xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_media.h>
67 #include <net/ifq.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/sctp.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_lro.h>
79 #include <netinet/udp.h>
80 
81 #include <dev/pci/pcireg.h>
82 #include <dev/pci/pcivar.h>
83 
84 #include "thunder_bgx.h"
85 #include "nic_reg.h"
86 #include "nic.h"
87 #include "q_struct.h"
88 #include "nicvf_queues.h"
89 
90 #define	DEBUG
91 #undef DEBUG
92 
93 #ifdef DEBUG
94 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
95 #else
96 #define	dprintf(dev, fmt, ...)
97 #endif
98 
99 MALLOC_DECLARE(M_NICVF);
100 
101 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
102 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
103 static void nicvf_sq_disable(struct nicvf *, int);
104 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
105 static void nicvf_put_sq_desc(struct snd_queue *, int);
106 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
107     boolean_t);
108 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
109 
110 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
111 
112 static void nicvf_rbdr_task(void *, int);
113 static void nicvf_rbdr_task_nowait(void *, int);
114 
115 struct rbuf_info {
116 	bus_dma_tag_t	dmat;
117 	bus_dmamap_t	dmap;
118 	struct mbuf *	mbuf;
119 };
120 
121 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
122 
123 /* Poll a register for a specific value */
124 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
125 			  uint64_t reg, int bit_pos, int bits, int val)
126 {
127 	uint64_t bit_mask;
128 	uint64_t reg_val;
129 	int timeout = 10;
130 
131 	bit_mask = (1UL << bits) - 1;
132 	bit_mask = (bit_mask << bit_pos);
133 
134 	while (timeout) {
135 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
136 		if (((reg_val & bit_mask) >> bit_pos) == val)
137 			return (0);
138 
139 		DELAY(1000);
140 		timeout--;
141 	}
142 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
143 	return (ETIMEDOUT);
144 }
145 
146 /* Callback for bus_dmamap_load() */
147 static void
148 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
149 {
150 	bus_addr_t *paddr;
151 
152 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
153 	paddr = arg;
154 	*paddr = segs->ds_addr;
155 }
156 
157 /* Allocate memory for a queue's descriptors */
158 static int
159 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
160     int q_len, int desc_size, int align_bytes)
161 {
162 	int err, err_dmat;
163 
164 	/* Create DMA tag first */
165 	err = bus_dma_tag_create(
166 	    bus_get_dma_tag(nic->dev),		/* parent tag */
167 	    align_bytes,			/* alignment */
168 	    0,					/* boundary */
169 	    BUS_SPACE_MAXADDR,			/* lowaddr */
170 	    BUS_SPACE_MAXADDR,			/* highaddr */
171 	    NULL, NULL,				/* filtfunc, filtfuncarg */
172 	    (q_len * desc_size),		/* maxsize */
173 	    1,					/* nsegments */
174 	    (q_len * desc_size),		/* maxsegsize */
175 	    0,					/* flags */
176 	    NULL, NULL,				/* lockfunc, lockfuncarg */
177 	    &dmem->dmat);			/* dmat */
178 
179 	if (err != 0) {
180 		device_printf(nic->dev,
181 		    "Failed to create busdma tag for descriptors ring\n");
182 		return (err);
183 	}
184 
185 	/* Allocate segment of continuous DMA safe memory */
186 	err = bus_dmamem_alloc(
187 	    dmem->dmat,				/* DMA tag */
188 	    &dmem->base,			/* virtual address */
189 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
190 	    &dmem->dmap);			/* DMA map */
191 	if (err != 0) {
192 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
193 		    "descriptors ring\n");
194 		goto dmamem_fail;
195 	}
196 
197 	err = bus_dmamap_load(
198 	    dmem->dmat,
199 	    dmem->dmap,
200 	    dmem->base,
201 	    (q_len * desc_size),		/* allocation size */
202 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
203 	    &dmem->phys_base,			/* physical address */
204 	    BUS_DMA_NOWAIT);
205 	if (err != 0) {
206 		device_printf(nic->dev,
207 		    "Cannot load DMA map of descriptors ring\n");
208 		goto dmamap_fail;
209 	}
210 
211 	dmem->q_len = q_len;
212 	dmem->size = (desc_size * q_len);
213 
214 	return (0);
215 
216 dmamap_fail:
217 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
218 	dmem->phys_base = 0;
219 dmamem_fail:
220 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
221 	dmem->base = NULL;
222 	KASSERT(err_dmat == 0,
223 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
224 
225 	return (err);
226 }
227 
228 /* Free queue's descriptor memory */
229 static void
230 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
231 {
232 	int err;
233 
234 	if ((dmem == NULL) || (dmem->base == NULL))
235 		return;
236 
237 	/* Unload a map */
238 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
239 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
240 	/* Free DMA memory */
241 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
242 	/* Destroy DMA tag */
243 	err = bus_dma_tag_destroy(dmem->dmat);
244 
245 	KASSERT(err == 0,
246 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
247 
248 	dmem->phys_base = 0;
249 	dmem->base = NULL;
250 }
251 
252 /*
253  * Allocate buffer for packet reception
254  * HW returns memory address where packet is DMA'ed but not a pointer
255  * into RBDR ring, so save buffer address at the start of fragment and
256  * align the start address to a cache aligned address
257  */
258 static __inline int
259 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
260     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
261 {
262 	struct mbuf *mbuf;
263 	struct rbuf_info *rinfo;
264 	bus_dma_segment_t segs[1];
265 	int nsegs;
266 	int err;
267 
268 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
269 	if (mbuf == NULL)
270 		return (ENOMEM);
271 
272 	/*
273 	 * The length is equal to the actual length + one 128b line
274 	 * used as a room for rbuf_info structure.
275 	 */
276 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
277 
278 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
279 	    &nsegs, BUS_DMA_NOWAIT);
280 	if (err != 0) {
281 		device_printf(nic->dev,
282 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
283 		    err);
284 		m_freem(mbuf);
285 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
286 		return (err);
287 	}
288 	if (nsegs != 1)
289 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
290 	/*
291 	 * Now use the room for rbuf_info structure
292 	 * and adjust mbuf data and length.
293 	 */
294 	rinfo = (struct rbuf_info *)mbuf->m_data;
295 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
296 
297 	rinfo->dmat = rbdr->rbdr_buff_dmat;
298 	rinfo->dmap = dmap;
299 	rinfo->mbuf = mbuf;
300 
301 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
302 
303 	return (0);
304 }
305 
306 /* Retrieve mbuf for received packet */
307 static struct mbuf *
308 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
309 {
310 	struct mbuf *mbuf;
311 	struct rbuf_info *rinfo;
312 
313 	/* Get buffer start address and alignment offset */
314 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
315 
316 	/* Now retrieve mbuf to give to stack */
317 	mbuf = rinfo->mbuf;
318 	if (__predict_false(mbuf == NULL)) {
319 		panic("%s: Received packet fragment with NULL mbuf",
320 		    device_get_nameunit(nic->dev));
321 	}
322 	/*
323 	 * Clear the mbuf in the descriptor to indicate
324 	 * that this slot is processed and free to use.
325 	 */
326 	rinfo->mbuf = NULL;
327 
328 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
329 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
330 
331 	return (mbuf);
332 }
333 
334 /* Allocate RBDR ring and populate receive buffers */
335 static int
336 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
337     int buf_size, int qidx)
338 {
339 	bus_dmamap_t dmap;
340 	bus_addr_t rbuf;
341 	struct rbdr_entry_t *desc;
342 	int idx;
343 	int err;
344 
345 	/* Allocate rbdr descriptors ring */
346 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
347 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
348 	if (err != 0) {
349 		device_printf(nic->dev,
350 		    "Failed to create RBDR descriptors ring\n");
351 		return (err);
352 	}
353 
354 	rbdr->desc = rbdr->dmem.base;
355 	/*
356 	 * Buffer size has to be in multiples of 128 bytes.
357 	 * Make room for metadata of size of one line (128 bytes).
358 	 */
359 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
360 	rbdr->enable = TRUE;
361 	rbdr->thresh = RBDR_THRESH;
362 	rbdr->nic = nic;
363 	rbdr->idx = qidx;
364 
365 	/*
366 	 * Create DMA tag for Rx buffers.
367 	 * Each map created using this tag is intended to store Rx payload for
368 	 * one fragment and one header structure containing rbuf_info (thus
369 	 * additional 128 byte line since RB must be a multiple of 128 byte
370 	 * cache line).
371 	 */
372 	if (buf_size > MCLBYTES) {
373 		device_printf(nic->dev,
374 		    "Buffer size to large for mbuf cluster\n");
375 		return (EINVAL);
376 	}
377 	err = bus_dma_tag_create(
378 	    bus_get_dma_tag(nic->dev),		/* parent tag */
379 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
380 	    0,					/* boundary */
381 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
382 	    DMAP_MIN_PHYSADDR,			/* highaddr */
383 	    NULL, NULL,				/* filtfunc, filtfuncarg */
384 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
385 	    1,					/* nsegments */
386 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
387 	    0,					/* flags */
388 	    NULL, NULL,				/* lockfunc, lockfuncarg */
389 	    &rbdr->rbdr_buff_dmat);		/* dmat */
390 
391 	if (err != 0) {
392 		device_printf(nic->dev,
393 		    "Failed to create busdma tag for RBDR buffers\n");
394 		return (err);
395 	}
396 
397 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
398 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
399 
400 	for (idx = 0; idx < ring_len; idx++) {
401 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
402 		if (err != 0) {
403 			device_printf(nic->dev,
404 			    "Failed to create DMA map for RB\n");
405 			return (err);
406 		}
407 		rbdr->rbdr_buff_dmaps[idx] = dmap;
408 
409 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
410 		    DMA_BUFFER_LEN, &rbuf);
411 		if (err != 0)
412 			return (err);
413 
414 		desc = GET_RBDR_DESC(rbdr, idx);
415 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
416 	}
417 
418 	/* Allocate taskqueue */
419 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
420 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
421 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
422 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
423 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
424 	    device_get_nameunit(nic->dev));
425 
426 	return (0);
427 }
428 
429 /* Free RBDR ring and its receive buffers */
430 static void
431 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
432 {
433 	struct mbuf *mbuf;
434 	struct queue_set *qs;
435 	struct rbdr_entry_t *desc;
436 	struct rbuf_info *rinfo;
437 	bus_addr_t buf_addr;
438 	int head, tail, idx;
439 	int err;
440 
441 	qs = nic->qs;
442 
443 	if ((qs == NULL) || (rbdr == NULL))
444 		return;
445 
446 	rbdr->enable = FALSE;
447 	if (rbdr->rbdr_taskq != NULL) {
448 		/* Remove tasks */
449 		while (taskqueue_cancel(rbdr->rbdr_taskq,
450 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
451 			/* Finish the nowait task first */
452 			taskqueue_drain(rbdr->rbdr_taskq,
453 			    &rbdr->rbdr_task_nowait);
454 		}
455 		taskqueue_free(rbdr->rbdr_taskq);
456 		rbdr->rbdr_taskq = NULL;
457 
458 		while (taskqueue_cancel(taskqueue_thread,
459 		    &rbdr->rbdr_task, NULL) != 0) {
460 			/* Now finish the sleepable task */
461 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
462 		}
463 	}
464 
465 	/*
466 	 * Free all of the memory under the RB descriptors.
467 	 * There are assumptions here:
468 	 * 1. Corresponding RBDR is disabled
469 	 *    - it is safe to operate using head and tail indexes
470 	 * 2. All bffers that were received are properly freed by
471 	 *    the receive handler
472 	 *    - there is no need to unload DMA map and free MBUF for other
473 	 *      descriptors than unused ones
474 	 */
475 	if (rbdr->rbdr_buff_dmat != NULL) {
476 		head = rbdr->head;
477 		tail = rbdr->tail;
478 		while (head != tail) {
479 			desc = GET_RBDR_DESC(rbdr, head);
480 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
481 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
482 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
483 			mbuf = rinfo->mbuf;
484 			/* This will destroy everything including rinfo! */
485 			m_freem(mbuf);
486 			head++;
487 			head &= (rbdr->dmem.q_len - 1);
488 		}
489 		/* Free tail descriptor */
490 		desc = GET_RBDR_DESC(rbdr, tail);
491 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
492 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
493 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
494 		mbuf = rinfo->mbuf;
495 		/* This will destroy everything including rinfo! */
496 		m_freem(mbuf);
497 
498 		/* Destroy DMA maps */
499 		for (idx = 0; idx < qs->rbdr_len; idx++) {
500 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
501 				continue;
502 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
503 			    rbdr->rbdr_buff_dmaps[idx]);
504 			KASSERT(err == 0,
505 			    ("%s: Could not destroy DMA map for RB, desc: %d",
506 			    __func__, idx));
507 			rbdr->rbdr_buff_dmaps[idx] = NULL;
508 		}
509 
510 		/* Now destroy the tag */
511 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
512 		KASSERT(err == 0,
513 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
514 
515 		rbdr->head = 0;
516 		rbdr->tail = 0;
517 	}
518 
519 	/* Free RBDR ring */
520 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
521 }
522 
523 /*
524  * Refill receive buffer descriptors with new buffers.
525  */
526 static int
527 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
528 {
529 	struct nicvf *nic;
530 	struct queue_set *qs;
531 	int rbdr_idx;
532 	int tail, qcount;
533 	int refill_rb_cnt;
534 	struct rbdr_entry_t *desc;
535 	bus_dmamap_t dmap;
536 	bus_addr_t rbuf;
537 	boolean_t rb_alloc_fail;
538 	int new_rb;
539 
540 	rb_alloc_fail = TRUE;
541 	new_rb = 0;
542 	nic = rbdr->nic;
543 	qs = nic->qs;
544 	rbdr_idx = rbdr->idx;
545 
546 	/* Check if it's enabled */
547 	if (!rbdr->enable)
548 		return (0);
549 
550 	/* Get no of desc's to be refilled */
551 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
552 	qcount &= 0x7FFFF;
553 	/* Doorbell can be ringed with a max of ring size minus 1 */
554 	if (qcount >= (qs->rbdr_len - 1)) {
555 		rb_alloc_fail = FALSE;
556 		goto out;
557 	} else
558 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
559 
560 	/* Start filling descs from tail */
561 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
562 	while (refill_rb_cnt) {
563 		tail++;
564 		tail &= (rbdr->dmem.q_len - 1);
565 
566 		dmap = rbdr->rbdr_buff_dmaps[tail];
567 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
568 		    DMA_BUFFER_LEN, &rbuf)) {
569 			/* Something went wrong. Resign */
570 			break;
571 		}
572 		desc = GET_RBDR_DESC(rbdr, tail);
573 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
574 		refill_rb_cnt--;
575 		new_rb++;
576 	}
577 
578 	/* make sure all memory stores are done before ringing doorbell */
579 	wmb();
580 
581 	/* Check if buffer allocation failed */
582 	if (refill_rb_cnt == 0)
583 		rb_alloc_fail = FALSE;
584 
585 	/* Notify HW */
586 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
587 			      rbdr_idx, new_rb);
588 out:
589 	if (!rb_alloc_fail) {
590 		/*
591 		 * Re-enable RBDR interrupts only
592 		 * if buffer allocation is success.
593 		 */
594 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
595 
596 		return (0);
597 	}
598 
599 	return (ENOMEM);
600 }
601 
602 /* Refill RBs even if sleep is needed to reclaim memory */
603 static void
604 nicvf_rbdr_task(void *arg, int pending)
605 {
606 	struct rbdr *rbdr;
607 	int err;
608 
609 	rbdr = (struct rbdr *)arg;
610 
611 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
612 	if (__predict_false(err != 0)) {
613 		panic("%s: Failed to refill RBs even when sleep enabled",
614 		    __func__);
615 	}
616 }
617 
618 /* Refill RBs as soon as possible without waiting */
619 static void
620 nicvf_rbdr_task_nowait(void *arg, int pending)
621 {
622 	struct rbdr *rbdr;
623 	int err;
624 
625 	rbdr = (struct rbdr *)arg;
626 
627 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
628 	if (err != 0) {
629 		/*
630 		 * Schedule another, sleepable kernel thread
631 		 * that will for sure refill the buffers.
632 		 */
633 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
634 	}
635 }
636 
637 static int
638 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
639     struct cqe_rx_t *cqe_rx, int cqe_type)
640 {
641 	struct mbuf *mbuf;
642 	struct rcv_queue *rq;
643 	int rq_idx;
644 	int err = 0;
645 
646 	rq_idx = cqe_rx->rq_idx;
647 	rq = &nic->qs->rq[rq_idx];
648 
649 	/* Check for errors */
650 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
651 	if (err && !cqe_rx->rb_cnt)
652 		return (0);
653 
654 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
655 	if (mbuf == NULL) {
656 		dprintf(nic->dev, "Packet not received\n");
657 		return (0);
658 	}
659 
660 	/* If error packet */
661 	if (err != 0) {
662 		m_freem(mbuf);
663 		return (0);
664 	}
665 
666 	if (rq->lro_enabled &&
667 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
668 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
669             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
670 		/*
671 		 * At this point it is known that there are no errors in the
672 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
673 		 * or enqueue error.
674 		 */
675 		if ((rq->lro.lro_cnt != 0) &&
676 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
677 			return (0);
678 	}
679 	/*
680 	 * Push this packet to the stack later to avoid
681 	 * unlocking completion task in the middle of work.
682 	 */
683 	err = buf_ring_enqueue(cq->rx_br, mbuf);
684 	if (err != 0) {
685 		/*
686 		 * Failed to enqueue this mbuf.
687 		 * We don't drop it, just schedule another task.
688 		 */
689 		return (err);
690 	}
691 
692 	return (0);
693 }
694 
695 static void
696 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
697     struct cqe_send_t *cqe_tx, int cqe_type)
698 {
699 	bus_dmamap_t dmap;
700 	struct mbuf *mbuf;
701 	struct snd_queue *sq;
702 	struct sq_hdr_subdesc *hdr;
703 
704 	mbuf = NULL;
705 	sq = &nic->qs->sq[cqe_tx->sq_idx];
706 
707 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
708 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
709 		return;
710 
711 	dprintf(nic->dev,
712 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
713 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
714 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
715 
716 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
717 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
718 
719 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
720 	if (mbuf != NULL) {
721 		m_freem(mbuf);
722 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
723 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
724 	}
725 
726 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
727 }
728 
729 static int
730 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
731 {
732 	struct mbuf *mbuf;
733 	struct ifnet *ifp;
734 	int processed_cqe, work_done = 0, tx_done = 0;
735 	int cqe_count, cqe_head;
736 	struct queue_set *qs = nic->qs;
737 	struct cmp_queue *cq = &qs->cq[cq_idx];
738 	struct snd_queue *sq = &qs->sq[cq_idx];
739 	struct rcv_queue *rq;
740 	struct cqe_rx_t *cq_desc;
741 	struct lro_ctrl	*lro;
742 	int rq_idx;
743 	int cmp_err;
744 
745 	NICVF_CMP_LOCK(cq);
746 	cmp_err = 0;
747 	processed_cqe = 0;
748 	/* Get no of valid CQ entries to process */
749 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
750 	cqe_count &= CQ_CQE_COUNT;
751 	if (cqe_count == 0)
752 		goto out;
753 
754 	/* Get head of the valid CQ entries */
755 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
756 	cqe_head &= 0xFFFF;
757 
758 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
759 	    __func__, cq_idx, cqe_count, cqe_head);
760 	while (processed_cqe < cqe_count) {
761 		/* Get the CQ descriptor */
762 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
763 		cqe_head++;
764 		cqe_head &= (cq->dmem.q_len - 1);
765 		/* Prefetch next CQ descriptor */
766 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
767 
768 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
769 		    cq_desc->cqe_type);
770 		switch (cq_desc->cqe_type) {
771 		case CQE_TYPE_RX:
772 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
773 			    CQE_TYPE_RX);
774 			if (__predict_false(cmp_err != 0)) {
775 				/*
776 				 * Ups. Cannot finish now.
777 				 * Let's try again later.
778 				 */
779 				goto done;
780 			}
781 			work_done++;
782 			break;
783 		case CQE_TYPE_SEND:
784 			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
785 			    CQE_TYPE_SEND);
786 			tx_done++;
787 			break;
788 		case CQE_TYPE_INVALID:
789 		case CQE_TYPE_RX_SPLIT:
790 		case CQE_TYPE_RX_TCP:
791 		case CQE_TYPE_SEND_PTP:
792 			/* Ignore for now */
793 			break;
794 		}
795 		processed_cqe++;
796 	}
797 done:
798 	dprintf(nic->dev,
799 	    "%s CQ%d processed_cqe %d work_done %d\n",
800 	    __func__, cq_idx, processed_cqe, work_done);
801 
802 	/* Ring doorbell to inform H/W to reuse processed CQEs */
803 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
804 
805 	if ((tx_done > 0) &&
806 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
807 		/* Reenable TXQ if its stopped earlier due to SQ full */
808 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
809 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
810 	}
811 out:
812 	/*
813 	 * Flush any outstanding LRO work
814 	 */
815 	rq_idx = cq_idx;
816 	rq = &nic->qs->rq[rq_idx];
817 	lro = &rq->lro;
818 	tcp_lro_flush_all(lro);
819 
820 	NICVF_CMP_UNLOCK(cq);
821 
822 	ifp = nic->ifp;
823 	/* Push received MBUFs to the stack */
824 	while (!buf_ring_empty(cq->rx_br)) {
825 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
826 		if (__predict_true(mbuf != NULL))
827 			(*ifp->if_input)(ifp, mbuf);
828 	}
829 
830 	return (cmp_err);
831 }
832 
833 /*
834  * Qset error interrupt handler
835  *
836  * As of now only CQ errors are handled
837  */
838 static void
839 nicvf_qs_err_task(void *arg, int pending)
840 {
841 	struct nicvf *nic;
842 	struct queue_set *qs;
843 	int qidx;
844 	uint64_t status;
845 	boolean_t enable = TRUE;
846 
847 	nic = (struct nicvf *)arg;
848 	qs = nic->qs;
849 
850 	/* Deactivate network interface */
851 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
852 
853 	/* Check if it is CQ err */
854 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
855 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
856 		    qidx);
857 		if ((status & CQ_ERR_MASK) == 0)
858 			continue;
859 		/* Process already queued CQEs and reconfig CQ */
860 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
861 		nicvf_sq_disable(nic, qidx);
862 		(void)nicvf_cq_intr_handler(nic, qidx);
863 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
864 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
865 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
866 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
867 	}
868 
869 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
870 	/* Re-enable Qset error interrupt */
871 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
872 }
873 
874 static void
875 nicvf_cmp_task(void *arg, int pending)
876 {
877 	struct cmp_queue *cq;
878 	struct nicvf *nic;
879 	int cmp_err;
880 
881 	cq = (struct cmp_queue *)arg;
882 	nic = cq->nic;
883 
884 	/* Handle CQ descriptors */
885 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
886 	if (__predict_false(cmp_err != 0)) {
887 		/*
888 		 * Schedule another thread here since we did not
889 		 * process the entire CQ due to Tx or Rx CQ parse error.
890 		 */
891 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
892 
893 	}
894 
895 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
896 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
897 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
898 
899 }
900 
901 /* Initialize completion queue */
902 static int
903 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
904     int qidx)
905 {
906 	int err;
907 
908 	/* Initizalize lock */
909 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
910 	    device_get_nameunit(nic->dev), qidx);
911 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
912 
913 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
914 				     NICVF_CQ_BASE_ALIGN_BYTES);
915 
916 	if (err != 0) {
917 		device_printf(nic->dev,
918 		    "Could not allocate DMA memory for CQ\n");
919 		return (err);
920 	}
921 
922 	cq->desc = cq->dmem.base;
923 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
924 	cq->nic = nic;
925 	cq->idx = qidx;
926 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
927 
928 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
929 	    &cq->mtx);
930 
931 	/* Allocate taskqueue */
932 	TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
933 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
934 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
935 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
936 	    device_get_nameunit(nic->dev), qidx);
937 
938 	return (0);
939 }
940 
941 static void
942 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
943 {
944 
945 	if (cq == NULL)
946 		return;
947 	/*
948 	 * The completion queue itself should be disabled by now
949 	 * (ref. nicvf_snd_queue_config()).
950 	 * Ensure that it is safe to disable it or panic.
951 	 */
952 	if (cq->enable)
953 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
954 
955 	if (cq->cmp_taskq != NULL) {
956 		/* Remove task */
957 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
958 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
959 
960 		taskqueue_free(cq->cmp_taskq);
961 		cq->cmp_taskq = NULL;
962 	}
963 	/*
964 	 * Completion interrupt will possibly enable interrupts again
965 	 * so disable interrupting now after we finished processing
966 	 * completion task. It is safe to do so since the corresponding CQ
967 	 * was already disabled.
968 	 */
969 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
970 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
971 
972 	NICVF_CMP_LOCK(cq);
973 	nicvf_free_q_desc_mem(nic, &cq->dmem);
974 	drbr_free(cq->rx_br, M_DEVBUF);
975 	NICVF_CMP_UNLOCK(cq);
976 	mtx_destroy(&cq->mtx);
977 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
978 }
979 
980 int
981 nicvf_xmit_locked(struct snd_queue *sq)
982 {
983 	struct nicvf *nic;
984 	struct ifnet *ifp;
985 	struct mbuf *next;
986 	int err;
987 
988 	NICVF_TX_LOCK_ASSERT(sq);
989 
990 	nic = sq->nic;
991 	ifp = nic->ifp;
992 	err = 0;
993 
994 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
995 		err = nicvf_tx_mbuf_locked(sq, &next);
996 		if (err != 0) {
997 			if (next == NULL)
998 				drbr_advance(ifp, sq->br);
999 			else
1000 				drbr_putback(ifp, sq->br, next);
1001 
1002 			break;
1003 		}
1004 		drbr_advance(ifp, sq->br);
1005 		/* Send a copy of the frame to the BPF listener */
1006 		ETHER_BPF_MTAP(ifp, next);
1007 	}
1008 	return (err);
1009 }
1010 
1011 static void
1012 nicvf_snd_task(void *arg, int pending)
1013 {
1014 	struct snd_queue *sq = (struct snd_queue *)arg;
1015 	struct nicvf *nic;
1016 	struct ifnet *ifp;
1017 	int err;
1018 
1019 	nic = sq->nic;
1020 	ifp = nic->ifp;
1021 
1022 	/*
1023 	 * Skip sending anything if the driver is not running,
1024 	 * SQ full or link is down.
1025 	 */
1026 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1027 	    IFF_DRV_RUNNING) || !nic->link_up)
1028 		return;
1029 
1030 	NICVF_TX_LOCK(sq);
1031 	err = nicvf_xmit_locked(sq);
1032 	NICVF_TX_UNLOCK(sq);
1033 	/* Try again */
1034 	if (err != 0)
1035 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1036 }
1037 
1038 /* Initialize transmit queue */
1039 static int
1040 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1041     int qidx)
1042 {
1043 	size_t i;
1044 	int err;
1045 
1046 	/* Initizalize TX lock for this queue */
1047 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1048 	    device_get_nameunit(nic->dev), qidx);
1049 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1050 
1051 	NICVF_TX_LOCK(sq);
1052 	/* Allocate buffer ring */
1053 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1054 	    M_NOWAIT, &sq->mtx);
1055 	if (sq->br == NULL) {
1056 		device_printf(nic->dev,
1057 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1058 		err = ENOMEM;
1059 		goto error;
1060 	}
1061 
1062 	/* Allocate DMA memory for Tx descriptors */
1063 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1064 				     NICVF_SQ_BASE_ALIGN_BYTES);
1065 	if (err != 0) {
1066 		device_printf(nic->dev,
1067 		    "Could not allocate DMA memory for SQ\n");
1068 		goto error;
1069 	}
1070 
1071 	sq->desc = sq->dmem.base;
1072 	sq->head = sq->tail = 0;
1073 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1074 	sq->thresh = SND_QUEUE_THRESH;
1075 	sq->idx = qidx;
1076 	sq->nic = nic;
1077 
1078 	/*
1079 	 * Allocate DMA maps for Tx buffers
1080 	 */
1081 
1082 	/* Create DMA tag first */
1083 	err = bus_dma_tag_create(
1084 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1085 	    1,					/* alignment */
1086 	    0,					/* boundary */
1087 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1088 	    BUS_SPACE_MAXADDR,			/* highaddr */
1089 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1090 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1091 	    NICVF_TSO_NSEGS,			/* nsegments */
1092 	    MCLBYTES,				/* maxsegsize */
1093 	    0,					/* flags */
1094 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1095 	    &sq->snd_buff_dmat);		/* dmat */
1096 
1097 	if (err != 0) {
1098 		device_printf(nic->dev,
1099 		    "Failed to create busdma tag for Tx buffers\n");
1100 		goto error;
1101 	}
1102 
1103 	/* Allocate send buffers array */
1104 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1105 	    (M_NOWAIT | M_ZERO));
1106 	if (sq->snd_buff == NULL) {
1107 		device_printf(nic->dev,
1108 		    "Could not allocate memory for Tx buffers array\n");
1109 		err = ENOMEM;
1110 		goto error;
1111 	}
1112 
1113 	/* Now populate maps */
1114 	for (i = 0; i < q_len; i++) {
1115 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1116 		    &sq->snd_buff[i].dmap);
1117 		if (err != 0) {
1118 			device_printf(nic->dev,
1119 			    "Failed to create DMA maps for Tx buffers\n");
1120 			goto error;
1121 		}
1122 	}
1123 	NICVF_TX_UNLOCK(sq);
1124 
1125 	/* Allocate taskqueue */
1126 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1127 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1128 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1129 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1130 	    device_get_nameunit(nic->dev), qidx);
1131 
1132 	return (0);
1133 error:
1134 	NICVF_TX_UNLOCK(sq);
1135 	return (err);
1136 }
1137 
1138 static void
1139 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1140 {
1141 	struct queue_set *qs = nic->qs;
1142 	size_t i;
1143 	int err;
1144 
1145 	if (sq == NULL)
1146 		return;
1147 
1148 	if (sq->snd_taskq != NULL) {
1149 		/* Remove task */
1150 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1151 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1152 
1153 		taskqueue_free(sq->snd_taskq);
1154 		sq->snd_taskq = NULL;
1155 	}
1156 
1157 	NICVF_TX_LOCK(sq);
1158 	if (sq->snd_buff_dmat != NULL) {
1159 		if (sq->snd_buff != NULL) {
1160 			for (i = 0; i < qs->sq_len; i++) {
1161 				m_freem(sq->snd_buff[i].mbuf);
1162 				sq->snd_buff[i].mbuf = NULL;
1163 
1164 				bus_dmamap_unload(sq->snd_buff_dmat,
1165 				    sq->snd_buff[i].dmap);
1166 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1167 				    sq->snd_buff[i].dmap);
1168 				/*
1169 				 * If bus_dmamap_destroy fails it can cause
1170 				 * random panic later if the tag is also
1171 				 * destroyed in the process.
1172 				 */
1173 				KASSERT(err == 0,
1174 				    ("%s: Could not destroy DMA map for SQ",
1175 				    __func__));
1176 			}
1177 		}
1178 
1179 		free(sq->snd_buff, M_NICVF);
1180 
1181 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1182 		KASSERT(err == 0,
1183 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1184 	}
1185 
1186 	/* Free private driver ring for this send queue */
1187 	if (sq->br != NULL)
1188 		drbr_free(sq->br, M_DEVBUF);
1189 
1190 	if (sq->dmem.base != NULL)
1191 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1192 
1193 	NICVF_TX_UNLOCK(sq);
1194 	/* Destroy Tx lock */
1195 	mtx_destroy(&sq->mtx);
1196 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1197 }
1198 
1199 static void
1200 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1201 {
1202 
1203 	/* Disable send queue */
1204 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1205 	/* Check if SQ is stopped */
1206 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1207 		return;
1208 	/* Reset send queue */
1209 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1210 }
1211 
1212 static void
1213 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1214 {
1215 	union nic_mbx mbx = {};
1216 
1217 	/* Make sure all packets in the pipeline are written back into mem */
1218 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1219 	nicvf_send_msg_to_pf(nic, &mbx);
1220 }
1221 
1222 static void
1223 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1224 {
1225 
1226 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1227 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1228 	/* Disable completion queue */
1229 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1230 	/* Reset completion queue */
1231 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1232 }
1233 
1234 static void
1235 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1236 {
1237 	uint64_t tmp, fifo_state;
1238 	int timeout = 10;
1239 
1240 	/* Save head and tail pointers for feeing up buffers */
1241 	rbdr->head =
1242 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1243 	rbdr->tail =
1244 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1245 
1246 	/*
1247 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1248 	 * before relaiming.
1249 	 */
1250 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1251 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1252 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1253 		    qidx, NICVF_RBDR_RESET);
1254 	}
1255 
1256 	/* Disable RBDR */
1257 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1258 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1259 		return;
1260 	while (1) {
1261 		tmp = nicvf_queue_reg_read(nic,
1262 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1263 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1264 			break;
1265 
1266 		DELAY(1000);
1267 		timeout--;
1268 		if (!timeout) {
1269 			device_printf(nic->dev,
1270 			    "Failed polling on prefetch status\n");
1271 			return;
1272 		}
1273 	}
1274 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1275 	    NICVF_RBDR_RESET);
1276 
1277 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1278 		return;
1279 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1280 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1281 		return;
1282 }
1283 
1284 /* Configures receive queue */
1285 static void
1286 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1287     int qidx, bool enable)
1288 {
1289 	union nic_mbx mbx = {};
1290 	struct rcv_queue *rq;
1291 	struct rq_cfg rq_cfg;
1292 	struct ifnet *ifp;
1293 	struct lro_ctrl	*lro;
1294 
1295 	ifp = nic->ifp;
1296 
1297 	rq = &qs->rq[qidx];
1298 	rq->enable = enable;
1299 
1300 	lro = &rq->lro;
1301 
1302 	/* Disable receive queue */
1303 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1304 
1305 	if (!rq->enable) {
1306 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1307 		/* Free LRO memory */
1308 		tcp_lro_free(lro);
1309 		rq->lro_enabled = FALSE;
1310 		return;
1311 	}
1312 
1313 	/* Configure LRO if enabled */
1314 	rq->lro_enabled = FALSE;
1315 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1316 		if (tcp_lro_init(lro) != 0) {
1317 			device_printf(nic->dev,
1318 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1319 		} else {
1320 			rq->lro_enabled = TRUE;
1321 			lro->ifp = nic->ifp;
1322 		}
1323 	}
1324 
1325 	rq->cq_qs = qs->vnic_id;
1326 	rq->cq_idx = qidx;
1327 	rq->start_rbdr_qs = qs->vnic_id;
1328 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1329 	rq->cont_rbdr_qs = qs->vnic_id;
1330 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1331 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1332 	rq->caching = 1;
1333 
1334 	/* Send a mailbox msg to PF to config RQ */
1335 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1336 	mbx.rq.qs_num = qs->vnic_id;
1337 	mbx.rq.rq_num = qidx;
1338 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1339 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1340 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1341 	    (rq->start_qs_rbdr_idx);
1342 	nicvf_send_msg_to_pf(nic, &mbx);
1343 
1344 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1345 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1346 	nicvf_send_msg_to_pf(nic, &mbx);
1347 
1348 	/*
1349 	 * RQ drop config
1350 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1351 	 */
1352 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1353 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1354 	nicvf_send_msg_to_pf(nic, &mbx);
1355 
1356 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1357 
1358 	/* Enable Receive queue */
1359 	rq_cfg.ena = 1;
1360 	rq_cfg.tcp_ena = 0;
1361 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1362 	    *(uint64_t *)&rq_cfg);
1363 }
1364 
1365 /* Configures completion queue */
1366 static void
1367 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1368     int qidx, boolean_t enable)
1369 {
1370 	struct cmp_queue *cq;
1371 	struct cq_cfg cq_cfg;
1372 
1373 	cq = &qs->cq[qidx];
1374 	cq->enable = enable;
1375 
1376 	if (!cq->enable) {
1377 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1378 		return;
1379 	}
1380 
1381 	/* Reset completion queue */
1382 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1383 
1384 	/* Set completion queue base address */
1385 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1386 	    (uint64_t)(cq->dmem.phys_base));
1387 
1388 	/* Enable Completion queue */
1389 	cq_cfg.ena = 1;
1390 	cq_cfg.reset = 0;
1391 	cq_cfg.caching = 0;
1392 	cq_cfg.qsize = CMP_QSIZE;
1393 	cq_cfg.avg_con = 0;
1394 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1395 
1396 	/* Set threshold value for interrupt generation */
1397 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1398 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1399 	    nic->cq_coalesce_usecs);
1400 }
1401 
1402 /* Configures transmit queue */
1403 static void
1404 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1405     boolean_t enable)
1406 {
1407 	union nic_mbx mbx = {};
1408 	struct snd_queue *sq;
1409 	struct sq_cfg sq_cfg;
1410 
1411 	sq = &qs->sq[qidx];
1412 	sq->enable = enable;
1413 
1414 	if (!sq->enable) {
1415 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1416 		return;
1417 	}
1418 
1419 	/* Reset send queue */
1420 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1421 
1422 	sq->cq_qs = qs->vnic_id;
1423 	sq->cq_idx = qidx;
1424 
1425 	/* Send a mailbox msg to PF to config SQ */
1426 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1427 	mbx.sq.qs_num = qs->vnic_id;
1428 	mbx.sq.sq_num = qidx;
1429 	mbx.sq.sqs_mode = nic->sqs_mode;
1430 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1431 	nicvf_send_msg_to_pf(nic, &mbx);
1432 
1433 	/* Set queue base address */
1434 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1435 	    (uint64_t)(sq->dmem.phys_base));
1436 
1437 	/* Enable send queue  & set queue size */
1438 	sq_cfg.ena = 1;
1439 	sq_cfg.reset = 0;
1440 	sq_cfg.ldwb = 0;
1441 	sq_cfg.qsize = SND_QSIZE;
1442 	sq_cfg.tstmp_bgx_intf = 0;
1443 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1444 
1445 	/* Set threshold value for interrupt generation */
1446 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1447 }
1448 
1449 /* Configures receive buffer descriptor ring */
1450 static void
1451 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1452     boolean_t enable)
1453 {
1454 	struct rbdr *rbdr;
1455 	struct rbdr_cfg rbdr_cfg;
1456 
1457 	rbdr = &qs->rbdr[qidx];
1458 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1459 	if (!enable)
1460 		return;
1461 
1462 	/* Set descriptor base address */
1463 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1464 	    (uint64_t)(rbdr->dmem.phys_base));
1465 
1466 	/* Enable RBDR  & set queue size */
1467 	/* Buffer size should be in multiples of 128 bytes */
1468 	rbdr_cfg.ena = 1;
1469 	rbdr_cfg.reset = 0;
1470 	rbdr_cfg.ldwb = 0;
1471 	rbdr_cfg.qsize = RBDR_SIZE;
1472 	rbdr_cfg.avg_con = 0;
1473 	rbdr_cfg.lines = rbdr->dma_size / 128;
1474 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1475 	    *(uint64_t *)&rbdr_cfg);
1476 
1477 	/* Notify HW */
1478 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1479 	    qs->rbdr_len - 1);
1480 
1481 	/* Set threshold value for interrupt generation */
1482 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1483 	    rbdr->thresh - 1);
1484 }
1485 
1486 /* Requests PF to assign and enable Qset */
1487 void
1488 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1489 {
1490 	union nic_mbx mbx = {};
1491 	struct queue_set *qs;
1492 	struct qs_cfg *qs_cfg;
1493 
1494 	qs = nic->qs;
1495 	if (qs == NULL) {
1496 		device_printf(nic->dev,
1497 		    "Qset is still not allocated, don't init queues\n");
1498 		return;
1499 	}
1500 
1501 	qs->enable = enable;
1502 	qs->vnic_id = nic->vf_id;
1503 
1504 	/* Send a mailbox msg to PF to config Qset */
1505 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1506 	mbx.qs.num = qs->vnic_id;
1507 
1508 	mbx.qs.cfg = 0;
1509 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1510 	if (qs->enable) {
1511 		qs_cfg->ena = 1;
1512 		qs_cfg->vnic = qs->vnic_id;
1513 	}
1514 	nicvf_send_msg_to_pf(nic, &mbx);
1515 }
1516 
1517 static void
1518 nicvf_free_resources(struct nicvf *nic)
1519 {
1520 	int qidx;
1521 	struct queue_set *qs;
1522 
1523 	qs = nic->qs;
1524 	/*
1525 	 * Remove QS error task first since it has to be dead
1526 	 * to safely free completion queue tasks.
1527 	 */
1528 	if (qs->qs_err_taskq != NULL) {
1529 		/* Shut down QS error tasks */
1530 		while (taskqueue_cancel(qs->qs_err_taskq,
1531 		    &qs->qs_err_task,  NULL) != 0) {
1532 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1533 
1534 		}
1535 		taskqueue_free(qs->qs_err_taskq);
1536 		qs->qs_err_taskq = NULL;
1537 	}
1538 	/* Free receive buffer descriptor ring */
1539 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1540 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1541 
1542 	/* Free completion queue */
1543 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1544 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1545 
1546 	/* Free send queue */
1547 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1548 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1549 }
1550 
1551 static int
1552 nicvf_alloc_resources(struct nicvf *nic)
1553 {
1554 	struct queue_set *qs = nic->qs;
1555 	int qidx;
1556 
1557 	/* Alloc receive buffer descriptor ring */
1558 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1559 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1560 				    DMA_BUFFER_LEN, qidx))
1561 			goto alloc_fail;
1562 	}
1563 
1564 	/* Alloc send queue */
1565 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1566 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1567 			goto alloc_fail;
1568 	}
1569 
1570 	/* Alloc completion queue */
1571 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1572 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1573 			goto alloc_fail;
1574 	}
1575 
1576 	/* Allocate QS error taskqueue */
1577 	TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1578 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1579 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1580 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1581 	    device_get_nameunit(nic->dev));
1582 
1583 	return (0);
1584 alloc_fail:
1585 	nicvf_free_resources(nic);
1586 	return (ENOMEM);
1587 }
1588 
1589 int
1590 nicvf_set_qset_resources(struct nicvf *nic)
1591 {
1592 	struct queue_set *qs;
1593 
1594 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1595 	nic->qs = qs;
1596 
1597 	/* Set count of each queue */
1598 	qs->rbdr_cnt = RBDR_CNT;
1599 	qs->rq_cnt = RCV_QUEUE_CNT;
1600 
1601 	qs->sq_cnt = SND_QUEUE_CNT;
1602 	qs->cq_cnt = CMP_QUEUE_CNT;
1603 
1604 	/* Set queue lengths */
1605 	qs->rbdr_len = RCV_BUF_COUNT;
1606 	qs->sq_len = SND_QUEUE_LEN;
1607 	qs->cq_len = CMP_QUEUE_LEN;
1608 
1609 	nic->rx_queues = qs->rq_cnt;
1610 	nic->tx_queues = qs->sq_cnt;
1611 
1612 	return (0);
1613 }
1614 
1615 int
1616 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1617 {
1618 	boolean_t disable = FALSE;
1619 	struct queue_set *qs;
1620 	int qidx;
1621 
1622 	qs = nic->qs;
1623 	if (qs == NULL)
1624 		return (0);
1625 
1626 	if (enable) {
1627 		if (nicvf_alloc_resources(nic) != 0)
1628 			return (ENOMEM);
1629 
1630 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1631 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1632 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1633 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1634 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1635 			nicvf_rbdr_config(nic, qs, qidx, enable);
1636 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1637 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1638 	} else {
1639 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1640 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1641 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1642 			nicvf_rbdr_config(nic, qs, qidx, disable);
1643 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1644 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1645 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1646 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1647 
1648 		nicvf_free_resources(nic);
1649 	}
1650 
1651 	return (0);
1652 }
1653 
1654 /*
1655  * Get a free desc from SQ
1656  * returns descriptor ponter & descriptor number
1657  */
1658 static __inline int
1659 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1660 {
1661 	int qentry;
1662 
1663 	qentry = sq->tail;
1664 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1665 	sq->tail += desc_cnt;
1666 	sq->tail &= (sq->dmem.q_len - 1);
1667 
1668 	return (qentry);
1669 }
1670 
1671 /* Free descriptor back to SQ for future use */
1672 static void
1673 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1674 {
1675 
1676 	atomic_add_int(&sq->free_cnt, desc_cnt);
1677 	sq->head += desc_cnt;
1678 	sq->head &= (sq->dmem.q_len - 1);
1679 }
1680 
1681 static __inline int
1682 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1683 {
1684 	qentry++;
1685 	qentry &= (sq->dmem.q_len - 1);
1686 	return (qentry);
1687 }
1688 
1689 static void
1690 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1691 {
1692 	uint64_t sq_cfg;
1693 
1694 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1695 	sq_cfg |= NICVF_SQ_EN;
1696 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1697 	/* Ring doorbell so that H/W restarts processing SQEs */
1698 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1699 }
1700 
1701 static void
1702 nicvf_sq_disable(struct nicvf *nic, int qidx)
1703 {
1704 	uint64_t sq_cfg;
1705 
1706 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1707 	sq_cfg &= ~NICVF_SQ_EN;
1708 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1709 }
1710 
1711 static void
1712 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1713 {
1714 	uint64_t head, tail;
1715 	struct snd_buff *snd_buff;
1716 	struct sq_hdr_subdesc *hdr;
1717 
1718 	NICVF_TX_LOCK(sq);
1719 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1720 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1721 	while (sq->head != head) {
1722 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1723 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1724 			nicvf_put_sq_desc(sq, 1);
1725 			continue;
1726 		}
1727 		snd_buff = &sq->snd_buff[sq->head];
1728 		if (snd_buff->mbuf != NULL) {
1729 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1730 			m_freem(snd_buff->mbuf);
1731 			sq->snd_buff[sq->head].mbuf = NULL;
1732 		}
1733 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1734 	}
1735 	NICVF_TX_UNLOCK(sq);
1736 }
1737 
1738 /*
1739  * Add SQ HEADER subdescriptor.
1740  * First subdescriptor for every send descriptor.
1741  */
1742 static __inline int
1743 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1744 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1745 {
1746 	struct nicvf *nic;
1747 	struct sq_hdr_subdesc *hdr;
1748 	struct ether_vlan_header *eh;
1749 #ifdef INET
1750 	struct ip *ip;
1751 	struct tcphdr *th;
1752 #endif
1753 	uint16_t etype;
1754 	int ehdrlen, iphlen, poff;
1755 
1756 	nic = sq->nic;
1757 
1758 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1759 	sq->snd_buff[qentry].mbuf = mbuf;
1760 
1761 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1762 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1763 	/* Enable notification via CQE after processing SQE */
1764 	hdr->post_cqe = 1;
1765 	/* No of subdescriptors following this */
1766 	hdr->subdesc_cnt = subdesc_cnt;
1767 	hdr->tot_len = len;
1768 
1769 	eh = mtod(mbuf, struct ether_vlan_header *);
1770 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1771 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1772 		etype = ntohs(eh->evl_proto);
1773 	} else {
1774 		ehdrlen = ETHER_HDR_LEN;
1775 		etype = ntohs(eh->evl_encap_proto);
1776 	}
1777 
1778 	switch (etype) {
1779 #ifdef INET6
1780 	case ETHERTYPE_IPV6:
1781 		/* ARM64TODO: Add support for IPv6 */
1782 		hdr->csum_l3 = 0;
1783 		sq->snd_buff[qentry].mbuf = NULL;
1784 		return (ENXIO);
1785 #endif
1786 #ifdef INET
1787 	case ETHERTYPE_IP:
1788 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1789 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1790 			sq->snd_buff[qentry].mbuf = mbuf;
1791 			if (mbuf == NULL)
1792 				return (ENOBUFS);
1793 		}
1794 
1795 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1796 		iphlen = ip->ip_hl << 2;
1797 		poff = ehdrlen + iphlen;
1798 
1799 		if (mbuf->m_pkthdr.csum_flags != 0) {
1800 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1801 			switch (ip->ip_p) {
1802 			case IPPROTO_TCP:
1803 				if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1804 					break;
1805 
1806 				if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1807 					mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1808 					sq->snd_buff[qentry].mbuf = mbuf;
1809 					if (mbuf == NULL)
1810 						return (ENOBUFS);
1811 				}
1812 				hdr->csum_l4 = SEND_L4_CSUM_TCP;
1813 				break;
1814 			case IPPROTO_UDP:
1815 				if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1816 					break;
1817 
1818 				if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1819 					mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1820 					sq->snd_buff[qentry].mbuf = mbuf;
1821 					if (mbuf == NULL)
1822 						return (ENOBUFS);
1823 				}
1824 				hdr->csum_l4 = SEND_L4_CSUM_UDP;
1825 				break;
1826 			case IPPROTO_SCTP:
1827 				if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1828 					break;
1829 
1830 				if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1831 					mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1832 					sq->snd_buff[qentry].mbuf = mbuf;
1833 					if (mbuf == NULL)
1834 						return (ENOBUFS);
1835 				}
1836 				hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1837 				break;
1838 			default:
1839 				break;
1840 			}
1841 			hdr->l3_offset = ehdrlen;
1842 			hdr->l4_offset = ehdrlen + iphlen;
1843 		}
1844 
1845 		if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1846 			/*
1847 			 * Extract ip again as m_data could have been modified.
1848 			 */
1849 			ip = (struct ip *)(mbuf->m_data + ehdrlen);
1850 			th = (struct tcphdr *)((caddr_t)ip + iphlen);
1851 
1852 			hdr->tso = 1;
1853 			hdr->tso_start = ehdrlen + iphlen + (th->th_off * 4);
1854 			hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1855 			hdr->inner_l3_offset = ehdrlen - 2;
1856 			nic->drv_stats.tx_tso++;
1857 		}
1858 		break;
1859 #endif
1860 	default:
1861 		hdr->csum_l3 = 0;
1862 	}
1863 
1864 	return (0);
1865 }
1866 
1867 /*
1868  * SQ GATHER subdescriptor
1869  * Must follow HDR descriptor
1870  */
1871 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1872 					       int size, uint64_t data)
1873 {
1874 	struct sq_gather_subdesc *gather;
1875 
1876 	qentry &= (sq->dmem.q_len - 1);
1877 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1878 
1879 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1880 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1881 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1882 	gather->size = size;
1883 	gather->addr = data;
1884 }
1885 
1886 /* Put an mbuf to a SQ for packet transfer. */
1887 static int
1888 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1889 {
1890 	bus_dma_segment_t segs[256];
1891 	struct snd_buff *snd_buff;
1892 	size_t seg;
1893 	int nsegs, qentry;
1894 	int subdesc_cnt;
1895 	int err;
1896 
1897 	NICVF_TX_LOCK_ASSERT(sq);
1898 
1899 	if (sq->free_cnt == 0)
1900 		return (ENOBUFS);
1901 
1902 	snd_buff = &sq->snd_buff[sq->tail];
1903 
1904 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1905 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1906 	if (__predict_false(err != 0)) {
1907 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1908 		m_freem(*mbufp);
1909 		*mbufp = NULL;
1910 		return (err);
1911 	}
1912 
1913 	/* Set how many subdescriptors is required */
1914 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1915 	if (subdesc_cnt > sq->free_cnt) {
1916 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1917 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1918 		return (ENOBUFS);
1919 	}
1920 
1921 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1922 
1923 	/* Add SQ header subdesc */
1924 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1925 	    (*mbufp)->m_pkthdr.len);
1926 	if (err != 0) {
1927 		nicvf_put_sq_desc(sq, subdesc_cnt);
1928 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1929 		if (err == ENOBUFS) {
1930 			m_freem(*mbufp);
1931 			*mbufp = NULL;
1932 		}
1933 		return (err);
1934 	}
1935 
1936 	/* Add SQ gather subdescs */
1937 	for (seg = 0; seg < nsegs; seg++) {
1938 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1939 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1940 		    segs[seg].ds_addr);
1941 	}
1942 
1943 	/* make sure all memory stores are done before ringing doorbell */
1944 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1945 
1946 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1947 	    __func__, sq->idx, subdesc_cnt);
1948 	/* Inform HW to xmit new packet */
1949 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1950 	    sq->idx, subdesc_cnt);
1951 	return (0);
1952 }
1953 
1954 static __inline u_int
1955 frag_num(u_int i)
1956 {
1957 #if BYTE_ORDER == BIG_ENDIAN
1958 	return ((i & ~3) + 3 - (i & 3));
1959 #else
1960 	return (i);
1961 #endif
1962 }
1963 
1964 /* Returns MBUF for a received packet */
1965 struct mbuf *
1966 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1967 {
1968 	int frag;
1969 	int payload_len = 0;
1970 	struct mbuf *mbuf;
1971 	struct mbuf *mbuf_frag;
1972 	uint16_t *rb_lens = NULL;
1973 	uint64_t *rb_ptrs = NULL;
1974 
1975 	mbuf = NULL;
1976 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1977 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1978 
1979 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1980 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1981 
1982 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1983 		payload_len = rb_lens[frag_num(frag)];
1984 		if (frag == 0) {
1985 			/* First fragment */
1986 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1987 			    (*rb_ptrs - cqe_rx->align_pad));
1988 			mbuf->m_len = payload_len;
1989 			mbuf->m_data += cqe_rx->align_pad;
1990 			if_setrcvif(mbuf, nic->ifp);
1991 		} else {
1992 			/* Add fragments */
1993 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
1994 			m_append(mbuf, payload_len, mbuf_frag->m_data);
1995 			m_freem(mbuf_frag);
1996 		}
1997 		/* Next buffer pointer */
1998 		rb_ptrs++;
1999 	}
2000 
2001 	if (__predict_true(mbuf != NULL)) {
2002 		m_fixhdr(mbuf);
2003 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2004 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2005 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2006 			/*
2007 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2008 			 */
2009 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2010 				mbuf->m_pkthdr.csum_flags =
2011 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2012 			}
2013 
2014 			switch (cqe_rx->l4_type) {
2015 			case L4TYPE_UDP:
2016 			case L4TYPE_TCP: /* fall through */
2017 				mbuf->m_pkthdr.csum_flags |=
2018 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2019 				mbuf->m_pkthdr.csum_data = 0xffff;
2020 				break;
2021 			case L4TYPE_SCTP:
2022 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2023 				break;
2024 			default:
2025 				break;
2026 			}
2027 		}
2028 	}
2029 
2030 	return (mbuf);
2031 }
2032 
2033 /* Enable interrupt */
2034 void
2035 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2036 {
2037 	uint64_t reg_val;
2038 
2039 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2040 
2041 	switch (int_type) {
2042 	case NICVF_INTR_CQ:
2043 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2044 		break;
2045 	case NICVF_INTR_SQ:
2046 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2047 		break;
2048 	case NICVF_INTR_RBDR:
2049 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2050 		break;
2051 	case NICVF_INTR_PKT_DROP:
2052 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2053 		break;
2054 	case NICVF_INTR_TCP_TIMER:
2055 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2056 		break;
2057 	case NICVF_INTR_MBOX:
2058 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2059 		break;
2060 	case NICVF_INTR_QS_ERR:
2061 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2062 		break;
2063 	default:
2064 		device_printf(nic->dev,
2065 			   "Failed to enable interrupt: unknown type\n");
2066 		break;
2067 	}
2068 
2069 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2070 }
2071 
2072 /* Disable interrupt */
2073 void
2074 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2075 {
2076 	uint64_t reg_val = 0;
2077 
2078 	switch (int_type) {
2079 	case NICVF_INTR_CQ:
2080 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2081 		break;
2082 	case NICVF_INTR_SQ:
2083 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2084 		break;
2085 	case NICVF_INTR_RBDR:
2086 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2087 		break;
2088 	case NICVF_INTR_PKT_DROP:
2089 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2090 		break;
2091 	case NICVF_INTR_TCP_TIMER:
2092 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2093 		break;
2094 	case NICVF_INTR_MBOX:
2095 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2096 		break;
2097 	case NICVF_INTR_QS_ERR:
2098 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2099 		break;
2100 	default:
2101 		device_printf(nic->dev,
2102 			   "Failed to disable interrupt: unknown type\n");
2103 		break;
2104 	}
2105 
2106 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2107 }
2108 
2109 /* Clear interrupt */
2110 void
2111 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2112 {
2113 	uint64_t reg_val = 0;
2114 
2115 	switch (int_type) {
2116 	case NICVF_INTR_CQ:
2117 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2118 		break;
2119 	case NICVF_INTR_SQ:
2120 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2121 		break;
2122 	case NICVF_INTR_RBDR:
2123 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2124 		break;
2125 	case NICVF_INTR_PKT_DROP:
2126 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2127 		break;
2128 	case NICVF_INTR_TCP_TIMER:
2129 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2130 		break;
2131 	case NICVF_INTR_MBOX:
2132 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2133 		break;
2134 	case NICVF_INTR_QS_ERR:
2135 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2136 		break;
2137 	default:
2138 		device_printf(nic->dev,
2139 			   "Failed to clear interrupt: unknown type\n");
2140 		break;
2141 	}
2142 
2143 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2144 }
2145 
2146 /* Check if interrupt is enabled */
2147 int
2148 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2149 {
2150 	uint64_t reg_val;
2151 	uint64_t mask = 0xff;
2152 
2153 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2154 
2155 	switch (int_type) {
2156 	case NICVF_INTR_CQ:
2157 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2158 		break;
2159 	case NICVF_INTR_SQ:
2160 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2161 		break;
2162 	case NICVF_INTR_RBDR:
2163 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2164 		break;
2165 	case NICVF_INTR_PKT_DROP:
2166 		mask = NICVF_INTR_PKT_DROP_MASK;
2167 		break;
2168 	case NICVF_INTR_TCP_TIMER:
2169 		mask = NICVF_INTR_TCP_TIMER_MASK;
2170 		break;
2171 	case NICVF_INTR_MBOX:
2172 		mask = NICVF_INTR_MBOX_MASK;
2173 		break;
2174 	case NICVF_INTR_QS_ERR:
2175 		mask = NICVF_INTR_QS_ERR_MASK;
2176 		break;
2177 	default:
2178 		device_printf(nic->dev,
2179 			   "Failed to check interrupt enable: unknown type\n");
2180 		break;
2181 	}
2182 
2183 	return (reg_val & mask);
2184 }
2185 
2186 void
2187 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2188 {
2189 	struct rcv_queue *rq;
2190 
2191 #define GET_RQ_STATS(reg) \
2192 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2193 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2194 
2195 	rq = &nic->qs->rq[rq_idx];
2196 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2197 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2198 }
2199 
2200 void
2201 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2202 {
2203 	struct snd_queue *sq;
2204 
2205 #define GET_SQ_STATS(reg) \
2206 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2207 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2208 
2209 	sq = &nic->qs->sq[sq_idx];
2210 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2211 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2212 }
2213 
2214 /* Check for errors in the receive cmp.queue entry */
2215 int
2216 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2217     struct cqe_rx_t *cqe_rx)
2218 {
2219 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2220 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2221 
2222 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2223 		drv_stats->rx_frames_ok++;
2224 		return (0);
2225 	}
2226 
2227 	switch (cqe_rx->err_opcode) {
2228 	case CQ_RX_ERROP_RE_PARTIAL:
2229 		stats->rx_bgx_truncated_pkts++;
2230 		break;
2231 	case CQ_RX_ERROP_RE_JABBER:
2232 		stats->rx_jabber_errs++;
2233 		break;
2234 	case CQ_RX_ERROP_RE_FCS:
2235 		stats->rx_fcs_errs++;
2236 		break;
2237 	case CQ_RX_ERROP_RE_RX_CTL:
2238 		stats->rx_bgx_errs++;
2239 		break;
2240 	case CQ_RX_ERROP_PREL2_ERR:
2241 		stats->rx_prel2_errs++;
2242 		break;
2243 	case CQ_RX_ERROP_L2_MAL:
2244 		stats->rx_l2_hdr_malformed++;
2245 		break;
2246 	case CQ_RX_ERROP_L2_OVERSIZE:
2247 		stats->rx_oversize++;
2248 		break;
2249 	case CQ_RX_ERROP_L2_UNDERSIZE:
2250 		stats->rx_undersize++;
2251 		break;
2252 	case CQ_RX_ERROP_L2_LENMISM:
2253 		stats->rx_l2_len_mismatch++;
2254 		break;
2255 	case CQ_RX_ERROP_L2_PCLP:
2256 		stats->rx_l2_pclp++;
2257 		break;
2258 	case CQ_RX_ERROP_IP_NOT:
2259 		stats->rx_ip_ver_errs++;
2260 		break;
2261 	case CQ_RX_ERROP_IP_CSUM_ERR:
2262 		stats->rx_ip_csum_errs++;
2263 		break;
2264 	case CQ_RX_ERROP_IP_MAL:
2265 		stats->rx_ip_hdr_malformed++;
2266 		break;
2267 	case CQ_RX_ERROP_IP_MALD:
2268 		stats->rx_ip_payload_malformed++;
2269 		break;
2270 	case CQ_RX_ERROP_IP_HOP:
2271 		stats->rx_ip_ttl_errs++;
2272 		break;
2273 	case CQ_RX_ERROP_L3_PCLP:
2274 		stats->rx_l3_pclp++;
2275 		break;
2276 	case CQ_RX_ERROP_L4_MAL:
2277 		stats->rx_l4_malformed++;
2278 		break;
2279 	case CQ_RX_ERROP_L4_CHK:
2280 		stats->rx_l4_csum_errs++;
2281 		break;
2282 	case CQ_RX_ERROP_UDP_LEN:
2283 		stats->rx_udp_len_errs++;
2284 		break;
2285 	case CQ_RX_ERROP_L4_PORT:
2286 		stats->rx_l4_port_errs++;
2287 		break;
2288 	case CQ_RX_ERROP_TCP_FLAG:
2289 		stats->rx_tcp_flag_errs++;
2290 		break;
2291 	case CQ_RX_ERROP_TCP_OFFSET:
2292 		stats->rx_tcp_offset_errs++;
2293 		break;
2294 	case CQ_RX_ERROP_L4_PCLP:
2295 		stats->rx_l4_pclp++;
2296 		break;
2297 	case CQ_RX_ERROP_RBDR_TRUNC:
2298 		stats->rx_truncated_pkts++;
2299 		break;
2300 	}
2301 
2302 	return (1);
2303 }
2304 
2305 /* Check for errors in the send cmp.queue entry */
2306 int
2307 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2308     struct cqe_send_t *cqe_tx)
2309 {
2310 	struct cmp_queue_stats *stats = &cq->stats;
2311 
2312 	switch (cqe_tx->send_status) {
2313 	case CQ_TX_ERROP_GOOD:
2314 		stats->tx.good++;
2315 		return (0);
2316 	case CQ_TX_ERROP_DESC_FAULT:
2317 		stats->tx.desc_fault++;
2318 		break;
2319 	case CQ_TX_ERROP_HDR_CONS_ERR:
2320 		stats->tx.hdr_cons_err++;
2321 		break;
2322 	case CQ_TX_ERROP_SUBDC_ERR:
2323 		stats->tx.subdesc_err++;
2324 		break;
2325 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2326 		stats->tx.imm_size_oflow++;
2327 		break;
2328 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2329 		stats->tx.data_seq_err++;
2330 		break;
2331 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2332 		stats->tx.mem_seq_err++;
2333 		break;
2334 	case CQ_TX_ERROP_LOCK_VIOL:
2335 		stats->tx.lock_viol++;
2336 		break;
2337 	case CQ_TX_ERROP_DATA_FAULT:
2338 		stats->tx.data_fault++;
2339 		break;
2340 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2341 		stats->tx.tstmp_conflict++;
2342 		break;
2343 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2344 		stats->tx.tstmp_timeout++;
2345 		break;
2346 	case CQ_TX_ERROP_MEM_FAULT:
2347 		stats->tx.mem_fault++;
2348 		break;
2349 	case CQ_TX_ERROP_CK_OVERLAP:
2350 		stats->tx.csum_overlap++;
2351 		break;
2352 	case CQ_TX_ERROP_CK_OFLOW:
2353 		stats->tx.csum_overflow++;
2354 		break;
2355 	}
2356 
2357 	return (1);
2358 }
2359