, new_rb);
590 out:
591 	if (!rb_alloc_fail) {
592 		/*
593 		 * Re-enable RBDR interrupts only
594 		 * if buffer allocation is success.
595 		 */
596 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
597 
598 		return (0);
599 	}
600 
601 	return (ENOMEM);
602 }
603 
604 /* Refill RBs even if sleep is needed to reclaim memory */
605 static void
606 nicvf_rbdr_task(void *arg, int pending)
607 {
608 	struct rbdr *rbdr;
609 	int err;
610 
611 	rbdr = (struct rbdr *)arg;
612 
613 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
614 	if (__predict_false(err != 0)) {
615 		panic("%s: Failed to refill RBs even when sleep enabled",
616 		    __func__);
617 	}
618 }
619 
620 /* Refill RBs as soon as possible without waiting */
621 static void
622 nicvf_rbdr_task_nowait(void *arg, int pending)
623 {
624 	struct rbdr *rbdr;
625 	int err;
626 
627 	rbdr = (struct rbdr *)arg;
628 
629 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
630 	if (err != 0) {
631 		/*
632 		 * Schedule another, sleepable kernel thread
633 		 * that will for sure refill the buffers.
634 		 */
635 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
636 	}
637 }
638 
639 static int
640 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
641     struct cqe_rx_t *cqe_rx, int cqe_type)
642 {
643 	struct mbuf *mbuf;
644 	struct rcv_queue *rq;
645 	int rq_idx;
646 	int err = 0;
647 
648 	rq_idx = cqe_rx->rq_idx;
649 	rq = &nic->qs->rq[rq_idx];
650 
651 	/* Check for errors */
652 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
653 	if (err && !cqe_rx->rb_cnt)
654 		return (0);
655 
656 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
657 	if (mbuf == NULL) {
658 		dprintf(nic->dev, "Packet not received\n");
659 		return (0);
660 	}
661 
662 	/* If error packet */
663 	if (err != 0) {
664 		m_freem(mbuf);
665 		return (0);
666 	}
667 
668 	if (rq->lro_enabled &&
669 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
670 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
671             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
672 		/*
673 		 * At this point it is known that there are no errors in the
674 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
675 		 * or enqueue error.
676 		 */
677 		if ((rq->lro.lro_cnt != 0) &&
678 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
679 			return (0);
680 	}
681 	/*
682 	 * Push this packet to the stack later to avoid
683 	 * unlocking completion task in the middle of work.
684 	 */
685 	err = buf_ring_enqueue(cq->rx_br, mbuf);
686 	if (err != 0) {
687 		/*
688 		 * Failed to enqueue this mbuf.
689 		 * We don't drop it, just schedule another task.
690 		 */
691 		return (err);
692 	}
693 
694 	return (0);
695 }
696 
697 static void
698 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
699     struct cqe_send_t *cqe_tx, int cqe_type)
700 {
701 	bus_dmamap_t dmap;
702 	struct mbuf *mbuf;
703 	struct snd_queue *sq;
704 	struct sq_hdr_subdesc *hdr;
705 
706 	mbuf = NULL;
707 	sq = &nic->qs->sq[cqe_tx->sq_idx];
708 
709 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
711 		return;
712 
713 	dprintf(nic->dev,
714 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
715 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
716 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
717 
718 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
719 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
720 
721 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
722 	if (mbuf != NULL) {
723 		m_freem(mbuf);
724 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
725 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
726 	}
727 
728 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
729 }
730 
731 static int
732 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
733 {
734 	struct mbuf *mbuf;
735 	struct ifnet *ifp;
736 	int processed_cqe, tx_done = 0;
737 #ifdef DEBUG
738 	int work_done = 0;
739 #endif
740 	int cqe_count, cqe_head;
741 	struct queue_set *qs = nic->qs;
742 	struct cmp_queue *cq = &qs->cq[cq_idx];
743 	struct snd_queue *sq = &qs->sq[cq_idx];
744 	struct rcv_queue *rq;
745 	struct cqe_rx_t *cq_desc;
746 	struct lro_ctrl	*lro;
747 	int rq_idx;
748 	int cmp_err;
749 
750 	NICVF_CMP_LOCK(cq);
751 	cmp_err = 0;
752 	processed_cqe = 0;
753 	/* Get no of valid CQ entries to process */
754 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
755 	cqe_count &= CQ_CQE_COUNT;
756 	if (cqe_count == 0)
757 		goto out;
758 
759 	/* Get head of the valid CQ entries */
760 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
761 	cqe_head &= 0xFFFF;
762 
763 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
764 	    __func__, cq_idx, cqe_count, cqe_head);
765 	while (processed_cqe < cqe_count) {
766 		/* Get the CQ descriptor */
767 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
768 		cqe_head++;
769 		cqe_head &= (cq->dmem.q_len - 1);
770 		/* Prefetch next CQ descriptor */
771 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
772 
773 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
774 		    cq_desc->cqe_type);
775 		switch (cq_desc->cqe_type) {
776 		case CQE_TYPE_RX:
777 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
778 			    CQE_TYPE_RX);
779 			if (__predict_false(cmp_err != 0)) {
780 				/*
781 				 * Ups. Cannot finish now.
782 				 * Let's try again later.
783 				 */
784 				goto done;
785 			}
786 #ifdef DEBUG
787 			work_done++;
788 #endif
789 			break;
790 		case CQE_TYPE_SEND:
791 			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
792 			    CQE_TYPE_SEND);
793 			tx_done++;
794 			break;
795 		case CQE_TYPE_INVALID:
796 		case CQE_TYPE_RX_SPLIT:
797 		case CQE_TYPE_RX_TCP:
798 		case CQE_TYPE_SEND_PTP:
799 			/* Ignore for now */
800 			break;
801 		}
802 		processed_cqe++;
803 	}
804 done:
805 	dprintf(nic->dev,
806 	    "%s CQ%d processed_cqe %d work_done %d\n",
807 	    __func__, cq_idx, processed_cqe, work_done);
808 
809 	/* Ring doorbell to inform H/W to reuse processed CQEs */
810 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
811 
812 	if ((tx_done > 0) &&
813 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
814 		/* Reenable TXQ if its stopped earlier due to SQ full */
815 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
816 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
817 	}
818 out:
819 	/*
820 	 * Flush any outstanding LRO work
821 	 */
822 	rq_idx = cq_idx;
823 	rq = &nic->qs->rq[rq_idx];
824 	lro = &rq->lro;
825 	tcp_lro_flush_all(lro);
826 
827 	NICVF_CMP_UNLOCK(cq);
828 
829 	ifp = nic->ifp;
830 	/* Push received MBUFs to the stack */
831 	while (!buf_ring_empty(cq->rx_br)) {
832 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
833 		if (__predict_true(mbuf != NULL))
834 			(*ifp->if_input)(ifp, mbuf);
835 	}
836 
837 	return (cmp_err);
838 }
839 
840 /*
841  * Qset error interrupt handler
842  *
843  * As of now only CQ errors are handled
844  */
845 static void
846 nicvf_qs_err_task(void *arg, int pending)
847 {
848 	struct nicvf *nic;
849 	struct queue_set *qs;
850 	int qidx;
851 	uint64_t status;
852 	boolean_t enable = TRUE;
853 
854 	nic = (struct nicvf *)arg;
855 	qs = nic->qs;
856 
857 	/* Deactivate network interface */
858 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
859 
860 	/* Check if it is CQ err */
861 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
862 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
863 		    qidx);
864 		if ((status & CQ_ERR_MASK) == 0)
865 			continue;
866 		/* Process already queued CQEs and reconfig CQ */
867 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
868 		nicvf_sq_disable(nic, qidx);
869 		(void)nicvf_cq_intr_handler(nic, qidx);
870 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
871 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
872 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
873 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
874 	}
875 
876 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
877 	/* Re-enable Qset error interrupt */
878 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
879 }
880 
881 static void
882 nicvf_cmp_task(void *arg, int pending)
883 {
884 	struct cmp_queue *cq;
885 	struct nicvf *nic;
886 	int cmp_err;
887 
888 	cq = (struct cmp_queue *)arg;
889 	nic = cq->nic;
890 
891 	/* Handle CQ descriptors */
892 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
893 	if (__predict_false(cmp_err != 0)) {
894 		/*
895 		 * Schedule another thread here since we did not
896 		 * process the entire CQ due to Tx or Rx CQ parse error.
897 		 */
898 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
899 	}
900 
901 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
902 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
903 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
904 
905 }
906 
907 /* Initialize completion queue */
908 static int
909 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
910     int qidx)
911 {
912 	int err;
913 
914 	/* Initizalize lock */
915 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
916 	    device_get_nameunit(nic->dev), qidx);
917 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
918 
919 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
920 				     NICVF_CQ_BASE_ALIGN_BYTES);
921 
922 	if (err != 0) {
923 		device_printf(nic->dev,
924 		    "Could not allocate DMA memory for CQ\n");
925 		return (err);
926 	}
927 
928 	cq->desc = cq->dmem.base;
929 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
930 	cq->nic = nic;
931 	cq->idx = qidx;
932 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
933 
934 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
935 	    &cq->mtx);
936 
937 	/* Allocate taskqueue */
938 	NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
939 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
940 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
941 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
942 	    device_get_nameunit(nic->dev), qidx);
943 
944 	return (0);
945 }
946 
947 static void
948 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
949 {
950 
951 	if (cq == NULL)
952 		return;
953 	/*
954 	 * The completion queue itself should be disabled by now
955 	 * (ref. nicvf_snd_queue_config()).
956 	 * Ensure that it is safe to disable it or panic.
957 	 */
958 	if (cq->enable)
959 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
960 
961 	if (cq->cmp_taskq != NULL) {
962 		/* Remove task */
963 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
964 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
965 
966 		taskqueue_free(cq->cmp_taskq);
967 		cq->cmp_taskq = NULL;
968 	}
969 	/*
970 	 * Completion interrupt will possibly enable interrupts again
971 	 * so disable interrupting now after we finished processing
972 	 * completion task. It is safe to do so since the corresponding CQ
973 	 * was already disabled.
974 	 */
975 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
976 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
977 
978 	NICVF_CMP_LOCK(cq);
979 	nicvf_free_q_desc_mem(nic, &cq->dmem);
980 	drbr_free(cq->rx_br, M_DEVBUF);
981 	NICVF_CMP_UNLOCK(cq);
982 	mtx_destroy(&cq->mtx);
983 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
984 }
985 
986 int
987 nicvf_xmit_locked(struct snd_queue *sq)
988 {
989 	struct nicvf *nic;
990 	struct ifnet *ifp;
991 	struct mbuf *next;
992 	int err;
993 
994 	NICVF_TX_LOCK_ASSERT(sq);
995 
996 	nic = sq->nic;
997 	ifp = nic->ifp;
998 	err = 0;
999 
1000 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
1001 		/* Send a copy of the frame to the BPF listener */
1002 		ETHER_BPF_MTAP(ifp, next);
1003 
1004 		err = nicvf_tx_mbuf_locked(sq, &next);
1005 		if (err != 0) {
1006 			if (next == NULL)
1007 				drbr_advance(ifp, sq->br);
1008 			else
1009 				drbr_putback(ifp, sq->br, next);
1010 
1011 			break;
1012 		}
1013 		drbr_advance(ifp, sq->br);
1014 	}
1015 	return (err);
1016 }
1017 
1018 static void
1019 nicvf_snd_task(void *arg, int pending)
1020 {
1021 	struct snd_queue *sq = (struct snd_queue *)arg;
1022 	struct nicvf *nic;
1023 	struct ifnet *ifp;
1024 	int err;
1025 
1026 	nic = sq->nic;
1027 	ifp = nic->ifp;
1028 
1029 	/*
1030 	 * Skip sending anything if the driver is not running,
1031 	 * SQ full or link is down.
1032 	 */
1033 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1034 	    IFF_DRV_RUNNING) || !nic->link_up)
1035 		return;
1036 
1037 	NICVF_TX_LOCK(sq);
1038 	err = nicvf_xmit_locked(sq);
1039 	NICVF_TX_UNLOCK(sq);
1040 	/* Try again */
1041 	if (err != 0)
1042 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1043 }
1044 
1045 /* Initialize transmit queue */
1046 static int
1047 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1048     int qidx)
1049 {
1050 	size_t i;
1051 	int err;
1052 
1053 	/* Initizalize TX lock for this queue */
1054 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1055 	    device_get_nameunit(nic->dev), qidx);
1056 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1057 
1058 	NICVF_TX_LOCK(sq);
1059 	/* Allocate buffer ring */
1060 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1061 	    M_NOWAIT, &sq->mtx);
1062 	if (sq->br == NULL) {
1063 		device_printf(nic->dev,
1064 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1065 		err = ENOMEM;
1066 		goto error;
1067 	}
1068 
1069 	/* Allocate DMA memory for Tx descriptors */
1070 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1071 				     NICVF_SQ_BASE_ALIGN_BYTES);
1072 	if (err != 0) {
1073 		device_printf(nic->dev,
1074 		    "Could not allocate DMA memory for SQ\n");
1075 		goto error;
1076 	}
1077 
1078 	sq->desc = sq->dmem.base;
1079 	sq->head = sq->tail = 0;
1080 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1081 	sq->thresh = SND_QUEUE_THRESH;
1082 	sq->idx = qidx;
1083 	sq->nic = nic;
1084 
1085 	/*
1086 	 * Allocate DMA maps for Tx buffers
1087 	 */
1088 
1089 	/* Create DMA tag first */
1090 	err = bus_dma_tag_create(
1091 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1092 	    1,					/* alignment */
1093 	    0,					/* boundary */
1094 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1095 	    BUS_SPACE_MAXADDR,			/* highaddr */
1096 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1097 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1098 	    NICVF_TSO_NSEGS,			/* nsegments */
1099 	    MCLBYTES,				/* maxsegsize */
1100 	    0,					/* flags */
1101 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1102 	    &sq->snd_buff_dmat);		/* dmat */
1103 
1104 	if (err != 0) {
1105 		device_printf(nic->dev,
1106 		    "Failed to create busdma tag for Tx buffers\n");
1107 		goto error;
1108 	}
1109 
1110 	/* Allocate send buffers array */
1111 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1112 	    (M_NOWAIT | M_ZERO));
1113 	if (sq->snd_buff == NULL) {
1114 		device_printf(nic->dev,
1115 		    "Could not allocate memory for Tx buffers array\n");
1116 		err = ENOMEM;
1117 		goto error;
1118 	}
1119 
1120 	/* Now populate maps */
1121 	for (i = 0; i < q_len; i++) {
1122 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1123 		    &sq->snd_buff[i].dmap);
1124 		if (err != 0) {
1125 			device_printf(nic->dev,
1126 			    "Failed to create DMA maps for Tx buffers\n");
1127 			goto error;
1128 		}
1129 	}
1130 	NICVF_TX_UNLOCK(sq);
1131 
1132 	/* Allocate taskqueue */
1133 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1134 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1135 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1136 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1137 	    device_get_nameunit(nic->dev), qidx);
1138 
1139 	return (0);
1140 error:
1141 	NICVF_TX_UNLOCK(sq);
1142 	return (err);
1143 }
1144 
1145 static void
1146 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1147 {
1148 	struct queue_set *qs = nic->qs;
1149 	size_t i;
1150 	int err __diagused;
1151 
1152 	if (sq == NULL)
1153 		return;
1154 
1155 	if (sq->snd_taskq != NULL) {
1156 		/* Remove task */
1157 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1158 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1159 
1160 		taskqueue_free(sq->snd_taskq);
1161 		sq->snd_taskq = NULL;
1162 	}
1163 
1164 	NICVF_TX_LOCK(sq);
1165 	if (sq->snd_buff_dmat != NULL) {
1166 		if (sq->snd_buff != NULL) {
1167 			for (i = 0; i < qs->sq_len; i++) {
1168 				m_freem(sq->snd_buff[i].mbuf);
1169 				sq->snd_buff[i].mbuf = NULL;
1170 
1171 				bus_dmamap_unload(sq->snd_buff_dmat,
1172 				    sq->snd_buff[i].dmap);
1173 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1174 				    sq->snd_buff[i].dmap);
1175 				/*
1176 				 * If bus_dmamap_destroy fails it can cause
1177 				 * random panic later if the tag is also
1178 				 * destroyed in the process.
1179 				 */
1180 				KASSERT(err == 0,
1181 				    ("%s: Could not destroy DMA map for SQ",
1182 				    __func__));
1183 			}
1184 		}
1185 
1186 		free(sq->snd_buff, M_NICVF);
1187 
1188 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1189 		KASSERT(err == 0,
1190 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1191 	}
1192 
1193 	/* Free private driver ring for this send queue */
1194 	if (sq->br != NULL)
1195 		drbr_free(sq->br, M_DEVBUF);
1196 
1197 	if (sq->dmem.base != NULL)
1198 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1199 
1200 	NICVF_TX_UNLOCK(sq);
1201 	/* Destroy Tx lock */
1202 	mtx_destroy(&sq->mtx);
1203 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1204 }
1205 
1206 static void
1207 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1208 {
1209 
1210 	/* Disable send queue */
1211 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1212 	/* Check if SQ is stopped */
1213 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1214 		return;
1215 	/* Reset send queue */
1216 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1217 }
1218 
1219 static void
1220 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1221 {
1222 	union nic_mbx mbx = {};
1223 
1224 	/* Make sure all packets in the pipeline are written back into mem */
1225 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1226 	nicvf_send_msg_to_pf(nic, &mbx);
1227 }
1228 
1229 static void
1230 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1231 {
1232 
1233 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1234 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1235 	/* Disable completion queue */
1236 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1237 	/* Reset completion queue */
1238 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1239 }
1240 
1241 static void
1242 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1243 {
1244 	uint64_t tmp, fifo_state;
1245 	int timeout = 10;
1246 
1247 	/* Save head and tail pointers for feeing up buffers */
1248 	rbdr->head =
1249 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1250 	rbdr->tail =
1251 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1252 
1253 	/*
1254 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1255 	 * before relaiming.
1256 	 */
1257 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1258 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1259 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1260 		    qidx, NICVF_RBDR_RESET);
1261 	}
1262 
1263 	/* Disable RBDR */
1264 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1265 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1266 		return;
1267 	while (1) {
1268 		tmp = nicvf_queue_reg_read(nic,
1269 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1270 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1271 			break;
1272 
1273 		DELAY(1000);
1274 		timeout--;
1275 		if (!timeout) {
1276 			device_printf(nic->dev,
1277 			    "Failed polling on prefetch status\n");
1278 			return;
1279 		}
1280 	}
1281 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1282 	    NICVF_RBDR_RESET);
1283 
1284 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1285 		return;
1286 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1287 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1288 		return;
1289 }
1290 
1291 /* Configures receive queue */
1292 static void
1293 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1294     int qidx, bool enable)
1295 {
1296 	union nic_mbx mbx = {};
1297 	struct rcv_queue *rq;
1298 	struct rq_cfg rq_cfg;
1299 	struct ifnet *ifp;
1300 	struct lro_ctrl	*lro;
1301 
1302 	ifp = nic->ifp;
1303 
1304 	rq = &qs->rq[qidx];
1305 	rq->enable = enable;
1306 
1307 	lro = &rq->lro;
1308 
1309 	/* Disable receive queue */
1310 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1311 
1312 	if (!rq->enable) {
1313 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1314 		/* Free LRO memory */
1315 		tcp_lro_free(lro);
1316 		rq->lro_enabled = FALSE;
1317 		return;
1318 	}
1319 
1320 	/* Configure LRO if enabled */
1321 	rq->lro_enabled = FALSE;
1322 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1323 		if (tcp_lro_init(lro) != 0) {
1324 			device_printf(nic->dev,
1325 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1326 		} else {
1327 			rq->lro_enabled = TRUE;
1328 			lro->ifp = nic->ifp;
1329 		}
1330 	}
1331 
1332 	rq->cq_qs = qs->vnic_id;
1333 	rq->cq_idx = qidx;
1334 	rq->start_rbdr_qs = qs->vnic_id;
1335 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1336 	rq->cont_rbdr_qs = qs->vnic_id;
1337 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1338 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1339 	rq->caching = 1;
1340 
1341 	/* Send a mailbox msg to PF to config RQ */
1342 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1343 	mbx.rq.qs_num = qs->vnic_id;
1344 	mbx.rq.rq_num = qidx;
1345 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1346 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1347 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1348 	    (rq->start_qs_rbdr_idx);
1349 	nicvf_send_msg_to_pf(nic, &mbx);
1350 
1351 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1352 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1353 	nicvf_send_msg_to_pf(nic, &mbx);
1354 
1355 	/*
1356 	 * RQ drop config
1357 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1358 	 */
1359 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1360 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1361 	nicvf_send_msg_to_pf(nic, &mbx);
1362 
1363 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1364 
1365 	/* Enable Receive queue */
1366 	rq_cfg.ena = 1;
1367 	rq_cfg.tcp_ena = 0;
1368 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1369 	    *(uint64_t *)&rq_cfg);
1370 }
1371 
1372 /* Configures completion queue */
1373 static void
1374 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1375     int qidx, boolean_t enable)
1376 {
1377 	struct cmp_queue *cq;
1378 	struct cq_cfg cq_cfg;
1379 
1380 	cq = &qs->cq[qidx];
1381 	cq->enable = enable;
1382 
1383 	if (!cq->enable) {
1384 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1385 		return;
1386 	}
1387 
1388 	/* Reset completion queue */
1389 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1390 
1391 	/* Set completion queue base address */
1392 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1393 	    (uint64_t)(cq->dmem.phys_base));
1394 
1395 	/* Enable Completion queue */
1396 	cq_cfg.ena = 1;
1397 	cq_cfg.reset = 0;
1398 	cq_cfg.caching = 0;
1399 	cq_cfg.qsize = CMP_QSIZE;
1400 	cq_cfg.avg_con = 0;
1401 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1402 
1403 	/* Set threshold value for interrupt generation */
1404 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1405 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1406 	    nic->cq_coalesce_usecs);
1407 }
1408 
1409 /* Configures transmit queue */
1410 static void
1411 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1412     boolean_t enable)
1413 {
1414 	union nic_mbx mbx = {};
1415 	struct snd_queue *sq;
1416 	struct sq_cfg sq_cfg;
1417 
1418 	sq = &qs->sq[qidx];
1419 	sq->enable = enable;
1420 
1421 	if (!sq->enable) {
1422 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1423 		return;
1424 	}
1425 
1426 	/* Reset send queue */
1427 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1428 
1429 	sq->cq_qs = qs->vnic_id;
1430 	sq->cq_idx = qidx;
1431 
1432 	/* Send a mailbox msg to PF to config SQ */
1433 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1434 	mbx.sq.qs_num = qs->vnic_id;
1435 	mbx.sq.sq_num = qidx;
1436 	mbx.sq.sqs_mode = nic->sqs_mode;
1437 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1438 	nicvf_send_msg_to_pf(nic, &mbx);
1439 
1440 	/* Set queue base address */
1441 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1442 	    (uint64_t)(sq->dmem.phys_base));
1443 
1444 	/* Enable send queue  & set queue size */
1445 	sq_cfg.ena = 1;
1446 	sq_cfg.reset = 0;
1447 	sq_cfg.ldwb = 0;
1448 	sq_cfg.qsize = SND_QSIZE;
1449 	sq_cfg.tstmp_bgx_intf = 0;
1450 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1451 
1452 	/* Set threshold value for interrupt generation */
1453 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1454 }
1455 
1456 /* Configures receive buffer descriptor ring */
1457 static void
1458 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1459     boolean_t enable)
1460 {
1461 	struct rbdr *rbdr;
1462 	struct rbdr_cfg rbdr_cfg;
1463 
1464 	rbdr = &qs->rbdr[qidx];
1465 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1466 	if (!enable)
1467 		return;
1468 
1469 	/* Set descriptor base address */
1470 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1471 	    (uint64_t)(rbdr->dmem.phys_base));
1472 
1473 	/* Enable RBDR  & set queue size */
1474 	/* Buffer size should be in multiples of 128 bytes */
1475 	rbdr_cfg.ena = 1;
1476 	rbdr_cfg.reset = 0;
1477 	rbdr_cfg.ldwb = 0;
1478 	rbdr_cfg.qsize = RBDR_SIZE;
1479 	rbdr_cfg.avg_con = 0;
1480 	rbdr_cfg.lines = rbdr->dma_size / 128;
1481 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1482 	    *(uint64_t *)&rbdr_cfg);
1483 
1484 	/* Notify HW */
1485 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1486 	    qs->rbdr_len - 1);
1487 
1488 	/* Set threshold value for interrupt generation */
1489 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1490 	    rbdr->thresh - 1);
1491 }
1492 
1493 /* Requests PF to assign and enable Qset */
1494 void
1495 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1496 {
1497 	union nic_mbx mbx = {};
1498 	struct queue_set *qs;
1499 	struct qs_cfg *qs_cfg;
1500 
1501 	qs = nic->qs;
1502 	if (qs == NULL) {
1503 		device_printf(nic->dev,
1504 		    "Qset is still not allocated, don't init queues\n");
1505 		return;
1506 	}
1507 
1508 	qs->enable = enable;
1509 	qs->vnic_id = nic->vf_id;
1510 
1511 	/* Send a mailbox msg to PF to config Qset */
1512 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1513 	mbx.qs.num = qs->vnic_id;
1514 
1515 	mbx.qs.cfg = 0;
1516 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1517 	if (qs->enable) {
1518 		qs_cfg->ena = 1;
1519 		qs_cfg->vnic = qs->vnic_id;
1520 	}
1521 	nicvf_send_msg_to_pf(nic, &mbx);
1522 }
1523 
1524 static void
1525 nicvf_free_resources(struct nicvf *nic)
1526 {
1527 	int qidx;
1528 	struct queue_set *qs;
1529 
1530 	qs = nic->qs;
1531 	/*
1532 	 * Remove QS error task first since it has to be dead
1533 	 * to safely free completion queue tasks.
1534 	 */
1535 	if (qs->qs_err_taskq != NULL) {
1536 		/* Shut down QS error tasks */
1537 		while (taskqueue_cancel(qs->qs_err_taskq,
1538 		    &qs->qs_err_task,  NULL) != 0) {
1539 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1540 		}
1541 		taskqueue_free(qs->qs_err_taskq);
1542 		qs->qs_err_taskq = NULL;
1543 	}
1544 	/* Free receive buffer descriptor ring */
1545 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1546 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1547 
1548 	/* Free completion queue */
1549 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1550 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1551 
1552 	/* Free send queue */
1553 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1554 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1555 }
1556 
1557 static int
1558 nicvf_alloc_resources(struct nicvf *nic)
1559 {
1560 	struct queue_set *qs = nic->qs;
1561 	int qidx;
1562 
1563 	/* Alloc receive buffer descriptor ring */
1564 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1565 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1566 				    DMA_BUFFER_LEN, qidx))
1567 			goto alloc_fail;
1568 	}
1569 
1570 	/* Alloc send queue */
1571 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1572 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1573 			goto alloc_fail;
1574 	}
1575 
1576 	/* Alloc completion queue */
1577 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1578 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1579 			goto alloc_fail;
1580 	}
1581 
1582 	/* Allocate QS error taskqueue */
1583 	NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1584 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1585 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1586 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1587 	    device_get_nameunit(nic->dev));
1588 
1589 	return (0);
1590 alloc_fail:
1591 	nicvf_free_resources(nic);
1592 	return (ENOMEM);
1593 }
1594 
1595 int
1596 nicvf_set_qset_resources(struct nicvf *nic)
1597 {
1598 	struct queue_set *qs;
1599 
1600 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1601 	nic->qs = qs;
1602 
1603 	/* Set count of each queue */
1604 	qs->rbdr_cnt = RBDR_CNT;
1605 	qs->rq_cnt = RCV_QUEUE_CNT;
1606 
1607 	qs->sq_cnt = SND_QUEUE_CNT;
1608 	qs->cq_cnt = CMP_QUEUE_CNT;
1609 
1610 	/* Set queue lengths */
1611 	qs->rbdr_len = RCV_BUF_COUNT;
1612 	qs->sq_len = SND_QUEUE_LEN;
1613 	qs->cq_len = CMP_QUEUE_LEN;
1614 
1615 	nic->rx_queues = qs->rq_cnt;
1616 	nic->tx_queues = qs->sq_cnt;
1617 
1618 	return (0);
1619 }
1620 
1621 int
1622 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1623 {
1624 	boolean_t disable = FALSE;
1625 	struct queue_set *qs;
1626 	int qidx;
1627 
1628 	qs = nic->qs;
1629 	if (qs == NULL)
1630 		return (0);
1631 
1632 	if (enable) {
1633 		if (nicvf_alloc_resources(nic) != 0)
1634 			return (ENOMEM);
1635 
1636 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1637 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1638 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1639 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1640 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1641 			nicvf_rbdr_config(nic, qs, qidx, enable);
1642 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1643 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1644 	} else {
1645 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1646 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1647 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1648 			nicvf_rbdr_config(nic, qs, qidx, disable);
1649 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1650 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1651 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1652 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1653 
1654 		nicvf_free_resources(nic);
1655 	}
1656 
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Get a free desc from SQ
1662  * returns descriptor ponter & descriptor number
1663  */
1664 static __inline int
1665 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1666 {
1667 	int qentry;
1668 
1669 	qentry = sq->tail;
1670 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1671 	sq->tail += desc_cnt;
1672 	sq->tail &= (sq->dmem.q_len - 1);
1673 
1674 	return (qentry);
1675 }
1676 
1677 /* Free descriptor back to SQ for future use */
1678 static void
1679 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1680 {
1681 
1682 	atomic_add_int(&sq->free_cnt, desc_cnt);
1683 	sq->head += desc_cnt;
1684 	sq->head &= (sq->dmem.q_len - 1);
1685 }
1686 
1687 static __inline int
1688 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1689 {
1690 	qentry++;
1691 	qentry &= (sq->dmem.q_len - 1);
1692 	return (qentry);
1693 }
1694 
1695 static void
1696 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1697 {
1698 	uint64_t sq_cfg;
1699 
1700 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1701 	sq_cfg |= NICVF_SQ_EN;
1702 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1703 	/* Ring doorbell so that H/W restarts processing SQEs */
1704 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1705 }
1706 
1707 static void
1708 nicvf_sq_disable(struct nicvf *nic, int qidx)
1709 {
1710 	uint64_t sq_cfg;
1711 
1712 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1713 	sq_cfg &= ~NICVF_SQ_EN;
1714 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1715 }
1716 
1717 static void
1718 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1719 {
1720 	uint64_t head;
1721 	struct snd_buff *snd_buff;
1722 	struct sq_hdr_subdesc *hdr;
1723 
1724 	NICVF_TX_LOCK(sq);
1725 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1726 	while (sq->head != head) {
1727 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1728 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1729 			nicvf_put_sq_desc(sq, 1);
1730 			continue;
1731 		}
1732 		snd_buff = &sq->snd_buff[sq->head];
1733 		if (snd_buff->mbuf != NULL) {
1734 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1735 			m_freem(snd_buff->mbuf);
1736 			sq->snd_buff[sq->head].mbuf = NULL;
1737 		}
1738 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1739 	}
1740 	NICVF_TX_UNLOCK(sq);
1741 }
1742 
1743 /*
1744  * Add SQ HEADER subdescriptor.
1745  * First subdescriptor for every send descriptor.
1746  */
1747 static __inline int
1748 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1749 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1750 {
1751 	struct nicvf *nic;
1752 	struct sq_hdr_subdesc *hdr;
1753 	struct ether_vlan_header *eh;
1754 #ifdef INET
1755 	struct ip *ip;
1756 	struct tcphdr *th;
1757 #endif
1758 	uint16_t etype;
1759 	int ehdrlen, iphlen, poff, proto;
1760 
1761 	nic = sq->nic;
1762 
1763 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1764 	sq->snd_buff[qentry].mbuf = mbuf;
1765 
1766 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1767 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1768 	/* Enable notification via CQE after processing SQE */
1769 	hdr->post_cqe = 1;
1770 	/* No of subdescriptors following this */
1771 	hdr->subdesc_cnt = subdesc_cnt;
1772 	hdr->tot_len = len;
1773 
1774 	eh = mtod(mbuf, struct ether_vlan_header *);
1775 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1776 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1777 		etype = ntohs(eh->evl_proto);
1778 	} else {
1779 		ehdrlen = ETHER_HDR_LEN;
1780 		etype = ntohs(eh->evl_encap_proto);
1781 	}
1782 
1783 	poff = proto = -1;
1784 	switch (etype) {
1785 #ifdef INET6
1786 	case ETHERTYPE_IPV6:
1787 		if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1788 			mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1789 			sq->snd_buff[qentry].mbuf = NULL;
1790 			if (mbuf == NULL)
1791 				return (ENOBUFS);
1792 		}
1793 		poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1794 		if (poff < 0)
1795 			return (ENOBUFS);
1796 		poff += ehdrlen;
1797 		break;
1798 #endif
1799 #ifdef INET
1800 	case ETHERTYPE_IP:
1801 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1802 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1803 			sq->snd_buff[qentry].mbuf = mbuf;
1804 			if (mbuf == NULL)
1805 				return (ENOBUFS);
1806 		}
1807 		if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1808 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1809 
1810 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1811 		iphlen = ip->ip_hl << 2;
1812 		poff = ehdrlen + iphlen;
1813 		proto = ip->ip_p;
1814 		break;
1815 #endif
1816 	}
1817 
1818 #if defined(INET6) || defined(INET)
1819 	if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1820 		switch (proto) {
1821 		case IPPROTO_TCP:
1822 			if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1823 				break;
1824 
1825 			if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1826 				mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1827 				sq->snd_buff[qentry].mbuf = mbuf;
1828 				if (mbuf == NULL)
1829 					return (ENOBUFS);
1830 			}
1831 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1832 			break;
1833 		case IPPROTO_UDP:
1834 			if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1835 				break;
1836 
1837 			if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1838 				mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1839 				sq->snd_buff[qentry].mbuf = mbuf;
1840 				if (mbuf == NULL)
1841 					return (ENOBUFS);
1842 			}
1843 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1844 			break;
1845 		case IPPROTO_SCTP:
1846 			if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1847 				break;
1848 
1849 			if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1850 				mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1851 				sq->snd_buff[qentry].mbuf = mbuf;
1852 				if (mbuf == NULL)
1853 					return (ENOBUFS);
1854 			}
1855 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1856 			break;
1857 		default:
1858 			break;
1859 		}
1860 		hdr->l3_offset = ehdrlen;
1861 		hdr->l4_offset = poff;
1862 	}
1863 
1864 	if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1865 		th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1866 
1867 		hdr->tso = 1;
1868 		hdr->tso_start = poff + (th->th_off * 4);
1869 		hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1870 		hdr->inner_l3_offset = ehdrlen - 2;
1871 		nic->drv_stats.tx_tso++;
1872 	}
1873 #endif
1874 
1875 	return (0);
1876 }
1877 
1878 /*
1879  * SQ GATHER subdescriptor
1880  * Must follow HDR descriptor
1881  */
1882 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1883 					       int size, uint64_t data)
1884 {
1885 	struct sq_gather_subdesc *gather;
1886 
1887 	qentry &= (sq->dmem.q_len - 1);
1888 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1889 
1890 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1891 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1892 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1893 	gather->size = size;
1894 	gather->addr = data;
1895 }
1896 
1897 /* Put an mbuf to a SQ for packet transfer. */
1898 static int
1899 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1900 {
1901 	bus_dma_segment_t segs[256];
1902 	struct snd_buff *snd_buff;
1903 	size_t seg;
1904 	int nsegs, qentry;
1905 	int subdesc_cnt;
1906 	int err;
1907 
1908 	NICVF_TX_LOCK_ASSERT(sq);
1909 
1910 	if (sq->free_cnt == 0)
1911 		return (ENOBUFS);
1912 
1913 	snd_buff = &sq->snd_buff[sq->tail];
1914 
1915 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1916 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1917 	if (__predict_false(err != 0)) {
1918 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1919 		m_freem(*mbufp);
1920 		*mbufp = NULL;
1921 		return (err);
1922 	}
1923 
1924 	/* Set how many subdescriptors is required */
1925 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1926 	if (subdesc_cnt > sq->free_cnt) {
1927 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1928 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1929 		return (ENOBUFS);
1930 	}
1931 
1932 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1933 
1934 	/* Add SQ header subdesc */
1935 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1936 	    (*mbufp)->m_pkthdr.len);
1937 	if (err != 0) {
1938 		nicvf_put_sq_desc(sq, subdesc_cnt);
1939 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1940 		if (err == ENOBUFS) {
1941 			m_freem(*mbufp);
1942 			*mbufp = NULL;
1943 		}
1944 		return (err);
1945 	}
1946 
1947 	/* Add SQ gather subdescs */
1948 	for (seg = 0; seg < nsegs; seg++) {
1949 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1950 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1951 		    segs[seg].ds_addr);
1952 	}
1953 
1954 	/* make sure all memory stores are done before ringing doorbell */
1955 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1956 
1957 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1958 	    __func__, sq->idx, subdesc_cnt);
1959 	/* Inform HW to xmit new packet */
1960 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1961 	    sq->idx, subdesc_cnt);
1962 	return (0);
1963 }
1964 
1965 static __inline u_int
1966 frag_num(u_int i)
1967 {
1968 #if BYTE_ORDER == BIG_ENDIAN
1969 	return ((i & ~3) + 3 - (i & 3));
1970 #else
1971 	return (i);
1972 #endif
1973 }
1974 
1975 /* Returns MBUF for a received packet */
1976 struct mbuf *
1977 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1978 {
1979 	int frag;
1980 	int payload_len = 0;
1981 	struct mbuf *mbuf;
1982 	struct mbuf *mbuf_frag;
1983 	uint16_t *rb_lens = NULL;
1984 	uint64_t *rb_ptrs = NULL;
1985 
1986 	mbuf = NULL;
1987 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1988 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1989 
1990 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1991 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1992 
1993 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1994 		payload_len = rb_lens[frag_num(frag)];
1995 		if (frag == 0) {
1996 			/* First fragment */
1997 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1998 			    (*rb_ptrs - cqe_rx->align_pad));
1999 			mbuf->m_len = payload_len;
2000 			mbuf->m_data += cqe_rx->align_pad;
2001 			if_setrcvif(mbuf, nic->ifp);
2002 		} else {
2003 			/* Add fragments */
2004 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2005 			m_append(mbuf, payload_len, mbuf_frag->m_data);
2006 			m_freem(mbuf_frag);
2007 		}
2008 		/* Next buffer pointer */
2009 		rb_ptrs++;
2010 	}
2011 
2012 	if (__predict_true(mbuf != NULL)) {
2013 		m_fixhdr(mbuf);
2014 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2015 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2016 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2017 			/*
2018 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2019 			 */
2020 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2021 				mbuf->m_pkthdr.csum_flags =
2022 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2023 			}
2024 
2025 			switch (cqe_rx->l4_type) {
2026 			case L4TYPE_UDP:
2027 			case L4TYPE_TCP: /* fall through */
2028 				mbuf->m_pkthdr.csum_flags |=
2029 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2030 				mbuf->m_pkthdr.csum_data = 0xffff;
2031 				break;
2032 			case L4TYPE_SCTP:
2033 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2034 				break;
2035 			default:
2036 				break;
2037 			}
2038 		}
2039 	}
2040 
2041 	return (mbuf);
2042 }
2043 
2044 /* Enable interrupt */
2045 void
2046 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2047 {
2048 	uint64_t reg_val;
2049 
2050 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2051 
2052 	switch (int_type) {
2053 	case NICVF_INTR_CQ:
2054 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2055 		break;
2056 	case NICVF_INTR_SQ:
2057 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2058 		break;
2059 	case NICVF_INTR_RBDR:
2060 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2061 		break;
2062 	case NICVF_INTR_PKT_DROP:
2063 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2064 		break;
2065 	case NICVF_INTR_TCP_TIMER:
2066 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2067 		break;
2068 	case NICVF_INTR_MBOX:
2069 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2070 		break;
2071 	case NICVF_INTR_QS_ERR:
2072 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2073 		break;
2074 	default:
2075 		device_printf(nic->dev,
2076 			   "Failed to enable interrupt: unknown type\n");
2077 		break;
2078 	}
2079 
2080 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2081 }
2082 
2083 /* Disable interrupt */
2084 void
2085 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2086 {
2087 	uint64_t reg_val = 0;
2088 
2089 	switch (int_type) {
2090 	case NICVF_INTR_CQ:
2091 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2092 		break;
2093 	case NICVF_INTR_SQ:
2094 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2095 		break;
2096 	case NICVF_INTR_RBDR:
2097 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2098 		break;
2099 	case NICVF_INTR_PKT_DROP:
2100 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2101 		break;
2102 	case NICVF_INTR_TCP_TIMER:
2103 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2104 		break;
2105 	case NICVF_INTR_MBOX:
2106 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2107 		break;
2108 	case NICVF_INTR_QS_ERR:
2109 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2110 		break;
2111 	default:
2112 		device_printf(nic->dev,
2113 			   "Failed to disable interrupt: unknown type\n");
2114 		break;
2115 	}
2116 
2117 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2118 }
2119 
2120 /* Clear interrupt */
2121 void
2122 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2123 {
2124 	uint64_t reg_val = 0;
2125 
2126 	switch (int_type) {
2127 	case NICVF_INTR_CQ:
2128 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2129 		break;
2130 	case NICVF_INTR_SQ:
2131 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2132 		break;
2133 	case NICVF_INTR_RBDR:
2134 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2135 		break;
2136 	case NICVF_INTR_PKT_DROP:
2137 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2138 		break;
2139 	case NICVF_INTR_TCP_TIMER:
2140 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2141 		break;
2142 	case NICVF_INTR_MBOX:
2143 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2144 		break;
2145 	case NICVF_INTR_QS_ERR:
2146 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2147 		break;
2148 	default:
2149 		device_printf(nic->dev,
2150 			   "Failed to clear interrupt: unknown type\n");
2151 		break;
2152 	}
2153 
2154 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2155 }
2156 
2157 /* Check if interrupt is enabled */
2158 int
2159 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2160 {
2161 	uint64_t reg_val;
2162 	uint64_t mask = 0xff;
2163 
2164 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2165 
2166 	switch (int_type) {
2167 	case NICVF_INTR_CQ:
2168 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2169 		break;
2170 	case NICVF_INTR_SQ:
2171 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2172 		break;
2173 	case NICVF_INTR_RBDR:
2174 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2175 		break;
2176 	case NICVF_INTR_PKT_DROP:
2177 		mask = NICVF_INTR_PKT_DROP_MASK;
2178 		break;
2179 	case NICVF_INTR_TCP_TIMER:
2180 		mask = NICVF_INTR_TCP_TIMER_MASK;
2181 		break;
2182 	case NICVF_INTR_MBOX:
2183 		mask = NICVF_INTR_MBOX_MASK;
2184 		break;
2185 	case NICVF_INTR_QS_ERR:
2186 		mask = NICVF_INTR_QS_ERR_MASK;
2187 		break;
2188 	default:
2189 		device_printf(nic->dev,
2190 			   "Failed to check interrupt enable: unknown type\n");
2191 		break;
2192 	}
2193 
2194 	return (reg_val & mask);
2195 }
2196 
2197 void
2198 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2199 {
2200 	struct rcv_queue *rq;
2201 
2202 #define GET_RQ_STATS(reg) \
2203 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2204 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2205 
2206 	rq = &nic->qs->rq[rq_idx];
2207 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2208 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2209 }
2210 
2211 void
2212 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2213 {
2214 	struct snd_queue *sq;
2215 
2216 #define GET_SQ_STATS(reg) \
2217 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2218 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2219 
2220 	sq = &nic->qs->sq[sq_idx];
2221 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2222 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2223 }
2224 
2225 /* Check for errors in the receive cmp.queue entry */
2226 int
2227 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2228     struct cqe_rx_t *cqe_rx)
2229 {
2230 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2231 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2232 
2233 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2234 		drv_stats->rx_frames_ok++;
2235 		return (0);
2236 	}
2237 
2238 	switch (cqe_rx->err_opcode) {
2239 	case CQ_RX_ERROP_RE_PARTIAL:
2240 		stats->rx_bgx_truncated_pkts++;
2241 		break;
2242 	case CQ_RX_ERROP_RE_JABBER:
2243 		stats->rx_jabber_errs++;
2244 		break;
2245 	case CQ_RX_ERROP_RE_FCS:
2246 		stats->rx_fcs_errs++;
2247 		break;
2248 	case CQ_RX_ERROP_RE_RX_CTL:
2249 		stats->rx_bgx_errs++;
2250 		break;
2251 	case CQ_RX_ERROP_PREL2_ERR:
2252 		stats->rx_prel2_errs++;
2253 		break;
2254 	case CQ_RX_ERROP_L2_MAL:
2255 		stats->rx_l2_hdr_malformed++;
2256 		break;
2257 	case CQ_RX_ERROP_L2_OVERSIZE:
2258 		stats->rx_oversize++;
2259 		break;
2260 	case CQ_RX_ERROP_L2_UNDERSIZE:
2261 		stats->rx_undersize++;
2262 		break;
2263 	case CQ_RX_ERROP_L2_LENMISM:
2264 		stats->rx_l2_len_mismatch++;
2265 		break;
2266 	case CQ_RX_ERROP_L2_PCLP:
2267 		stats->rx_l2_pclp++;
2268 		break;
2269 	case CQ_RX_ERROP_IP_NOT:
2270 		stats->rx_ip_ver_errs++;
2271 		break;
2272 	case CQ_RX_ERROP_IP_CSUM_ERR:
2273 		stats->rx_ip_csum_errs++;
2274 		break;
2275 	case CQ_RX_ERROP_IP_MAL:
2276 		stats->rx_ip_hdr_malformed++;
2277 		break;
2278 	case CQ_RX_ERROP_IP_MALD:
2279 		stats->rx_ip_payload_malformed++;
2280 		break;
2281 	case CQ_RX_ERROP_IP_HOP:
2282 		stats->rx_ip_ttl_errs++;
2283 		break;
2284 	case CQ_RX_ERROP_L3_PCLP:
2285 		stats->rx_l3_pclp++;
2286 		break;
2287 	case CQ_RX_ERROP_L4_MAL:
2288 		stats->rx_l4_malformed++;
2289 		break;
2290 	case CQ_RX_ERROP_L4_CHK:
2291 		stats->rx_l4_csum_errs++;
2292 		break;
2293 	case CQ_RX_ERROP_UDP_LEN:
2294 		stats->rx_udp_len_errs++;
2295 		break;
2296 	case CQ_RX_ERROP_L4_PORT:
2297 		stats->rx_l4_port_errs++;
2298 		break;
2299 	case CQ_RX_ERROP_TCP_FLAG:
2300 		stats->rx_tcp_flag_errs++;
2301 		break;
2302 	case CQ_RX_ERROP_TCP_OFFSET:
2303 		stats->rx_tcp_offset_errs++;
2304 		break;
2305 	case CQ_RX_ERROP_L4_PCLP:
2306 		stats->rx_l4_pclp++;
2307 		break;
2308 	case CQ_RX_ERROP_RBDR_TRUNC:
2309 		stats->rx_truncated_pkts++;
2310 		break;
2311 	}
2312 
2313 	return (1);
2314 }
2315 
2316 /* Check for errors in the send cmp.queue entry */
2317 int
2318 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2319     struct cqe_send_t *cqe_tx)
2320 {
2321 	struct cmp_queue_stats *stats = &cq->stats;
2322 
2323 	switch (cqe_tx->send_status) {
2324 	case CQ_TX_ERROP_GOOD:
2325 		stats->tx.good++;
2326 		return (0);
2327 	case CQ_TX_ERROP_DESC_FAULT:
2328 		stats->tx.desc_fault++;
2329 		break;
2330 	case CQ_TX_ERROP_HDR_CONS_ERR:
2331 		stats->tx.hdr_cons_err++;
2332 		break;
2333 	case CQ_TX_ERROP_SUBDC_ERR:
2334 		stats->tx.subdesc_err++;
2335 		break;
2336 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2337 		stats->tx.imm_size_oflow++;
2338 		break;
2339 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2340 		stats->tx.data_seq_err++;
2341 		break;
2342 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2343 		stats->tx.mem_seq_err++;
2344 		break;
2345 	case CQ_TX_ERROP_LOCK_VIOL:
2346 		stats->tx.lock_viol++;
2347 		break;
2348 	case CQ_TX_ERROP_DATA_FAULT:
2349 		stats->tx.data_fault++;
2350 		break;
2351 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2352 		stats->tx.tstmp_conflict++;
2353 		break;
2354 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2355 		stats->tx.tstmp_timeout++;
2356 		break;
2357 	case CQ_TX_ERROP_MEM_FAULT:
2358 		stats->tx.mem_fault++;
2359 		break;
2360 	case CQ_TX_ERROP_CK_OVERLAP:
2361 		stats->tx.csum_overlap++;
2362 		break;
2363 	case CQ_TX_ERROP_CK_OFLOW:
2364 		stats->tx.csum_overflow++;
2365 		break;
2366 	}
2367 
2368 	return (1);
2369 }
2370