xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bitset.h>
36 #include <sys/bitstring.h>
37 #include <sys/buf_ring.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/pciio.h>
45 #include <sys/pcpu.h>
46 #include <sys/proc.h>
47 #include <sys/sockio.h>
48 #include <sys/socket.h>
49 #include <sys/stdatomic.h>
50 #include <sys/cpuset.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/smp.h>
54 #include <sys/taskqueue.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 
59 #include <machine/bus.h>
60 #include <machine/vmparam.h>
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_media.h>
65 #include <net/ifq.h>
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 
69 #include <netinet/in_systm.h>
70 #include <netinet/in.h>
71 #include <netinet/if_ether.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip6.h>
74 #include <netinet/sctp.h>
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_lro.h>
77 #include <netinet/udp.h>
78 
79 #include <netinet6/ip6_var.h>
80 
81 #include <dev/pci/pcireg.h>
82 #include <dev/pci/pcivar.h>
83 
84 #include "thunder_bgx.h"
85 #include "nic_reg.h"
86 #include "nic.h"
87 #include "q_struct.h"
88 #include "nicvf_queues.h"
89 
90 #define	DEBUG
91 #undef DEBUG
92 
93 #ifdef DEBUG
94 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
95 #else
96 #define	dprintf(dev, fmt, ...)
97 #endif
98 
99 MALLOC_DECLARE(M_NICVF);
100 
101 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
102 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
103 static void nicvf_sq_disable(struct nicvf *, int);
104 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
105 static void nicvf_put_sq_desc(struct snd_queue *, int);
106 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
107     boolean_t);
108 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
109 
110 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
111 
112 static void nicvf_rbdr_task(void *, int);
113 static void nicvf_rbdr_task_nowait(void *, int);
114 
115 struct rbuf_info {
116 	bus_dma_tag_t	dmat;
117 	bus_dmamap_t	dmap;
118 	struct mbuf *	mbuf;
119 };
120 
121 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
122 
123 /* Poll a register for a specific value */
124 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
125 			  uint64_t reg, int bit_pos, int bits, int val)
126 {
127 	uint64_t bit_mask;
128 	uint64_t reg_val;
129 	int timeout = 10;
130 
131 	bit_mask = (1UL << bits) - 1;
132 	bit_mask = (bit_mask << bit_pos);
133 
134 	while (timeout) {
135 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
136 		if (((reg_val & bit_mask) >> bit_pos) == val)
137 			return (0);
138 
139 		DELAY(1000);
140 		timeout--;
141 	}
142 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
143 	return (ETIMEDOUT);
144 }
145 
146 /* Callback for bus_dmamap_load() */
147 static void
148 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
149 {
150 	bus_addr_t *paddr;
151 
152 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
153 	paddr = arg;
154 	*paddr = segs->ds_addr;
155 }
156 
157 /* Allocate memory for a queue's descriptors */
158 static int
159 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
160     int q_len, int desc_size, int align_bytes)
161 {
162 	int err, err_dmat __diagused;
163 
164 	/* Create DMA tag first */
165 	err = bus_dma_tag_create(
166 	    bus_get_dma_tag(nic->dev),		/* parent tag */
167 	    align_bytes,			/* alignment */
168 	    0,					/* boundary */
169 	    BUS_SPACE_MAXADDR,			/* lowaddr */
170 	    BUS_SPACE_MAXADDR,			/* highaddr */
171 	    NULL, NULL,				/* filtfunc, filtfuncarg */
172 	    (q_len * desc_size),		/* maxsize */
173 	    1,					/* nsegments */
174 	    (q_len * desc_size),		/* maxsegsize */
175 	    0,					/* flags */
176 	    NULL, NULL,				/* lockfunc, lockfuncarg */
177 	    &dmem->dmat);			/* dmat */
178 
179 	if (err != 0) {
180 		device_printf(nic->dev,
181 		    "Failed to create busdma tag for descriptors ring\n");
182 		return (err);
183 	}
184 
185 	/* Allocate segment of continuous DMA safe memory */
186 	err = bus_dmamem_alloc(
187 	    dmem->dmat,				/* DMA tag */
188 	    &dmem->base,			/* virtual address */
189 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
190 	    &dmem->dmap);			/* DMA map */
191 	if (err != 0) {
192 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
193 		    "descriptors ring\n");
194 		goto dmamem_fail;
195 	}
196 
197 	err = bus_dmamap_load(
198 	    dmem->dmat,
199 	    dmem->dmap,
200 	    dmem->base,
201 	    (q_len * desc_size),		/* allocation size */
202 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
203 	    &dmem->phys_base,			/* physical address */
204 	    BUS_DMA_NOWAIT);
205 	if (err != 0) {
206 		device_printf(nic->dev,
207 		    "Cannot load DMA map of descriptors ring\n");
208 		goto dmamap_fail;
209 	}
210 
211 	dmem->q_len = q_len;
212 	dmem->size = (desc_size * q_len);
213 
214 	return (0);
215 
216 dmamap_fail:
217 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
218 	dmem->phys_base = 0;
219 dmamem_fail:
220 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
221 	dmem->base = NULL;
222 	KASSERT(err_dmat == 0,
223 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
224 
225 	return (err);
226 }
227 
228 /* Free queue's descriptor memory */
229 static void
230 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
231 {
232 	int err __diagused;
233 
234 	if ((dmem == NULL) || (dmem->base == NULL))
235 		return;
236 
237 	/* Unload a map */
238 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
239 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
240 	/* Free DMA memory */
241 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
242 	/* Destroy DMA tag */
243 	err = bus_dma_tag_destroy(dmem->dmat);
244 
245 	KASSERT(err == 0,
246 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
247 
248 	dmem->phys_base = 0;
249 	dmem->base = NULL;
250 }
251 
252 /*
253  * Allocate buffer for packet reception
254  * HW returns memory address where packet is DMA'ed but not a pointer
255  * into RBDR ring, so save buffer address at the start of fragment and
256  * align the start address to a cache aligned address
257  */
258 static __inline int
259 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
260     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
261 {
262 	struct mbuf *mbuf;
263 	struct rbuf_info *rinfo;
264 	bus_dma_segment_t segs[1];
265 	int nsegs;
266 	int err;
267 
268 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
269 	if (mbuf == NULL)
270 		return (ENOMEM);
271 
272 	/*
273 	 * The length is equal to the actual length + one 128b line
274 	 * used as a room for rbuf_info structure.
275 	 */
276 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
277 
278 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
279 	    &nsegs, BUS_DMA_NOWAIT);
280 	if (err != 0) {
281 		device_printf(nic->dev,
282 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
283 		    err);
284 		m_freem(mbuf);
285 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
286 		return (err);
287 	}
288 	if (nsegs != 1)
289 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
290 	/*
291 	 * Now use the room for rbuf_info structure
292 	 * and adjust mbuf data and length.
293 	 */
294 	rinfo = (struct rbuf_info *)mbuf->m_data;
295 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
296 
297 	rinfo->dmat = rbdr->rbdr_buff_dmat;
298 	rinfo->dmap = dmap;
299 	rinfo->mbuf = mbuf;
300 
301 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
302 
303 	return (0);
304 }
305 
306 /* Retrieve mbuf for received packet */
307 static struct mbuf *
308 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
309 {
310 	struct mbuf *mbuf;
311 	struct rbuf_info *rinfo;
312 
313 	/* Get buffer start address and alignment offset */
314 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
315 
316 	/* Now retrieve mbuf to give to stack */
317 	mbuf = rinfo->mbuf;
318 	if (__predict_false(mbuf == NULL)) {
319 		panic("%s: Received packet fragment with NULL mbuf",
320 		    device_get_nameunit(nic->dev));
321 	}
322 	/*
323 	 * Clear the mbuf in the descriptor to indicate
324 	 * that this slot is processed and free to use.
325 	 */
326 	rinfo->mbuf = NULL;
327 
328 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
329 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
330 
331 	return (mbuf);
332 }
333 
334 /* Allocate RBDR ring and populate receive buffers */
335 static int
336 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
337     int buf_size, int qidx)
338 {
339 	bus_dmamap_t dmap;
340 	bus_addr_t rbuf;
341 	struct rbdr_entry_t *desc;
342 	int idx;
343 	int err;
344 
345 	/* Allocate rbdr descriptors ring */
346 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
347 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
348 	if (err != 0) {
349 		device_printf(nic->dev,
350 		    "Failed to create RBDR descriptors ring\n");
351 		return (err);
352 	}
353 
354 	rbdr->desc = rbdr->dmem.base;
355 	/*
356 	 * Buffer size has to be in multiples of 128 bytes.
357 	 * Make room for metadata of size of one line (128 bytes).
358 	 */
359 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
360 	rbdr->enable = TRUE;
361 	rbdr->thresh = RBDR_THRESH;
362 	rbdr->nic = nic;
363 	rbdr->idx = qidx;
364 
365 	/*
366 	 * Create DMA tag for Rx buffers.
367 	 * Each map created using this tag is intended to store Rx payload for
368 	 * one fragment and one header structure containing rbuf_info (thus
369 	 * additional 128 byte line since RB must be a multiple of 128 byte
370 	 * cache line).
371 	 */
372 	if (buf_size > MCLBYTES) {
373 		device_printf(nic->dev,
374 		    "Buffer size to large for mbuf cluster\n");
375 		return (EINVAL);
376 	}
377 	err = bus_dma_tag_create(
378 	    bus_get_dma_tag(nic->dev),		/* parent tag */
379 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
380 	    0,					/* boundary */
381 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
382 	    DMAP_MIN_PHYSADDR,			/* highaddr */
383 	    NULL, NULL,				/* filtfunc, filtfuncarg */
384 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
385 	    1,					/* nsegments */
386 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
387 	    0,					/* flags */
388 	    NULL, NULL,				/* lockfunc, lockfuncarg */
389 	    &rbdr->rbdr_buff_dmat);		/* dmat */
390 
391 	if (err != 0) {
392 		device_printf(nic->dev,
393 		    "Failed to create busdma tag for RBDR buffers\n");
394 		return (err);
395 	}
396 
397 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
398 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
399 
400 	for (idx = 0; idx < ring_len; idx++) {
401 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
402 		if (err != 0) {
403 			device_printf(nic->dev,
404 			    "Failed to create DMA map for RB\n");
405 			return (err);
406 		}
407 		rbdr->rbdr_buff_dmaps[idx] = dmap;
408 
409 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
410 		    DMA_BUFFER_LEN, &rbuf);
411 		if (err != 0)
412 			return (err);
413 
414 		desc = GET_RBDR_DESC(rbdr, idx);
415 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
416 	}
417 
418 	/* Allocate taskqueue */
419 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
420 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
421 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
422 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
423 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
424 	    device_get_nameunit(nic->dev));
425 
426 	return (0);
427 }
428 
429 /* Free RBDR ring and its receive buffers */
430 static void
431 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
432 {
433 	struct mbuf *mbuf;
434 	struct queue_set *qs;
435 	struct rbdr_entry_t *desc;
436 	struct rbuf_info *rinfo;
437 	bus_addr_t buf_addr;
438 	int head, tail, idx;
439 	int err __diagused;
440 
441 	qs = nic->qs;
442 
443 	if ((qs == NULL) || (rbdr == NULL))
444 		return;
445 
446 	rbdr->enable = FALSE;
447 	if (rbdr->rbdr_taskq != NULL) {
448 		/* Remove tasks */
449 		while (taskqueue_cancel(rbdr->rbdr_taskq,
450 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
451 			/* Finish the nowait task first */
452 			taskqueue_drain(rbdr->rbdr_taskq,
453 			    &rbdr->rbdr_task_nowait);
454 		}
455 		taskqueue_free(rbdr->rbdr_taskq);
456 		rbdr->rbdr_taskq = NULL;
457 
458 		while (taskqueue_cancel(taskqueue_thread,
459 		    &rbdr->rbdr_task, NULL) != 0) {
460 			/* Now finish the sleepable task */
461 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
462 		}
463 	}
464 
465 	/*
466 	 * Free all of the memory under the RB descriptors.
467 	 * There are assumptions here:
468 	 * 1. Corresponding RBDR is disabled
469 	 *    - it is safe to operate using head and tail indexes
470 	 * 2. All bffers that were received are properly freed by
471 	 *    the receive handler
472 	 *    - there is no need to unload DMA map and free MBUF for other
473 	 *      descriptors than unused ones
474 	 */
475 	if (rbdr->rbdr_buff_dmat != NULL) {
476 		head = rbdr->head;
477 		tail = rbdr->tail;
478 		while (head != tail) {
479 			desc = GET_RBDR_DESC(rbdr, head);
480 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
481 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
482 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
483 			mbuf = rinfo->mbuf;
484 			/* This will destroy everything including rinfo! */
485 			m_freem(mbuf);
486 			head++;
487 			head &= (rbdr->dmem.q_len - 1);
488 		}
489 		/* Free tail descriptor */
490 		desc = GET_RBDR_DESC(rbdr, tail);
491 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
492 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
493 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
494 		mbuf = rinfo->mbuf;
495 		/* This will destroy everything including rinfo! */
496 		m_freem(mbuf);
497 
498 		/* Destroy DMA maps */
499 		for (idx = 0; idx < qs->rbdr_len; idx++) {
500 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
501 				continue;
502 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
503 			    rbdr->rbdr_buff_dmaps[idx]);
504 			KASSERT(err == 0,
505 			    ("%s: Could not destroy DMA map for RB, desc: %d",
506 			    __func__, idx));
507 			rbdr->rbdr_buff_dmaps[idx] = NULL;
508 		}
509 
510 		/* Now destroy the tag */
511 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
512 		KASSERT(err == 0,
513 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
514 
515 		rbdr->head = 0;
516 		rbdr->tail = 0;
517 	}
518 
519 	/* Free RBDR ring */
520 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
521 }
522 
523 /*
524  * Refill receive buffer descriptors with new buffers.
525  */
526 static int
527 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
528 {
529 	struct nicvf *nic;
530 	struct queue_set *qs;
531 	int rbdr_idx;
532 	int tail, qcount;
533 	int refill_rb_cnt;
534 	struct rbdr_entry_t *desc;
535 	bus_dmamap_t dmap;
536 	bus_addr_t rbuf;
537 	boolean_t rb_alloc_fail;
538 	int new_rb;
539 
540 	rb_alloc_fail = TRUE;
541 	new_rb = 0;
542 	nic = rbdr->nic;
543 	qs = nic->qs;
544 	rbdr_idx = rbdr->idx;
545 
546 	/* Check if it's enabled */
547 	if (!rbdr->enable)
548 		return (0);
549 
550 	/* Get no of desc's to be refilled */
551 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
552 	qcount &= 0x7FFFF;
553 	/* Doorbell can be ringed with a max of ring size minus 1 */
554 	if (qcount >= (qs->rbdr_len - 1)) {
555 		rb_alloc_fail = FALSE;
556 		goto out;
557 	} else
558 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
559 
560 	/* Start filling descs from tail */
561 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
562 	while (refill_rb_cnt) {
563 		tail++;
564 		tail &= (rbdr->dmem.q_len - 1);
565 
566 		dmap = rbdr->rbdr_buff_dmaps[tail];
567 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
568 		    DMA_BUFFER_LEN, &rbuf)) {
569 			/* Something went wrong. Resign */
570 			break;
571 		}
572 		desc = GET_RBDR_DESC(rbdr, tail);
573 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
574 		refill_rb_cnt--;
575 		new_rb++;
576 	}
577 
578 	/* make sure all memory stores are done before ringing doorbell */
579 	wmb();
580 
581 	/* Check if buffer allocation failed */
582 	if (refill_rb_cnt == 0)
583 		rb_alloc_fail = FALSE;
584 
585 	/* Notify HW */
586 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
587 			      rbdr_idx, new_rb);
588 out:
589 	if (!rb_alloc_fail) {
590 		/*
591 		 * Re-enable RBDR interrupts only
592 		 * if buffer allocation is success.
593 		 */
594 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
595 
596 		return (0);
597 	}
598 
599 	return (ENOMEM);
600 }
601 
602 /* Refill RBs even if sleep is needed to reclaim memory */
603 static void
604 nicvf_rbdr_task(void *arg, int pending)
605 {
606 	struct rbdr *rbdr;
607 	int err;
608 
609 	rbdr = (struct rbdr *)arg;
610 
611 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
612 	if (__predict_false(err != 0)) {
613 		panic("%s: Failed to refill RBs even when sleep enabled",
614 		    __func__);
615 	}
616 }
617 
618 /* Refill RBs as soon as possible without waiting */
619 static void
620 nicvf_rbdr_task_nowait(void *arg, int pending)
621 {
622 	struct rbdr *rbdr;
623 	int err;
624 
625 	rbdr = (struct rbdr *)arg;
626 
627 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
628 	if (err != 0) {
629 		/*
630 		 * Schedule another, sleepable kernel thread
631 		 * that will for sure refill the buffers.
632 		 */
633 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
634 	}
635 }
636 
637 static int
638 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
639     struct cqe_rx_t *cqe_rx, int cqe_type)
640 {
641 	struct mbuf *mbuf;
642 	struct rcv_queue *rq;
643 	int rq_idx;
644 	int err = 0;
645 
646 	rq_idx = cqe_rx->rq_idx;
647 	rq = &nic->qs->rq[rq_idx];
648 
649 	/* Check for errors */
650 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
651 	if (err && !cqe_rx->rb_cnt)
652 		return (0);
653 
654 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
655 	if (mbuf == NULL) {
656 		dprintf(nic->dev, "Packet not received\n");
657 		return (0);
658 	}
659 
660 	/* If error packet */
661 	if (err != 0) {
662 		m_freem(mbuf);
663 		return (0);
664 	}
665 
666 	if (rq->lro_enabled &&
667 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
668 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
669             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
670 		/*
671 		 * At this point it is known that there are no errors in the
672 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
673 		 * or enqueue error.
674 		 */
675 		if ((rq->lro.lro_cnt != 0) &&
676 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
677 			return (0);
678 	}
679 	/*
680 	 * Push this packet to the stack later to avoid
681 	 * unlocking completion task in the middle of work.
682 	 */
683 	err = buf_ring_enqueue(cq->rx_br, mbuf);
684 	if (err != 0) {
685 		/*
686 		 * Failed to enqueue this mbuf.
687 		 * We don't drop it, just schedule another task.
688 		 */
689 		return (err);
690 	}
691 
692 	return (0);
693 }
694 
695 static void
696 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
697     struct cqe_send_t *cqe_tx, int cqe_type)
698 {
699 	bus_dmamap_t dmap;
700 	struct mbuf *mbuf;
701 	struct snd_queue *sq;
702 	struct sq_hdr_subdesc *hdr;
703 
704 	mbuf = NULL;
705 	sq = &nic->qs->sq[cqe_tx->sq_idx];
706 
707 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
708 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
709 		return;
710 
711 	dprintf(nic->dev,
712 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
713 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
714 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
715 
716 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
717 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
718 
719 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
720 	if (mbuf != NULL) {
721 		m_freem(mbuf);
722 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
723 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
724 	}
725 
726 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
727 }
728 
729 static int
730 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
731 {
732 	struct mbuf *mbuf;
733 	if_t ifp;
734 	int processed_cqe, tx_done = 0;
735 #ifdef DEBUG
736 	int work_done = 0;
737 #endif
738 	int cqe_count, cqe_head;
739 	struct queue_set *qs = nic->qs;
740 	struct cmp_queue *cq = &qs->cq[cq_idx];
741 	struct snd_queue *sq = &qs->sq[cq_idx];
742 	struct rcv_queue *rq;
743 	struct cqe_rx_t *cq_desc;
744 	struct lro_ctrl	*lro;
745 	int rq_idx;
746 	int cmp_err;
747 
748 	NICVF_CMP_LOCK(cq);
749 	cmp_err = 0;
750 	processed_cqe = 0;
751 	/* Get no of valid CQ entries to process */
752 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
753 	cqe_count &= CQ_CQE_COUNT;
754 	if (cqe_count == 0)
755 		goto out;
756 
757 	/* Get head of the valid CQ entries */
758 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
759 	cqe_head &= 0xFFFF;
760 
761 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
762 	    __func__, cq_idx, cqe_count, cqe_head);
763 	while (processed_cqe < cqe_count) {
764 		/* Get the CQ descriptor */
765 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
766 		cqe_head++;
767 		cqe_head &= (cq->dmem.q_len - 1);
768 		/* Prefetch next CQ descriptor */
769 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
770 
771 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
772 		    cq_desc->cqe_type);
773 		switch (cq_desc->cqe_type) {
774 		case CQE_TYPE_RX:
775 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
776 			    CQE_TYPE_RX);
777 			if (__predict_false(cmp_err != 0)) {
778 				/*
779 				 * Ups. Cannot finish now.
780 				 * Let's try again later.
781 				 */
782 				goto done;
783 			}
784 #ifdef DEBUG
785 			work_done++;
786 #endif
787 			break;
788 		case CQE_TYPE_SEND:
789 			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
790 			    CQE_TYPE_SEND);
791 			tx_done++;
792 			break;
793 		case CQE_TYPE_INVALID:
794 		case CQE_TYPE_RX_SPLIT:
795 		case CQE_TYPE_RX_TCP:
796 		case CQE_TYPE_SEND_PTP:
797 			/* Ignore for now */
798 			break;
799 		}
800 		processed_cqe++;
801 	}
802 done:
803 	dprintf(nic->dev,
804 	    "%s CQ%d processed_cqe %d work_done %d\n",
805 	    __func__, cq_idx, processed_cqe, work_done);
806 
807 	/* Ring doorbell to inform H/W to reuse processed CQEs */
808 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
809 
810 	if ((tx_done > 0) &&
811 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
812 		/* Reenable TXQ if its stopped earlier due to SQ full */
813 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
814 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
815 	}
816 out:
817 	/*
818 	 * Flush any outstanding LRO work
819 	 */
820 	rq_idx = cq_idx;
821 	rq = &nic->qs->rq[rq_idx];
822 	lro = &rq->lro;
823 	tcp_lro_flush_all(lro);
824 
825 	NICVF_CMP_UNLOCK(cq);
826 
827 	ifp = nic->ifp;
828 	/* Push received MBUFs to the stack */
829 	while (!buf_ring_empty(cq->rx_br)) {
830 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
831 		if (__predict_true(mbuf != NULL))
832 			if_input(ifp, mbuf);
833 	}
834 
835 	return (cmp_err);
836 }
837 
838 /*
839  * Qset error interrupt handler
840  *
841  * As of now only CQ errors are handled
842  */
843 static void
844 nicvf_qs_err_task(void *arg, int pending)
845 {
846 	struct nicvf *nic;
847 	struct queue_set *qs;
848 	int qidx;
849 	uint64_t status;
850 	boolean_t enable = TRUE;
851 
852 	nic = (struct nicvf *)arg;
853 	qs = nic->qs;
854 
855 	/* Deactivate network interface */
856 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
857 
858 	/* Check if it is CQ err */
859 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
860 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
861 		    qidx);
862 		if ((status & CQ_ERR_MASK) == 0)
863 			continue;
864 		/* Process already queued CQEs and reconfig CQ */
865 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
866 		nicvf_sq_disable(nic, qidx);
867 		(void)nicvf_cq_intr_handler(nic, qidx);
868 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
869 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
870 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
871 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
872 	}
873 
874 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
875 	/* Re-enable Qset error interrupt */
876 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
877 }
878 
879 static void
880 nicvf_cmp_task(void *arg, int pending)
881 {
882 	struct cmp_queue *cq;
883 	struct nicvf *nic;
884 	int cmp_err;
885 
886 	cq = (struct cmp_queue *)arg;
887 	nic = cq->nic;
888 
889 	/* Handle CQ descriptors */
890 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
891 	if (__predict_false(cmp_err != 0)) {
892 		/*
893 		 * Schedule another thread here since we did not
894 		 * process the entire CQ due to Tx or Rx CQ parse error.
895 		 */
896 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
897 	}
898 
899 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
900 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
901 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
902 
903 }
904 
905 /* Initialize completion queue */
906 static int
907 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
908     int qidx)
909 {
910 	int err;
911 
912 	/* Initizalize lock */
913 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
914 	    device_get_nameunit(nic->dev), qidx);
915 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
916 
917 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
918 				     NICVF_CQ_BASE_ALIGN_BYTES);
919 
920 	if (err != 0) {
921 		device_printf(nic->dev,
922 		    "Could not allocate DMA memory for CQ\n");
923 		return (err);
924 	}
925 
926 	cq->desc = cq->dmem.base;
927 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
928 	cq->nic = nic;
929 	cq->idx = qidx;
930 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
931 
932 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
933 	    &cq->mtx);
934 
935 	/* Allocate taskqueue */
936 	NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
937 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
938 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
939 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
940 	    device_get_nameunit(nic->dev), qidx);
941 
942 	return (0);
943 }
944 
945 static void
946 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
947 {
948 
949 	if (cq == NULL)
950 		return;
951 	/*
952 	 * The completion queue itself should be disabled by now
953 	 * (ref. nicvf_snd_queue_config()).
954 	 * Ensure that it is safe to disable it or panic.
955 	 */
956 	if (cq->enable)
957 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
958 
959 	if (cq->cmp_taskq != NULL) {
960 		/* Remove task */
961 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
962 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
963 
964 		taskqueue_free(cq->cmp_taskq);
965 		cq->cmp_taskq = NULL;
966 	}
967 	/*
968 	 * Completion interrupt will possibly enable interrupts again
969 	 * so disable interrupting now after we finished processing
970 	 * completion task. It is safe to do so since the corresponding CQ
971 	 * was already disabled.
972 	 */
973 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
974 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
975 
976 	NICVF_CMP_LOCK(cq);
977 	nicvf_free_q_desc_mem(nic, &cq->dmem);
978 	drbr_free(cq->rx_br, M_DEVBUF);
979 	NICVF_CMP_UNLOCK(cq);
980 	mtx_destroy(&cq->mtx);
981 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
982 }
983 
984 int
985 nicvf_xmit_locked(struct snd_queue *sq)
986 {
987 	struct nicvf *nic;
988 	if_t ifp;
989 	struct mbuf *next;
990 	int err;
991 
992 	NICVF_TX_LOCK_ASSERT(sq);
993 
994 	nic = sq->nic;
995 	ifp = nic->ifp;
996 	err = 0;
997 
998 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
999 		/* Send a copy of the frame to the BPF listener */
1000 		ETHER_BPF_MTAP(ifp, next);
1001 
1002 		err = nicvf_tx_mbuf_locked(sq, &next);
1003 		if (err != 0) {
1004 			if (next == NULL)
1005 				drbr_advance(ifp, sq->br);
1006 			else
1007 				drbr_putback(ifp, sq->br, next);
1008 
1009 			break;
1010 		}
1011 		drbr_advance(ifp, sq->br);
1012 	}
1013 	return (err);
1014 }
1015 
1016 static void
1017 nicvf_snd_task(void *arg, int pending)
1018 {
1019 	struct snd_queue *sq = (struct snd_queue *)arg;
1020 	struct nicvf *nic;
1021 	if_t ifp;
1022 	int err;
1023 
1024 	nic = sq->nic;
1025 	ifp = nic->ifp;
1026 
1027 	/*
1028 	 * Skip sending anything if the driver is not running,
1029 	 * SQ full or link is down.
1030 	 */
1031 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1032 	    IFF_DRV_RUNNING) || !nic->link_up)
1033 		return;
1034 
1035 	NICVF_TX_LOCK(sq);
1036 	err = nicvf_xmit_locked(sq);
1037 	NICVF_TX_UNLOCK(sq);
1038 	/* Try again */
1039 	if (err != 0)
1040 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1041 }
1042 
1043 /* Initialize transmit queue */
1044 static int
1045 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1046     int qidx)
1047 {
1048 	size_t i;
1049 	int err;
1050 
1051 	/* Initizalize TX lock for this queue */
1052 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1053 	    device_get_nameunit(nic->dev), qidx);
1054 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1055 
1056 	NICVF_TX_LOCK(sq);
1057 	/* Allocate buffer ring */
1058 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1059 	    M_NOWAIT, &sq->mtx);
1060 	if (sq->br == NULL) {
1061 		device_printf(nic->dev,
1062 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1063 		err = ENOMEM;
1064 		goto error;
1065 	}
1066 
1067 	/* Allocate DMA memory for Tx descriptors */
1068 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1069 				     NICVF_SQ_BASE_ALIGN_BYTES);
1070 	if (err != 0) {
1071 		device_printf(nic->dev,
1072 		    "Could not allocate DMA memory for SQ\n");
1073 		goto error;
1074 	}
1075 
1076 	sq->desc = sq->dmem.base;
1077 	sq->head = sq->tail = 0;
1078 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1079 	sq->thresh = SND_QUEUE_THRESH;
1080 	sq->idx = qidx;
1081 	sq->nic = nic;
1082 
1083 	/*
1084 	 * Allocate DMA maps for Tx buffers
1085 	 */
1086 
1087 	/* Create DMA tag first */
1088 	err = bus_dma_tag_create(
1089 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1090 	    1,					/* alignment */
1091 	    0,					/* boundary */
1092 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1093 	    BUS_SPACE_MAXADDR,			/* highaddr */
1094 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1095 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1096 	    NICVF_TSO_NSEGS,			/* nsegments */
1097 	    MCLBYTES,				/* maxsegsize */
1098 	    0,					/* flags */
1099 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1100 	    &sq->snd_buff_dmat);		/* dmat */
1101 
1102 	if (err != 0) {
1103 		device_printf(nic->dev,
1104 		    "Failed to create busdma tag for Tx buffers\n");
1105 		goto error;
1106 	}
1107 
1108 	/* Allocate send buffers array */
1109 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1110 	    (M_NOWAIT | M_ZERO));
1111 	if (sq->snd_buff == NULL) {
1112 		device_printf(nic->dev,
1113 		    "Could not allocate memory for Tx buffers array\n");
1114 		err = ENOMEM;
1115 		goto error;
1116 	}
1117 
1118 	/* Now populate maps */
1119 	for (i = 0; i < q_len; i++) {
1120 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1121 		    &sq->snd_buff[i].dmap);
1122 		if (err != 0) {
1123 			device_printf(nic->dev,
1124 			    "Failed to create DMA maps for Tx buffers\n");
1125 			goto error;
1126 		}
1127 	}
1128 	NICVF_TX_UNLOCK(sq);
1129 
1130 	/* Allocate taskqueue */
1131 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1132 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1133 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1134 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1135 	    device_get_nameunit(nic->dev), qidx);
1136 
1137 	return (0);
1138 error:
1139 	NICVF_TX_UNLOCK(sq);
1140 	return (err);
1141 }
1142 
1143 static void
1144 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1145 {
1146 	struct queue_set *qs = nic->qs;
1147 	size_t i;
1148 	int err __diagused;
1149 
1150 	if (sq == NULL)
1151 		return;
1152 
1153 	if (sq->snd_taskq != NULL) {
1154 		/* Remove task */
1155 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1156 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1157 
1158 		taskqueue_free(sq->snd_taskq);
1159 		sq->snd_taskq = NULL;
1160 	}
1161 
1162 	NICVF_TX_LOCK(sq);
1163 	if (sq->snd_buff_dmat != NULL) {
1164 		if (sq->snd_buff != NULL) {
1165 			for (i = 0; i < qs->sq_len; i++) {
1166 				m_freem(sq->snd_buff[i].mbuf);
1167 				sq->snd_buff[i].mbuf = NULL;
1168 
1169 				bus_dmamap_unload(sq->snd_buff_dmat,
1170 				    sq->snd_buff[i].dmap);
1171 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1172 				    sq->snd_buff[i].dmap);
1173 				/*
1174 				 * If bus_dmamap_destroy fails it can cause
1175 				 * random panic later if the tag is also
1176 				 * destroyed in the process.
1177 				 */
1178 				KASSERT(err == 0,
1179 				    ("%s: Could not destroy DMA map for SQ",
1180 				    __func__));
1181 			}
1182 		}
1183 
1184 		free(sq->snd_buff, M_NICVF);
1185 
1186 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1187 		KASSERT(err == 0,
1188 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1189 	}
1190 
1191 	/* Free private driver ring for this send queue */
1192 	if (sq->br != NULL)
1193 		drbr_free(sq->br, M_DEVBUF);
1194 
1195 	if (sq->dmem.base != NULL)
1196 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1197 
1198 	NICVF_TX_UNLOCK(sq);
1199 	/* Destroy Tx lock */
1200 	mtx_destroy(&sq->mtx);
1201 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1202 }
1203 
1204 static void
1205 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1206 {
1207 
1208 	/* Disable send queue */
1209 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1210 	/* Check if SQ is stopped */
1211 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1212 		return;
1213 	/* Reset send queue */
1214 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1215 }
1216 
1217 static void
1218 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1219 {
1220 	union nic_mbx mbx = {};
1221 
1222 	/* Make sure all packets in the pipeline are written back into mem */
1223 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1224 	nicvf_send_msg_to_pf(nic, &mbx);
1225 }
1226 
1227 static void
1228 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1229 {
1230 
1231 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1232 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1233 	/* Disable completion queue */
1234 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1235 	/* Reset completion queue */
1236 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1237 }
1238 
1239 static void
1240 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1241 {
1242 	uint64_t tmp, fifo_state;
1243 	int timeout = 10;
1244 
1245 	/* Save head and tail pointers for feeing up buffers */
1246 	rbdr->head =
1247 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1248 	rbdr->tail =
1249 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1250 
1251 	/*
1252 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1253 	 * before relaiming.
1254 	 */
1255 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1256 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1257 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1258 		    qidx, NICVF_RBDR_RESET);
1259 	}
1260 
1261 	/* Disable RBDR */
1262 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1263 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1264 		return;
1265 	while (1) {
1266 		tmp = nicvf_queue_reg_read(nic,
1267 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1268 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1269 			break;
1270 
1271 		DELAY(1000);
1272 		timeout--;
1273 		if (!timeout) {
1274 			device_printf(nic->dev,
1275 			    "Failed polling on prefetch status\n");
1276 			return;
1277 		}
1278 	}
1279 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1280 	    NICVF_RBDR_RESET);
1281 
1282 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1283 		return;
1284 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1285 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1286 		return;
1287 }
1288 
1289 /* Configures receive queue */
1290 static void
1291 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1292     int qidx, bool enable)
1293 {
1294 	union nic_mbx mbx = {};
1295 	struct rcv_queue *rq;
1296 	struct rq_cfg rq_cfg;
1297 	if_t ifp;
1298 	struct lro_ctrl	*lro;
1299 
1300 	ifp = nic->ifp;
1301 
1302 	rq = &qs->rq[qidx];
1303 	rq->enable = enable;
1304 
1305 	lro = &rq->lro;
1306 
1307 	/* Disable receive queue */
1308 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1309 
1310 	if (!rq->enable) {
1311 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1312 		/* Free LRO memory */
1313 		tcp_lro_free(lro);
1314 		rq->lro_enabled = FALSE;
1315 		return;
1316 	}
1317 
1318 	/* Configure LRO if enabled */
1319 	rq->lro_enabled = FALSE;
1320 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1321 		if (tcp_lro_init(lro) != 0) {
1322 			device_printf(nic->dev,
1323 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1324 		} else {
1325 			rq->lro_enabled = TRUE;
1326 			lro->ifp = nic->ifp;
1327 		}
1328 	}
1329 
1330 	rq->cq_qs = qs->vnic_id;
1331 	rq->cq_idx = qidx;
1332 	rq->start_rbdr_qs = qs->vnic_id;
1333 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1334 	rq->cont_rbdr_qs = qs->vnic_id;
1335 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1336 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1337 	rq->caching = 1;
1338 
1339 	/* Send a mailbox msg to PF to config RQ */
1340 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1341 	mbx.rq.qs_num = qs->vnic_id;
1342 	mbx.rq.rq_num = qidx;
1343 	mbx.rq.cfg = ((uint64_t)rq->caching << 26) | (rq->cq_qs << 19) |
1344 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1345 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1346 	    (rq->start_qs_rbdr_idx);
1347 	nicvf_send_msg_to_pf(nic, &mbx);
1348 
1349 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1350 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1351 	nicvf_send_msg_to_pf(nic, &mbx);
1352 
1353 	/*
1354 	 * RQ drop config
1355 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1356 	 */
1357 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1358 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1359 	nicvf_send_msg_to_pf(nic, &mbx);
1360 
1361 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1362 
1363 	/* Enable Receive queue */
1364 	rq_cfg.ena = 1;
1365 	rq_cfg.tcp_ena = 0;
1366 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1367 	    *(uint64_t *)&rq_cfg);
1368 }
1369 
1370 /* Configures completion queue */
1371 static void
1372 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1373     int qidx, boolean_t enable)
1374 {
1375 	struct cmp_queue *cq;
1376 	struct cq_cfg cq_cfg;
1377 
1378 	cq = &qs->cq[qidx];
1379 	cq->enable = enable;
1380 
1381 	if (!cq->enable) {
1382 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1383 		return;
1384 	}
1385 
1386 	/* Reset completion queue */
1387 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1388 
1389 	/* Set completion queue base address */
1390 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1391 	    (uint64_t)(cq->dmem.phys_base));
1392 
1393 	/* Enable Completion queue */
1394 	cq_cfg.ena = 1;
1395 	cq_cfg.reset = 0;
1396 	cq_cfg.caching = 0;
1397 	cq_cfg.qsize = CMP_QSIZE;
1398 	cq_cfg.avg_con = 0;
1399 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1400 
1401 	/* Set threshold value for interrupt generation */
1402 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1403 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1404 	    nic->cq_coalesce_usecs);
1405 }
1406 
1407 /* Configures transmit queue */
1408 static void
1409 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1410     boolean_t enable)
1411 {
1412 	union nic_mbx mbx = {};
1413 	struct snd_queue *sq;
1414 	struct sq_cfg sq_cfg;
1415 
1416 	sq = &qs->sq[qidx];
1417 	sq->enable = enable;
1418 
1419 	if (!sq->enable) {
1420 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1421 		return;
1422 	}
1423 
1424 	/* Reset send queue */
1425 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1426 
1427 	sq->cq_qs = qs->vnic_id;
1428 	sq->cq_idx = qidx;
1429 
1430 	/* Send a mailbox msg to PF to config SQ */
1431 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1432 	mbx.sq.qs_num = qs->vnic_id;
1433 	mbx.sq.sq_num = qidx;
1434 	mbx.sq.sqs_mode = nic->sqs_mode;
1435 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1436 	nicvf_send_msg_to_pf(nic, &mbx);
1437 
1438 	/* Set queue base address */
1439 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1440 	    (uint64_t)(sq->dmem.phys_base));
1441 
1442 	/* Enable send queue  & set queue size */
1443 	sq_cfg.ena = 1;
1444 	sq_cfg.reset = 0;
1445 	sq_cfg.ldwb = 0;
1446 	sq_cfg.qsize = SND_QSIZE;
1447 	sq_cfg.tstmp_bgx_intf = 0;
1448 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1449 
1450 	/* Set threshold value for interrupt generation */
1451 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1452 }
1453 
1454 /* Configures receive buffer descriptor ring */
1455 static void
1456 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1457     boolean_t enable)
1458 {
1459 	struct rbdr *rbdr;
1460 	struct rbdr_cfg rbdr_cfg;
1461 
1462 	rbdr = &qs->rbdr[qidx];
1463 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1464 	if (!enable)
1465 		return;
1466 
1467 	/* Set descriptor base address */
1468 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1469 	    (uint64_t)(rbdr->dmem.phys_base));
1470 
1471 	/* Enable RBDR  & set queue size */
1472 	/* Buffer size should be in multiples of 128 bytes */
1473 	rbdr_cfg.ena = 1;
1474 	rbdr_cfg.reset = 0;
1475 	rbdr_cfg.ldwb = 0;
1476 	rbdr_cfg.qsize = RBDR_SIZE;
1477 	rbdr_cfg.avg_con = 0;
1478 	rbdr_cfg.lines = rbdr->dma_size / 128;
1479 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1480 	    *(uint64_t *)&rbdr_cfg);
1481 
1482 	/* Notify HW */
1483 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1484 	    qs->rbdr_len - 1);
1485 
1486 	/* Set threshold value for interrupt generation */
1487 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1488 	    rbdr->thresh - 1);
1489 }
1490 
1491 /* Requests PF to assign and enable Qset */
1492 void
1493 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1494 {
1495 	union nic_mbx mbx = {};
1496 	struct queue_set *qs;
1497 	struct qs_cfg *qs_cfg;
1498 
1499 	qs = nic->qs;
1500 	if (qs == NULL) {
1501 		device_printf(nic->dev,
1502 		    "Qset is still not allocated, don't init queues\n");
1503 		return;
1504 	}
1505 
1506 	qs->enable = enable;
1507 	qs->vnic_id = nic->vf_id;
1508 
1509 	/* Send a mailbox msg to PF to config Qset */
1510 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1511 	mbx.qs.num = qs->vnic_id;
1512 
1513 	mbx.qs.cfg = 0;
1514 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1515 	if (qs->enable) {
1516 		qs_cfg->ena = 1;
1517 		qs_cfg->vnic = qs->vnic_id;
1518 	}
1519 	nicvf_send_msg_to_pf(nic, &mbx);
1520 }
1521 
1522 static void
1523 nicvf_free_resources(struct nicvf *nic)
1524 {
1525 	int qidx;
1526 	struct queue_set *qs;
1527 
1528 	qs = nic->qs;
1529 	/*
1530 	 * Remove QS error task first since it has to be dead
1531 	 * to safely free completion queue tasks.
1532 	 */
1533 	if (qs->qs_err_taskq != NULL) {
1534 		/* Shut down QS error tasks */
1535 		while (taskqueue_cancel(qs->qs_err_taskq,
1536 		    &qs->qs_err_task,  NULL) != 0) {
1537 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1538 		}
1539 		taskqueue_free(qs->qs_err_taskq);
1540 		qs->qs_err_taskq = NULL;
1541 	}
1542 	/* Free receive buffer descriptor ring */
1543 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1544 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1545 
1546 	/* Free completion queue */
1547 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1548 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1549 
1550 	/* Free send queue */
1551 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1552 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1553 }
1554 
1555 static int
1556 nicvf_alloc_resources(struct nicvf *nic)
1557 {
1558 	struct queue_set *qs = nic->qs;
1559 	int qidx;
1560 
1561 	/* Alloc receive buffer descriptor ring */
1562 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1563 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1564 				    DMA_BUFFER_LEN, qidx))
1565 			goto alloc_fail;
1566 	}
1567 
1568 	/* Alloc send queue */
1569 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1570 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1571 			goto alloc_fail;
1572 	}
1573 
1574 	/* Alloc completion queue */
1575 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1576 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1577 			goto alloc_fail;
1578 	}
1579 
1580 	/* Allocate QS error taskqueue */
1581 	NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1582 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1583 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1584 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1585 	    device_get_nameunit(nic->dev));
1586 
1587 	return (0);
1588 alloc_fail:
1589 	nicvf_free_resources(nic);
1590 	return (ENOMEM);
1591 }
1592 
1593 int
1594 nicvf_set_qset_resources(struct nicvf *nic)
1595 {
1596 	struct queue_set *qs;
1597 
1598 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1599 	nic->qs = qs;
1600 
1601 	/* Set count of each queue */
1602 	qs->rbdr_cnt = RBDR_CNT;
1603 	qs->rq_cnt = RCV_QUEUE_CNT;
1604 
1605 	qs->sq_cnt = SND_QUEUE_CNT;
1606 	qs->cq_cnt = CMP_QUEUE_CNT;
1607 
1608 	/* Set queue lengths */
1609 	qs->rbdr_len = RCV_BUF_COUNT;
1610 	qs->sq_len = SND_QUEUE_LEN;
1611 	qs->cq_len = CMP_QUEUE_LEN;
1612 
1613 	nic->rx_queues = qs->rq_cnt;
1614 	nic->tx_queues = qs->sq_cnt;
1615 
1616 	return (0);
1617 }
1618 
1619 int
1620 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1621 {
1622 	boolean_t disable = FALSE;
1623 	struct queue_set *qs;
1624 	int qidx;
1625 
1626 	qs = nic->qs;
1627 	if (qs == NULL)
1628 		return (0);
1629 
1630 	if (enable) {
1631 		if (nicvf_alloc_resources(nic) != 0)
1632 			return (ENOMEM);
1633 
1634 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1635 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1636 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1637 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1638 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1639 			nicvf_rbdr_config(nic, qs, qidx, enable);
1640 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1641 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1642 	} else {
1643 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1644 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1645 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1646 			nicvf_rbdr_config(nic, qs, qidx, disable);
1647 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1648 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1649 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1650 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1651 
1652 		nicvf_free_resources(nic);
1653 	}
1654 
1655 	return (0);
1656 }
1657 
1658 /*
1659  * Get a free desc from SQ
1660  * returns descriptor ponter & descriptor number
1661  */
1662 static __inline int
1663 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1664 {
1665 	int qentry;
1666 
1667 	qentry = sq->tail;
1668 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1669 	sq->tail += desc_cnt;
1670 	sq->tail &= (sq->dmem.q_len - 1);
1671 
1672 	return (qentry);
1673 }
1674 
1675 /* Free descriptor back to SQ for future use */
1676 static void
1677 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1678 {
1679 
1680 	atomic_add_int(&sq->free_cnt, desc_cnt);
1681 	sq->head += desc_cnt;
1682 	sq->head &= (sq->dmem.q_len - 1);
1683 }
1684 
1685 static __inline int
1686 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1687 {
1688 	qentry++;
1689 	qentry &= (sq->dmem.q_len - 1);
1690 	return (qentry);
1691 }
1692 
1693 static void
1694 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1695 {
1696 	uint64_t sq_cfg;
1697 
1698 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1699 	sq_cfg |= NICVF_SQ_EN;
1700 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1701 	/* Ring doorbell so that H/W restarts processing SQEs */
1702 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1703 }
1704 
1705 static void
1706 nicvf_sq_disable(struct nicvf *nic, int qidx)
1707 {
1708 	uint64_t sq_cfg;
1709 
1710 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1711 	sq_cfg &= ~NICVF_SQ_EN;
1712 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1713 }
1714 
1715 static void
1716 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1717 {
1718 	uint64_t head;
1719 	struct snd_buff *snd_buff;
1720 	struct sq_hdr_subdesc *hdr;
1721 
1722 	NICVF_TX_LOCK(sq);
1723 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1724 	while (sq->head != head) {
1725 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1726 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1727 			nicvf_put_sq_desc(sq, 1);
1728 			continue;
1729 		}
1730 		snd_buff = &sq->snd_buff[sq->head];
1731 		if (snd_buff->mbuf != NULL) {
1732 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1733 			m_freem(snd_buff->mbuf);
1734 			sq->snd_buff[sq->head].mbuf = NULL;
1735 		}
1736 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1737 	}
1738 	NICVF_TX_UNLOCK(sq);
1739 }
1740 
1741 /*
1742  * Add SQ HEADER subdescriptor.
1743  * First subdescriptor for every send descriptor.
1744  */
1745 static __inline int
1746 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1747 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1748 {
1749 	struct nicvf *nic;
1750 	struct sq_hdr_subdesc *hdr;
1751 	struct ether_vlan_header *eh;
1752 #ifdef INET
1753 	struct ip *ip;
1754 	struct tcphdr *th;
1755 #endif
1756 	uint16_t etype;
1757 	int ehdrlen, iphlen, poff, proto;
1758 
1759 	nic = sq->nic;
1760 
1761 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1762 	sq->snd_buff[qentry].mbuf = mbuf;
1763 
1764 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1765 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1766 	/* Enable notification via CQE after processing SQE */
1767 	hdr->post_cqe = 1;
1768 	/* No of subdescriptors following this */
1769 	hdr->subdesc_cnt = subdesc_cnt;
1770 	hdr->tot_len = len;
1771 
1772 	eh = mtod(mbuf, struct ether_vlan_header *);
1773 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1774 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1775 		etype = ntohs(eh->evl_proto);
1776 	} else {
1777 		ehdrlen = ETHER_HDR_LEN;
1778 		etype = ntohs(eh->evl_encap_proto);
1779 	}
1780 
1781 	poff = proto = -1;
1782 	switch (etype) {
1783 #ifdef INET6
1784 	case ETHERTYPE_IPV6:
1785 		if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1786 			mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1787 			sq->snd_buff[qentry].mbuf = NULL;
1788 			if (mbuf == NULL)
1789 				return (ENOBUFS);
1790 		}
1791 		poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1792 		if (poff < 0)
1793 			return (ENOBUFS);
1794 		poff += ehdrlen;
1795 		break;
1796 #endif
1797 #ifdef INET
1798 	case ETHERTYPE_IP:
1799 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1800 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1801 			sq->snd_buff[qentry].mbuf = mbuf;
1802 			if (mbuf == NULL)
1803 				return (ENOBUFS);
1804 		}
1805 		if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1806 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1807 
1808 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1809 		iphlen = ip->ip_hl << 2;
1810 		poff = ehdrlen + iphlen;
1811 		proto = ip->ip_p;
1812 		break;
1813 #endif
1814 	}
1815 
1816 #if defined(INET6) || defined(INET)
1817 	if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1818 		switch (proto) {
1819 		case IPPROTO_TCP:
1820 			if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1821 				break;
1822 
1823 			if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1824 				mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1825 				sq->snd_buff[qentry].mbuf = mbuf;
1826 				if (mbuf == NULL)
1827 					return (ENOBUFS);
1828 			}
1829 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1830 			break;
1831 		case IPPROTO_UDP:
1832 			if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1833 				break;
1834 
1835 			if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1836 				mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1837 				sq->snd_buff[qentry].mbuf = mbuf;
1838 				if (mbuf == NULL)
1839 					return (ENOBUFS);
1840 			}
1841 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1842 			break;
1843 		case IPPROTO_SCTP:
1844 			if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1845 				break;
1846 
1847 			if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1848 				mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1849 				sq->snd_buff[qentry].mbuf = mbuf;
1850 				if (mbuf == NULL)
1851 					return (ENOBUFS);
1852 			}
1853 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1854 			break;
1855 		default:
1856 			break;
1857 		}
1858 		hdr->l3_offset = ehdrlen;
1859 		hdr->l4_offset = poff;
1860 	}
1861 
1862 	if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1863 		th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1864 
1865 		hdr->tso = 1;
1866 		hdr->tso_start = poff + (th->th_off * 4);
1867 		hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1868 		hdr->inner_l3_offset = ehdrlen - 2;
1869 		nic->drv_stats.tx_tso++;
1870 	}
1871 #endif
1872 
1873 	return (0);
1874 }
1875 
1876 /*
1877  * SQ GATHER subdescriptor
1878  * Must follow HDR descriptor
1879  */
1880 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1881 					       int size, uint64_t data)
1882 {
1883 	struct sq_gather_subdesc *gather;
1884 
1885 	qentry &= (sq->dmem.q_len - 1);
1886 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1887 
1888 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1889 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1890 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1891 	gather->size = size;
1892 	gather->addr = data;
1893 }
1894 
1895 /* Put an mbuf to a SQ for packet transfer. */
1896 static int
1897 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1898 {
1899 	bus_dma_segment_t segs[256];
1900 	struct snd_buff *snd_buff;
1901 	size_t seg;
1902 	int nsegs, qentry;
1903 	int subdesc_cnt;
1904 	int err;
1905 
1906 	NICVF_TX_LOCK_ASSERT(sq);
1907 
1908 	if (sq->free_cnt == 0)
1909 		return (ENOBUFS);
1910 
1911 	snd_buff = &sq->snd_buff[sq->tail];
1912 
1913 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1914 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1915 	if (__predict_false(err != 0)) {
1916 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1917 		m_freem(*mbufp);
1918 		*mbufp = NULL;
1919 		return (err);
1920 	}
1921 
1922 	/* Set how many subdescriptors is required */
1923 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1924 	if (subdesc_cnt > sq->free_cnt) {
1925 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1926 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1927 		return (ENOBUFS);
1928 	}
1929 
1930 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1931 
1932 	/* Add SQ header subdesc */
1933 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1934 	    (*mbufp)->m_pkthdr.len);
1935 	if (err != 0) {
1936 		nicvf_put_sq_desc(sq, subdesc_cnt);
1937 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1938 		if (err == ENOBUFS) {
1939 			m_freem(*mbufp);
1940 			*mbufp = NULL;
1941 		}
1942 		return (err);
1943 	}
1944 
1945 	/* Add SQ gather subdescs */
1946 	for (seg = 0; seg < nsegs; seg++) {
1947 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1948 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1949 		    segs[seg].ds_addr);
1950 	}
1951 
1952 	/* make sure all memory stores are done before ringing doorbell */
1953 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1954 
1955 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1956 	    __func__, sq->idx, subdesc_cnt);
1957 	/* Inform HW to xmit new packet */
1958 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1959 	    sq->idx, subdesc_cnt);
1960 	return (0);
1961 }
1962 
1963 static __inline u_int
1964 frag_num(u_int i)
1965 {
1966 #if BYTE_ORDER == BIG_ENDIAN
1967 	return ((i & ~3) + 3 - (i & 3));
1968 #else
1969 	return (i);
1970 #endif
1971 }
1972 
1973 /* Returns MBUF for a received packet */
1974 struct mbuf *
1975 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1976 {
1977 	int frag;
1978 	int payload_len = 0;
1979 	struct mbuf *mbuf;
1980 	struct mbuf *mbuf_frag;
1981 	uint16_t *rb_lens = NULL;
1982 	uint64_t *rb_ptrs = NULL;
1983 
1984 	mbuf = NULL;
1985 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1986 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1987 
1988 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1989 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1990 
1991 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1992 		payload_len = rb_lens[frag_num(frag)];
1993 		if (frag == 0) {
1994 			/* First fragment */
1995 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1996 			    (*rb_ptrs - cqe_rx->align_pad));
1997 			mbuf->m_len = payload_len;
1998 			mbuf->m_data += cqe_rx->align_pad;
1999 			if_setrcvif(mbuf, nic->ifp);
2000 		} else {
2001 			/* Add fragments */
2002 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2003 			m_append(mbuf, payload_len, mbuf_frag->m_data);
2004 			m_freem(mbuf_frag);
2005 		}
2006 		/* Next buffer pointer */
2007 		rb_ptrs++;
2008 	}
2009 
2010 	if (__predict_true(mbuf != NULL)) {
2011 		m_fixhdr(mbuf);
2012 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2013 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2014 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2015 			/*
2016 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2017 			 */
2018 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2019 				mbuf->m_pkthdr.csum_flags =
2020 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2021 			}
2022 
2023 			switch (cqe_rx->l4_type) {
2024 			case L4TYPE_UDP:
2025 			case L4TYPE_TCP: /* fall through */
2026 				mbuf->m_pkthdr.csum_flags |=
2027 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2028 				mbuf->m_pkthdr.csum_data = 0xffff;
2029 				break;
2030 			case L4TYPE_SCTP:
2031 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2032 				break;
2033 			default:
2034 				break;
2035 			}
2036 		}
2037 	}
2038 
2039 	return (mbuf);
2040 }
2041 
2042 /* Enable interrupt */
2043 void
2044 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2045 {
2046 	uint64_t reg_val;
2047 
2048 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2049 
2050 	switch (int_type) {
2051 	case NICVF_INTR_CQ:
2052 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2053 		break;
2054 	case NICVF_INTR_SQ:
2055 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2056 		break;
2057 	case NICVF_INTR_RBDR:
2058 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2059 		break;
2060 	case NICVF_INTR_PKT_DROP:
2061 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2062 		break;
2063 	case NICVF_INTR_TCP_TIMER:
2064 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2065 		break;
2066 	case NICVF_INTR_MBOX:
2067 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2068 		break;
2069 	case NICVF_INTR_QS_ERR:
2070 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2071 		break;
2072 	default:
2073 		device_printf(nic->dev,
2074 			   "Failed to enable interrupt: unknown type\n");
2075 		break;
2076 	}
2077 
2078 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2079 }
2080 
2081 /* Disable interrupt */
2082 void
2083 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2084 {
2085 	uint64_t reg_val = 0;
2086 
2087 	switch (int_type) {
2088 	case NICVF_INTR_CQ:
2089 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2090 		break;
2091 	case NICVF_INTR_SQ:
2092 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2093 		break;
2094 	case NICVF_INTR_RBDR:
2095 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2096 		break;
2097 	case NICVF_INTR_PKT_DROP:
2098 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2099 		break;
2100 	case NICVF_INTR_TCP_TIMER:
2101 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2102 		break;
2103 	case NICVF_INTR_MBOX:
2104 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2105 		break;
2106 	case NICVF_INTR_QS_ERR:
2107 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2108 		break;
2109 	default:
2110 		device_printf(nic->dev,
2111 			   "Failed to disable interrupt: unknown type\n");
2112 		break;
2113 	}
2114 
2115 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2116 }
2117 
2118 /* Clear interrupt */
2119 void
2120 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2121 {
2122 	uint64_t reg_val = 0;
2123 
2124 	switch (int_type) {
2125 	case NICVF_INTR_CQ:
2126 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2127 		break;
2128 	case NICVF_INTR_SQ:
2129 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2130 		break;
2131 	case NICVF_INTR_RBDR:
2132 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2133 		break;
2134 	case NICVF_INTR_PKT_DROP:
2135 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2136 		break;
2137 	case NICVF_INTR_TCP_TIMER:
2138 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2139 		break;
2140 	case NICVF_INTR_MBOX:
2141 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2142 		break;
2143 	case NICVF_INTR_QS_ERR:
2144 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2145 		break;
2146 	default:
2147 		device_printf(nic->dev,
2148 			   "Failed to clear interrupt: unknown type\n");
2149 		break;
2150 	}
2151 
2152 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2153 }
2154 
2155 /* Check if interrupt is enabled */
2156 int
2157 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2158 {
2159 	uint64_t reg_val;
2160 	uint64_t mask = 0xff;
2161 
2162 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2163 
2164 	switch (int_type) {
2165 	case NICVF_INTR_CQ:
2166 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2167 		break;
2168 	case NICVF_INTR_SQ:
2169 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2170 		break;
2171 	case NICVF_INTR_RBDR:
2172 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2173 		break;
2174 	case NICVF_INTR_PKT_DROP:
2175 		mask = NICVF_INTR_PKT_DROP_MASK;
2176 		break;
2177 	case NICVF_INTR_TCP_TIMER:
2178 		mask = NICVF_INTR_TCP_TIMER_MASK;
2179 		break;
2180 	case NICVF_INTR_MBOX:
2181 		mask = NICVF_INTR_MBOX_MASK;
2182 		break;
2183 	case NICVF_INTR_QS_ERR:
2184 		mask = NICVF_INTR_QS_ERR_MASK;
2185 		break;
2186 	default:
2187 		device_printf(nic->dev,
2188 			   "Failed to check interrupt enable: unknown type\n");
2189 		break;
2190 	}
2191 
2192 	return (reg_val & mask);
2193 }
2194 
2195 void
2196 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2197 {
2198 	struct rcv_queue *rq;
2199 
2200 #define GET_RQ_STATS(reg) \
2201 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2202 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2203 
2204 	rq = &nic->qs->rq[rq_idx];
2205 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2206 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2207 }
2208 
2209 void
2210 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2211 {
2212 	struct snd_queue *sq;
2213 
2214 #define GET_SQ_STATS(reg) \
2215 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2216 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2217 
2218 	sq = &nic->qs->sq[sq_idx];
2219 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2220 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2221 }
2222 
2223 /* Check for errors in the receive cmp.queue entry */
2224 int
2225 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2226     struct cqe_rx_t *cqe_rx)
2227 {
2228 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2229 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2230 
2231 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2232 		drv_stats->rx_frames_ok++;
2233 		return (0);
2234 	}
2235 
2236 	switch (cqe_rx->err_opcode) {
2237 	case CQ_RX_ERROP_RE_PARTIAL:
2238 		stats->rx_bgx_truncated_pkts++;
2239 		break;
2240 	case CQ_RX_ERROP_RE_JABBER:
2241 		stats->rx_jabber_errs++;
2242 		break;
2243 	case CQ_RX_ERROP_RE_FCS:
2244 		stats->rx_fcs_errs++;
2245 		break;
2246 	case CQ_RX_ERROP_RE_RX_CTL:
2247 		stats->rx_bgx_errs++;
2248 		break;
2249 	case CQ_RX_ERROP_PREL2_ERR:
2250 		stats->rx_prel2_errs++;
2251 		break;
2252 	case CQ_RX_ERROP_L2_MAL:
2253 		stats->rx_l2_hdr_malformed++;
2254 		break;
2255 	case CQ_RX_ERROP_L2_OVERSIZE:
2256 		stats->rx_oversize++;
2257 		break;
2258 	case CQ_RX_ERROP_L2_UNDERSIZE:
2259 		stats->rx_undersize++;
2260 		break;
2261 	case CQ_RX_ERROP_L2_LENMISM:
2262 		stats->rx_l2_len_mismatch++;
2263 		break;
2264 	case CQ_RX_ERROP_L2_PCLP:
2265 		stats->rx_l2_pclp++;
2266 		break;
2267 	case CQ_RX_ERROP_IP_NOT:
2268 		stats->rx_ip_ver_errs++;
2269 		break;
2270 	case CQ_RX_ERROP_IP_CSUM_ERR:
2271 		stats->rx_ip_csum_errs++;
2272 		break;
2273 	case CQ_RX_ERROP_IP_MAL:
2274 		stats->rx_ip_hdr_malformed++;
2275 		break;
2276 	case CQ_RX_ERROP_IP_MALD:
2277 		stats->rx_ip_payload_malformed++;
2278 		break;
2279 	case CQ_RX_ERROP_IP_HOP:
2280 		stats->rx_ip_ttl_errs++;
2281 		break;
2282 	case CQ_RX_ERROP_L3_PCLP:
2283 		stats->rx_l3_pclp++;
2284 		break;
2285 	case CQ_RX_ERROP_L4_MAL:
2286 		stats->rx_l4_malformed++;
2287 		break;
2288 	case CQ_RX_ERROP_L4_CHK:
2289 		stats->rx_l4_csum_errs++;
2290 		break;
2291 	case CQ_RX_ERROP_UDP_LEN:
2292 		stats->rx_udp_len_errs++;
2293 		break;
2294 	case CQ_RX_ERROP_L4_PORT:
2295 		stats->rx_l4_port_errs++;
2296 		break;
2297 	case CQ_RX_ERROP_TCP_FLAG:
2298 		stats->rx_tcp_flag_errs++;
2299 		break;
2300 	case CQ_RX_ERROP_TCP_OFFSET:
2301 		stats->rx_tcp_offset_errs++;
2302 		break;
2303 	case CQ_RX_ERROP_L4_PCLP:
2304 		stats->rx_l4_pclp++;
2305 		break;
2306 	case CQ_RX_ERROP_RBDR_TRUNC:
2307 		stats->rx_truncated_pkts++;
2308 		break;
2309 	}
2310 
2311 	return (1);
2312 }
2313 
2314 /* Check for errors in the send cmp.queue entry */
2315 int
2316 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2317     struct cqe_send_t *cqe_tx)
2318 {
2319 	struct cmp_queue_stats *stats = &cq->stats;
2320 
2321 	switch (cqe_tx->send_status) {
2322 	case CQ_TX_ERROP_GOOD:
2323 		stats->tx.good++;
2324 		return (0);
2325 	case CQ_TX_ERROP_DESC_FAULT:
2326 		stats->tx.desc_fault++;
2327 		break;
2328 	case CQ_TX_ERROP_HDR_CONS_ERR:
2329 		stats->tx.hdr_cons_err++;
2330 		break;
2331 	case CQ_TX_ERROP_SUBDC_ERR:
2332 		stats->tx.subdesc_err++;
2333 		break;
2334 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2335 		stats->tx.imm_size_oflow++;
2336 		break;
2337 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2338 		stats->tx.data_seq_err++;
2339 		break;
2340 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2341 		stats->tx.mem_seq_err++;
2342 		break;
2343 	case CQ_TX_ERROP_LOCK_VIOL:
2344 		stats->tx.lock_viol++;
2345 		break;
2346 	case CQ_TX_ERROP_DATA_FAULT:
2347 		stats->tx.data_fault++;
2348 		break;
2349 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2350 		stats->tx.tstmp_conflict++;
2351 		break;
2352 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2353 		stats->tx.tstmp_timeout++;
2354 		break;
2355 	case CQ_TX_ERROP_MEM_FAULT:
2356 		stats->tx.mem_fault++;
2357 		break;
2358 	case CQ_TX_ERROP_CK_OVERLAP:
2359 		stats->tx.csum_overlap++;
2360 		break;
2361 	case CQ_TX_ERROP_CK_OFLOW:
2362 		stats->tx.csum_overflow++;
2363 		break;
2364 	}
2365 
2366 	return (1);
2367 }
2368