xref: /freebsd/sys/dev/vnic/nicvf_queues.c (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 /*
2  * Copyright (C) 2015 Cavium Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_media.h>
67 #include <net/ifq.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/sctp.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_lro.h>
79 #include <netinet/udp.h>
80 
81 #include <netinet6/ip6_var.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include "thunder_bgx.h"
87 #include "nic_reg.h"
88 #include "nic.h"
89 #include "q_struct.h"
90 #include "nicvf_queues.h"
91 
92 #define	DEBUG
93 #undef DEBUG
94 
95 #ifdef DEBUG
96 #define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
97 #else
98 #define	dprintf(dev, fmt, ...)
99 #endif
100 
101 MALLOC_DECLARE(M_NICVF);
102 
103 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
104 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
105 static void nicvf_sq_disable(struct nicvf *, int);
106 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
107 static void nicvf_put_sq_desc(struct snd_queue *, int);
108 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
109     boolean_t);
110 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
111 
112 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
113 
114 static void nicvf_rbdr_task(void *, int);
115 static void nicvf_rbdr_task_nowait(void *, int);
116 
117 struct rbuf_info {
118 	bus_dma_tag_t	dmat;
119 	bus_dmamap_t	dmap;
120 	struct mbuf *	mbuf;
121 };
122 
123 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
124 
125 /* Poll a register for a specific value */
126 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
127 			  uint64_t reg, int bit_pos, int bits, int val)
128 {
129 	uint64_t bit_mask;
130 	uint64_t reg_val;
131 	int timeout = 10;
132 
133 	bit_mask = (1UL << bits) - 1;
134 	bit_mask = (bit_mask << bit_pos);
135 
136 	while (timeout) {
137 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
138 		if (((reg_val & bit_mask) >> bit_pos) == val)
139 			return (0);
140 
141 		DELAY(1000);
142 		timeout--;
143 	}
144 	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
145 	return (ETIMEDOUT);
146 }
147 
148 /* Callback for bus_dmamap_load() */
149 static void
150 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
151 {
152 	bus_addr_t *paddr;
153 
154 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
155 	paddr = arg;
156 	*paddr = segs->ds_addr;
157 }
158 
159 /* Allocate memory for a queue's descriptors */
160 static int
161 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
162     int q_len, int desc_size, int align_bytes)
163 {
164 	int err, err_dmat __diagused;
165 
166 	/* Create DMA tag first */
167 	err = bus_dma_tag_create(
168 	    bus_get_dma_tag(nic->dev),		/* parent tag */
169 	    align_bytes,			/* alignment */
170 	    0,					/* boundary */
171 	    BUS_SPACE_MAXADDR,			/* lowaddr */
172 	    BUS_SPACE_MAXADDR,			/* highaddr */
173 	    NULL, NULL,				/* filtfunc, filtfuncarg */
174 	    (q_len * desc_size),		/* maxsize */
175 	    1,					/* nsegments */
176 	    (q_len * desc_size),		/* maxsegsize */
177 	    0,					/* flags */
178 	    NULL, NULL,				/* lockfunc, lockfuncarg */
179 	    &dmem->dmat);			/* dmat */
180 
181 	if (err != 0) {
182 		device_printf(nic->dev,
183 		    "Failed to create busdma tag for descriptors ring\n");
184 		return (err);
185 	}
186 
187 	/* Allocate segment of continuous DMA safe memory */
188 	err = bus_dmamem_alloc(
189 	    dmem->dmat,				/* DMA tag */
190 	    &dmem->base,			/* virtual address */
191 	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
192 	    &dmem->dmap);			/* DMA map */
193 	if (err != 0) {
194 		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
195 		    "descriptors ring\n");
196 		goto dmamem_fail;
197 	}
198 
199 	err = bus_dmamap_load(
200 	    dmem->dmat,
201 	    dmem->dmap,
202 	    dmem->base,
203 	    (q_len * desc_size),		/* allocation size */
204 	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
205 	    &dmem->phys_base,			/* physical address */
206 	    BUS_DMA_NOWAIT);
207 	if (err != 0) {
208 		device_printf(nic->dev,
209 		    "Cannot load DMA map of descriptors ring\n");
210 		goto dmamap_fail;
211 	}
212 
213 	dmem->q_len = q_len;
214 	dmem->size = (desc_size * q_len);
215 
216 	return (0);
217 
218 dmamap_fail:
219 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
220 	dmem->phys_base = 0;
221 dmamem_fail:
222 	err_dmat = bus_dma_tag_destroy(dmem->dmat);
223 	dmem->base = NULL;
224 	KASSERT(err_dmat == 0,
225 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
226 
227 	return (err);
228 }
229 
230 /* Free queue's descriptor memory */
231 static void
232 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
233 {
234 	int err __diagused;
235 
236 	if ((dmem == NULL) || (dmem->base == NULL))
237 		return;
238 
239 	/* Unload a map */
240 	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
241 	bus_dmamap_unload(dmem->dmat, dmem->dmap);
242 	/* Free DMA memory */
243 	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
244 	/* Destroy DMA tag */
245 	err = bus_dma_tag_destroy(dmem->dmat);
246 
247 	KASSERT(err == 0,
248 	    ("%s: Trying to destroy BUSY DMA tag", __func__));
249 
250 	dmem->phys_base = 0;
251 	dmem->base = NULL;
252 }
253 
254 /*
255  * Allocate buffer for packet reception
256  * HW returns memory address where packet is DMA'ed but not a pointer
257  * into RBDR ring, so save buffer address at the start of fragment and
258  * align the start address to a cache aligned address
259  */
260 static __inline int
261 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
262     bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
263 {
264 	struct mbuf *mbuf;
265 	struct rbuf_info *rinfo;
266 	bus_dma_segment_t segs[1];
267 	int nsegs;
268 	int err;
269 
270 	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
271 	if (mbuf == NULL)
272 		return (ENOMEM);
273 
274 	/*
275 	 * The length is equal to the actual length + one 128b line
276 	 * used as a room for rbuf_info structure.
277 	 */
278 	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
279 
280 	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
281 	    &nsegs, BUS_DMA_NOWAIT);
282 	if (err != 0) {
283 		device_printf(nic->dev,
284 		    "Failed to map mbuf into DMA visible memory, err: %d\n",
285 		    err);
286 		m_freem(mbuf);
287 		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
288 		return (err);
289 	}
290 	if (nsegs != 1)
291 		panic("Unexpected number of DMA segments for RB: %d", nsegs);
292 	/*
293 	 * Now use the room for rbuf_info structure
294 	 * and adjust mbuf data and length.
295 	 */
296 	rinfo = (struct rbuf_info *)mbuf->m_data;
297 	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
298 
299 	rinfo->dmat = rbdr->rbdr_buff_dmat;
300 	rinfo->dmap = dmap;
301 	rinfo->mbuf = mbuf;
302 
303 	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
304 
305 	return (0);
306 }
307 
308 /* Retrieve mbuf for received packet */
309 static struct mbuf *
310 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
311 {
312 	struct mbuf *mbuf;
313 	struct rbuf_info *rinfo;
314 
315 	/* Get buffer start address and alignment offset */
316 	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
317 
318 	/* Now retrieve mbuf to give to stack */
319 	mbuf = rinfo->mbuf;
320 	if (__predict_false(mbuf == NULL)) {
321 		panic("%s: Received packet fragment with NULL mbuf",
322 		    device_get_nameunit(nic->dev));
323 	}
324 	/*
325 	 * Clear the mbuf in the descriptor to indicate
326 	 * that this slot is processed and free to use.
327 	 */
328 	rinfo->mbuf = NULL;
329 
330 	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
331 	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
332 
333 	return (mbuf);
334 }
335 
336 /* Allocate RBDR ring and populate receive buffers */
337 static int
338 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
339     int buf_size, int qidx)
340 {
341 	bus_dmamap_t dmap;
342 	bus_addr_t rbuf;
343 	struct rbdr_entry_t *desc;
344 	int idx;
345 	int err;
346 
347 	/* Allocate rbdr descriptors ring */
348 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
349 	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
350 	if (err != 0) {
351 		device_printf(nic->dev,
352 		    "Failed to create RBDR descriptors ring\n");
353 		return (err);
354 	}
355 
356 	rbdr->desc = rbdr->dmem.base;
357 	/*
358 	 * Buffer size has to be in multiples of 128 bytes.
359 	 * Make room for metadata of size of one line (128 bytes).
360 	 */
361 	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
362 	rbdr->enable = TRUE;
363 	rbdr->thresh = RBDR_THRESH;
364 	rbdr->nic = nic;
365 	rbdr->idx = qidx;
366 
367 	/*
368 	 * Create DMA tag for Rx buffers.
369 	 * Each map created using this tag is intended to store Rx payload for
370 	 * one fragment and one header structure containing rbuf_info (thus
371 	 * additional 128 byte line since RB must be a multiple of 128 byte
372 	 * cache line).
373 	 */
374 	if (buf_size > MCLBYTES) {
375 		device_printf(nic->dev,
376 		    "Buffer size to large for mbuf cluster\n");
377 		return (EINVAL);
378 	}
379 	err = bus_dma_tag_create(
380 	    bus_get_dma_tag(nic->dev),		/* parent tag */
381 	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
382 	    0,					/* boundary */
383 	    DMAP_MAX_PHYSADDR,			/* lowaddr */
384 	    DMAP_MIN_PHYSADDR,			/* highaddr */
385 	    NULL, NULL,				/* filtfunc, filtfuncarg */
386 	    roundup2(buf_size, MCLBYTES),	/* maxsize */
387 	    1,					/* nsegments */
388 	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
389 	    0,					/* flags */
390 	    NULL, NULL,				/* lockfunc, lockfuncarg */
391 	    &rbdr->rbdr_buff_dmat);		/* dmat */
392 
393 	if (err != 0) {
394 		device_printf(nic->dev,
395 		    "Failed to create busdma tag for RBDR buffers\n");
396 		return (err);
397 	}
398 
399 	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
400 	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
401 
402 	for (idx = 0; idx < ring_len; idx++) {
403 		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
404 		if (err != 0) {
405 			device_printf(nic->dev,
406 			    "Failed to create DMA map for RB\n");
407 			return (err);
408 		}
409 		rbdr->rbdr_buff_dmaps[idx] = dmap;
410 
411 		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
412 		    DMA_BUFFER_LEN, &rbuf);
413 		if (err != 0)
414 			return (err);
415 
416 		desc = GET_RBDR_DESC(rbdr, idx);
417 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
418 	}
419 
420 	/* Allocate taskqueue */
421 	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
422 	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
423 	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
424 	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
425 	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
426 	    device_get_nameunit(nic->dev));
427 
428 	return (0);
429 }
430 
431 /* Free RBDR ring and its receive buffers */
432 static void
433 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
434 {
435 	struct mbuf *mbuf;
436 	struct queue_set *qs;
437 	struct rbdr_entry_t *desc;
438 	struct rbuf_info *rinfo;
439 	bus_addr_t buf_addr;
440 	int head, tail, idx;
441 	int err __diagused;
442 
443 	qs = nic->qs;
444 
445 	if ((qs == NULL) || (rbdr == NULL))
446 		return;
447 
448 	rbdr->enable = FALSE;
449 	if (rbdr->rbdr_taskq != NULL) {
450 		/* Remove tasks */
451 		while (taskqueue_cancel(rbdr->rbdr_taskq,
452 		    &rbdr->rbdr_task_nowait, NULL) != 0) {
453 			/* Finish the nowait task first */
454 			taskqueue_drain(rbdr->rbdr_taskq,
455 			    &rbdr->rbdr_task_nowait);
456 		}
457 		taskqueue_free(rbdr->rbdr_taskq);
458 		rbdr->rbdr_taskq = NULL;
459 
460 		while (taskqueue_cancel(taskqueue_thread,
461 		    &rbdr->rbdr_task, NULL) != 0) {
462 			/* Now finish the sleepable task */
463 			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
464 		}
465 	}
466 
467 	/*
468 	 * Free all of the memory under the RB descriptors.
469 	 * There are assumptions here:
470 	 * 1. Corresponding RBDR is disabled
471 	 *    - it is safe to operate using head and tail indexes
472 	 * 2. All bffers that were received are properly freed by
473 	 *    the receive handler
474 	 *    - there is no need to unload DMA map and free MBUF for other
475 	 *      descriptors than unused ones
476 	 */
477 	if (rbdr->rbdr_buff_dmat != NULL) {
478 		head = rbdr->head;
479 		tail = rbdr->tail;
480 		while (head != tail) {
481 			desc = GET_RBDR_DESC(rbdr, head);
482 			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
483 			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
484 			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
485 			mbuf = rinfo->mbuf;
486 			/* This will destroy everything including rinfo! */
487 			m_freem(mbuf);
488 			head++;
489 			head &= (rbdr->dmem.q_len - 1);
490 		}
491 		/* Free tail descriptor */
492 		desc = GET_RBDR_DESC(rbdr, tail);
493 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
494 		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
495 		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
496 		mbuf = rinfo->mbuf;
497 		/* This will destroy everything including rinfo! */
498 		m_freem(mbuf);
499 
500 		/* Destroy DMA maps */
501 		for (idx = 0; idx < qs->rbdr_len; idx++) {
502 			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
503 				continue;
504 			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
505 			    rbdr->rbdr_buff_dmaps[idx]);
506 			KASSERT(err == 0,
507 			    ("%s: Could not destroy DMA map for RB, desc: %d",
508 			    __func__, idx));
509 			rbdr->rbdr_buff_dmaps[idx] = NULL;
510 		}
511 
512 		/* Now destroy the tag */
513 		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
514 		KASSERT(err == 0,
515 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
516 
517 		rbdr->head = 0;
518 		rbdr->tail = 0;
519 	}
520 
521 	/* Free RBDR ring */
522 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
523 }
524 
525 /*
526  * Refill receive buffer descriptors with new buffers.
527  */
528 static int
529 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
530 {
531 	struct nicvf *nic;
532 	struct queue_set *qs;
533 	int rbdr_idx;
534 	int tail, qcount;
535 	int refill_rb_cnt;
536 	struct rbdr_entry_t *desc;
537 	bus_dmamap_t dmap;
538 	bus_addr_t rbuf;
539 	boolean_t rb_alloc_fail;
540 	int new_rb;
541 
542 	rb_alloc_fail = TRUE;
543 	new_rb = 0;
544 	nic = rbdr->nic;
545 	qs = nic->qs;
546 	rbdr_idx = rbdr->idx;
547 
548 	/* Check if it's enabled */
549 	if (!rbdr->enable)
550 		return (0);
551 
552 	/* Get no of desc's to be refilled */
553 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
554 	qcount &= 0x7FFFF;
555 	/* Doorbell can be ringed with a max of ring size minus 1 */
556 	if (qcount >= (qs->rbdr_len - 1)) {
557 		rb_alloc_fail = FALSE;
558 		goto out;
559 	} else
560 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
561 
562 	/* Start filling descs from tail */
563 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
564 	while (refill_rb_cnt) {
565 		tail++;
566 		tail &= (rbdr->dmem.q_len - 1);
567 
568 		dmap = rbdr->rbdr_buff_dmaps[tail];
569 		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
570 		    DMA_BUFFER_LEN, &rbuf)) {
571 			/* Something went wrong. Resign */
572 			break;
573 		}
574 		desc = GET_RBDR_DESC(rbdr, tail);
575 		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
576 		refill_rb_cnt--;
577 		new_rb++;
578 	}
579 
580 	/* make sure all memory stores are done before ringing doorbell */
581 	wmb();
582 
583 	/* Check if buffer allocation failed */
584 	if (refill_rb_cnt == 0)
585 		rb_alloc_fail = FALSE;
586 
587 	/* Notify HW */
588 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
589 			      rbdr_idx, new_rb);
590 out:
591 	if (!rb_alloc_fail) {
592 		/*
593 		 * Re-enable RBDR interrupts only
594 		 * if buffer allocation is success.
595 		 */
596 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
597 
598 		return (0);
599 	}
600 
601 	return (ENOMEM);
602 }
603 
604 /* Refill RBs even if sleep is needed to reclaim memory */
605 static void
606 nicvf_rbdr_task(void *arg, int pending)
607 {
608 	struct rbdr *rbdr;
609 	int err;
610 
611 	rbdr = (struct rbdr *)arg;
612 
613 	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
614 	if (__predict_false(err != 0)) {
615 		panic("%s: Failed to refill RBs even when sleep enabled",
616 		    __func__);
617 	}
618 }
619 
620 /* Refill RBs as soon as possible without waiting */
621 static void
622 nicvf_rbdr_task_nowait(void *arg, int pending)
623 {
624 	struct rbdr *rbdr;
625 	int err;
626 
627 	rbdr = (struct rbdr *)arg;
628 
629 	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
630 	if (err != 0) {
631 		/*
632 		 * Schedule another, sleepable kernel thread
633 		 * that will for sure refill the buffers.
634 		 */
635 		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
636 	}
637 }
638 
639 static int
640 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
641     struct cqe_rx_t *cqe_rx, int cqe_type)
642 {
643 	struct mbuf *mbuf;
644 	struct rcv_queue *rq;
645 	int rq_idx;
646 	int err = 0;
647 
648 	rq_idx = cqe_rx->rq_idx;
649 	rq = &nic->qs->rq[rq_idx];
650 
651 	/* Check for errors */
652 	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
653 	if (err && !cqe_rx->rb_cnt)
654 		return (0);
655 
656 	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
657 	if (mbuf == NULL) {
658 		dprintf(nic->dev, "Packet not received\n");
659 		return (0);
660 	}
661 
662 	/* If error packet */
663 	if (err != 0) {
664 		m_freem(mbuf);
665 		return (0);
666 	}
667 
668 	if (rq->lro_enabled &&
669 	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
670 	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
671             (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
672 		/*
673 		 * At this point it is known that there are no errors in the
674 		 * packet. Attempt to LRO enqueue. Send to stack if no resources
675 		 * or enqueue error.
676 		 */
677 		if ((rq->lro.lro_cnt != 0) &&
678 		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
679 			return (0);
680 	}
681 	/*
682 	 * Push this packet to the stack later to avoid
683 	 * unlocking completion task in the middle of work.
684 	 */
685 	err = buf_ring_enqueue(cq->rx_br, mbuf);
686 	if (err != 0) {
687 		/*
688 		 * Failed to enqueue this mbuf.
689 		 * We don't drop it, just schedule another task.
690 		 */
691 		return (err);
692 	}
693 
694 	return (0);
695 }
696 
697 static void
698 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
699     struct cqe_send_t *cqe_tx, int cqe_type)
700 {
701 	bus_dmamap_t dmap;
702 	struct mbuf *mbuf;
703 	struct snd_queue *sq;
704 	struct sq_hdr_subdesc *hdr;
705 
706 	mbuf = NULL;
707 	sq = &nic->qs->sq[cqe_tx->sq_idx];
708 
709 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
711 		return;
712 
713 	dprintf(nic->dev,
714 	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
715 	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
716 	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
717 
718 	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
719 	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
720 
721 	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
722 	if (mbuf != NULL) {
723 		m_freem(mbuf);
724 		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
725 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
726 	}
727 
728 	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
729 }
730 
731 static int
732 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
733 {
734 	struct mbuf *mbuf;
735 	struct ifnet *ifp;
736 	int processed_cqe, work_done = 0, tx_done = 0;
737 	int cqe_count, cqe_head;
738 	struct queue_set *qs = nic->qs;
739 	struct cmp_queue *cq = &qs->cq[cq_idx];
740 	struct snd_queue *sq = &qs->sq[cq_idx];
741 	struct rcv_queue *rq;
742 	struct cqe_rx_t *cq_desc;
743 	struct lro_ctrl	*lro;
744 	int rq_idx;
745 	int cmp_err;
746 
747 	NICVF_CMP_LOCK(cq);
748 	cmp_err = 0;
749 	processed_cqe = 0;
750 	/* Get no of valid CQ entries to process */
751 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
752 	cqe_count &= CQ_CQE_COUNT;
753 	if (cqe_count == 0)
754 		goto out;
755 
756 	/* Get head of the valid CQ entries */
757 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
758 	cqe_head &= 0xFFFF;
759 
760 	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
761 	    __func__, cq_idx, cqe_count, cqe_head);
762 	while (processed_cqe < cqe_count) {
763 		/* Get the CQ descriptor */
764 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
765 		cqe_head++;
766 		cqe_head &= (cq->dmem.q_len - 1);
767 		/* Prefetch next CQ descriptor */
768 		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
769 
770 		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
771 		    cq_desc->cqe_type);
772 		switch (cq_desc->cqe_type) {
773 		case CQE_TYPE_RX:
774 			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
775 			    CQE_TYPE_RX);
776 			if (__predict_false(cmp_err != 0)) {
777 				/*
778 				 * Ups. Cannot finish now.
779 				 * Let's try again later.
780 				 */
781 				goto done;
782 			}
783 			work_done++;
784 			break;
785 		case CQE_TYPE_SEND:
786 			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
787 			    CQE_TYPE_SEND);
788 			tx_done++;
789 			break;
790 		case CQE_TYPE_INVALID:
791 		case CQE_TYPE_RX_SPLIT:
792 		case CQE_TYPE_RX_TCP:
793 		case CQE_TYPE_SEND_PTP:
794 			/* Ignore for now */
795 			break;
796 		}
797 		processed_cqe++;
798 	}
799 done:
800 	dprintf(nic->dev,
801 	    "%s CQ%d processed_cqe %d work_done %d\n",
802 	    __func__, cq_idx, processed_cqe, work_done);
803 
804 	/* Ring doorbell to inform H/W to reuse processed CQEs */
805 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
806 
807 	if ((tx_done > 0) &&
808 	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
809 		/* Reenable TXQ if its stopped earlier due to SQ full */
810 		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
811 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
812 	}
813 out:
814 	/*
815 	 * Flush any outstanding LRO work
816 	 */
817 	rq_idx = cq_idx;
818 	rq = &nic->qs->rq[rq_idx];
819 	lro = &rq->lro;
820 	tcp_lro_flush_all(lro);
821 
822 	NICVF_CMP_UNLOCK(cq);
823 
824 	ifp = nic->ifp;
825 	/* Push received MBUFs to the stack */
826 	while (!buf_ring_empty(cq->rx_br)) {
827 		mbuf = buf_ring_dequeue_mc(cq->rx_br);
828 		if (__predict_true(mbuf != NULL))
829 			(*ifp->if_input)(ifp, mbuf);
830 	}
831 
832 	return (cmp_err);
833 }
834 
835 /*
836  * Qset error interrupt handler
837  *
838  * As of now only CQ errors are handled
839  */
840 static void
841 nicvf_qs_err_task(void *arg, int pending)
842 {
843 	struct nicvf *nic;
844 	struct queue_set *qs;
845 	int qidx;
846 	uint64_t status;
847 	boolean_t enable = TRUE;
848 
849 	nic = (struct nicvf *)arg;
850 	qs = nic->qs;
851 
852 	/* Deactivate network interface */
853 	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
854 
855 	/* Check if it is CQ err */
856 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
857 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
858 		    qidx);
859 		if ((status & CQ_ERR_MASK) == 0)
860 			continue;
861 		/* Process already queued CQEs and reconfig CQ */
862 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
863 		nicvf_sq_disable(nic, qidx);
864 		(void)nicvf_cq_intr_handler(nic, qidx);
865 		nicvf_cmp_queue_config(nic, qs, qidx, enable);
866 		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
867 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
868 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
869 	}
870 
871 	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
872 	/* Re-enable Qset error interrupt */
873 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
874 }
875 
876 static void
877 nicvf_cmp_task(void *arg, int pending)
878 {
879 	struct cmp_queue *cq;
880 	struct nicvf *nic;
881 	int cmp_err;
882 
883 	cq = (struct cmp_queue *)arg;
884 	nic = cq->nic;
885 
886 	/* Handle CQ descriptors */
887 	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
888 	if (__predict_false(cmp_err != 0)) {
889 		/*
890 		 * Schedule another thread here since we did not
891 		 * process the entire CQ due to Tx or Rx CQ parse error.
892 		 */
893 		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
894 	}
895 
896 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
897 	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
898 	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
899 
900 }
901 
902 /* Initialize completion queue */
903 static int
904 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
905     int qidx)
906 {
907 	int err;
908 
909 	/* Initizalize lock */
910 	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
911 	    device_get_nameunit(nic->dev), qidx);
912 	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
913 
914 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
915 				     NICVF_CQ_BASE_ALIGN_BYTES);
916 
917 	if (err != 0) {
918 		device_printf(nic->dev,
919 		    "Could not allocate DMA memory for CQ\n");
920 		return (err);
921 	}
922 
923 	cq->desc = cq->dmem.base;
924 	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
925 	cq->nic = nic;
926 	cq->idx = qidx;
927 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
928 
929 	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
930 	    &cq->mtx);
931 
932 	/* Allocate taskqueue */
933 	NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
934 	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
935 	    taskqueue_thread_enqueue, &cq->cmp_taskq);
936 	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
937 	    device_get_nameunit(nic->dev), qidx);
938 
939 	return (0);
940 }
941 
942 static void
943 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
944 {
945 
946 	if (cq == NULL)
947 		return;
948 	/*
949 	 * The completion queue itself should be disabled by now
950 	 * (ref. nicvf_snd_queue_config()).
951 	 * Ensure that it is safe to disable it or panic.
952 	 */
953 	if (cq->enable)
954 		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
955 
956 	if (cq->cmp_taskq != NULL) {
957 		/* Remove task */
958 		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
959 			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
960 
961 		taskqueue_free(cq->cmp_taskq);
962 		cq->cmp_taskq = NULL;
963 	}
964 	/*
965 	 * Completion interrupt will possibly enable interrupts again
966 	 * so disable interrupting now after we finished processing
967 	 * completion task. It is safe to do so since the corresponding CQ
968 	 * was already disabled.
969 	 */
970 	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
971 	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
972 
973 	NICVF_CMP_LOCK(cq);
974 	nicvf_free_q_desc_mem(nic, &cq->dmem);
975 	drbr_free(cq->rx_br, M_DEVBUF);
976 	NICVF_CMP_UNLOCK(cq);
977 	mtx_destroy(&cq->mtx);
978 	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
979 }
980 
981 int
982 nicvf_xmit_locked(struct snd_queue *sq)
983 {
984 	struct nicvf *nic;
985 	struct ifnet *ifp;
986 	struct mbuf *next;
987 	int err;
988 
989 	NICVF_TX_LOCK_ASSERT(sq);
990 
991 	nic = sq->nic;
992 	ifp = nic->ifp;
993 	err = 0;
994 
995 	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
996 		/* Send a copy of the frame to the BPF listener */
997 		ETHER_BPF_MTAP(ifp, next);
998 
999 		err = nicvf_tx_mbuf_locked(sq, &next);
1000 		if (err != 0) {
1001 			if (next == NULL)
1002 				drbr_advance(ifp, sq->br);
1003 			else
1004 				drbr_putback(ifp, sq->br, next);
1005 
1006 			break;
1007 		}
1008 		drbr_advance(ifp, sq->br);
1009 	}
1010 	return (err);
1011 }
1012 
1013 static void
1014 nicvf_snd_task(void *arg, int pending)
1015 {
1016 	struct snd_queue *sq = (struct snd_queue *)arg;
1017 	struct nicvf *nic;
1018 	struct ifnet *ifp;
1019 	int err;
1020 
1021 	nic = sq->nic;
1022 	ifp = nic->ifp;
1023 
1024 	/*
1025 	 * Skip sending anything if the driver is not running,
1026 	 * SQ full or link is down.
1027 	 */
1028 	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1029 	    IFF_DRV_RUNNING) || !nic->link_up)
1030 		return;
1031 
1032 	NICVF_TX_LOCK(sq);
1033 	err = nicvf_xmit_locked(sq);
1034 	NICVF_TX_UNLOCK(sq);
1035 	/* Try again */
1036 	if (err != 0)
1037 		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1038 }
1039 
1040 /* Initialize transmit queue */
1041 static int
1042 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1043     int qidx)
1044 {
1045 	size_t i;
1046 	int err;
1047 
1048 	/* Initizalize TX lock for this queue */
1049 	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1050 	    device_get_nameunit(nic->dev), qidx);
1051 	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1052 
1053 	NICVF_TX_LOCK(sq);
1054 	/* Allocate buffer ring */
1055 	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1056 	    M_NOWAIT, &sq->mtx);
1057 	if (sq->br == NULL) {
1058 		device_printf(nic->dev,
1059 		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1060 		err = ENOMEM;
1061 		goto error;
1062 	}
1063 
1064 	/* Allocate DMA memory for Tx descriptors */
1065 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1066 				     NICVF_SQ_BASE_ALIGN_BYTES);
1067 	if (err != 0) {
1068 		device_printf(nic->dev,
1069 		    "Could not allocate DMA memory for SQ\n");
1070 		goto error;
1071 	}
1072 
1073 	sq->desc = sq->dmem.base;
1074 	sq->head = sq->tail = 0;
1075 	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1076 	sq->thresh = SND_QUEUE_THRESH;
1077 	sq->idx = qidx;
1078 	sq->nic = nic;
1079 
1080 	/*
1081 	 * Allocate DMA maps for Tx buffers
1082 	 */
1083 
1084 	/* Create DMA tag first */
1085 	err = bus_dma_tag_create(
1086 	    bus_get_dma_tag(nic->dev),		/* parent tag */
1087 	    1,					/* alignment */
1088 	    0,					/* boundary */
1089 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1090 	    BUS_SPACE_MAXADDR,			/* highaddr */
1091 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1092 	    NICVF_TSO_MAXSIZE,			/* maxsize */
1093 	    NICVF_TSO_NSEGS,			/* nsegments */
1094 	    MCLBYTES,				/* maxsegsize */
1095 	    0,					/* flags */
1096 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1097 	    &sq->snd_buff_dmat);		/* dmat */
1098 
1099 	if (err != 0) {
1100 		device_printf(nic->dev,
1101 		    "Failed to create busdma tag for Tx buffers\n");
1102 		goto error;
1103 	}
1104 
1105 	/* Allocate send buffers array */
1106 	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1107 	    (M_NOWAIT | M_ZERO));
1108 	if (sq->snd_buff == NULL) {
1109 		device_printf(nic->dev,
1110 		    "Could not allocate memory for Tx buffers array\n");
1111 		err = ENOMEM;
1112 		goto error;
1113 	}
1114 
1115 	/* Now populate maps */
1116 	for (i = 0; i < q_len; i++) {
1117 		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1118 		    &sq->snd_buff[i].dmap);
1119 		if (err != 0) {
1120 			device_printf(nic->dev,
1121 			    "Failed to create DMA maps for Tx buffers\n");
1122 			goto error;
1123 		}
1124 	}
1125 	NICVF_TX_UNLOCK(sq);
1126 
1127 	/* Allocate taskqueue */
1128 	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1129 	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1130 	    taskqueue_thread_enqueue, &sq->snd_taskq);
1131 	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1132 	    device_get_nameunit(nic->dev), qidx);
1133 
1134 	return (0);
1135 error:
1136 	NICVF_TX_UNLOCK(sq);
1137 	return (err);
1138 }
1139 
1140 static void
1141 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1142 {
1143 	struct queue_set *qs = nic->qs;
1144 	size_t i;
1145 	int err __diagused;
1146 
1147 	if (sq == NULL)
1148 		return;
1149 
1150 	if (sq->snd_taskq != NULL) {
1151 		/* Remove task */
1152 		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1153 			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1154 
1155 		taskqueue_free(sq->snd_taskq);
1156 		sq->snd_taskq = NULL;
1157 	}
1158 
1159 	NICVF_TX_LOCK(sq);
1160 	if (sq->snd_buff_dmat != NULL) {
1161 		if (sq->snd_buff != NULL) {
1162 			for (i = 0; i < qs->sq_len; i++) {
1163 				m_freem(sq->snd_buff[i].mbuf);
1164 				sq->snd_buff[i].mbuf = NULL;
1165 
1166 				bus_dmamap_unload(sq->snd_buff_dmat,
1167 				    sq->snd_buff[i].dmap);
1168 				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1169 				    sq->snd_buff[i].dmap);
1170 				/*
1171 				 * If bus_dmamap_destroy fails it can cause
1172 				 * random panic later if the tag is also
1173 				 * destroyed in the process.
1174 				 */
1175 				KASSERT(err == 0,
1176 				    ("%s: Could not destroy DMA map for SQ",
1177 				    __func__));
1178 			}
1179 		}
1180 
1181 		free(sq->snd_buff, M_NICVF);
1182 
1183 		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1184 		KASSERT(err == 0,
1185 		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1186 	}
1187 
1188 	/* Free private driver ring for this send queue */
1189 	if (sq->br != NULL)
1190 		drbr_free(sq->br, M_DEVBUF);
1191 
1192 	if (sq->dmem.base != NULL)
1193 		nicvf_free_q_desc_mem(nic, &sq->dmem);
1194 
1195 	NICVF_TX_UNLOCK(sq);
1196 	/* Destroy Tx lock */
1197 	mtx_destroy(&sq->mtx);
1198 	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1199 }
1200 
1201 static void
1202 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1203 {
1204 
1205 	/* Disable send queue */
1206 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1207 	/* Check if SQ is stopped */
1208 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1209 		return;
1210 	/* Reset send queue */
1211 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1212 }
1213 
1214 static void
1215 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1216 {
1217 	union nic_mbx mbx = {};
1218 
1219 	/* Make sure all packets in the pipeline are written back into mem */
1220 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1221 	nicvf_send_msg_to_pf(nic, &mbx);
1222 }
1223 
1224 static void
1225 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1226 {
1227 
1228 	/* Disable timer threshold (doesn't get reset upon CQ reset */
1229 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1230 	/* Disable completion queue */
1231 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1232 	/* Reset completion queue */
1233 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1234 }
1235 
1236 static void
1237 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1238 {
1239 	uint64_t tmp, fifo_state;
1240 	int timeout = 10;
1241 
1242 	/* Save head and tail pointers for feeing up buffers */
1243 	rbdr->head =
1244 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1245 	rbdr->tail =
1246 	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1247 
1248 	/*
1249 	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1250 	 * before relaiming.
1251 	 */
1252 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1253 	if (((fifo_state >> 62) & 0x03) == 0x3) {
1254 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1255 		    qidx, NICVF_RBDR_RESET);
1256 	}
1257 
1258 	/* Disable RBDR */
1259 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1260 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1261 		return;
1262 	while (1) {
1263 		tmp = nicvf_queue_reg_read(nic,
1264 		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1265 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1266 			break;
1267 
1268 		DELAY(1000);
1269 		timeout--;
1270 		if (!timeout) {
1271 			device_printf(nic->dev,
1272 			    "Failed polling on prefetch status\n");
1273 			return;
1274 		}
1275 	}
1276 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1277 	    NICVF_RBDR_RESET);
1278 
1279 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1280 		return;
1281 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1282 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1283 		return;
1284 }
1285 
1286 /* Configures receive queue */
1287 static void
1288 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1289     int qidx, bool enable)
1290 {
1291 	union nic_mbx mbx = {};
1292 	struct rcv_queue *rq;
1293 	struct rq_cfg rq_cfg;
1294 	struct ifnet *ifp;
1295 	struct lro_ctrl	*lro;
1296 
1297 	ifp = nic->ifp;
1298 
1299 	rq = &qs->rq[qidx];
1300 	rq->enable = enable;
1301 
1302 	lro = &rq->lro;
1303 
1304 	/* Disable receive queue */
1305 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1306 
1307 	if (!rq->enable) {
1308 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1309 		/* Free LRO memory */
1310 		tcp_lro_free(lro);
1311 		rq->lro_enabled = FALSE;
1312 		return;
1313 	}
1314 
1315 	/* Configure LRO if enabled */
1316 	rq->lro_enabled = FALSE;
1317 	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1318 		if (tcp_lro_init(lro) != 0) {
1319 			device_printf(nic->dev,
1320 			    "Failed to initialize LRO for RXQ%d\n", qidx);
1321 		} else {
1322 			rq->lro_enabled = TRUE;
1323 			lro->ifp = nic->ifp;
1324 		}
1325 	}
1326 
1327 	rq->cq_qs = qs->vnic_id;
1328 	rq->cq_idx = qidx;
1329 	rq->start_rbdr_qs = qs->vnic_id;
1330 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1331 	rq->cont_rbdr_qs = qs->vnic_id;
1332 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1333 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1334 	rq->caching = 1;
1335 
1336 	/* Send a mailbox msg to PF to config RQ */
1337 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1338 	mbx.rq.qs_num = qs->vnic_id;
1339 	mbx.rq.rq_num = qidx;
1340 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1341 	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1342 	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1343 	    (rq->start_qs_rbdr_idx);
1344 	nicvf_send_msg_to_pf(nic, &mbx);
1345 
1346 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1347 	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1348 	nicvf_send_msg_to_pf(nic, &mbx);
1349 
1350 	/*
1351 	 * RQ drop config
1352 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1353 	 */
1354 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1355 	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1356 	nicvf_send_msg_to_pf(nic, &mbx);
1357 
1358 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1359 
1360 	/* Enable Receive queue */
1361 	rq_cfg.ena = 1;
1362 	rq_cfg.tcp_ena = 0;
1363 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1364 	    *(uint64_t *)&rq_cfg);
1365 }
1366 
1367 /* Configures completion queue */
1368 static void
1369 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1370     int qidx, boolean_t enable)
1371 {
1372 	struct cmp_queue *cq;
1373 	struct cq_cfg cq_cfg;
1374 
1375 	cq = &qs->cq[qidx];
1376 	cq->enable = enable;
1377 
1378 	if (!cq->enable) {
1379 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1380 		return;
1381 	}
1382 
1383 	/* Reset completion queue */
1384 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1385 
1386 	/* Set completion queue base address */
1387 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1388 	    (uint64_t)(cq->dmem.phys_base));
1389 
1390 	/* Enable Completion queue */
1391 	cq_cfg.ena = 1;
1392 	cq_cfg.reset = 0;
1393 	cq_cfg.caching = 0;
1394 	cq_cfg.qsize = CMP_QSIZE;
1395 	cq_cfg.avg_con = 0;
1396 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1397 
1398 	/* Set threshold value for interrupt generation */
1399 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1400 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1401 	    nic->cq_coalesce_usecs);
1402 }
1403 
1404 /* Configures transmit queue */
1405 static void
1406 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1407     boolean_t enable)
1408 {
1409 	union nic_mbx mbx = {};
1410 	struct snd_queue *sq;
1411 	struct sq_cfg sq_cfg;
1412 
1413 	sq = &qs->sq[qidx];
1414 	sq->enable = enable;
1415 
1416 	if (!sq->enable) {
1417 		nicvf_reclaim_snd_queue(nic, qs, qidx);
1418 		return;
1419 	}
1420 
1421 	/* Reset send queue */
1422 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1423 
1424 	sq->cq_qs = qs->vnic_id;
1425 	sq->cq_idx = qidx;
1426 
1427 	/* Send a mailbox msg to PF to config SQ */
1428 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1429 	mbx.sq.qs_num = qs->vnic_id;
1430 	mbx.sq.sq_num = qidx;
1431 	mbx.sq.sqs_mode = nic->sqs_mode;
1432 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1433 	nicvf_send_msg_to_pf(nic, &mbx);
1434 
1435 	/* Set queue base address */
1436 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1437 	    (uint64_t)(sq->dmem.phys_base));
1438 
1439 	/* Enable send queue  & set queue size */
1440 	sq_cfg.ena = 1;
1441 	sq_cfg.reset = 0;
1442 	sq_cfg.ldwb = 0;
1443 	sq_cfg.qsize = SND_QSIZE;
1444 	sq_cfg.tstmp_bgx_intf = 0;
1445 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1446 
1447 	/* Set threshold value for interrupt generation */
1448 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1449 }
1450 
1451 /* Configures receive buffer descriptor ring */
1452 static void
1453 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1454     boolean_t enable)
1455 {
1456 	struct rbdr *rbdr;
1457 	struct rbdr_cfg rbdr_cfg;
1458 
1459 	rbdr = &qs->rbdr[qidx];
1460 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1461 	if (!enable)
1462 		return;
1463 
1464 	/* Set descriptor base address */
1465 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1466 	    (uint64_t)(rbdr->dmem.phys_base));
1467 
1468 	/* Enable RBDR  & set queue size */
1469 	/* Buffer size should be in multiples of 128 bytes */
1470 	rbdr_cfg.ena = 1;
1471 	rbdr_cfg.reset = 0;
1472 	rbdr_cfg.ldwb = 0;
1473 	rbdr_cfg.qsize = RBDR_SIZE;
1474 	rbdr_cfg.avg_con = 0;
1475 	rbdr_cfg.lines = rbdr->dma_size / 128;
1476 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1477 	    *(uint64_t *)&rbdr_cfg);
1478 
1479 	/* Notify HW */
1480 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1481 	    qs->rbdr_len - 1);
1482 
1483 	/* Set threshold value for interrupt generation */
1484 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1485 	    rbdr->thresh - 1);
1486 }
1487 
1488 /* Requests PF to assign and enable Qset */
1489 void
1490 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1491 {
1492 	union nic_mbx mbx = {};
1493 	struct queue_set *qs;
1494 	struct qs_cfg *qs_cfg;
1495 
1496 	qs = nic->qs;
1497 	if (qs == NULL) {
1498 		device_printf(nic->dev,
1499 		    "Qset is still not allocated, don't init queues\n");
1500 		return;
1501 	}
1502 
1503 	qs->enable = enable;
1504 	qs->vnic_id = nic->vf_id;
1505 
1506 	/* Send a mailbox msg to PF to config Qset */
1507 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1508 	mbx.qs.num = qs->vnic_id;
1509 
1510 	mbx.qs.cfg = 0;
1511 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1512 	if (qs->enable) {
1513 		qs_cfg->ena = 1;
1514 		qs_cfg->vnic = qs->vnic_id;
1515 	}
1516 	nicvf_send_msg_to_pf(nic, &mbx);
1517 }
1518 
1519 static void
1520 nicvf_free_resources(struct nicvf *nic)
1521 {
1522 	int qidx;
1523 	struct queue_set *qs;
1524 
1525 	qs = nic->qs;
1526 	/*
1527 	 * Remove QS error task first since it has to be dead
1528 	 * to safely free completion queue tasks.
1529 	 */
1530 	if (qs->qs_err_taskq != NULL) {
1531 		/* Shut down QS error tasks */
1532 		while (taskqueue_cancel(qs->qs_err_taskq,
1533 		    &qs->qs_err_task,  NULL) != 0) {
1534 			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1535 		}
1536 		taskqueue_free(qs->qs_err_taskq);
1537 		qs->qs_err_taskq = NULL;
1538 	}
1539 	/* Free receive buffer descriptor ring */
1540 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1541 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1542 
1543 	/* Free completion queue */
1544 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1545 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1546 
1547 	/* Free send queue */
1548 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1549 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1550 }
1551 
1552 static int
1553 nicvf_alloc_resources(struct nicvf *nic)
1554 {
1555 	struct queue_set *qs = nic->qs;
1556 	int qidx;
1557 
1558 	/* Alloc receive buffer descriptor ring */
1559 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1560 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1561 				    DMA_BUFFER_LEN, qidx))
1562 			goto alloc_fail;
1563 	}
1564 
1565 	/* Alloc send queue */
1566 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1567 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1568 			goto alloc_fail;
1569 	}
1570 
1571 	/* Alloc completion queue */
1572 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1573 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1574 			goto alloc_fail;
1575 	}
1576 
1577 	/* Allocate QS error taskqueue */
1578 	NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1579 	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1580 	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1581 	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1582 	    device_get_nameunit(nic->dev));
1583 
1584 	return (0);
1585 alloc_fail:
1586 	nicvf_free_resources(nic);
1587 	return (ENOMEM);
1588 }
1589 
1590 int
1591 nicvf_set_qset_resources(struct nicvf *nic)
1592 {
1593 	struct queue_set *qs;
1594 
1595 	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1596 	nic->qs = qs;
1597 
1598 	/* Set count of each queue */
1599 	qs->rbdr_cnt = RBDR_CNT;
1600 	qs->rq_cnt = RCV_QUEUE_CNT;
1601 
1602 	qs->sq_cnt = SND_QUEUE_CNT;
1603 	qs->cq_cnt = CMP_QUEUE_CNT;
1604 
1605 	/* Set queue lengths */
1606 	qs->rbdr_len = RCV_BUF_COUNT;
1607 	qs->sq_len = SND_QUEUE_LEN;
1608 	qs->cq_len = CMP_QUEUE_LEN;
1609 
1610 	nic->rx_queues = qs->rq_cnt;
1611 	nic->tx_queues = qs->sq_cnt;
1612 
1613 	return (0);
1614 }
1615 
1616 int
1617 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1618 {
1619 	boolean_t disable = FALSE;
1620 	struct queue_set *qs;
1621 	int qidx;
1622 
1623 	qs = nic->qs;
1624 	if (qs == NULL)
1625 		return (0);
1626 
1627 	if (enable) {
1628 		if (nicvf_alloc_resources(nic) != 0)
1629 			return (ENOMEM);
1630 
1631 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1632 			nicvf_snd_queue_config(nic, qs, qidx, enable);
1633 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1634 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1635 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1636 			nicvf_rbdr_config(nic, qs, qidx, enable);
1637 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1638 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1639 	} else {
1640 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1641 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1642 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1643 			nicvf_rbdr_config(nic, qs, qidx, disable);
1644 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1645 			nicvf_snd_queue_config(nic, qs, qidx, disable);
1646 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1647 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1648 
1649 		nicvf_free_resources(nic);
1650 	}
1651 
1652 	return (0);
1653 }
1654 
1655 /*
1656  * Get a free desc from SQ
1657  * returns descriptor ponter & descriptor number
1658  */
1659 static __inline int
1660 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1661 {
1662 	int qentry;
1663 
1664 	qentry = sq->tail;
1665 	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1666 	sq->tail += desc_cnt;
1667 	sq->tail &= (sq->dmem.q_len - 1);
1668 
1669 	return (qentry);
1670 }
1671 
1672 /* Free descriptor back to SQ for future use */
1673 static void
1674 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1675 {
1676 
1677 	atomic_add_int(&sq->free_cnt, desc_cnt);
1678 	sq->head += desc_cnt;
1679 	sq->head &= (sq->dmem.q_len - 1);
1680 }
1681 
1682 static __inline int
1683 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1684 {
1685 	qentry++;
1686 	qentry &= (sq->dmem.q_len - 1);
1687 	return (qentry);
1688 }
1689 
1690 static void
1691 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1692 {
1693 	uint64_t sq_cfg;
1694 
1695 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1696 	sq_cfg |= NICVF_SQ_EN;
1697 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1698 	/* Ring doorbell so that H/W restarts processing SQEs */
1699 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1700 }
1701 
1702 static void
1703 nicvf_sq_disable(struct nicvf *nic, int qidx)
1704 {
1705 	uint64_t sq_cfg;
1706 
1707 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1708 	sq_cfg &= ~NICVF_SQ_EN;
1709 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1710 }
1711 
1712 static void
1713 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1714 {
1715 	uint64_t head;
1716 	struct snd_buff *snd_buff;
1717 	struct sq_hdr_subdesc *hdr;
1718 
1719 	NICVF_TX_LOCK(sq);
1720 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1721 	while (sq->head != head) {
1722 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1723 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1724 			nicvf_put_sq_desc(sq, 1);
1725 			continue;
1726 		}
1727 		snd_buff = &sq->snd_buff[sq->head];
1728 		if (snd_buff->mbuf != NULL) {
1729 			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1730 			m_freem(snd_buff->mbuf);
1731 			sq->snd_buff[sq->head].mbuf = NULL;
1732 		}
1733 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1734 	}
1735 	NICVF_TX_UNLOCK(sq);
1736 }
1737 
1738 /*
1739  * Add SQ HEADER subdescriptor.
1740  * First subdescriptor for every send descriptor.
1741  */
1742 static __inline int
1743 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1744 			 int subdesc_cnt, struct mbuf *mbuf, int len)
1745 {
1746 	struct nicvf *nic;
1747 	struct sq_hdr_subdesc *hdr;
1748 	struct ether_vlan_header *eh;
1749 #ifdef INET
1750 	struct ip *ip;
1751 	struct tcphdr *th;
1752 #endif
1753 	uint16_t etype;
1754 	int ehdrlen, iphlen, poff, proto;
1755 
1756 	nic = sq->nic;
1757 
1758 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1759 	sq->snd_buff[qentry].mbuf = mbuf;
1760 
1761 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1762 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1763 	/* Enable notification via CQE after processing SQE */
1764 	hdr->post_cqe = 1;
1765 	/* No of subdescriptors following this */
1766 	hdr->subdesc_cnt = subdesc_cnt;
1767 	hdr->tot_len = len;
1768 
1769 	eh = mtod(mbuf, struct ether_vlan_header *);
1770 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1771 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1772 		etype = ntohs(eh->evl_proto);
1773 	} else {
1774 		ehdrlen = ETHER_HDR_LEN;
1775 		etype = ntohs(eh->evl_encap_proto);
1776 	}
1777 
1778 	poff = proto = -1;
1779 	switch (etype) {
1780 #ifdef INET6
1781 	case ETHERTYPE_IPV6:
1782 		if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1783 			mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1784 			sq->snd_buff[qentry].mbuf = NULL;
1785 			if (mbuf == NULL)
1786 				return (ENOBUFS);
1787 		}
1788 		poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1789 		if (poff < 0)
1790 			return (ENOBUFS);
1791 		poff += ehdrlen;
1792 		break;
1793 #endif
1794 #ifdef INET
1795 	case ETHERTYPE_IP:
1796 		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1797 			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1798 			sq->snd_buff[qentry].mbuf = mbuf;
1799 			if (mbuf == NULL)
1800 				return (ENOBUFS);
1801 		}
1802 		if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1803 			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1804 
1805 		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1806 		iphlen = ip->ip_hl << 2;
1807 		poff = ehdrlen + iphlen;
1808 		proto = ip->ip_p;
1809 		break;
1810 #endif
1811 	}
1812 
1813 #if defined(INET6) || defined(INET)
1814 	if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1815 		switch (proto) {
1816 		case IPPROTO_TCP:
1817 			if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1818 				break;
1819 
1820 			if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1821 				mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1822 				sq->snd_buff[qentry].mbuf = mbuf;
1823 				if (mbuf == NULL)
1824 					return (ENOBUFS);
1825 			}
1826 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1827 			break;
1828 		case IPPROTO_UDP:
1829 			if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1830 				break;
1831 
1832 			if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1833 				mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1834 				sq->snd_buff[qentry].mbuf = mbuf;
1835 				if (mbuf == NULL)
1836 					return (ENOBUFS);
1837 			}
1838 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1839 			break;
1840 		case IPPROTO_SCTP:
1841 			if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1842 				break;
1843 
1844 			if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1845 				mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1846 				sq->snd_buff[qentry].mbuf = mbuf;
1847 				if (mbuf == NULL)
1848 					return (ENOBUFS);
1849 			}
1850 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1851 			break;
1852 		default:
1853 			break;
1854 		}
1855 		hdr->l3_offset = ehdrlen;
1856 		hdr->l4_offset = poff;
1857 	}
1858 
1859 	if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1860 		th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1861 
1862 		hdr->tso = 1;
1863 		hdr->tso_start = poff + (th->th_off * 4);
1864 		hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1865 		hdr->inner_l3_offset = ehdrlen - 2;
1866 		nic->drv_stats.tx_tso++;
1867 	}
1868 #endif
1869 
1870 	return (0);
1871 }
1872 
1873 /*
1874  * SQ GATHER subdescriptor
1875  * Must follow HDR descriptor
1876  */
1877 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1878 					       int size, uint64_t data)
1879 {
1880 	struct sq_gather_subdesc *gather;
1881 
1882 	qentry &= (sq->dmem.q_len - 1);
1883 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1884 
1885 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1886 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1887 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1888 	gather->size = size;
1889 	gather->addr = data;
1890 }
1891 
1892 /* Put an mbuf to a SQ for packet transfer. */
1893 static int
1894 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1895 {
1896 	bus_dma_segment_t segs[256];
1897 	struct snd_buff *snd_buff;
1898 	size_t seg;
1899 	int nsegs, qentry;
1900 	int subdesc_cnt;
1901 	int err;
1902 
1903 	NICVF_TX_LOCK_ASSERT(sq);
1904 
1905 	if (sq->free_cnt == 0)
1906 		return (ENOBUFS);
1907 
1908 	snd_buff = &sq->snd_buff[sq->tail];
1909 
1910 	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1911 	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1912 	if (__predict_false(err != 0)) {
1913 		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1914 		m_freem(*mbufp);
1915 		*mbufp = NULL;
1916 		return (err);
1917 	}
1918 
1919 	/* Set how many subdescriptors is required */
1920 	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1921 	if (subdesc_cnt > sq->free_cnt) {
1922 		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1923 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1924 		return (ENOBUFS);
1925 	}
1926 
1927 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1928 
1929 	/* Add SQ header subdesc */
1930 	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1931 	    (*mbufp)->m_pkthdr.len);
1932 	if (err != 0) {
1933 		nicvf_put_sq_desc(sq, subdesc_cnt);
1934 		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1935 		if (err == ENOBUFS) {
1936 			m_freem(*mbufp);
1937 			*mbufp = NULL;
1938 		}
1939 		return (err);
1940 	}
1941 
1942 	/* Add SQ gather subdescs */
1943 	for (seg = 0; seg < nsegs; seg++) {
1944 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1945 		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1946 		    segs[seg].ds_addr);
1947 	}
1948 
1949 	/* make sure all memory stores are done before ringing doorbell */
1950 	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1951 
1952 	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1953 	    __func__, sq->idx, subdesc_cnt);
1954 	/* Inform HW to xmit new packet */
1955 	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1956 	    sq->idx, subdesc_cnt);
1957 	return (0);
1958 }
1959 
1960 static __inline u_int
1961 frag_num(u_int i)
1962 {
1963 #if BYTE_ORDER == BIG_ENDIAN
1964 	return ((i & ~3) + 3 - (i & 3));
1965 #else
1966 	return (i);
1967 #endif
1968 }
1969 
1970 /* Returns MBUF for a received packet */
1971 struct mbuf *
1972 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1973 {
1974 	int frag;
1975 	int payload_len = 0;
1976 	struct mbuf *mbuf;
1977 	struct mbuf *mbuf_frag;
1978 	uint16_t *rb_lens = NULL;
1979 	uint64_t *rb_ptrs = NULL;
1980 
1981 	mbuf = NULL;
1982 	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1983 	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1984 
1985 	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1986 	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1987 
1988 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1989 		payload_len = rb_lens[frag_num(frag)];
1990 		if (frag == 0) {
1991 			/* First fragment */
1992 			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1993 			    (*rb_ptrs - cqe_rx->align_pad));
1994 			mbuf->m_len = payload_len;
1995 			mbuf->m_data += cqe_rx->align_pad;
1996 			if_setrcvif(mbuf, nic->ifp);
1997 		} else {
1998 			/* Add fragments */
1999 			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2000 			m_append(mbuf, payload_len, mbuf_frag->m_data);
2001 			m_freem(mbuf_frag);
2002 		}
2003 		/* Next buffer pointer */
2004 		rb_ptrs++;
2005 	}
2006 
2007 	if (__predict_true(mbuf != NULL)) {
2008 		m_fixhdr(mbuf);
2009 		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2010 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2011 		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2012 			/*
2013 			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2014 			 */
2015 			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2016 				mbuf->m_pkthdr.csum_flags =
2017 				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2018 			}
2019 
2020 			switch (cqe_rx->l4_type) {
2021 			case L4TYPE_UDP:
2022 			case L4TYPE_TCP: /* fall through */
2023 				mbuf->m_pkthdr.csum_flags |=
2024 				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2025 				mbuf->m_pkthdr.csum_data = 0xffff;
2026 				break;
2027 			case L4TYPE_SCTP:
2028 				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2029 				break;
2030 			default:
2031 				break;
2032 			}
2033 		}
2034 	}
2035 
2036 	return (mbuf);
2037 }
2038 
2039 /* Enable interrupt */
2040 void
2041 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2042 {
2043 	uint64_t reg_val;
2044 
2045 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2046 
2047 	switch (int_type) {
2048 	case NICVF_INTR_CQ:
2049 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2050 		break;
2051 	case NICVF_INTR_SQ:
2052 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2053 		break;
2054 	case NICVF_INTR_RBDR:
2055 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2056 		break;
2057 	case NICVF_INTR_PKT_DROP:
2058 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2059 		break;
2060 	case NICVF_INTR_TCP_TIMER:
2061 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2062 		break;
2063 	case NICVF_INTR_MBOX:
2064 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2065 		break;
2066 	case NICVF_INTR_QS_ERR:
2067 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2068 		break;
2069 	default:
2070 		device_printf(nic->dev,
2071 			   "Failed to enable interrupt: unknown type\n");
2072 		break;
2073 	}
2074 
2075 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2076 }
2077 
2078 /* Disable interrupt */
2079 void
2080 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2081 {
2082 	uint64_t reg_val = 0;
2083 
2084 	switch (int_type) {
2085 	case NICVF_INTR_CQ:
2086 		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2087 		break;
2088 	case NICVF_INTR_SQ:
2089 		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2090 		break;
2091 	case NICVF_INTR_RBDR:
2092 		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2093 		break;
2094 	case NICVF_INTR_PKT_DROP:
2095 		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2096 		break;
2097 	case NICVF_INTR_TCP_TIMER:
2098 		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2099 		break;
2100 	case NICVF_INTR_MBOX:
2101 		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2102 		break;
2103 	case NICVF_INTR_QS_ERR:
2104 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2105 		break;
2106 	default:
2107 		device_printf(nic->dev,
2108 			   "Failed to disable interrupt: unknown type\n");
2109 		break;
2110 	}
2111 
2112 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2113 }
2114 
2115 /* Clear interrupt */
2116 void
2117 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2118 {
2119 	uint64_t reg_val = 0;
2120 
2121 	switch (int_type) {
2122 	case NICVF_INTR_CQ:
2123 		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2124 		break;
2125 	case NICVF_INTR_SQ:
2126 		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2127 		break;
2128 	case NICVF_INTR_RBDR:
2129 		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2130 		break;
2131 	case NICVF_INTR_PKT_DROP:
2132 		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2133 		break;
2134 	case NICVF_INTR_TCP_TIMER:
2135 		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2136 		break;
2137 	case NICVF_INTR_MBOX:
2138 		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2139 		break;
2140 	case NICVF_INTR_QS_ERR:
2141 		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2142 		break;
2143 	default:
2144 		device_printf(nic->dev,
2145 			   "Failed to clear interrupt: unknown type\n");
2146 		break;
2147 	}
2148 
2149 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2150 }
2151 
2152 /* Check if interrupt is enabled */
2153 int
2154 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2155 {
2156 	uint64_t reg_val;
2157 	uint64_t mask = 0xff;
2158 
2159 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2160 
2161 	switch (int_type) {
2162 	case NICVF_INTR_CQ:
2163 		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2164 		break;
2165 	case NICVF_INTR_SQ:
2166 		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2167 		break;
2168 	case NICVF_INTR_RBDR:
2169 		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2170 		break;
2171 	case NICVF_INTR_PKT_DROP:
2172 		mask = NICVF_INTR_PKT_DROP_MASK;
2173 		break;
2174 	case NICVF_INTR_TCP_TIMER:
2175 		mask = NICVF_INTR_TCP_TIMER_MASK;
2176 		break;
2177 	case NICVF_INTR_MBOX:
2178 		mask = NICVF_INTR_MBOX_MASK;
2179 		break;
2180 	case NICVF_INTR_QS_ERR:
2181 		mask = NICVF_INTR_QS_ERR_MASK;
2182 		break;
2183 	default:
2184 		device_printf(nic->dev,
2185 			   "Failed to check interrupt enable: unknown type\n");
2186 		break;
2187 	}
2188 
2189 	return (reg_val & mask);
2190 }
2191 
2192 void
2193 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2194 {
2195 	struct rcv_queue *rq;
2196 
2197 #define GET_RQ_STATS(reg) \
2198 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2199 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2200 
2201 	rq = &nic->qs->rq[rq_idx];
2202 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2203 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2204 }
2205 
2206 void
2207 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2208 {
2209 	struct snd_queue *sq;
2210 
2211 #define GET_SQ_STATS(reg) \
2212 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2213 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2214 
2215 	sq = &nic->qs->sq[sq_idx];
2216 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2217 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2218 }
2219 
2220 /* Check for errors in the receive cmp.queue entry */
2221 int
2222 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2223     struct cqe_rx_t *cqe_rx)
2224 {
2225 	struct nicvf_hw_stats *stats = &nic->hw_stats;
2226 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2227 
2228 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2229 		drv_stats->rx_frames_ok++;
2230 		return (0);
2231 	}
2232 
2233 	switch (cqe_rx->err_opcode) {
2234 	case CQ_RX_ERROP_RE_PARTIAL:
2235 		stats->rx_bgx_truncated_pkts++;
2236 		break;
2237 	case CQ_RX_ERROP_RE_JABBER:
2238 		stats->rx_jabber_errs++;
2239 		break;
2240 	case CQ_RX_ERROP_RE_FCS:
2241 		stats->rx_fcs_errs++;
2242 		break;
2243 	case CQ_RX_ERROP_RE_RX_CTL:
2244 		stats->rx_bgx_errs++;
2245 		break;
2246 	case CQ_RX_ERROP_PREL2_ERR:
2247 		stats->rx_prel2_errs++;
2248 		break;
2249 	case CQ_RX_ERROP_L2_MAL:
2250 		stats->rx_l2_hdr_malformed++;
2251 		break;
2252 	case CQ_RX_ERROP_L2_OVERSIZE:
2253 		stats->rx_oversize++;
2254 		break;
2255 	case CQ_RX_ERROP_L2_UNDERSIZE:
2256 		stats->rx_undersize++;
2257 		break;
2258 	case CQ_RX_ERROP_L2_LENMISM:
2259 		stats->rx_l2_len_mismatch++;
2260 		break;
2261 	case CQ_RX_ERROP_L2_PCLP:
2262 		stats->rx_l2_pclp++;
2263 		break;
2264 	case CQ_RX_ERROP_IP_NOT:
2265 		stats->rx_ip_ver_errs++;
2266 		break;
2267 	case CQ_RX_ERROP_IP_CSUM_ERR:
2268 		stats->rx_ip_csum_errs++;
2269 		break;
2270 	case CQ_RX_ERROP_IP_MAL:
2271 		stats->rx_ip_hdr_malformed++;
2272 		break;
2273 	case CQ_RX_ERROP_IP_MALD:
2274 		stats->rx_ip_payload_malformed++;
2275 		break;
2276 	case CQ_RX_ERROP_IP_HOP:
2277 		stats->rx_ip_ttl_errs++;
2278 		break;
2279 	case CQ_RX_ERROP_L3_PCLP:
2280 		stats->rx_l3_pclp++;
2281 		break;
2282 	case CQ_RX_ERROP_L4_MAL:
2283 		stats->rx_l4_malformed++;
2284 		break;
2285 	case CQ_RX_ERROP_L4_CHK:
2286 		stats->rx_l4_csum_errs++;
2287 		break;
2288 	case CQ_RX_ERROP_UDP_LEN:
2289 		stats->rx_udp_len_errs++;
2290 		break;
2291 	case CQ_RX_ERROP_L4_PORT:
2292 		stats->rx_l4_port_errs++;
2293 		break;
2294 	case CQ_RX_ERROP_TCP_FLAG:
2295 		stats->rx_tcp_flag_errs++;
2296 		break;
2297 	case CQ_RX_ERROP_TCP_OFFSET:
2298 		stats->rx_tcp_offset_errs++;
2299 		break;
2300 	case CQ_RX_ERROP_L4_PCLP:
2301 		stats->rx_l4_pclp++;
2302 		break;
2303 	case CQ_RX_ERROP_RBDR_TRUNC:
2304 		stats->rx_truncated_pkts++;
2305 		break;
2306 	}
2307 
2308 	return (1);
2309 }
2310 
2311 /* Check for errors in the send cmp.queue entry */
2312 int
2313 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2314     struct cqe_send_t *cqe_tx)
2315 {
2316 	struct cmp_queue_stats *stats = &cq->stats;
2317 
2318 	switch (cqe_tx->send_status) {
2319 	case CQ_TX_ERROP_GOOD:
2320 		stats->tx.good++;
2321 		return (0);
2322 	case CQ_TX_ERROP_DESC_FAULT:
2323 		stats->tx.desc_fault++;
2324 		break;
2325 	case CQ_TX_ERROP_HDR_CONS_ERR:
2326 		stats->tx.hdr_cons_err++;
2327 		break;
2328 	case CQ_TX_ERROP_SUBDC_ERR:
2329 		stats->tx.subdesc_err++;
2330 		break;
2331 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2332 		stats->tx.imm_size_oflow++;
2333 		break;
2334 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2335 		stats->tx.data_seq_err++;
2336 		break;
2337 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2338 		stats->tx.mem_seq_err++;
2339 		break;
2340 	case CQ_TX_ERROP_LOCK_VIOL:
2341 		stats->tx.lock_viol++;
2342 		break;
2343 	case CQ_TX_ERROP_DATA_FAULT:
2344 		stats->tx.data_fault++;
2345 		break;
2346 	case CQ_TX_ERROP_TSTMP_CONFLICT:
2347 		stats->tx.tstmp_conflict++;
2348 		break;
2349 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2350 		stats->tx.tstmp_timeout++;
2351 		break;
2352 	case CQ_TX_ERROP_MEM_FAULT:
2353 		stats->tx.mem_fault++;
2354 		break;
2355 	case CQ_TX_ERROP_CK_OVERLAP:
2356 		stats->tx.csum_overlap++;
2357 		break;
2358 	case CQ_TX_ERROP_CK_OFLOW:
2359 		stats->tx.csum_overflow++;
2360 		break;
2361 	}
2362 
2363 	return (1);
2364 }
2365