xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 #include "opt_inet.h"
29 #include "opt_inet6.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bitset.h>
34 #include <sys/bitstring.h>
35 #include <sys/buf_ring.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/pciio.h>
43 #include <sys/pcpu.h>
44 #include <sys/proc.h>
45 #include <sys/sockio.h>
46 #include <sys/socket.h>
47 #include <sys/stdatomic.h>
48 #include <sys/cpuset.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/smp.h>
52 #include <sys/taskqueue.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 
57 #include <machine/bus.h>
58 #include <machine/vmparam.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_media.h>
63 #include <net/ifq.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 
67 #include <netinet/in_systm.h>
68 #include <netinet/in.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/sctp.h>
73 #include <netinet/tcp.h>
74 #include <netinet/tcp_lro.h>
75 #include <netinet/udp.h>
76 
77 #include <netinet6/ip6_var.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 
82 #include "thunder_bgx.h"
83 #include "nic_reg.h"
84 #include "nic.h"
85 #include "q_struct.h"
86 #include "nicvf_queues.h"
87 
88 #define	DEBUG
89 #undef DEBUG
90 
91 #ifdef DEBUG
92 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
93 #else
94 #define	dprintf(dev, fmt, ...)
95 #endif
96 
97 MALLOC_DECLARE(M_NICVF);
98 
99 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
100 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
101 static void nicvf_sq_disable(struct nicvf *, int);
102 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
103 static void nicvf_put_sq_desc(struct snd_queue *, int);
104 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
105     boolean_t);
106 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
107 
108 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
109 
110 static void nicvf_rbdr_task(void *, int);
111 static void nicvf_rbdr_task_nowait(void *, int);
112 
113 struct rbuf_info {
114 	bus_dma_tag_t	dmat;
115 	bus_dmamap_t	dmap;
116 	struct mbuf *	mbuf;
117 };
118 
119 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
120 
121 /* Poll a register for a specific value */
122 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
123 			  uint64_t reg, int bit_pos, int bits, int val)
124 {
125 	uint64_t bit_mask;
126 	uint64_t reg_val;
127 	int timeout = 10;
128 
129 	bit_mask = (1UL << bits) - 1;
130 	bit_mask = (bit_mask << bit_pos);
131 
132 	while (timeout) {
133 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
134 		if (((reg_val & bit_mask) >> bit_pos) == val)
135 			return (0);
136 
137 		DELAY(1000);
138 		timeout--;
139 	}
140 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
141 	return (ETIMEDOUT);
142 }
143 
144 /* Callback for bus_dmamap_load() */
145 static void
146 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
147 {
148 	bus_addr_t *paddr;
149 
150 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
151 	paddr = arg;
152 	*paddr = segs->ds_addr;
153 }
154 
155 /* Allocate memory for a queue's descriptors */
156 static int
157 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
158     int q_len, int desc_size, int align_bytes)
159 {
160 	int err, err_dmat __diagused;
161 
162 	/* Create DMA tag first */
163 	err = bus_dma_tag_create(
164 	    bus_get_dma_tag(nic->dev),		/* parent tag */
165 	    align_bytes,			/* alignment */
166 	    0,					/* boundary */
167 	    BUS_SPACE_MAXADDR,			/* lowaddr */
168 	    BUS_SPACE_MAXADDR,			/* highaddr */
169 	    NULL, NULL,				/* filtfunc, filtfuncarg */
170 	    (q_len * desc_size),		/* maxsize */
171 	    1,					/* nsegments */
172 	    (q_len * desc_size),		/* maxsegsize */
173 	    0,					/* flags */
174 	    NULL, NULL,				/* lockfunc, lockfuncarg */
175 	    &dmem->dmat);			/* dmat */
176 
177 	if (err != 0) {
178 		device_printf(nic->dev,
179 		    "Failed to create busdma tag for descriptors ring\n");
180 		return (err);
181 	}
182 
183 	/* Allocate segment of continuous DMA safe memory */
184 	err = bus_dmamem_alloc(
185 	    dmem->dmat,				/* DMA tag */
186 	    &dmem->base,			/* virtual address */
187 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
188 	    &dmem->dmap);			/* DMA map */
189 	if (err != 0) {
190 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
191 		    "descriptors ring\n");
192 		goto dmamem_fail;
193 	}
194 
195 	err = bus_dmamap_load(
196 	    dmem->dmat,
197 	    dmem->dmap,
198 	    dmem->base,
199 	    (q_len * desc_size),		/* allocation size */
200 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
201 	    &dmem->phys_base,			/* physical address */
202 	    BUS_DMA_NOWAIT);
203 	if (err != 0) {
204 		device_printf(nic->dev,
205 		    "Cannot load DMA map of descriptors ring\n");
206 		goto dmamap_fail;
207 	}
208 
209 	dmem->q_len = q_len;
210 	dmem->size = (desc_size * q_len);
211 
212 	return (0);
213 
214 dmamap_fail:
215 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
216 	dmem->phys_base = 0;
217 dmamem_fail:
218 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
219 	dmem->base = NULL;
220 	KASSERT(err_dmat == 0,
221 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
222 
223 	return (err);
224 }
225 
226 /* Free queue's descriptor memory */
227 static void
228 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
229 {
230 	int err __diagused;
231 
232 	if ((dmem == NULL) || (dmem->base == NULL))
233 		return;
234 
235 	/* Unload a map */
236 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
237 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
238 	/* Free DMA memory */
239 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
240 	/* Destroy DMA tag */
241 	err = bus_dma_tag_destroy(dmem->dmat);
242 
243 	KASSERT(err == 0,
244 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
245 
246 	dmem->phys_base = 0;
247 	dmem->base = NULL;
248 }
249 
250 /*
251  * Allocate buffer for packet reception
252  * HW returns memory address where packet is DMA'ed but not a pointer
253  * into RBDR ring, so save buffer address at the start of fragment and
254  * align the start address to a cache aligned address
255  */
256 static __inline int
257 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
258     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
259 {
260 	struct mbuf *mbuf;
261 	struct rbuf_info *rinfo;
262 	bus_dma_segment_t segs[1];
263 	int nsegs;
264 	int err;
265 
266 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
267 	if (mbuf == NULL)
268 		return (ENOMEM);
269 
270 	/*
271 	 * The length is equal to the actual length + one 128b line
272 	 * used as a room for rbuf_info structure.
273 	 */
274 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
275 
276 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
277 	    &nsegs, BUS_DMA_NOWAIT);
278 	if (err != 0) {
279 		device_printf(nic->dev,
280 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
281 		    err);
282 		m_freem(mbuf);
283 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
284 		return (err);
285 	}
286 	if (nsegs != 1)
287 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
288 	/*
289 	 * Now use the room for rbuf_info structure
290 	 * and adjust mbuf data and length.
291 	 */
292 	rinfo = (struct rbuf_info *)mbuf->m_data;
293 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
294 
295 	rinfo->dmat = rbdr->rbdr_buff_dmat;
296 	rinfo->dmap = dmap;
297 	rinfo->mbuf = mbuf;
298 
299 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
300 
301 	return (0);
302 }
303 
304 /* Retrieve mbuf for received packet */
305 static struct mbuf *
306 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
307 {
308 	struct mbuf *mbuf;
309 	struct rbuf_info *rinfo;
310 
311 	/* Get buffer start address and alignment offset */
312 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
313 
314 	/* Now retrieve mbuf to give to stack */
315 	mbuf = rinfo->mbuf;
316 	if (__predict_false(mbuf == NULL)) {
317 		panic("%s: Received packet fragment with NULL mbuf",
318 		    device_get_nameunit(nic->dev));
319 	}
320 	/*
321 	 * Clear the mbuf in the descriptor to indicate
322 	 * that this slot is processed and free to use.
323 	 */
324 	rinfo->mbuf = NULL;
325 
326 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
327 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
328 
329 	return (mbuf);
330 }
331 
332 /* Allocate RBDR ring and populate receive buffers */
333 static int
334 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
335     int buf_size, int qidx)
336 {
337 	bus_dmamap_t dmap;
338 	bus_addr_t rbuf;
339 	struct rbdr_entry_t *desc;
340 	int idx;
341 	int err;
342 
343 	/* Allocate rbdr descriptors ring */
344 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
345 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
346 	if (err != 0) {
347 		device_printf(nic->dev,
348 		    "Failed to create RBDR descriptors ring\n");
349 		return (err);
350 	}
351 
352 	rbdr->desc = rbdr->dmem.base;
353 	/*
354 	 * Buffer size has to be in multiples of 128 bytes.
355 	 * Make room for metadata of size of one line (128 bytes).
356 	 */
357 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
358 	rbdr->enable = TRUE;
359 	rbdr->thresh = RBDR_THRESH;
360 	rbdr->nic = nic;
361 	rbdr->idx = qidx;
362 
363 	/*
364 	 * Create DMA tag for Rx buffers.
365 	 * Each map created using this tag is intended to store Rx payload for
366 	 * one fragment and one header structure containing rbuf_info (thus
367 	 * additional 128 byte line since RB must be a multiple of 128 byte
368 	 * cache line).
369 	 */
370 	if (buf_size > MCLBYTES) {
371 		device_printf(nic->dev,
372 		    "Buffer size to large for mbuf cluster\n");
373 		return (EINVAL);
374 	}
375 	err = bus_dma_tag_create(
376 	    bus_get_dma_tag(nic->dev),		/* parent tag */
377 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
378 	    0,					/* boundary */
379 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
380 	    DMAP_MIN_PHYSADDR,			/* highaddr */
381 	    NULL, NULL,				/* filtfunc, filtfuncarg */
382 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
383 	    1,					/* nsegments */
384 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
385 	    0,					/* flags */
386 	    NULL, NULL,				/* lockfunc, lockfuncarg */
387 	    &rbdr->rbdr_buff_dmat);		/* dmat */
388 
389 	if (err != 0) {
390 		device_printf(nic->dev,
391 		    "Failed to create busdma tag for RBDR buffers\n");
392 		return (err);
393 	}
394 
395 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
396 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
397 
398 	for (idx = 0; idx < ring_len; idx++) {
399 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
400 		if (err != 0) {
401 			device_printf(nic->dev,
402 			    "Failed to create DMA map for RB\n");
403 			return (err);
404 		}
405 		rbdr->rbdr_buff_dmaps[idx] = dmap;
406 
407 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
408 		    DMA_BUFFER_LEN, &rbuf);
409 		if (err != 0)
410 			return (err);
411 
412 		desc = GET_RBDR_DESC(rbdr, idx);
413 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
414 	}
415 
416 	/* Allocate taskqueue */
417 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
418 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
419 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
420 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
421 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
422 	    device_get_nameunit(nic->dev));
423 
424 	return (0);
425 }
426 
427 /* Free RBDR ring and its receive buffers */
428 static void
429 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
430 {
431 	struct mbuf *mbuf;
432 	struct queue_set *qs;
433 	struct rbdr_entry_t *desc;
434 	struct rbuf_info *rinfo;
435 	bus_addr_t buf_addr;
436 	int head, tail, idx;
437 	int err __diagused;
438 
439 	qs = nic->qs;
440 
441 	if ((qs == NULL) || (rbdr == NULL))
442 		return;
443 
444 	rbdr->enable = FALSE;
445 	if (rbdr->rbdr_taskq != NULL) {
446 		/* Remove tasks */
447 		while (taskqueue_cancel(rbdr->rbdr_taskq,
448 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
449 			/* Finish the nowait task first */
450 			taskqueue_drain(rbdr->rbdr_taskq,
451 			    &rbdr->rbdr_task_nowait);
452 		}
453 		taskqueue_free(rbdr->rbdr_taskq);
454 		rbdr->rbdr_taskq = NULL;
455 
456 		while (taskqueue_cancel(taskqueue_thread,
457 		    &rbdr->rbdr_task, NULL) != 0) {
458 			/* Now finish the sleepable task */
459 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
460 		}
461 	}
462 
463 	/*
464 	 * Free all of the memory under the RB descriptors.
465 	 * There are assumptions here:
466 	 * 1. Corresponding RBDR is disabled
467 	 *    - it is safe to operate using head and tail indexes
468 	 * 2. All bffers that were received are properly freed by
469 	 *    the receive handler
470 	 *    - there is no need to unload DMA map and free MBUF for other
471 	 *      descriptors than unused ones
472 	 */
473 	if (rbdr->rbdr_buff_dmat != NULL) {
474 		head = rbdr->head;
475 		tail = rbdr->tail;
476 		while (head != tail) {
477 			desc = GET_RBDR_DESC(rbdr, head);
478 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
479 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
480 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
481 			mbuf = rinfo->mbuf;
482 			/* This will destroy everything including rinfo! */
483 			m_freem(mbuf);
484 			head++;
485 			head &= (rbdr->dmem.q_len - 1);
486 		}
487 		/* Free tail descriptor */
488 		desc = GET_RBDR_DESC(rbdr, tail);
489 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
490 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
491 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
492 		mbuf = rinfo->mbuf;
493 		/* This will destroy everything including rinfo! */
494 		m_freem(mbuf);
495 
496 		/* Destroy DMA maps */
497 		for (idx = 0; idx < qs->rbdr_len; idx++) {
498 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
499 				continue;
500 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
501 			    rbdr->rbdr_buff_dmaps[idx]);
502 			KASSERT(err == 0,
503 			    ("%s: Could not destroy DMA map for RB, desc: %d",
504 			    __func__, idx));
505 			rbdr->rbdr_buff_dmaps[idx] = NULL;
506 		}
507 
508 		/* Now destroy the tag */
509 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
510 		KASSERT(err == 0,
511 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
512 
513 		rbdr->head = 0;
514 		rbdr->tail = 0;
515 	}
516 
517 	/* Free RBDR ring */
518 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
519 }
520 
521 /*
522  * Refill receive buffer descriptors with new buffers.
523  */
524 static int
525 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
526 {
527 	struct nicvf *nic;
528 	struct queue_set *qs;
529 	int rbdr_idx;
530 	int tail, qcount;
531 	int refill_rb_cnt;
532 	struct rbdr_entry_t *desc;
533 	bus_dmamap_t dmap;
534 	bus_addr_t rbuf;
535 	boolean_t rb_alloc_fail;
536 	int new_rb;
537 
538 	rb_alloc_fail = TRUE;
539 	new_rb = 0;
540 	nic = rbdr->nic;
541 	qs = nic->qs;
542 	rbdr_idx = rbdr->idx;
543 
544 	/* Check if it's enabled */
545 	if (!rbdr->enable)
546 		return (0);
547 
548 	/* Get no of desc's to be refilled */
549 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
550 	qcount &= 0x7FFFF;
551 	/* Doorbell can be ringed with a max of ring size minus 1 */
552 	if (qcount >= (qs->rbdr_len - 1)) {
553 		rb_alloc_fail = FALSE;
554 		goto out;
555 	} else
556 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
557 
558 	/* Start filling descs from tail */
559 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
560 	while (refill_rb_cnt) {
561 		tail++;
562 		tail &= (rbdr->dmem.q_len - 1);
563 
564 		dmap = rbdr->rbdr_buff_dmaps[tail];
565 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
566 		    DMA_BUFFER_LEN, &rbuf)) {
567 			/* Something went wrong. Resign */
568 			break;
569 		}
570 		desc = GET_RBDR_DESC(rbdr, tail);
571 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
572 		refill_rb_cnt--;
573 		new_rb++;
574 	}
575 
576 	/* make sure all memory stores are done before ringing doorbell */
577 	wmb();
578 
579 	/* Check if buffer allocation failed */
580 	if (refill_rb_cnt == 0)
581 		rb_alloc_fail = FALSE;
582 
583 	/* Notify HW */
584 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
585 			      rbdr_idx, new_rb);
586 out:
587 	if (!rb_alloc_fail) {
588 		/*
589 		 * Re-enable RBDR interrupts only
590 		 * if buffer allocation is success.
591 		 */
592 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
593 
594 		return (0);
595 	}
596 
597 	return (ENOMEM);
598 }
599 
600 /* Refill RBs even if sleep is needed to reclaim memory */
601 static void
602 nicvf_rbdr_task(void *arg, int pending)
603 {
604 	struct rbdr *rbdr;
605 	int err;
606 
607 	rbdr = (struct rbdr *)arg;
608 
609 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
610 	if (__predict_false(err != 0)) {
611 		panic("%s: Failed to refill RBs even when sleep enabled",
612 		    __func__);
613 	}
614 }
615 
616 /* Refill RBs as soon as possible without waiting */
617 static void
618 nicvf_rbdr_task_nowait(void *arg, int pending)
619 {
620 	struct rbdr *rbdr;
621 	int err;
622 
623 	rbdr = (struct rbdr *)arg;
624 
625 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
626 	if (err != 0) {
627 		/*
628 		 * Schedule another, sleepable kernel thread
629 		 * that will for sure refill the buffers.
630 		 */
631 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
632 	}
633 }
634 
635 static int
636 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
637     struct cqe_rx_t *cqe_rx, int cqe_type)
638 {
639 	struct mbuf *mbuf;
640 	struct rcv_queue *rq;
641 	int rq_idx;
642 	int err = 0;
643 
644 	rq_idx = cqe_rx->rq_idx;
645 	rq = &nic->qs->rq[rq_idx];
646 
647 	/* Check for errors */
648 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
649 	if (err && !cqe_rx->rb_cnt)
650 		return (0);
651 
652 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
653 	if (mbuf == NULL) {
654 		dprintf(nic->dev, "Packet not received\n");
655 		return (0);
656 	}
657 
658 	/* If error packet */
659 	if (err != 0) {
660 		m_freem(mbuf);
661 		return (0);
662 	}
663 
664 	if (rq->lro_enabled &&
665 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
666 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
667             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
668 		/*
669 		 * At this point it is known that there are no errors in the
670 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
671 		 * or enqueue error.
672 		 */
673 		if ((rq->lro.lro_cnt != 0) &&
674 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
675 			return (0);
676 	}
677 	/*
678 	 * Push this packet to the stack later to avoid
679 	 * unlocking completion task in the middle of work.
680 	 */
681 	err = buf_ring_enqueue(cq->rx_br, mbuf);
682 	if (err != 0) {
683 		/*
684 		 * Failed to enqueue this mbuf.
685 		 * We don't drop it, just schedule another task.
686 		 */
687 		return (err);
688 	}
689 
690 	return (0);
691 }
692 
693 static void
694 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
695     struct cqe_send_t *cqe_tx, int cqe_type)
696 {
697 	bus_dmamap_t dmap;
698 	struct mbuf *mbuf;
699 	struct snd_queue *sq;
700 	struct sq_hdr_subdesc *hdr;
701 
702 	mbuf = NULL;
703 	sq = &nic->qs->sq[cqe_tx->sq_idx];
704 
705 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
706 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
707 		return;
708 
709 	dprintf(nic->dev,
710 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
711 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
712 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
713 
714 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
715 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
716 
717 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
718 	if (mbuf != NULL) {
719 		m_freem(mbuf);
720 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
721 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
722 	}
723 
724 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
725 }
726 
727 static int
728 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
729 {
730 	struct mbuf *mbuf;
731 	if_t ifp;
732 	int processed_cqe, tx_done = 0;
733 #ifdef DEBUG
734 	int work_done = 0;
735 #endif
736 	int cqe_count, cqe_head;
737 	struct queue_set *qs = nic->qs;
738 	struct cmp_queue *cq = &qs->cq[cq_idx];
739 	struct snd_queue *sq = &qs->sq[cq_idx];
740 	struct rcv_queue *rq;
741 	struct cqe_rx_t *cq_desc;
742 	struct lro_ctrl	*lro;
743 	int rq_idx;
744 	int cmp_err;
745 
746 	NICVF_CMP_LOCK(cq);
747 	cmp_err = 0;
748 	processed_cqe = 0;
749 	/* Get no of valid CQ entries to process */
750 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
751 	cqe_count &= CQ_CQE_COUNT;
752 	if (cqe_count == 0)
753 		goto out;
754 
755 	/* Get head of the valid CQ entries */
756 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
757 	cqe_head &= 0xFFFF;
758 
759 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
760 	    __func__, cq_idx, cqe_count, cqe_head);
761 	while (processed_cqe < cqe_count) {
762 		/* Get the CQ descriptor */
763 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
764 		cqe_head++;
765 		cqe_head &= (cq->dmem.q_len - 1);
766 		/* Prefetch next CQ descriptor */
767 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
768 
769 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
770 		    cq_desc->cqe_type);
771 		switch (cq_desc->cqe_type) {
772 		case CQE_TYPE_RX:
773 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
774 			    CQE_TYPE_RX);
775 			if (__predict_false(cmp_err != 0)) {
776 				/*
777 				 * Ups. Cannot finish now.
778 				 * Let's try again later.
779 				 */
780 				goto done;
781 			}
782 #ifdef DEBUG
783 			work_done++;
784 #endif
785 			break;
786 		case CQE_TYPE_SEND:
787 			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
788 			    CQE_TYPE_SEND);
789 			tx_done++;
790 			break;
791 		case CQE_TYPE_INVALID:
792 		case CQE_TYPE_RX_SPLIT:
793 		case CQE_TYPE_RX_TCP:
794 		case CQE_TYPE_SEND_PTP:
795 			/* Ignore for now */
796 			break;
797 		}
798 		processed_cqe++;
799 	}
800 done:
801 	dprintf(nic->dev,
802 	    "%s CQ%d processed_cqe %d work_done %d\n",
803 	    __func__, cq_idx, processed_cqe, work_done);
804 
805 	/* Ring doorbell to inform H/W to reuse processed CQEs */
806 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
807 
808 	if ((tx_done > 0) &&
809 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
810 		/* Reenable TXQ if its stopped earlier due to SQ full */
811 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
812 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
813 	}
814 out:
815 	/*
816 	 * Flush any outstanding LRO work
817 	 */
818 	rq_idx = cq_idx;
819 	rq = &nic->qs->rq[rq_idx];
820 	lro = &rq->lro;
821 	tcp_lro_flush_all(lro);
822 
823 	NICVF_CMP_UNLOCK(cq);
824 
825 	ifp = nic->ifp;
826 	/* Push received MBUFs to the stack */
827 	while (!buf_ring_empty(cq->rx_br)) {
828 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
829 		if (__predict_true(mbuf != NULL))
830 			if_input(ifp, mbuf);
831 	}
832 
833 	return (cmp_err);
834 }
835 
836 /*
837  * Qset error interrupt handler
838  *
839  * As of now only CQ errors are handled
840  */
841 static void
842 nicvf_qs_err_task(void *arg, int pending)
843 {
844 	struct nicvf *nic;
845 	struct queue_set *qs;
846 	int qidx;
847 	uint64_t status;
848 	boolean_t enable = TRUE;
849 
850 	nic = (struct nicvf *)arg;
851 	qs = nic->qs;
852 
853 	/* Deactivate network interface */
854 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
855 
856 	/* Check if it is CQ err */
857 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
858 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
859 		    qidx);
860 		if ((status & CQ_ERR_MASK) == 0)
861 			continue;
862 		/* Process already queued CQEs and reconfig CQ */
863 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
864 		nicvf_sq_disable(nic, qidx);
865 		(void)nicvf_cq_intr_handler(nic, qidx);
866 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
867 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
868 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
869 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
870 	}
871 
872 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
873 	/* Re-enable Qset error interrupt */
874 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
875 }
876 
877 static void
878 nicvf_cmp_task(void *arg, int pending)
879 {
880 	struct cmp_queue *cq;
881 	struct nicvf *nic;
882 	int cmp_err;
883 
884 	cq = (struct cmp_queue *)arg;
885 	nic = cq->nic;
886 
887 	/* Handle CQ descriptors */
888 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
889 	if (__predict_false(cmp_err != 0)) {
890 		/*
891 		 * Schedule another thread here since we did not
892 		 * process the entire CQ due to Tx or Rx CQ parse error.
893 		 */
894 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
895 	}
896 
897 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
898 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
899 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
900 
901 }
902 
903 /* Initialize completion queue */
904 static int
905 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
906     int qidx)
907 {
908 	int err;
909 
910 	/* Initizalize lock */
911 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
912 	    device_get_nameunit(nic->dev), qidx);
913 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
914 
915 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
916 				     NICVF_CQ_BASE_ALIGN_BYTES);
917 
918 	if (err != 0) {
919 		device_printf(nic->dev,
920 		    "Could not allocate DMA memory for CQ\n");
921 		return (err);
922 	}
923 
924 	cq->desc = cq->dmem.base;
925 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
926 	cq->nic = nic;
927 	cq->idx = qidx;
928 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
929 
930 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
931 	    &cq->mtx);
932 
933 	/* Allocate taskqueue */
934 	NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
935 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
936 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
937 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
938 	    device_get_nameunit(nic->dev), qidx);
939 
940 	return (0);
941 }
942 
943 static void
944 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
945 {
946 
947 	if (cq == NULL)
948 		return;
949 	/*
950 	 * The completion queue itself should be disabled by now
951 	 * (ref. nicvf_snd_queue_config()).
952 	 * Ensure that it is safe to disable it or panic.
953 	 */
954 	if (cq->enable)
955 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
956 
957 	if (cq->cmp_taskq != NULL) {
958 		/* Remove task */
959 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
960 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
961 
962 		taskqueue_free(cq->cmp_taskq);
963 		cq->cmp_taskq = NULL;
964 	}
965 	/*
966 	 * Completion interrupt will possibly enable interrupts again
967 	 * so disable interrupting now after we finished processing
968 	 * completion task. It is safe to do so since the corresponding CQ
969 	 * was already disabled.
970 	 */
971 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
972 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
973 
974 	NICVF_CMP_LOCK(cq);
975 	nicvf_free_q_desc_mem(nic, &cq->dmem);
976 	drbr_free(cq->rx_br, M_DEVBUF);
977 	NICVF_CMP_UNLOCK(cq);
978 	mtx_destroy(&cq->mtx);
979 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
980 }
981 
982 int
983 nicvf_xmit_locked(struct snd_queue *sq)
984 {
985 	struct nicvf *nic;
986 	if_t ifp;
987 	struct mbuf *next;
988 	int err;
989 
990 	NICVF_TX_LOCK_ASSERT(sq);
991 
992 	nic = sq->nic;
993 	ifp = nic->ifp;
994 	err = 0;
995 
996 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
997 		/* Send a copy of the frame to the BPF listener */
998 		ETHER_BPF_MTAP(ifp, next);
999 
1000 		err = nicvf_tx_mbuf_locked(sq, &next);
1001 		if (err != 0) {
1002 			if (next == NULL)
1003 				drbr_advance(ifp, sq->br);
1004 			else
1005 				drbr_putback(ifp, sq->br, next);
1006 
1007 			break;
1008 		}
1009 		drbr_advance(ifp, sq->br);
1010 	}
1011 	return (err);
1012 }
1013 
1014 static void
1015 nicvf_snd_task(void *arg, int pending)
1016 {
1017 	struct snd_queue *sq = (struct snd_queue *)arg;
1018 	struct nicvf *nic;
1019 	if_t ifp;
1020 	int err;
1021 
1022 	nic = sq->nic;
1023 	ifp = nic->ifp;
1024 
1025 	/*
1026 	 * Skip sending anything if the driver is not running,
1027 	 * SQ full or link is down.
1028 	 */
1029 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1030 	    IFF_DRV_RUNNING) || !nic->link_up)
1031 		return;
1032 
1033 	NICVF_TX_LOCK(sq);
1034 	err = nicvf_xmit_locked(sq);
1035 	NICVF_TX_UNLOCK(sq);
1036 	/* Try again */
1037 	if (err != 0)
1038 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1039 }
1040 
1041 /* Initialize transmit queue */
1042 static int
1043 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1044     int qidx)
1045 {
1046 	size_t i;
1047 	int err;
1048 
1049 	/* Initizalize TX lock for this queue */
1050 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1051 	    device_get_nameunit(nic->dev), qidx);
1052 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1053 
1054 	NICVF_TX_LOCK(sq);
1055 	/* Allocate buffer ring */
1056 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1057 	    M_NOWAIT, &sq->mtx);
1058 	if (sq->br == NULL) {
1059 		device_printf(nic->dev,
1060 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1061 		err = ENOMEM;
1062 		goto error;
1063 	}
1064 
1065 	/* Allocate DMA memory for Tx descriptors */
1066 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1067 				     NICVF_SQ_BASE_ALIGN_BYTES);
1068 	if (err != 0) {
1069 		device_printf(nic->dev,
1070 		    "Could not allocate DMA memory for SQ\n");
1071 		goto error;
1072 	}
1073 
1074 	sq->desc = sq->dmem.base;
1075 	sq->head = sq->tail = 0;
1076 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1077 	sq->thresh = SND_QUEUE_THRESH;
1078 	sq->idx = qidx;
1079 	sq->nic = nic;
1080 
1081 	/*
1082 	 * Allocate DMA maps for Tx buffers
1083 	 */
1084 
1085 	/* Create DMA tag first */
1086 	err = bus_dma_tag_create(
1087 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1088 	    1,					/* alignment */
1089 	    0,					/* boundary */
1090 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1091 	    BUS_SPACE_MAXADDR,			/* highaddr */
1092 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1093 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1094 	    NICVF_TSO_NSEGS,			/* nsegments */
1095 	    MCLBYTES,				/* maxsegsize */
1096 	    0,					/* flags */
1097 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1098 	    &sq->snd_buff_dmat);		/* dmat */
1099 
1100 	if (err != 0) {
1101 		device_printf(nic->dev,
1102 		    "Failed to create busdma tag for Tx buffers\n");
1103 		goto error;
1104 	}
1105 
1106 	/* Allocate send buffers array */
1107 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1108 	    (M_NOWAIT | M_ZERO));
1109 	if (sq->snd_buff == NULL) {
1110 		device_printf(nic->dev,
1111 		    "Could not allocate memory for Tx buffers array\n");
1112 		err = ENOMEM;
1113 		goto error;
1114 	}
1115 
1116 	/* Now populate maps */
1117 	for (i = 0; i < q_len; i++) {
1118 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1119 		    &sq->snd_buff[i].dmap);
1120 		if (err != 0) {
1121 			device_printf(nic->dev,
1122 			    "Failed to create DMA maps for Tx buffers\n");
1123 			goto error;
1124 		}
1125 	}
1126 	NICVF_TX_UNLOCK(sq);
1127 
1128 	/* Allocate taskqueue */
1129 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1130 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1131 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1132 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1133 	    device_get_nameunit(nic->dev), qidx);
1134 
1135 	return (0);
1136 error:
1137 	NICVF_TX_UNLOCK(sq);
1138 	return (err);
1139 }
1140 
1141 static void
1142 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1143 {
1144 	struct queue_set *qs = nic->qs;
1145 	size_t i;
1146 	int err __diagused;
1147 
1148 	if (sq == NULL)
1149 		return;
1150 
1151 	if (sq->snd_taskq != NULL) {
1152 		/* Remove task */
1153 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1154 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1155 
1156 		taskqueue_free(sq->snd_taskq);
1157 		sq->snd_taskq = NULL;
1158 	}
1159 
1160 	NICVF_TX_LOCK(sq);
1161 	if (sq->snd_buff_dmat != NULL) {
1162 		if (sq->snd_buff != NULL) {
1163 			for (i = 0; i < qs->sq_len; i++) {
1164 				m_freem(sq->snd_buff[i].mbuf);
1165 				sq->snd_buff[i].mbuf = NULL;
1166 
1167 				bus_dmamap_unload(sq->snd_buff_dmat,
1168 				    sq->snd_buff[i].dmap);
1169 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1170 				    sq->snd_buff[i].dmap);
1171 				/*
1172 				 * If bus_dmamap_destroy fails it can cause
1173 				 * random panic later if the tag is also
1174 				 * destroyed in the process.
1175 				 */
1176 				KASSERT(err == 0,
1177 				    ("%s: Could not destroy DMA map for SQ",
1178 				    __func__));
1179 			}
1180 		}
1181 
1182 		free(sq->snd_buff, M_NICVF);
1183 
1184 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1185 		KASSERT(err == 0,
1186 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1187 	}
1188 
1189 	/* Free private driver ring for this send queue */
1190 	if (sq->br != NULL)
1191 		drbr_free(sq->br, M_DEVBUF);
1192 
1193 	if (sq->dmem.base != NULL)
1194 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1195 
1196 	NICVF_TX_UNLOCK(sq);
1197 	/* Destroy Tx lock */
1198 	mtx_destroy(&sq->mtx);
1199 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1200 }
1201 
1202 static void
1203 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1204 {
1205 
1206 	/* Disable send queue */
1207 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1208 	/* Check if SQ is stopped */
1209 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1210 		return;
1211 	/* Reset send queue */
1212 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1213 }
1214 
1215 static void
1216 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1217 {
1218 	union nic_mbx mbx = {};
1219 
1220 	/* Make sure all packets in the pipeline are written back into mem */
1221 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1222 	nicvf_send_msg_to_pf(nic, &mbx);
1223 }
1224 
1225 static void
1226 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1227 {
1228 
1229 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1230 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1231 	/* Disable completion queue */
1232 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1233 	/* Reset completion queue */
1234 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1235 }
1236 
1237 static void
1238 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1239 {
1240 	uint64_t tmp, fifo_state;
1241 	int timeout = 10;
1242 
1243 	/* Save head and tail pointers for feeing up buffers */
1244 	rbdr->head =
1245 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1246 	rbdr->tail =
1247 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1248 
1249 	/*
1250 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1251 	 * before relaiming.
1252 	 */
1253 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1254 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1255 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1256 		    qidx, NICVF_RBDR_RESET);
1257 	}
1258 
1259 	/* Disable RBDR */
1260 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1261 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1262 		return;
1263 	while (1) {
1264 		tmp = nicvf_queue_reg_read(nic,
1265 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1266 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1267 			break;
1268 
1269 		DELAY(1000);
1270 		timeout--;
1271 		if (!timeout) {
1272 			device_printf(nic->dev,
1273 			    "Failed polling on prefetch status\n");
1274 			return;
1275 		}
1276 	}
1277 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1278 	    NICVF_RBDR_RESET);
1279 
1280 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1281 		return;
1282 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1283 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1284 		return;
1285 }
1286 
1287 /* Configures receive queue */
1288 static void
1289 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1290     int qidx, bool enable)
1291 {
1292 	union nic_mbx mbx = {};
1293 	struct rcv_queue *rq;
1294 	struct rq_cfg rq_cfg;
1295 	if_t ifp;
1296 	struct lro_ctrl	*lro;
1297 
1298 	ifp = nic->ifp;
1299 
1300 	rq = &qs->rq[qidx];
1301 	rq->enable = enable;
1302 
1303 	lro = &rq->lro;
1304 
1305 	/* Disable receive queue */
1306 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1307 
1308 	if (!rq->enable) {
1309 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1310 		/* Free LRO memory */
1311 		tcp_lro_free(lro);
1312 		rq->lro_enabled = FALSE;
1313 		return;
1314 	}
1315 
1316 	/* Configure LRO if enabled */
1317 	rq->lro_enabled = FALSE;
1318 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1319 		if (tcp_lro_init(lro) != 0) {
1320 			device_printf(nic->dev,
1321 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1322 		} else {
1323 			rq->lro_enabled = TRUE;
1324 			lro->ifp = nic->ifp;
1325 		}
1326 	}
1327 
1328 	rq->cq_qs = qs->vnic_id;
1329 	rq->cq_idx = qidx;
1330 	rq->start_rbdr_qs = qs->vnic_id;
1331 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1332 	rq->cont_rbdr_qs = qs->vnic_id;
1333 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1334 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1335 	rq->caching = 1;
1336 
1337 	/* Send a mailbox msg to PF to config RQ */
1338 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1339 	mbx.rq.qs_num = qs->vnic_id;
1340 	mbx.rq.rq_num = qidx;
1341 	mbx.rq.cfg = ((uint64_t)rq->caching << 26) | (rq->cq_qs << 19) |
1342 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1343 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1344 	    (rq->start_qs_rbdr_idx);
1345 	nicvf_send_msg_to_pf(nic, &mbx);
1346 
1347 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1348 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1349 	nicvf_send_msg_to_pf(nic, &mbx);
1350 
1351 	/*
1352 	 * RQ drop config
1353 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1354 	 */
1355 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1356 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1357 	nicvf_send_msg_to_pf(nic, &mbx);
1358 
1359 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1360 
1361 	/* Enable Receive queue */
1362 	rq_cfg.ena = 1;
1363 	rq_cfg.tcp_ena = 0;
1364 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1365 	    *(uint64_t *)&rq_cfg);
1366 }
1367 
1368 /* Configures completion queue */
1369 static void
1370 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1371     int qidx, boolean_t enable)
1372 {
1373 	struct cmp_queue *cq;
1374 	struct cq_cfg cq_cfg;
1375 
1376 	cq = &qs->cq[qidx];
1377 	cq->enable = enable;
1378 
1379 	if (!cq->enable) {
1380 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1381 		return;
1382 	}
1383 
1384 	/* Reset completion queue */
1385 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1386 
1387 	/* Set completion queue base address */
1388 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1389 	    (uint64_t)(cq->dmem.phys_base));
1390 
1391 	/* Enable Completion queue */
1392 	cq_cfg.ena = 1;
1393 	cq_cfg.reset = 0;
1394 	cq_cfg.caching = 0;
1395 	cq_cfg.qsize = CMP_QSIZE;
1396 	cq_cfg.avg_con = 0;
1397 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1398 
1399 	/* Set threshold value for interrupt generation */
1400 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1401 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1402 	    nic->cq_coalesce_usecs);
1403 }
1404 
1405 /* Configures transmit queue */
1406 static void
1407 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1408     boolean_t enable)
1409 {
1410 	union nic_mbx mbx = {};
1411 	struct snd_queue *sq;
1412 	struct sq_cfg sq_cfg;
1413 
1414 	sq = &qs->sq[qidx];
1415 	sq->enable = enable;
1416 
1417 	if (!sq->enable) {
1418 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1419 		return;
1420 	}
1421 
1422 	/* Reset send queue */
1423 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1424 
1425 	sq->cq_qs = qs->vnic_id;
1426 	sq->cq_idx = qidx;
1427 
1428 	/* Send a mailbox msg to PF to config SQ */
1429 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1430 	mbx.sq.qs_num = qs->vnic_id;
1431 	mbx.sq.sq_num = qidx;
1432 	mbx.sq.sqs_mode = nic->sqs_mode;
1433 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1434 	nicvf_send_msg_to_pf(nic, &mbx);
1435 
1436 	/* Set queue base address */
1437 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1438 	    (uint64_t)(sq->dmem.phys_base));
1439 
1440 	/* Enable send queue  & set queue size */
1441 	sq_cfg.ena = 1;
1442 	sq_cfg.reset = 0;
1443 	sq_cfg.ldwb = 0;
1444 	sq_cfg.qsize = SND_QSIZE;
1445 	sq_cfg.tstmp_bgx_intf = 0;
1446 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1447 
1448 	/* Set threshold value for interrupt generation */
1449 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1450 }
1451 
1452 /* Configures receive buffer descriptor ring */
1453 static void
1454 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1455     boolean_t enable)
1456 {
1457 	struct rbdr *rbdr;
1458 	struct rbdr_cfg rbdr_cfg;
1459 
1460 	rbdr = &qs->rbdr[qidx];
1461 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1462 	if (!enable)
1463 		return;
1464 
1465 	/* Set descriptor base address */
1466 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1467 	    (uint64_t)(rbdr->dmem.phys_base));
1468 
1469 	/* Enable RBDR  & set queue size */
1470 	/* Buffer size should be in multiples of 128 bytes */
1471 	rbdr_cfg.ena = 1;
1472 	rbdr_cfg.reset = 0;
1473 	rbdr_cfg.ldwb = 0;
1474 	rbdr_cfg.qsize = RBDR_SIZE;
1475 	rbdr_cfg.avg_con = 0;
1476 	rbdr_cfg.lines = rbdr->dma_size / 128;
1477 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1478 	    *(uint64_t *)&rbdr_cfg);
1479 
1480 	/* Notify HW */
1481 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1482 	    qs->rbdr_len - 1);
1483 
1484 	/* Set threshold value for interrupt generation */
1485 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1486 	    rbdr->thresh - 1);
1487 }
1488 
1489 /* Requests PF to assign and enable Qset */
1490 void
1491 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1492 {
1493 	union nic_mbx mbx = {};
1494 	struct queue_set *qs;
1495 	struct qs_cfg *qs_cfg;
1496 
1497 	qs = nic->qs;
1498 	if (qs == NULL) {
1499 		device_printf(nic->dev,
1500 		    "Qset is still not allocated, don't init queues\n");
1501 		return;
1502 	}
1503 
1504 	qs->enable = enable;
1505 	qs->vnic_id = nic->vf_id;
1506 
1507 	/* Send a mailbox msg to PF to config Qset */
1508 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1509 	mbx.qs.num = qs->vnic_id;
1510 
1511 	mbx.qs.cfg = 0;
1512 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1513 	if (qs->enable) {
1514 		qs_cfg->ena = 1;
1515 		qs_cfg->vnic = qs->vnic_id;
1516 	}
1517 	nicvf_send_msg_to_pf(nic, &mbx);
1518 }
1519 
1520 static void
1521 nicvf_free_resources(struct nicvf *nic)
1522 {
1523 	int qidx;
1524 	struct queue_set *qs;
1525 
1526 	qs = nic->qs;
1527 	/*
1528 	 * Remove QS error task first since it has to be dead
1529 	 * to safely free completion queue tasks.
1530 	 */
1531 	if (qs->qs_err_taskq != NULL) {
1532 		/* Shut down QS error tasks */
1533 		while (taskqueue_cancel(qs->qs_err_taskq,
1534 		    &qs->qs_err_task,  NULL) != 0) {
1535 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1536 		}
1537 		taskqueue_free(qs->qs_err_taskq);
1538 		qs->qs_err_taskq = NULL;
1539 	}
1540 	/* Free receive buffer descriptor ring */
1541 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1542 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1543 
1544 	/* Free completion queue */
1545 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1546 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1547 
1548 	/* Free send queue */
1549 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1550 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1551 }
1552 
1553 static int
1554 nicvf_alloc_resources(struct nicvf *nic)
1555 {
1556 	struct queue_set *qs = nic->qs;
1557 	int qidx;
1558 
1559 	/* Alloc receive buffer descriptor ring */
1560 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1561 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1562 				    DMA_BUFFER_LEN, qidx))
1563 			goto alloc_fail;
1564 	}
1565 
1566 	/* Alloc send queue */
1567 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1568 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1569 			goto alloc_fail;
1570 	}
1571 
1572 	/* Alloc completion queue */
1573 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1574 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1575 			goto alloc_fail;
1576 	}
1577 
1578 	/* Allocate QS error taskqueue */
1579 	NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1580 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1581 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1582 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1583 	    device_get_nameunit(nic->dev));
1584 
1585 	return (0);
1586 alloc_fail:
1587 	nicvf_free_resources(nic);
1588 	return (ENOMEM);
1589 }
1590 
1591 int
1592 nicvf_set_qset_resources(struct nicvf *nic)
1593 {
1594 	struct queue_set *qs;
1595 
1596 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1597 	nic->qs = qs;
1598 
1599 	/* Set count of each queue */
1600 	qs->rbdr_cnt = RBDR_CNT;
1601 	qs->rq_cnt = RCV_QUEUE_CNT;
1602 
1603 	qs->sq_cnt = SND_QUEUE_CNT;
1604 	qs->cq_cnt = CMP_QUEUE_CNT;
1605 
1606 	/* Set queue lengths */
1607 	qs->rbdr_len = RCV_BUF_COUNT;
1608 	qs->sq_len = SND_QUEUE_LEN;
1609 	qs->cq_len = CMP_QUEUE_LEN;
1610 
1611 	nic->rx_queues = qs->rq_cnt;
1612 	nic->tx_queues = qs->sq_cnt;
1613 
1614 	return (0);
1615 }
1616 
1617 int
1618 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1619 {
1620 	boolean_t disable = FALSE;
1621 	struct queue_set *qs;
1622 	int qidx;
1623 
1624 	qs = nic->qs;
1625 	if (qs == NULL)
1626 		return (0);
1627 
1628 	if (enable) {
1629 		if (nicvf_alloc_resources(nic) != 0)
1630 			return (ENOMEM);
1631 
1632 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1633 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1634 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1635 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1636 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1637 			nicvf_rbdr_config(nic, qs, qidx, enable);
1638 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1639 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1640 	} else {
1641 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1642 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1643 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1644 			nicvf_rbdr_config(nic, qs, qidx, disable);
1645 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1646 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1647 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1648 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1649 
1650 		nicvf_free_resources(nic);
1651 	}
1652 
1653 	return (0);
1654 }
1655 
1656 /*
1657  * Get a free desc from SQ
1658  * returns descriptor ponter & descriptor number
1659  */
1660 static __inline int
1661 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1662 {
1663 	int qentry;
1664 
1665 	qentry = sq->tail;
1666 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1667 	sq->tail += desc_cnt;
1668 	sq->tail &= (sq->dmem.q_len - 1);
1669 
1670 	return (qentry);
1671 }
1672 
1673 /* Free descriptor back to SQ for future use */
1674 static void
1675 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1676 {
1677 
1678 	atomic_add_int(&sq->free_cnt, desc_cnt);
1679 	sq->head += desc_cnt;
1680 	sq->head &= (sq->dmem.q_len - 1);
1681 }
1682 
1683 static __inline int
1684 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1685 {
1686 	qentry++;
1687 	qentry &= (sq->dmem.q_len - 1);
1688 	return (qentry);
1689 }
1690 
1691 static void
1692 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1693 {
1694 	uint64_t sq_cfg;
1695 
1696 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1697 	sq_cfg |= NICVF_SQ_EN;
1698 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1699 	/* Ring doorbell so that H/W restarts processing SQEs */
1700 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1701 }
1702 
1703 static void
1704 nicvf_sq_disable(struct nicvf *nic, int qidx)
1705 {
1706 	uint64_t sq_cfg;
1707 
1708 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1709 	sq_cfg &= ~NICVF_SQ_EN;
1710 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1711 }
1712 
1713 static void
1714 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1715 {
1716 	uint64_t head;
1717 	struct snd_buff *snd_buff;
1718 	struct sq_hdr_subdesc *hdr;
1719 
1720 	NICVF_TX_LOCK(sq);
1721 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1722 	while (sq->head != head) {
1723 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1724 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1725 			nicvf_put_sq_desc(sq, 1);
1726 			continue;
1727 		}
1728 		snd_buff = &sq->snd_buff[sq->head];
1729 		if (snd_buff->mbuf != NULL) {
1730 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1731 			m_freem(snd_buff->mbuf);
1732 			sq->snd_buff[sq->head].mbuf = NULL;
1733 		}
1734 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1735 	}
1736 	NICVF_TX_UNLOCK(sq);
1737 }
1738 
1739 /*
1740  * Add SQ HEADER subdescriptor.
1741  * First subdescriptor for every send descriptor.
1742  */
1743 static __inline int
1744 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1745 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1746 {
1747 	struct nicvf *nic;
1748 	struct sq_hdr_subdesc *hdr;
1749 	struct ether_vlan_header *eh;
1750 #ifdef INET
1751 	struct ip *ip;
1752 #endif
1753 #if defined(INET6) || defined(INET)
1754 	struct tcphdr *th;
1755 #endif
1756 #ifdef INET
1757 	int iphlen;
1758 #endif
1759 	int ehdrlen, poff, proto;
1760 	uint16_t etype;
1761 
1762 	nic = sq->nic;
1763 
1764 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1765 	sq->snd_buff[qentry].mbuf = mbuf;
1766 
1767 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1768 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1769 	/* Enable notification via CQE after processing SQE */
1770 	hdr->post_cqe = 1;
1771 	/* No of subdescriptors following this */
1772 	hdr->subdesc_cnt = subdesc_cnt;
1773 	hdr->tot_len = len;
1774 
1775 	eh = mtod(mbuf, struct ether_vlan_header *);
1776 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1777 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1778 		etype = ntohs(eh->evl_proto);
1779 	} else {
1780 		ehdrlen = ETHER_HDR_LEN;
1781 		etype = ntohs(eh->evl_encap_proto);
1782 	}
1783 
1784 	poff = proto = -1;
1785 	switch (etype) {
1786 #ifdef INET6
1787 	case ETHERTYPE_IPV6:
1788 		if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1789 			mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1790 			sq->snd_buff[qentry].mbuf = NULL;
1791 			if (mbuf == NULL)
1792 				return (ENOBUFS);
1793 		}
1794 		poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1795 		if (poff < 0)
1796 			return (ENOBUFS);
1797 		poff += ehdrlen;
1798 		break;
1799 #endif
1800 #ifdef INET
1801 	case ETHERTYPE_IP:
1802 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1803 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1804 			sq->snd_buff[qentry].mbuf = mbuf;
1805 			if (mbuf == NULL)
1806 				return (ENOBUFS);
1807 		}
1808 		if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1809 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1810 
1811 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1812 		iphlen = ip->ip_hl << 2;
1813 		poff = ehdrlen + iphlen;
1814 		proto = ip->ip_p;
1815 		break;
1816 #endif
1817 	}
1818 
1819 #if defined(INET6) || defined(INET)
1820 	if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1821 		switch (proto) {
1822 		case IPPROTO_TCP:
1823 			if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1824 				break;
1825 
1826 			if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1827 				mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1828 				sq->snd_buff[qentry].mbuf = mbuf;
1829 				if (mbuf == NULL)
1830 					return (ENOBUFS);
1831 			}
1832 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1833 			break;
1834 		case IPPROTO_UDP:
1835 			if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1836 				break;
1837 
1838 			if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1839 				mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1840 				sq->snd_buff[qentry].mbuf = mbuf;
1841 				if (mbuf == NULL)
1842 					return (ENOBUFS);
1843 			}
1844 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1845 			break;
1846 		case IPPROTO_SCTP:
1847 			if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1848 				break;
1849 
1850 			if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1851 				mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1852 				sq->snd_buff[qentry].mbuf = mbuf;
1853 				if (mbuf == NULL)
1854 					return (ENOBUFS);
1855 			}
1856 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1857 			break;
1858 		default:
1859 			break;
1860 		}
1861 		hdr->l3_offset = ehdrlen;
1862 		hdr->l4_offset = poff;
1863 	}
1864 
1865 	if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1866 		th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1867 
1868 		hdr->tso = 1;
1869 		hdr->tso_start = poff + (th->th_off * 4);
1870 		hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1871 		hdr->inner_l3_offset = ehdrlen - 2;
1872 		nic->drv_stats.tx_tso++;
1873 	}
1874 #endif
1875 
1876 	return (0);
1877 }
1878 
1879 /*
1880  * SQ GATHER subdescriptor
1881  * Must follow HDR descriptor
1882  */
1883 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1884 					       int size, uint64_t data)
1885 {
1886 	struct sq_gather_subdesc *gather;
1887 
1888 	qentry &= (sq->dmem.q_len - 1);
1889 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1890 
1891 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1892 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1893 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1894 	gather->size = size;
1895 	gather->addr = data;
1896 }
1897 
1898 /* Put an mbuf to a SQ for packet transfer. */
1899 static int
1900 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1901 {
1902 	bus_dma_segment_t segs[256];
1903 	struct snd_buff *snd_buff;
1904 	size_t seg;
1905 	int nsegs, qentry;
1906 	int subdesc_cnt;
1907 	int err;
1908 
1909 	NICVF_TX_LOCK_ASSERT(sq);
1910 
1911 	if (sq->free_cnt == 0)
1912 		return (ENOBUFS);
1913 
1914 	snd_buff = &sq->snd_buff[sq->tail];
1915 
1916 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1917 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1918 	if (__predict_false(err != 0)) {
1919 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1920 		m_freem(*mbufp);
1921 		*mbufp = NULL;
1922 		return (err);
1923 	}
1924 
1925 	/* Set how many subdescriptors is required */
1926 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1927 	if (subdesc_cnt > sq->free_cnt) {
1928 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1929 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1930 		return (ENOBUFS);
1931 	}
1932 
1933 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1934 
1935 	/* Add SQ header subdesc */
1936 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1937 	    (*mbufp)->m_pkthdr.len);
1938 	if (err != 0) {
1939 		nicvf_put_sq_desc(sq, subdesc_cnt);
1940 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1941 		if (err == ENOBUFS) {
1942 			m_freem(*mbufp);
1943 			*mbufp = NULL;
1944 		}
1945 		return (err);
1946 	}
1947 
1948 	/* Add SQ gather subdescs */
1949 	for (seg = 0; seg < nsegs; seg++) {
1950 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1951 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1952 		    segs[seg].ds_addr);
1953 	}
1954 
1955 	/* make sure all memory stores are done before ringing doorbell */
1956 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1957 
1958 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1959 	    __func__, sq->idx, subdesc_cnt);
1960 	/* Inform HW to xmit new packet */
1961 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1962 	    sq->idx, subdesc_cnt);
1963 	return (0);
1964 }
1965 
1966 static __inline u_int
1967 frag_num(u_int i)
1968 {
1969 #if BYTE_ORDER == BIG_ENDIAN
1970 	return ((i & ~3) + 3 - (i & 3));
1971 #else
1972 	return (i);
1973 #endif
1974 }
1975 
1976 /* Returns MBUF for a received packet */
1977 struct mbuf *
1978 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1979 {
1980 	int frag;
1981 	int payload_len = 0;
1982 	struct mbuf *mbuf;
1983 	struct mbuf *mbuf_frag;
1984 	uint16_t *rb_lens = NULL;
1985 	uint64_t *rb_ptrs = NULL;
1986 
1987 	mbuf = NULL;
1988 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1989 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1990 
1991 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1992 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1993 
1994 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1995 		payload_len = rb_lens[frag_num(frag)];
1996 		if (frag == 0) {
1997 			/* First fragment */
1998 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1999 			    (*rb_ptrs - cqe_rx->align_pad));
2000 			mbuf->m_len = payload_len;
2001 			mbuf->m_data += cqe_rx->align_pad;
2002 			if_setrcvif(mbuf, nic->ifp);
2003 		} else {
2004 			/* Add fragments */
2005 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2006 			m_append(mbuf, payload_len, mbuf_frag->m_data);
2007 			m_freem(mbuf_frag);
2008 		}
2009 		/* Next buffer pointer */
2010 		rb_ptrs++;
2011 	}
2012 
2013 	if (__predict_true(mbuf != NULL)) {
2014 		m_fixhdr(mbuf);
2015 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2016 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2017 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2018 			/*
2019 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2020 			 */
2021 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2022 				mbuf->m_pkthdr.csum_flags =
2023 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2024 			}
2025 
2026 			switch (cqe_rx->l4_type) {
2027 			case L4TYPE_UDP:
2028 			case L4TYPE_TCP: /* fall through */
2029 				mbuf->m_pkthdr.csum_flags |=
2030 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2031 				mbuf->m_pkthdr.csum_data = 0xffff;
2032 				break;
2033 			case L4TYPE_SCTP:
2034 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2035 				break;
2036 			default:
2037 				break;
2038 			}
2039 		}
2040 	}
2041 
2042 	return (mbuf);
2043 }
2044 
2045 /* Enable interrupt */
2046 void
2047 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2048 {
2049 	uint64_t reg_val;
2050 
2051 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2052 
2053 	switch (int_type) {
2054 	case NICVF_INTR_CQ:
2055 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2056 		break;
2057 	case NICVF_INTR_SQ:
2058 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2059 		break;
2060 	case NICVF_INTR_RBDR:
2061 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2062 		break;
2063 	case NICVF_INTR_PKT_DROP:
2064 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2065 		break;
2066 	case NICVF_INTR_TCP_TIMER:
2067 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2068 		break;
2069 	case NICVF_INTR_MBOX:
2070 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2071 		break;
2072 	case NICVF_INTR_QS_ERR:
2073 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2074 		break;
2075 	default:
2076 		device_printf(nic->dev,
2077 			   "Failed to enable interrupt: unknown type\n");
2078 		break;
2079 	}
2080 
2081 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2082 }
2083 
2084 /* Disable interrupt */
2085 void
2086 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2087 {
2088 	uint64_t reg_val = 0;
2089 
2090 	switch (int_type) {
2091 	case NICVF_INTR_CQ:
2092 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2093 		break;
2094 	case NICVF_INTR_SQ:
2095 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2096 		break;
2097 	case NICVF_INTR_RBDR:
2098 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2099 		break;
2100 	case NICVF_INTR_PKT_DROP:
2101 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2102 		break;
2103 	case NICVF_INTR_TCP_TIMER:
2104 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2105 		break;
2106 	case NICVF_INTR_MBOX:
2107 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2108 		break;
2109 	case NICVF_INTR_QS_ERR:
2110 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2111 		break;
2112 	default:
2113 		device_printf(nic->dev,
2114 			   "Failed to disable interrupt: unknown type\n");
2115 		break;
2116 	}
2117 
2118 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2119 }
2120 
2121 /* Clear interrupt */
2122 void
2123 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2124 {
2125 	uint64_t reg_val = 0;
2126 
2127 	switch (int_type) {
2128 	case NICVF_INTR_CQ:
2129 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2130 		break;
2131 	case NICVF_INTR_SQ:
2132 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2133 		break;
2134 	case NICVF_INTR_RBDR:
2135 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2136 		break;
2137 	case NICVF_INTR_PKT_DROP:
2138 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2139 		break;
2140 	case NICVF_INTR_TCP_TIMER:
2141 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2142 		break;
2143 	case NICVF_INTR_MBOX:
2144 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2145 		break;
2146 	case NICVF_INTR_QS_ERR:
2147 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2148 		break;
2149 	default:
2150 		device_printf(nic->dev,
2151 			   "Failed to clear interrupt: unknown type\n");
2152 		break;
2153 	}
2154 
2155 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2156 }
2157 
2158 /* Check if interrupt is enabled */
2159 int
2160 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2161 {
2162 	uint64_t reg_val;
2163 	uint64_t mask = 0xff;
2164 
2165 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2166 
2167 	switch (int_type) {
2168 	case NICVF_INTR_CQ:
2169 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2170 		break;
2171 	case NICVF_INTR_SQ:
2172 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2173 		break;
2174 	case NICVF_INTR_RBDR:
2175 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2176 		break;
2177 	case NICVF_INTR_PKT_DROP:
2178 		mask = NICVF_INTR_PKT_DROP_MASK;
2179 		break;
2180 	case NICVF_INTR_TCP_TIMER:
2181 		mask = NICVF_INTR_TCP_TIMER_MASK;
2182 		break;
2183 	case NICVF_INTR_MBOX:
2184 		mask = NICVF_INTR_MBOX_MASK;
2185 		break;
2186 	case NICVF_INTR_QS_ERR:
2187 		mask = NICVF_INTR_QS_ERR_MASK;
2188 		break;
2189 	default:
2190 		device_printf(nic->dev,
2191 			   "Failed to check interrupt enable: unknown type\n");
2192 		break;
2193 	}
2194 
2195 	return (reg_val & mask);
2196 }
2197 
2198 void
2199 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2200 {
2201 	struct rcv_queue *rq;
2202 
2203 #define GET_RQ_STATS(reg) \
2204 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2205 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2206 
2207 	rq = &nic->qs->rq[rq_idx];
2208 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2209 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2210 }
2211 
2212 void
2213 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2214 {
2215 	struct snd_queue *sq;
2216 
2217 #define GET_SQ_STATS(reg) \
2218 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2219 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2220 
2221 	sq = &nic->qs->sq[sq_idx];
2222 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2223 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2224 }
2225 
2226 /* Check for errors in the receive cmp.queue entry */
2227 int
2228 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2229     struct cqe_rx_t *cqe_rx)
2230 {
2231 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2232 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2233 
2234 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2235 		drv_stats->rx_frames_ok++;
2236 		return (0);
2237 	}
2238 
2239 	switch (cqe_rx->err_opcode) {
2240 	case CQ_RX_ERROP_RE_PARTIAL:
2241 		stats->rx_bgx_truncated_pkts++;
2242 		break;
2243 	case CQ_RX_ERROP_RE_JABBER:
2244 		stats->rx_jabber_errs++;
2245 		break;
2246 	case CQ_RX_ERROP_RE_FCS:
2247 		stats->rx_fcs_errs++;
2248 		break;
2249 	case CQ_RX_ERROP_RE_RX_CTL:
2250 		stats->rx_bgx_errs++;
2251 		break;
2252 	case CQ_RX_ERROP_PREL2_ERR:
2253 		stats->rx_prel2_errs++;
2254 		break;
2255 	case CQ_RX_ERROP_L2_MAL:
2256 		stats->rx_l2_hdr_malformed++;
2257 		break;
2258 	case CQ_RX_ERROP_L2_OVERSIZE:
2259 		stats->rx_oversize++;
2260 		break;
2261 	case CQ_RX_ERROP_L2_UNDERSIZE:
2262 		stats->rx_undersize++;
2263 		break;
2264 	case CQ_RX_ERROP_L2_LENMISM:
2265 		stats->rx_l2_len_mismatch++;
2266 		break;
2267 	case CQ_RX_ERROP_L2_PCLP:
2268 		stats->rx_l2_pclp++;
2269 		break;
2270 	case CQ_RX_ERROP_IP_NOT:
2271 		stats->rx_ip_ver_errs++;
2272 		break;
2273 	case CQ_RX_ERROP_IP_CSUM_ERR:
2274 		stats->rx_ip_csum_errs++;
2275 		break;
2276 	case CQ_RX_ERROP_IP_MAL:
2277 		stats->rx_ip_hdr_malformed++;
2278 		break;
2279 	case CQ_RX_ERROP_IP_MALD:
2280 		stats->rx_ip_payload_malformed++;
2281 		break;
2282 	case CQ_RX_ERROP_IP_HOP:
2283 		stats->rx_ip_ttl_errs++;
2284 		break;
2285 	case CQ_RX_ERROP_L3_PCLP:
2286 		stats->rx_l3_pclp++;
2287 		break;
2288 	case CQ_RX_ERROP_L4_MAL:
2289 		stats->rx_l4_malformed++;
2290 		break;
2291 	case CQ_RX_ERROP_L4_CHK:
2292 		stats->rx_l4_csum_errs++;
2293 		break;
2294 	case CQ_RX_ERROP_UDP_LEN:
2295 		stats->rx_udp_len_errs++;
2296 		break;
2297 	case CQ_RX_ERROP_L4_PORT:
2298 		stats->rx_l4_port_errs++;
2299 		break;
2300 	case CQ_RX_ERROP_TCP_FLAG:
2301 		stats->rx_tcp_flag_errs++;
2302 		break;
2303 	case CQ_RX_ERROP_TCP_OFFSET:
2304 		stats->rx_tcp_offset_errs++;
2305 		break;
2306 	case CQ_RX_ERROP_L4_PCLP:
2307 		stats->rx_l4_pclp++;
2308 		break;
2309 	case CQ_RX_ERROP_RBDR_TRUNC:
2310 		stats->rx_truncated_pkts++;
2311 		break;
2312 	}
2313 
2314 	return (1);
2315 }
2316 
2317 /* Check for errors in the send cmp.queue entry */
2318 int
2319 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2320     struct cqe_send_t *cqe_tx)
2321 {
2322 	struct cmp_queue_stats *stats = &cq->stats;
2323 
2324 	switch (cqe_tx->send_status) {
2325 	case CQ_TX_ERROP_GOOD:
2326 		stats->tx.good++;
2327 		return (0);
2328 	case CQ_TX_ERROP_DESC_FAULT:
2329 		stats->tx.desc_fault++;
2330 		break;
2331 	case CQ_TX_ERROP_HDR_CONS_ERR:
2332 		stats->tx.hdr_cons_err++;
2333 		break;
2334 	case CQ_TX_ERROP_SUBDC_ERR:
2335 		stats->tx.subdesc_err++;
2336 		break;
2337 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2338 		stats->tx.imm_size_oflow++;
2339 		break;
2340 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2341 		stats->tx.data_seq_err++;
2342 		break;
2343 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2344 		stats->tx.mem_seq_err++;
2345 		break;
2346 	case CQ_TX_ERROP_LOCK_VIOL:
2347 		stats->tx.lock_viol++;
2348 		break;
2349 	case CQ_TX_ERROP_DATA_FAULT:
2350 		stats->tx.data_fault++;
2351 		break;
2352 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2353 		stats->tx.tstmp_conflict++;
2354 		break;
2355 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2356 		stats->tx.tstmp_timeout++;
2357 		break;
2358 	case CQ_TX_ERROP_MEM_FAULT:
2359 		stats->tx.mem_fault++;
2360 		break;
2361 	case CQ_TX_ERROP_CK_OVERLAP:
2362 		stats->tx.csum_overlap++;
2363 		break;
2364 	case CQ_TX_ERROP_CK_OFLOW:
2365 		stats->tx.csum_overflow++;
2366 		break;
2367 	}
2368 
2369 	return (1);
2370 }
2371