1 /*- 2 * Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* Driver for VirtIO network devices. */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_device_polling.h" 34 #endif 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/sockio.h> 40 #include <sys/mbuf.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/socket.h> 44 #include <sys/sysctl.h> 45 #include <sys/random.h> 46 #include <sys/sglist.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 50 #include <vm/uma.h> 51 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_dl.h> 56 #include <net/if_types.h> 57 #include <net/if_media.h> 58 #include <net/if_vlan_var.h> 59 60 #include <net/bpf.h> 61 62 #include <netinet/in_systm.h> 63 #include <netinet/in.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 #include <netinet/udp.h> 67 #include <netinet/tcp.h> 68 #include <netinet/sctp.h> 69 70 #include <machine/bus.h> 71 #include <machine/resource.h> 72 #include <sys/bus.h> 73 #include <sys/rman.h> 74 75 #include <dev/virtio/virtio.h> 76 #include <dev/virtio/virtqueue.h> 77 #include <dev/virtio/network/virtio_net.h> 78 #include <dev/virtio/network/if_vtnetvar.h> 79 80 #include "virtio_if.h" 81 82 static int vtnet_modevent(module_t, int, void *); 83 84 static int vtnet_probe(device_t); 85 static int vtnet_attach(device_t); 86 static int vtnet_detach(device_t); 87 static int vtnet_suspend(device_t); 88 static int vtnet_resume(device_t); 89 static int vtnet_shutdown(device_t); 90 static int vtnet_config_change(device_t); 91 92 static void vtnet_negotiate_features(struct vtnet_softc *); 93 static int vtnet_alloc_virtqueues(struct vtnet_softc *); 94 static void vtnet_get_hwaddr(struct vtnet_softc *); 95 static void vtnet_set_hwaddr(struct vtnet_softc *); 96 static int vtnet_is_link_up(struct vtnet_softc *); 97 static void vtnet_update_link_status(struct vtnet_softc *); 98 static void vtnet_watchdog(struct vtnet_softc *); 99 static int vtnet_change_mtu(struct vtnet_softc *, int); 100 static int vtnet_ioctl(struct ifnet *, u_long, caddr_t); 101 102 static int vtnet_init_rx_vq(struct vtnet_softc *); 103 static void vtnet_free_rx_mbufs(struct vtnet_softc *); 104 static void vtnet_free_tx_mbufs(struct vtnet_softc *); 105 static void vtnet_free_ctrl_vq(struct vtnet_softc *); 106 107 #ifdef DEVICE_POLLING 108 static poll_handler_t vtnet_poll; 109 #endif 110 111 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int, 112 struct mbuf **); 113 static int vtnet_replace_rxbuf(struct vtnet_softc *, 114 struct mbuf *, int); 115 static int vtnet_newbuf(struct vtnet_softc *); 116 static void vtnet_discard_merged_rxbuf(struct vtnet_softc *, int); 117 static void vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *); 118 static int vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *); 119 static void vtnet_vlan_tag_remove(struct mbuf *); 120 static int vtnet_rx_csum(struct vtnet_softc *, struct mbuf *, 121 struct virtio_net_hdr *); 122 static int vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int); 123 static int vtnet_rxeof(struct vtnet_softc *, int, int *); 124 static void vtnet_rx_vq_intr(void *); 125 126 static void vtnet_txeof(struct vtnet_softc *); 127 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *, 128 struct virtio_net_hdr *); 129 static int vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **, 130 struct vtnet_tx_header *); 131 static int vtnet_encap(struct vtnet_softc *, struct mbuf **); 132 static void vtnet_start_locked(struct ifnet *); 133 static void vtnet_start(struct ifnet *); 134 static void vtnet_tick(void *); 135 static void vtnet_tx_vq_intr(void *); 136 137 static void vtnet_stop(struct vtnet_softc *); 138 static int vtnet_reinit(struct vtnet_softc *); 139 static void vtnet_init_locked(struct vtnet_softc *); 140 static void vtnet_init(void *); 141 142 static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, 143 struct sglist *, int, int); 144 145 static void vtnet_rx_filter(struct vtnet_softc *sc); 146 static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); 147 static int vtnet_set_promisc(struct vtnet_softc *, int); 148 static int vtnet_set_allmulti(struct vtnet_softc *, int); 149 static void vtnet_rx_filter_mac(struct vtnet_softc *); 150 151 static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); 152 static void vtnet_rx_filter_vlan(struct vtnet_softc *); 153 static void vtnet_set_vlan_filter(struct vtnet_softc *, int, uint16_t); 154 static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); 155 static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); 156 157 static int vtnet_ifmedia_upd(struct ifnet *); 158 static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); 159 160 static void vtnet_add_statistics(struct vtnet_softc *); 161 162 static int vtnet_enable_rx_intr(struct vtnet_softc *); 163 static int vtnet_enable_tx_intr(struct vtnet_softc *); 164 static void vtnet_disable_rx_intr(struct vtnet_softc *); 165 static void vtnet_disable_tx_intr(struct vtnet_softc *); 166 167 /* Tunables. */ 168 static int vtnet_csum_disable = 0; 169 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); 170 static int vtnet_tso_disable = 0; 171 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); 172 static int vtnet_lro_disable = 0; 173 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); 174 175 /* 176 * Reducing the number of transmit completed interrupts can 177 * improve performance. To do so, the define below keeps the 178 * Tx vq interrupt disabled and adds calls to vtnet_txeof() 179 * in the start and watchdog paths. The price to pay for this 180 * is the m_free'ing of transmitted mbufs may be delayed until 181 * the watchdog fires. 182 */ 183 #define VTNET_TX_INTR_MODERATION 184 185 static uma_zone_t vtnet_tx_header_zone; 186 187 static struct virtio_feature_desc vtnet_feature_desc[] = { 188 { VIRTIO_NET_F_CSUM, "TxChecksum" }, 189 { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, 190 { VIRTIO_NET_F_MAC, "MacAddress" }, 191 { VIRTIO_NET_F_GSO, "TxAllGSO" }, 192 { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, 193 { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, 194 { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, 195 { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, 196 { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, 197 { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, 198 { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, 199 { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, 200 { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, 201 { VIRTIO_NET_F_STATUS, "Status" }, 202 { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, 203 { VIRTIO_NET_F_CTRL_RX, "RxMode" }, 204 { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, 205 { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, 206 207 { 0, NULL } 208 }; 209 210 static device_method_t vtnet_methods[] = { 211 /* Device methods. */ 212 DEVMETHOD(device_probe, vtnet_probe), 213 DEVMETHOD(device_attach, vtnet_attach), 214 DEVMETHOD(device_detach, vtnet_detach), 215 DEVMETHOD(device_suspend, vtnet_suspend), 216 DEVMETHOD(device_resume, vtnet_resume), 217 DEVMETHOD(device_shutdown, vtnet_shutdown), 218 219 /* VirtIO methods. */ 220 DEVMETHOD(virtio_config_change, vtnet_config_change), 221 222 DEVMETHOD_END 223 }; 224 225 static driver_t vtnet_driver = { 226 "vtnet", 227 vtnet_methods, 228 sizeof(struct vtnet_softc) 229 }; 230 static devclass_t vtnet_devclass; 231 232 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, 233 vtnet_modevent, 0); 234 MODULE_VERSION(vtnet, 1); 235 MODULE_DEPEND(vtnet, virtio, 1, 1, 1); 236 237 static int 238 vtnet_modevent(module_t mod, int type, void *unused) 239 { 240 int error; 241 242 error = 0; 243 244 switch (type) { 245 case MOD_LOAD: 246 vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", 247 sizeof(struct vtnet_tx_header), 248 NULL, NULL, NULL, NULL, 0, 0); 249 break; 250 case MOD_QUIESCE: 251 case MOD_UNLOAD: 252 if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) 253 error = EBUSY; 254 else if (type == MOD_UNLOAD) { 255 uma_zdestroy(vtnet_tx_header_zone); 256 vtnet_tx_header_zone = NULL; 257 } 258 break; 259 case MOD_SHUTDOWN: 260 break; 261 default: 262 error = EOPNOTSUPP; 263 break; 264 } 265 266 return (error); 267 } 268 269 static int 270 vtnet_probe(device_t dev) 271 { 272 273 if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK) 274 return (ENXIO); 275 276 device_set_desc(dev, "VirtIO Networking Adapter"); 277 278 return (BUS_PROBE_DEFAULT); 279 } 280 281 static int 282 vtnet_attach(device_t dev) 283 { 284 struct vtnet_softc *sc; 285 struct ifnet *ifp; 286 int tx_size, error; 287 288 sc = device_get_softc(dev); 289 sc->vtnet_dev = dev; 290 291 VTNET_LOCK_INIT(sc); 292 callout_init_mtx(&sc->vtnet_tick_ch, VTNET_MTX(sc), 0); 293 294 ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, 295 vtnet_ifmedia_sts); 296 ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); 297 ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); 298 299 vtnet_add_statistics(sc); 300 301 virtio_set_feature_desc(dev, vtnet_feature_desc); 302 vtnet_negotiate_features(sc); 303 304 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { 305 sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; 306 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); 307 } else 308 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); 309 310 sc->vtnet_rx_mbuf_size = MCLBYTES; 311 sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); 312 313 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { 314 sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; 315 316 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) { 317 sc->vtnet_mac_filter = malloc( 318 sizeof(struct vtnet_mac_filter), M_DEVBUF, 319 M_NOWAIT | M_ZERO); 320 if (sc->vtnet_mac_filter == NULL) { 321 device_printf(dev, 322 "cannot allocate mac filter table\n"); 323 error = ENOMEM; 324 goto fail; 325 } 326 327 sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; 328 } 329 330 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) 331 sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; 332 } 333 334 vtnet_get_hwaddr(sc); 335 336 error = vtnet_alloc_virtqueues(sc); 337 if (error) { 338 device_printf(dev, "cannot allocate virtqueues\n"); 339 goto fail; 340 } 341 342 ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); 343 if (ifp == NULL) { 344 device_printf(dev, "cannot allocate ifnet structure\n"); 345 error = ENOSPC; 346 goto fail; 347 } 348 349 ifp->if_softc = sc; 350 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 351 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 352 ifp->if_init = vtnet_init; 353 ifp->if_start = vtnet_start; 354 ifp->if_ioctl = vtnet_ioctl; 355 356 sc->vtnet_rx_size = virtqueue_size(sc->vtnet_rx_vq); 357 sc->vtnet_rx_process_limit = sc->vtnet_rx_size; 358 359 tx_size = virtqueue_size(sc->vtnet_tx_vq); 360 sc->vtnet_tx_size = tx_size; 361 IFQ_SET_MAXLEN(&ifp->if_snd, tx_size - 1); 362 ifp->if_snd.ifq_drv_maxlen = tx_size - 1; 363 IFQ_SET_READY(&ifp->if_snd); 364 365 ether_ifattach(ifp, sc->vtnet_hwaddr); 366 367 if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) 368 ifp->if_capabilities |= IFCAP_LINKSTATE; 369 370 /* Tell the upper layer(s) we support long frames. */ 371 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 372 ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; 373 374 if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { 375 ifp->if_capabilities |= IFCAP_TXCSUM; 376 377 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) 378 ifp->if_capabilities |= IFCAP_TSO4; 379 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 380 ifp->if_capabilities |= IFCAP_TSO6; 381 if (ifp->if_capabilities & IFCAP_TSO) 382 ifp->if_capabilities |= IFCAP_VLAN_HWTSO; 383 384 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) 385 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 386 } 387 388 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { 389 ifp->if_capabilities |= IFCAP_RXCSUM; 390 391 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || 392 virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) 393 ifp->if_capabilities |= IFCAP_LRO; 394 } 395 396 if (ifp->if_capabilities & IFCAP_HWCSUM) { 397 /* 398 * VirtIO does not support VLAN tagging, but we can fake 399 * it by inserting and removing the 802.1Q header during 400 * transmit and receive. We are then able to do checksum 401 * offloading of VLAN frames. 402 */ 403 ifp->if_capabilities |= 404 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 405 } 406 407 ifp->if_capenable = ifp->if_capabilities; 408 409 /* 410 * Capabilities after here are not enabled by default. 411 */ 412 413 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 414 ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; 415 416 sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, 417 vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); 418 sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, 419 vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); 420 } 421 422 #ifdef DEVICE_POLLING 423 ifp->if_capabilities |= IFCAP_POLLING; 424 #endif 425 426 error = virtio_setup_intr(dev, INTR_TYPE_NET); 427 if (error) { 428 device_printf(dev, "cannot setup virtqueue interrupts\n"); 429 ether_ifdetach(ifp); 430 goto fail; 431 } 432 433 /* 434 * Device defaults to promiscuous mode for backwards 435 * compatibility. Turn it off if possible. 436 */ 437 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 438 VTNET_LOCK(sc); 439 if (vtnet_set_promisc(sc, 0) != 0) { 440 ifp->if_flags |= IFF_PROMISC; 441 device_printf(dev, 442 "cannot disable promiscuous mode\n"); 443 } 444 VTNET_UNLOCK(sc); 445 } else 446 ifp->if_flags |= IFF_PROMISC; 447 448 fail: 449 if (error) 450 vtnet_detach(dev); 451 452 return (error); 453 } 454 455 static int 456 vtnet_detach(device_t dev) 457 { 458 struct vtnet_softc *sc; 459 struct ifnet *ifp; 460 461 sc = device_get_softc(dev); 462 ifp = sc->vtnet_ifp; 463 464 KASSERT(mtx_initialized(VTNET_MTX(sc)), 465 ("vtnet mutex not initialized")); 466 467 #ifdef DEVICE_POLLING 468 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 469 ether_poll_deregister(ifp); 470 #endif 471 472 if (device_is_attached(dev)) { 473 VTNET_LOCK(sc); 474 vtnet_stop(sc); 475 VTNET_UNLOCK(sc); 476 477 callout_drain(&sc->vtnet_tick_ch); 478 479 ether_ifdetach(ifp); 480 } 481 482 if (sc->vtnet_vlan_attach != NULL) { 483 EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); 484 sc->vtnet_vlan_attach = NULL; 485 } 486 if (sc->vtnet_vlan_detach != NULL) { 487 EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach); 488 sc->vtnet_vlan_detach = NULL; 489 } 490 491 if (sc->vtnet_mac_filter != NULL) { 492 free(sc->vtnet_mac_filter, M_DEVBUF); 493 sc->vtnet_mac_filter = NULL; 494 } 495 496 if (ifp != NULL) { 497 if_free(ifp); 498 sc->vtnet_ifp = NULL; 499 } 500 501 if (sc->vtnet_rx_vq != NULL) 502 vtnet_free_rx_mbufs(sc); 503 if (sc->vtnet_tx_vq != NULL) 504 vtnet_free_tx_mbufs(sc); 505 if (sc->vtnet_ctrl_vq != NULL) 506 vtnet_free_ctrl_vq(sc); 507 508 ifmedia_removeall(&sc->vtnet_media); 509 VTNET_LOCK_DESTROY(sc); 510 511 return (0); 512 } 513 514 static int 515 vtnet_suspend(device_t dev) 516 { 517 struct vtnet_softc *sc; 518 519 sc = device_get_softc(dev); 520 521 VTNET_LOCK(sc); 522 vtnet_stop(sc); 523 sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; 524 VTNET_UNLOCK(sc); 525 526 return (0); 527 } 528 529 static int 530 vtnet_resume(device_t dev) 531 { 532 struct vtnet_softc *sc; 533 struct ifnet *ifp; 534 535 sc = device_get_softc(dev); 536 ifp = sc->vtnet_ifp; 537 538 VTNET_LOCK(sc); 539 if (ifp->if_flags & IFF_UP) 540 vtnet_init_locked(sc); 541 sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; 542 VTNET_UNLOCK(sc); 543 544 return (0); 545 } 546 547 static int 548 vtnet_shutdown(device_t dev) 549 { 550 551 /* 552 * Suspend already does all of what we need to 553 * do here; we just never expect to be resumed. 554 */ 555 return (vtnet_suspend(dev)); 556 } 557 558 static int 559 vtnet_config_change(device_t dev) 560 { 561 struct vtnet_softc *sc; 562 563 sc = device_get_softc(dev); 564 565 VTNET_LOCK(sc); 566 vtnet_update_link_status(sc); 567 VTNET_UNLOCK(sc); 568 569 return (0); 570 } 571 572 static void 573 vtnet_negotiate_features(struct vtnet_softc *sc) 574 { 575 device_t dev; 576 uint64_t mask, features; 577 578 dev = sc->vtnet_dev; 579 mask = 0; 580 581 if (vtnet_csum_disable) 582 mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; 583 584 /* 585 * TSO and LRO are only available when their corresponding 586 * checksum offload feature is also negotiated. 587 */ 588 589 if (vtnet_csum_disable || vtnet_tso_disable) 590 mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 | 591 VIRTIO_NET_F_HOST_ECN; 592 593 if (vtnet_csum_disable || vtnet_lro_disable) 594 mask |= VTNET_LRO_FEATURES; 595 596 features = VTNET_FEATURES & ~mask; 597 #ifdef VTNET_TX_INTR_MODERATION 598 features |= VIRTIO_F_NOTIFY_ON_EMPTY; 599 #endif 600 sc->vtnet_features = virtio_negotiate_features(dev, features); 601 602 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0 && 603 virtio_with_feature(dev, VTNET_LRO_FEATURES)) { 604 /* 605 * LRO without mergeable buffers requires special care. This 606 * is not ideal because every receive buffer must be large 607 * enough to hold the maximum TCP packet, the Ethernet header, 608 * and the vtnet_rx_header. This requires up to 34 descriptors 609 * when using MCLBYTES clusters. If we do not have indirect 610 * descriptors, LRO is disabled since the virtqueue will not 611 * be able to contain very many receive buffers. 612 */ 613 if (virtio_with_feature(dev, 614 VIRTIO_RING_F_INDIRECT_DESC) == 0) { 615 device_printf(dev, 616 "LRO disabled due to lack of both mergeable " 617 "buffers and indirect descriptors\n"); 618 619 sc->vtnet_features = virtio_negotiate_features(dev, 620 features & ~VTNET_LRO_FEATURES); 621 } else 622 sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; 623 } 624 } 625 626 static int 627 vtnet_alloc_virtqueues(struct vtnet_softc *sc) 628 { 629 device_t dev; 630 struct vq_alloc_info vq_info[3]; 631 int nvqs, rxsegs; 632 633 dev = sc->vtnet_dev; 634 nvqs = 2; 635 636 /* 637 * Indirect descriptors are not needed for the Rx 638 * virtqueue when mergeable buffers are negotiated. 639 * The header is placed inline with the data, not 640 * in a separate descriptor, and mbuf clusters are 641 * always physically contiguous. 642 */ 643 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 644 rxsegs = sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ? 645 VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS; 646 } else 647 rxsegs = 0; 648 649 VQ_ALLOC_INFO_INIT(&vq_info[0], rxsegs, 650 vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq, 651 "%s receive", device_get_nameunit(dev)); 652 653 VQ_ALLOC_INFO_INIT(&vq_info[1], VTNET_MAX_TX_SEGS, 654 vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq, 655 "%s transmit", device_get_nameunit(dev)); 656 657 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 658 nvqs++; 659 660 VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL, 661 &sc->vtnet_ctrl_vq, "%s control", 662 device_get_nameunit(dev)); 663 } 664 665 return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info)); 666 } 667 668 static void 669 vtnet_get_hwaddr(struct vtnet_softc *sc) 670 { 671 device_t dev; 672 673 dev = sc->vtnet_dev; 674 675 if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { 676 virtio_read_device_config(dev, 677 offsetof(struct virtio_net_config, mac), 678 sc->vtnet_hwaddr, ETHER_ADDR_LEN); 679 } else { 680 /* Generate random locally administered unicast address. */ 681 sc->vtnet_hwaddr[0] = 0xB2; 682 arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); 683 684 vtnet_set_hwaddr(sc); 685 } 686 } 687 688 static void 689 vtnet_set_hwaddr(struct vtnet_softc *sc) 690 { 691 device_t dev; 692 693 dev = sc->vtnet_dev; 694 695 virtio_write_device_config(dev, 696 offsetof(struct virtio_net_config, mac), 697 sc->vtnet_hwaddr, ETHER_ADDR_LEN); 698 } 699 700 static int 701 vtnet_is_link_up(struct vtnet_softc *sc) 702 { 703 device_t dev; 704 struct ifnet *ifp; 705 uint16_t status; 706 707 dev = sc->vtnet_dev; 708 ifp = sc->vtnet_ifp; 709 710 VTNET_LOCK_ASSERT(sc); 711 712 if ((ifp->if_capenable & IFCAP_LINKSTATE) == 0) 713 return (1); 714 715 status = virtio_read_dev_config_2(dev, 716 offsetof(struct virtio_net_config, status)); 717 718 return ((status & VIRTIO_NET_S_LINK_UP) != 0); 719 } 720 721 static void 722 vtnet_update_link_status(struct vtnet_softc *sc) 723 { 724 struct ifnet *ifp; 725 int link; 726 727 ifp = sc->vtnet_ifp; 728 729 link = vtnet_is_link_up(sc); 730 731 if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) { 732 sc->vtnet_flags |= VTNET_FLAG_LINK; 733 if_link_state_change(ifp, LINK_STATE_UP); 734 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 735 vtnet_start_locked(ifp); 736 } else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) { 737 sc->vtnet_flags &= ~VTNET_FLAG_LINK; 738 if_link_state_change(ifp, LINK_STATE_DOWN); 739 } 740 } 741 742 static void 743 vtnet_watchdog(struct vtnet_softc *sc) 744 { 745 struct ifnet *ifp; 746 747 ifp = sc->vtnet_ifp; 748 749 #ifdef VTNET_TX_INTR_MODERATION 750 vtnet_txeof(sc); 751 #endif 752 753 if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer) 754 return; 755 756 if_printf(ifp, "watchdog timeout -- resetting\n"); 757 #ifdef VTNET_DEBUG 758 virtqueue_dump(sc->vtnet_tx_vq); 759 #endif 760 ifp->if_oerrors++; 761 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 762 vtnet_init_locked(sc); 763 } 764 765 static int 766 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 767 { 768 struct vtnet_softc *sc; 769 struct ifreq *ifr; 770 int reinit, mask, error; 771 772 sc = ifp->if_softc; 773 ifr = (struct ifreq *) data; 774 reinit = 0; 775 error = 0; 776 777 switch (cmd) { 778 case SIOCSIFMTU: 779 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU) 780 error = EINVAL; 781 else if (ifp->if_mtu != ifr->ifr_mtu) { 782 VTNET_LOCK(sc); 783 error = vtnet_change_mtu(sc, ifr->ifr_mtu); 784 VTNET_UNLOCK(sc); 785 } 786 break; 787 788 case SIOCSIFFLAGS: 789 VTNET_LOCK(sc); 790 if ((ifp->if_flags & IFF_UP) == 0) { 791 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 792 vtnet_stop(sc); 793 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 794 if ((ifp->if_flags ^ sc->vtnet_if_flags) & 795 (IFF_PROMISC | IFF_ALLMULTI)) { 796 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) 797 vtnet_rx_filter(sc); 798 else 799 error = ENOTSUP; 800 } 801 } else 802 vtnet_init_locked(sc); 803 804 if (error == 0) 805 sc->vtnet_if_flags = ifp->if_flags; 806 VTNET_UNLOCK(sc); 807 break; 808 809 case SIOCADDMULTI: 810 case SIOCDELMULTI: 811 VTNET_LOCK(sc); 812 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) && 813 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 814 vtnet_rx_filter_mac(sc); 815 VTNET_UNLOCK(sc); 816 break; 817 818 case SIOCSIFMEDIA: 819 case SIOCGIFMEDIA: 820 error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); 821 break; 822 823 case SIOCSIFCAP: 824 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 825 826 #ifdef DEVICE_POLLING 827 if (mask & IFCAP_POLLING) { 828 if (ifr->ifr_reqcap & IFCAP_POLLING) { 829 error = ether_poll_register(vtnet_poll, ifp); 830 if (error) 831 break; 832 833 VTNET_LOCK(sc); 834 vtnet_disable_rx_intr(sc); 835 vtnet_disable_tx_intr(sc); 836 ifp->if_capenable |= IFCAP_POLLING; 837 VTNET_UNLOCK(sc); 838 } else { 839 error = ether_poll_deregister(ifp); 840 841 /* Enable interrupts even in error case. */ 842 VTNET_LOCK(sc); 843 vtnet_enable_tx_intr(sc); 844 vtnet_enable_rx_intr(sc); 845 ifp->if_capenable &= ~IFCAP_POLLING; 846 VTNET_UNLOCK(sc); 847 } 848 } 849 #endif 850 VTNET_LOCK(sc); 851 852 if (mask & IFCAP_TXCSUM) { 853 ifp->if_capenable ^= IFCAP_TXCSUM; 854 if (ifp->if_capenable & IFCAP_TXCSUM) 855 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 856 else 857 ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD; 858 } 859 860 if (mask & IFCAP_TSO4) { 861 ifp->if_capenable ^= IFCAP_TSO4; 862 if (ifp->if_capenable & IFCAP_TSO4) 863 ifp->if_hwassist |= CSUM_TSO; 864 else 865 ifp->if_hwassist &= ~CSUM_TSO; 866 } 867 868 if (mask & IFCAP_RXCSUM) { 869 ifp->if_capenable ^= IFCAP_RXCSUM; 870 reinit = 1; 871 } 872 873 if (mask & IFCAP_LRO) { 874 ifp->if_capenable ^= IFCAP_LRO; 875 reinit = 1; 876 } 877 878 if (mask & IFCAP_VLAN_HWFILTER) { 879 ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; 880 reinit = 1; 881 } 882 883 if (mask & IFCAP_VLAN_HWTSO) 884 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 885 886 if (mask & IFCAP_VLAN_HWTAGGING) 887 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 888 889 if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 890 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 891 vtnet_init_locked(sc); 892 } 893 VLAN_CAPABILITIES(ifp); 894 895 VTNET_UNLOCK(sc); 896 break; 897 898 default: 899 error = ether_ioctl(ifp, cmd, data); 900 break; 901 } 902 903 VTNET_LOCK_ASSERT_NOTOWNED(sc); 904 905 return (error); 906 } 907 908 static int 909 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) 910 { 911 struct ifnet *ifp; 912 int new_frame_size, clsize; 913 914 ifp = sc->vtnet_ifp; 915 916 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 917 new_frame_size = sizeof(struct vtnet_rx_header) + 918 sizeof(struct ether_vlan_header) + new_mtu; 919 920 if (new_frame_size > MJUM9BYTES) 921 return (EINVAL); 922 923 if (new_frame_size <= MCLBYTES) 924 clsize = MCLBYTES; 925 else 926 clsize = MJUM9BYTES; 927 } else { 928 new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) + 929 sizeof(struct ether_vlan_header) + new_mtu; 930 931 if (new_frame_size <= MCLBYTES) 932 clsize = MCLBYTES; 933 else 934 clsize = MJUMPAGESIZE; 935 } 936 937 sc->vtnet_rx_mbuf_size = clsize; 938 sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); 939 KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS, 940 ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count)); 941 942 ifp->if_mtu = new_mtu; 943 944 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 945 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 946 vtnet_init_locked(sc); 947 } 948 949 return (0); 950 } 951 952 static int 953 vtnet_init_rx_vq(struct vtnet_softc *sc) 954 { 955 struct virtqueue *vq; 956 int nbufs, error; 957 958 vq = sc->vtnet_rx_vq; 959 nbufs = 0; 960 error = ENOSPC; 961 962 while (!virtqueue_full(vq)) { 963 if ((error = vtnet_newbuf(sc)) != 0) 964 break; 965 nbufs++; 966 } 967 968 if (nbufs > 0) { 969 virtqueue_notify(vq); 970 971 /* 972 * EMSGSIZE signifies the virtqueue did not have enough 973 * entries available to hold the last mbuf. This is not 974 * an error. We should not get ENOSPC since we check if 975 * the virtqueue is full before attempting to add a 976 * buffer. 977 */ 978 if (error == EMSGSIZE) 979 error = 0; 980 } 981 982 return (error); 983 } 984 985 static void 986 vtnet_free_rx_mbufs(struct vtnet_softc *sc) 987 { 988 struct virtqueue *vq; 989 struct mbuf *m; 990 int last; 991 992 vq = sc->vtnet_rx_vq; 993 last = 0; 994 995 while ((m = virtqueue_drain(vq, &last)) != NULL) 996 m_freem(m); 997 998 KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq")); 999 } 1000 1001 static void 1002 vtnet_free_tx_mbufs(struct vtnet_softc *sc) 1003 { 1004 struct virtqueue *vq; 1005 struct vtnet_tx_header *txhdr; 1006 int last; 1007 1008 vq = sc->vtnet_tx_vq; 1009 last = 0; 1010 1011 while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { 1012 m_freem(txhdr->vth_mbuf); 1013 uma_zfree(vtnet_tx_header_zone, txhdr); 1014 } 1015 1016 KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq")); 1017 } 1018 1019 static void 1020 vtnet_free_ctrl_vq(struct vtnet_softc *sc) 1021 { 1022 1023 /* 1024 * The control virtqueue is only polled, therefore 1025 * it should already be empty. 1026 */ 1027 KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq), 1028 ("Ctrl Vq not empty")); 1029 } 1030 1031 #ifdef DEVICE_POLLING 1032 static int 1033 vtnet_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1034 { 1035 struct vtnet_softc *sc; 1036 int rx_done; 1037 1038 sc = ifp->if_softc; 1039 rx_done = 0; 1040 1041 VTNET_LOCK(sc); 1042 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1043 if (cmd == POLL_AND_CHECK_STATUS) 1044 vtnet_update_link_status(sc); 1045 1046 if (virtqueue_nused(sc->vtnet_rx_vq) > 0) 1047 vtnet_rxeof(sc, count, &rx_done); 1048 1049 vtnet_txeof(sc); 1050 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1051 vtnet_start_locked(ifp); 1052 } 1053 VTNET_UNLOCK(sc); 1054 1055 return (rx_done); 1056 } 1057 #endif /* DEVICE_POLLING */ 1058 1059 static struct mbuf * 1060 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) 1061 { 1062 struct mbuf *m_head, *m_tail, *m; 1063 int i, clsize; 1064 1065 clsize = sc->vtnet_rx_mbuf_size; 1066 1067 m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize); 1068 if (m_head == NULL) 1069 goto fail; 1070 1071 m_head->m_len = clsize; 1072 m_tail = m_head; 1073 1074 if (nbufs > 1) { 1075 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, 1076 ("chained Rx mbuf requested without LRO_NOMRG")); 1077 1078 for (i = 1; i < nbufs; i++) { 1079 m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize); 1080 if (m == NULL) 1081 goto fail; 1082 1083 m->m_len = clsize; 1084 m_tail->m_next = m; 1085 m_tail = m; 1086 } 1087 } 1088 1089 if (m_tailp != NULL) 1090 *m_tailp = m_tail; 1091 1092 return (m_head); 1093 1094 fail: 1095 sc->vtnet_stats.mbuf_alloc_failed++; 1096 m_freem(m_head); 1097 1098 return (NULL); 1099 } 1100 1101 static int 1102 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0) 1103 { 1104 struct mbuf *m, *m_prev; 1105 struct mbuf *m_new, *m_tail; 1106 int len, clsize, nreplace, error; 1107 1108 m = m0; 1109 m_prev = NULL; 1110 len = len0; 1111 1112 m_tail = NULL; 1113 clsize = sc->vtnet_rx_mbuf_size; 1114 nreplace = 0; 1115 1116 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || 1117 m->m_next == NULL, ("chained Rx mbuf without LRO_NOMRG")); 1118 1119 /* 1120 * Since LRO_NOMRG mbuf chains are so large, we want to avoid 1121 * allocating an entire chain for each received frame. When 1122 * the received frame's length is less than that of the chain, 1123 * the unused mbufs are reassigned to the new chain. 1124 */ 1125 while (len > 0) { 1126 /* 1127 * Something is seriously wrong if we received 1128 * a frame larger than the mbuf chain. Drop it. 1129 */ 1130 if (m == NULL) { 1131 sc->vtnet_stats.rx_frame_too_large++; 1132 return (EMSGSIZE); 1133 } 1134 1135 KASSERT(m->m_len == clsize, 1136 ("mbuf length not expected cluster size: %d", 1137 m->m_len)); 1138 1139 m->m_len = MIN(m->m_len, len); 1140 len -= m->m_len; 1141 1142 m_prev = m; 1143 m = m->m_next; 1144 nreplace++; 1145 } 1146 1147 KASSERT(m_prev != NULL, ("m_prev == NULL")); 1148 KASSERT(nreplace <= sc->vtnet_rx_mbuf_count, 1149 ("too many replacement mbufs: %d/%d", nreplace, 1150 sc->vtnet_rx_mbuf_count)); 1151 1152 m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail); 1153 if (m_new == NULL) { 1154 m_prev->m_len = clsize; 1155 return (ENOBUFS); 1156 } 1157 1158 /* 1159 * Move unused mbufs, if any, from the original chain 1160 * onto the end of the new chain. 1161 */ 1162 if (m_prev->m_next != NULL) { 1163 m_tail->m_next = m_prev->m_next; 1164 m_prev->m_next = NULL; 1165 } 1166 1167 error = vtnet_enqueue_rxbuf(sc, m_new); 1168 if (error) { 1169 /* 1170 * BAD! We could not enqueue the replacement mbuf chain. We 1171 * must restore the m0 chain to the original state if it was 1172 * modified so we can subsequently discard it. 1173 * 1174 * NOTE: The replacement is suppose to be an identical copy 1175 * to the one just dequeued so this is an unexpected error. 1176 */ 1177 sc->vtnet_stats.rx_enq_replacement_failed++; 1178 1179 if (m_tail->m_next != NULL) { 1180 m_prev->m_next = m_tail->m_next; 1181 m_tail->m_next = NULL; 1182 } 1183 1184 m_prev->m_len = clsize; 1185 m_freem(m_new); 1186 } 1187 1188 return (error); 1189 } 1190 1191 static int 1192 vtnet_newbuf(struct vtnet_softc *sc) 1193 { 1194 struct mbuf *m; 1195 int error; 1196 1197 m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL); 1198 if (m == NULL) 1199 return (ENOBUFS); 1200 1201 error = vtnet_enqueue_rxbuf(sc, m); 1202 if (error) 1203 m_freem(m); 1204 1205 return (error); 1206 } 1207 1208 static void 1209 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs) 1210 { 1211 struct virtqueue *vq; 1212 struct mbuf *m; 1213 1214 vq = sc->vtnet_rx_vq; 1215 1216 while (--nbufs > 0) { 1217 if ((m = virtqueue_dequeue(vq, NULL)) == NULL) 1218 break; 1219 vtnet_discard_rxbuf(sc, m); 1220 } 1221 } 1222 1223 static void 1224 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m) 1225 { 1226 int error; 1227 1228 /* 1229 * Requeue the discarded mbuf. This should always be 1230 * successful since it was just dequeued. 1231 */ 1232 error = vtnet_enqueue_rxbuf(sc, m); 1233 KASSERT(error == 0, ("cannot requeue discarded mbuf")); 1234 } 1235 1236 static int 1237 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m) 1238 { 1239 struct sglist sg; 1240 struct sglist_seg segs[VTNET_MAX_RX_SEGS]; 1241 struct vtnet_rx_header *rxhdr; 1242 struct virtio_net_hdr *hdr; 1243 uint8_t *mdata; 1244 int offset, error; 1245 1246 VTNET_LOCK_ASSERT(sc); 1247 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || 1248 m->m_next == NULL, ("chained Rx mbuf without LRO_NOMRG")); 1249 1250 sglist_init(&sg, VTNET_MAX_RX_SEGS, segs); 1251 1252 mdata = mtod(m, uint8_t *); 1253 offset = 0; 1254 1255 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1256 rxhdr = (struct vtnet_rx_header *) mdata; 1257 hdr = &rxhdr->vrh_hdr; 1258 offset += sizeof(struct vtnet_rx_header); 1259 1260 error = sglist_append(&sg, hdr, sc->vtnet_hdr_size); 1261 KASSERT(error == 0, ("cannot add header to sglist")); 1262 } 1263 1264 error = sglist_append(&sg, mdata + offset, m->m_len - offset); 1265 if (error) 1266 return (error); 1267 1268 if (m->m_next != NULL) { 1269 error = sglist_append_mbuf(&sg, m->m_next); 1270 if (error) 1271 return (error); 1272 } 1273 1274 return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg)); 1275 } 1276 1277 static void 1278 vtnet_vlan_tag_remove(struct mbuf *m) 1279 { 1280 struct ether_vlan_header *evl; 1281 1282 evl = mtod(m, struct ether_vlan_header *); 1283 1284 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 1285 m->m_flags |= M_VLANTAG; 1286 1287 /* Strip the 802.1Q header. */ 1288 bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN, 1289 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1290 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1291 } 1292 1293 #ifdef notyet 1294 static int 1295 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m, 1296 struct virtio_net_hdr *hdr) 1297 { 1298 struct ether_header *eh; 1299 struct ether_vlan_header *evh; 1300 struct ip *ip; 1301 struct ip6_hdr *ip6; 1302 struct udphdr *udp; 1303 int ip_offset, csum_start, csum_offset, hlen; 1304 uint16_t eth_type; 1305 uint8_t ip_proto; 1306 1307 /* 1308 * Convert the VirtIO checksum interface to FreeBSD's interface. 1309 * The host only provides us with the offset at which to start 1310 * checksumming, and the offset from that to place the completed 1311 * checksum. While this maps well with how Linux does checksums, 1312 * for FreeBSD, we must parse the received packet in order to set 1313 * the appropriate CSUM_* flags. 1314 */ 1315 1316 /* 1317 * Every mbuf added to the receive virtqueue is always at least 1318 * MCLBYTES big, so assume something is amiss if the first mbuf 1319 * does not contain both the Ethernet and protocol headers. 1320 */ 1321 ip_offset = sizeof(struct ether_header); 1322 if (m->m_len < ip_offset) 1323 return (1); 1324 1325 eh = mtod(m, struct ether_header *); 1326 eth_type = ntohs(eh->ether_type); 1327 if (eth_type == ETHERTYPE_VLAN) { 1328 ip_offset = sizeof(struct ether_vlan_header); 1329 if (m->m_len < ip_offset) 1330 return (1); 1331 evh = mtod(m, struct ether_vlan_header *); 1332 eth_type = ntohs(evh->evl_proto); 1333 } 1334 1335 switch (eth_type) { 1336 case ETHERTYPE_IP: 1337 if (m->m_len < ip_offset + sizeof(struct ip)) 1338 return (1); 1339 1340 ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset); 1341 /* Sanity check the IP header. */ 1342 if (ip->ip_v != IPVERSION) 1343 return (1); 1344 hlen = ip->ip_hl << 2; 1345 if (hlen < sizeof(struct ip)) 1346 return (1); 1347 if (ntohs(ip->ip_len) < hlen) 1348 return (1); 1349 if (ntohs(ip->ip_len) != (m->m_pkthdr.len - ip_offset)) 1350 return (1); 1351 1352 ip_proto = ip->ip_p; 1353 csum_start = ip_offset + hlen; 1354 break; 1355 1356 case ETHERTYPE_IPV6: 1357 if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) 1358 return (1); 1359 1360 /* 1361 * XXX FreeBSD does not handle any IPv6 checksum offloading 1362 * at the moment. 1363 */ 1364 1365 ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset); 1366 /* XXX Assume no extension headers are present. */ 1367 ip_proto = ip6->ip6_nxt; 1368 csum_start = ip_offset + sizeof(struct ip6_hdr); 1369 break; 1370 1371 default: 1372 sc->vtnet_stats.rx_csum_bad_ethtype++; 1373 return (1); 1374 } 1375 1376 /* Assume checksum begins right after the IP header. */ 1377 if (hdr->csum_start != csum_start) { 1378 sc->vtnet_stats.rx_csum_bad_start++; 1379 return (1); 1380 } 1381 1382 switch (ip_proto) { 1383 case IPPROTO_TCP: 1384 csum_offset = offsetof(struct tcphdr, th_sum); 1385 break; 1386 1387 case IPPROTO_UDP: 1388 csum_offset = offsetof(struct udphdr, uh_sum); 1389 break; 1390 1391 case IPPROTO_SCTP: 1392 csum_offset = offsetof(struct sctphdr, checksum); 1393 break; 1394 1395 default: 1396 sc->vtnet_stats.rx_csum_bad_ipproto++; 1397 return (1); 1398 } 1399 1400 if (hdr->csum_offset != csum_offset) { 1401 sc->vtnet_stats.rx_csum_bad_offset++; 1402 return (1); 1403 } 1404 1405 /* 1406 * The IP header checksum is almost certainly valid but I'm 1407 * uncertain if that is guaranteed. 1408 * 1409 * m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; 1410 */ 1411 1412 switch (ip_proto) { 1413 case IPPROTO_UDP: 1414 if (m->m_len < csum_start + sizeof(struct udphdr)) 1415 return (1); 1416 1417 udp = (struct udphdr *)(mtod(m, uint8_t *) + csum_start); 1418 if (udp->uh_sum == 0) 1419 return (0); 1420 1421 /* FALLTHROUGH */ 1422 1423 case IPPROTO_TCP: 1424 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1425 m->m_pkthdr.csum_data = 0xFFFF; 1426 break; 1427 1428 case IPPROTO_SCTP: 1429 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1430 break; 1431 } 1432 1433 sc->vtnet_stats.rx_csum_offloaded++; 1434 1435 return (0); 1436 } 1437 #endif 1438 1439 /* 1440 * Alternative method of doing receive checksum offloading. Rather 1441 * than parsing the received frame down to the IP header, use the 1442 * csum_offset to determine which CSUM_* flags are appropriate. We 1443 * can get by with doing this only because the checksum offsets are 1444 * unique for the things we care about. 1445 */ 1446 static int 1447 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m, 1448 struct virtio_net_hdr *hdr) 1449 { 1450 struct ether_header *eh; 1451 struct ether_vlan_header *evh; 1452 struct udphdr *udp; 1453 int csum_len; 1454 uint16_t eth_type; 1455 1456 csum_len = hdr->csum_start + hdr->csum_offset; 1457 1458 if (csum_len < sizeof(struct ether_header) + sizeof(struct ip)) 1459 return (1); 1460 if (m->m_len < csum_len) 1461 return (1); 1462 1463 eh = mtod(m, struct ether_header *); 1464 eth_type = ntohs(eh->ether_type); 1465 if (eth_type == ETHERTYPE_VLAN) { 1466 evh = mtod(m, struct ether_vlan_header *); 1467 eth_type = ntohs(evh->evl_proto); 1468 } 1469 1470 if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) { 1471 sc->vtnet_stats.rx_csum_bad_ethtype++; 1472 return (1); 1473 } 1474 1475 /* Use the offset to determine the appropriate CSUM_* flags. */ 1476 switch (hdr->csum_offset) { 1477 case offsetof(struct udphdr, uh_sum): 1478 if (m->m_len < hdr->csum_start + sizeof(struct udphdr)) 1479 return (1); 1480 udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start); 1481 if (udp->uh_sum == 0) 1482 return (0); 1483 1484 /* FALLTHROUGH */ 1485 1486 case offsetof(struct tcphdr, th_sum): 1487 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1488 m->m_pkthdr.csum_data = 0xFFFF; 1489 break; 1490 1491 case offsetof(struct sctphdr, checksum): 1492 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1493 break; 1494 1495 default: 1496 sc->vtnet_stats.rx_csum_bad_offset++; 1497 return (1); 1498 } 1499 1500 sc->vtnet_stats.rx_csum_offloaded++; 1501 1502 return (0); 1503 } 1504 1505 static int 1506 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs) 1507 { 1508 struct ifnet *ifp; 1509 struct virtqueue *vq; 1510 struct mbuf *m, *m_tail; 1511 int len; 1512 1513 ifp = sc->vtnet_ifp; 1514 vq = sc->vtnet_rx_vq; 1515 m_tail = m_head; 1516 1517 while (--nbufs > 0) { 1518 m = virtqueue_dequeue(vq, &len); 1519 if (m == NULL) { 1520 ifp->if_ierrors++; 1521 goto fail; 1522 } 1523 1524 if (vtnet_newbuf(sc) != 0) { 1525 ifp->if_iqdrops++; 1526 vtnet_discard_rxbuf(sc, m); 1527 if (nbufs > 1) 1528 vtnet_discard_merged_rxbuf(sc, nbufs); 1529 goto fail; 1530 } 1531 1532 if (m->m_len < len) 1533 len = m->m_len; 1534 1535 m->m_len = len; 1536 m->m_flags &= ~M_PKTHDR; 1537 1538 m_head->m_pkthdr.len += len; 1539 m_tail->m_next = m; 1540 m_tail = m; 1541 } 1542 1543 return (0); 1544 1545 fail: 1546 sc->vtnet_stats.rx_mergeable_failed++; 1547 m_freem(m_head); 1548 1549 return (1); 1550 } 1551 1552 static int 1553 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp) 1554 { 1555 struct virtio_net_hdr lhdr; 1556 struct ifnet *ifp; 1557 struct virtqueue *vq; 1558 struct mbuf *m; 1559 struct ether_header *eh; 1560 struct virtio_net_hdr *hdr; 1561 struct virtio_net_hdr_mrg_rxbuf *mhdr; 1562 int len, deq, nbufs, adjsz, rx_npkts; 1563 1564 ifp = sc->vtnet_ifp; 1565 vq = sc->vtnet_rx_vq; 1566 hdr = &lhdr; 1567 deq = 0; 1568 rx_npkts = 0; 1569 1570 VTNET_LOCK_ASSERT(sc); 1571 1572 while (--count >= 0) { 1573 m = virtqueue_dequeue(vq, &len); 1574 if (m == NULL) 1575 break; 1576 deq++; 1577 1578 if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { 1579 ifp->if_ierrors++; 1580 vtnet_discard_rxbuf(sc, m); 1581 continue; 1582 } 1583 1584 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1585 nbufs = 1; 1586 adjsz = sizeof(struct vtnet_rx_header); 1587 /* 1588 * Account for our pad between the header and 1589 * the actual start of the frame. 1590 */ 1591 len += VTNET_RX_HEADER_PAD; 1592 } else { 1593 mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); 1594 nbufs = mhdr->num_buffers; 1595 adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); 1596 } 1597 1598 if (vtnet_replace_rxbuf(sc, m, len) != 0) { 1599 ifp->if_iqdrops++; 1600 vtnet_discard_rxbuf(sc, m); 1601 if (nbufs > 1) 1602 vtnet_discard_merged_rxbuf(sc, nbufs); 1603 continue; 1604 } 1605 1606 m->m_pkthdr.len = len; 1607 m->m_pkthdr.rcvif = ifp; 1608 m->m_pkthdr.csum_flags = 0; 1609 1610 if (nbufs > 1) { 1611 if (vtnet_rxeof_merged(sc, m, nbufs) != 0) 1612 continue; 1613 } 1614 1615 ifp->if_ipackets++; 1616 1617 /* 1618 * Save copy of header before we strip it. For both mergeable 1619 * and non-mergeable, the VirtIO header is placed first in the 1620 * mbuf's data. We no longer need num_buffers, so always use a 1621 * virtio_net_hdr. 1622 */ 1623 memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); 1624 m_adj(m, adjsz); 1625 1626 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 1627 eh = mtod(m, struct ether_header *); 1628 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1629 vtnet_vlan_tag_remove(m); 1630 1631 /* 1632 * With the 802.1Q header removed, update the 1633 * checksum starting location accordingly. 1634 */ 1635 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1636 hdr->csum_start -= 1637 ETHER_VLAN_ENCAP_LEN; 1638 } 1639 } 1640 1641 if (ifp->if_capenable & IFCAP_RXCSUM && 1642 hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1643 if (vtnet_rx_csum(sc, m, hdr) != 0) 1644 sc->vtnet_stats.rx_csum_failed++; 1645 } 1646 1647 VTNET_UNLOCK(sc); 1648 rx_npkts++; 1649 (*ifp->if_input)(ifp, m); 1650 VTNET_LOCK(sc); 1651 1652 /* 1653 * The interface may have been stopped while we were 1654 * passing the packet up the network stack. 1655 */ 1656 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1657 break; 1658 } 1659 1660 if (deq > 0) 1661 virtqueue_notify(vq); 1662 1663 if (rx_npktsp != NULL) 1664 *rx_npktsp = rx_npkts; 1665 1666 return (count > 0 ? 0 : EAGAIN); 1667 } 1668 1669 static void 1670 vtnet_rx_vq_intr(void *xsc) 1671 { 1672 struct vtnet_softc *sc; 1673 struct ifnet *ifp; 1674 int more; 1675 1676 sc = xsc; 1677 ifp = sc->vtnet_ifp; 1678 1679 again: 1680 VTNET_LOCK(sc); 1681 1682 #ifdef DEVICE_POLLING 1683 if (ifp->if_capenable & IFCAP_POLLING) { 1684 VTNET_UNLOCK(sc); 1685 return; 1686 } 1687 #endif 1688 1689 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1690 vtnet_enable_rx_intr(sc); 1691 VTNET_UNLOCK(sc); 1692 return; 1693 } 1694 1695 more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL); 1696 if (more || vtnet_enable_rx_intr(sc) != 0) { 1697 if (!more) 1698 vtnet_disable_rx_intr(sc); 1699 sc->vtnet_stats.rx_task_rescheduled++; 1700 VTNET_UNLOCK(sc); 1701 goto again; 1702 } 1703 1704 VTNET_UNLOCK(sc); 1705 } 1706 1707 static void 1708 vtnet_txeof(struct vtnet_softc *sc) 1709 { 1710 struct virtqueue *vq; 1711 struct ifnet *ifp; 1712 struct vtnet_tx_header *txhdr; 1713 int deq; 1714 1715 vq = sc->vtnet_tx_vq; 1716 ifp = sc->vtnet_ifp; 1717 deq = 0; 1718 1719 VTNET_LOCK_ASSERT(sc); 1720 1721 while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { 1722 deq++; 1723 ifp->if_opackets++; 1724 m_freem(txhdr->vth_mbuf); 1725 uma_zfree(vtnet_tx_header_zone, txhdr); 1726 } 1727 1728 if (deq > 0) { 1729 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1730 if (virtqueue_empty(vq)) 1731 sc->vtnet_watchdog_timer = 0; 1732 } 1733 } 1734 1735 static struct mbuf * 1736 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m, 1737 struct virtio_net_hdr *hdr) 1738 { 1739 struct ifnet *ifp; 1740 struct ether_header *eh; 1741 struct ether_vlan_header *evh; 1742 struct ip *ip; 1743 struct ip6_hdr *ip6; 1744 struct tcphdr *tcp; 1745 int ip_offset; 1746 uint16_t eth_type, csum_start; 1747 uint8_t ip_proto, gso_type; 1748 1749 ifp = sc->vtnet_ifp; 1750 1751 ip_offset = sizeof(struct ether_header); 1752 if (m->m_len < ip_offset) { 1753 if ((m = m_pullup(m, ip_offset)) == NULL) 1754 return (NULL); 1755 } 1756 1757 eh = mtod(m, struct ether_header *); 1758 eth_type = ntohs(eh->ether_type); 1759 if (eth_type == ETHERTYPE_VLAN) { 1760 ip_offset = sizeof(struct ether_vlan_header); 1761 if (m->m_len < ip_offset) { 1762 if ((m = m_pullup(m, ip_offset)) == NULL) 1763 return (NULL); 1764 } 1765 evh = mtod(m, struct ether_vlan_header *); 1766 eth_type = ntohs(evh->evl_proto); 1767 } 1768 1769 switch (eth_type) { 1770 case ETHERTYPE_IP: 1771 if (m->m_len < ip_offset + sizeof(struct ip)) { 1772 m = m_pullup(m, ip_offset + sizeof(struct ip)); 1773 if (m == NULL) 1774 return (NULL); 1775 } 1776 1777 ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset); 1778 ip_proto = ip->ip_p; 1779 csum_start = ip_offset + (ip->ip_hl << 2); 1780 gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 1781 break; 1782 1783 case ETHERTYPE_IPV6: 1784 if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) { 1785 m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr)); 1786 if (m == NULL) 1787 return (NULL); 1788 } 1789 1790 ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset); 1791 /* 1792 * XXX Assume no extension headers are present. Presently, 1793 * this will always be true in the case of TSO, and FreeBSD 1794 * does not perform checksum offloading of IPv6 yet. 1795 */ 1796 ip_proto = ip6->ip6_nxt; 1797 csum_start = ip_offset + sizeof(struct ip6_hdr); 1798 gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 1799 break; 1800 1801 default: 1802 return (m); 1803 } 1804 1805 if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) { 1806 hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; 1807 hdr->csum_start = csum_start; 1808 hdr->csum_offset = m->m_pkthdr.csum_data; 1809 1810 sc->vtnet_stats.tx_csum_offloaded++; 1811 } 1812 1813 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1814 if (ip_proto != IPPROTO_TCP) 1815 return (m); 1816 1817 if (m->m_len < csum_start + sizeof(struct tcphdr)) { 1818 m = m_pullup(m, csum_start + sizeof(struct tcphdr)); 1819 if (m == NULL) 1820 return (NULL); 1821 } 1822 1823 tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start); 1824 hdr->gso_type = gso_type; 1825 hdr->hdr_len = csum_start + (tcp->th_off << 2); 1826 hdr->gso_size = m->m_pkthdr.tso_segsz; 1827 1828 if (tcp->th_flags & TH_CWR) { 1829 /* 1830 * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN. 1831 * ECN support is only configurable globally with the 1832 * net.inet.tcp.ecn.enable sysctl knob. 1833 */ 1834 if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { 1835 if_printf(ifp, "TSO with ECN not supported " 1836 "by host\n"); 1837 m_freem(m); 1838 return (NULL); 1839 } 1840 1841 hdr->flags |= VIRTIO_NET_HDR_GSO_ECN; 1842 } 1843 1844 sc->vtnet_stats.tx_tso_offloaded++; 1845 } 1846 1847 return (m); 1848 } 1849 1850 static int 1851 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head, 1852 struct vtnet_tx_header *txhdr) 1853 { 1854 struct sglist sg; 1855 struct sglist_seg segs[VTNET_MAX_TX_SEGS]; 1856 struct virtqueue *vq; 1857 struct mbuf *m; 1858 int collapsed, error; 1859 1860 vq = sc->vtnet_tx_vq; 1861 m = *m_head; 1862 collapsed = 0; 1863 1864 sglist_init(&sg, VTNET_MAX_TX_SEGS, segs); 1865 error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); 1866 KASSERT(error == 0 && sg.sg_nseg == 1, 1867 ("%s: cannot add header to sglist error %d", __func__, error)); 1868 1869 again: 1870 error = sglist_append_mbuf(&sg, m); 1871 if (error) { 1872 if (collapsed) 1873 goto fail; 1874 1875 m = m_collapse(m, M_NOWAIT, VTNET_MAX_TX_SEGS - 1); 1876 if (m == NULL) 1877 goto fail; 1878 1879 *m_head = m; 1880 collapsed = 1; 1881 goto again; 1882 } 1883 1884 txhdr->vth_mbuf = m; 1885 1886 return (virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0)); 1887 1888 fail: 1889 m_freem(*m_head); 1890 *m_head = NULL; 1891 1892 return (ENOBUFS); 1893 } 1894 1895 static int 1896 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head) 1897 { 1898 struct vtnet_tx_header *txhdr; 1899 struct virtio_net_hdr *hdr; 1900 struct mbuf *m; 1901 int error; 1902 1903 m = *m_head; 1904 M_ASSERTPKTHDR(m); 1905 1906 txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO); 1907 if (txhdr == NULL) { 1908 *m_head = NULL; 1909 m_freem(m); 1910 return (ENOMEM); 1911 } 1912 1913 /* 1914 * Always use the non-mergeable header to simplify things. When 1915 * the mergeable feature is negotiated, the num_buffers field 1916 * must be set to zero. We use vtnet_hdr_size later to enqueue 1917 * the correct header size to the host. 1918 */ 1919 hdr = &txhdr->vth_uhdr.hdr; 1920 1921 if (m->m_flags & M_VLANTAG) { 1922 m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); 1923 if ((*m_head = m) == NULL) { 1924 error = ENOBUFS; 1925 goto fail; 1926 } 1927 m->m_flags &= ~M_VLANTAG; 1928 } 1929 1930 if (m->m_pkthdr.csum_flags != 0) { 1931 m = vtnet_tx_offload(sc, m, hdr); 1932 if ((*m_head = m) == NULL) { 1933 error = ENOBUFS; 1934 goto fail; 1935 } 1936 } 1937 1938 error = vtnet_enqueue_txbuf(sc, m_head, txhdr); 1939 fail: 1940 if (error) 1941 uma_zfree(vtnet_tx_header_zone, txhdr); 1942 1943 return (error); 1944 } 1945 1946 static void 1947 vtnet_start(struct ifnet *ifp) 1948 { 1949 struct vtnet_softc *sc; 1950 1951 sc = ifp->if_softc; 1952 1953 VTNET_LOCK(sc); 1954 vtnet_start_locked(ifp); 1955 VTNET_UNLOCK(sc); 1956 } 1957 1958 static void 1959 vtnet_start_locked(struct ifnet *ifp) 1960 { 1961 struct vtnet_softc *sc; 1962 struct virtqueue *vq; 1963 struct mbuf *m0; 1964 int enq; 1965 1966 sc = ifp->if_softc; 1967 vq = sc->vtnet_tx_vq; 1968 enq = 0; 1969 1970 VTNET_LOCK_ASSERT(sc); 1971 1972 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1973 IFF_DRV_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) 1974 return; 1975 1976 #ifdef VTNET_TX_INTR_MODERATION 1977 if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2) 1978 vtnet_txeof(sc); 1979 #endif 1980 1981 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1982 if (virtqueue_full(vq)) { 1983 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1984 break; 1985 } 1986 1987 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1988 if (m0 == NULL) 1989 break; 1990 1991 if (vtnet_encap(sc, &m0) != 0) { 1992 if (m0 == NULL) 1993 break; 1994 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1995 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1996 break; 1997 } 1998 1999 enq++; 2000 ETHER_BPF_MTAP(ifp, m0); 2001 } 2002 2003 if (enq > 0) { 2004 virtqueue_notify(vq); 2005 sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT; 2006 } 2007 } 2008 2009 static void 2010 vtnet_tick(void *xsc) 2011 { 2012 struct vtnet_softc *sc; 2013 2014 sc = xsc; 2015 2016 VTNET_LOCK_ASSERT(sc); 2017 #ifdef VTNET_DEBUG 2018 virtqueue_dump(sc->vtnet_rx_vq); 2019 virtqueue_dump(sc->vtnet_tx_vq); 2020 #endif 2021 2022 vtnet_watchdog(sc); 2023 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 2024 } 2025 2026 static void 2027 vtnet_tx_vq_intr(void *xsc) 2028 { 2029 struct vtnet_softc *sc; 2030 struct ifnet *ifp; 2031 2032 sc = xsc; 2033 ifp = sc->vtnet_ifp; 2034 2035 again: 2036 VTNET_LOCK(sc); 2037 2038 #ifdef DEVICE_POLLING 2039 if (ifp->if_capenable & IFCAP_POLLING) { 2040 VTNET_UNLOCK(sc); 2041 return; 2042 } 2043 #endif 2044 2045 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2046 vtnet_enable_tx_intr(sc); 2047 VTNET_UNLOCK(sc); 2048 return; 2049 } 2050 2051 vtnet_txeof(sc); 2052 2053 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2054 vtnet_start_locked(ifp); 2055 2056 if (vtnet_enable_tx_intr(sc) != 0) { 2057 vtnet_disable_tx_intr(sc); 2058 sc->vtnet_stats.tx_task_rescheduled++; 2059 VTNET_UNLOCK(sc); 2060 goto again; 2061 } 2062 2063 VTNET_UNLOCK(sc); 2064 } 2065 2066 static void 2067 vtnet_stop(struct vtnet_softc *sc) 2068 { 2069 device_t dev; 2070 struct ifnet *ifp; 2071 2072 dev = sc->vtnet_dev; 2073 ifp = sc->vtnet_ifp; 2074 2075 VTNET_LOCK_ASSERT(sc); 2076 2077 sc->vtnet_watchdog_timer = 0; 2078 callout_stop(&sc->vtnet_tick_ch); 2079 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2080 2081 vtnet_disable_rx_intr(sc); 2082 vtnet_disable_tx_intr(sc); 2083 2084 /* 2085 * Stop the host VirtIO adapter. Note this will reset the host 2086 * adapter's state back to the pre-initialized state, so in 2087 * order to make the device usable again, we must drive it 2088 * through virtio_reinit() and virtio_reinit_complete(). 2089 */ 2090 virtio_stop(dev); 2091 2092 sc->vtnet_flags &= ~VTNET_FLAG_LINK; 2093 2094 vtnet_free_rx_mbufs(sc); 2095 vtnet_free_tx_mbufs(sc); 2096 } 2097 2098 static int 2099 vtnet_reinit(struct vtnet_softc *sc) 2100 { 2101 struct ifnet *ifp; 2102 uint64_t features; 2103 2104 ifp = sc->vtnet_ifp; 2105 features = sc->vtnet_features; 2106 2107 /* 2108 * Re-negotiate with the host, removing any disabled receive 2109 * features. Transmit features are disabled only on our side 2110 * via if_capenable and if_hwassist. 2111 */ 2112 2113 if (ifp->if_capabilities & IFCAP_RXCSUM) { 2114 if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) 2115 features &= ~VIRTIO_NET_F_GUEST_CSUM; 2116 } 2117 2118 if (ifp->if_capabilities & IFCAP_LRO) { 2119 if ((ifp->if_capenable & IFCAP_LRO) == 0) 2120 features &= ~VTNET_LRO_FEATURES; 2121 } 2122 2123 if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { 2124 if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) 2125 features &= ~VIRTIO_NET_F_CTRL_VLAN; 2126 } 2127 2128 return (virtio_reinit(sc->vtnet_dev, features)); 2129 } 2130 2131 static void 2132 vtnet_init_locked(struct vtnet_softc *sc) 2133 { 2134 device_t dev; 2135 struct ifnet *ifp; 2136 int error; 2137 2138 dev = sc->vtnet_dev; 2139 ifp = sc->vtnet_ifp; 2140 2141 VTNET_LOCK_ASSERT(sc); 2142 2143 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2144 return; 2145 2146 /* Stop host's adapter, cancel any pending I/O. */ 2147 vtnet_stop(sc); 2148 2149 /* Reinitialize the host device. */ 2150 error = vtnet_reinit(sc); 2151 if (error) { 2152 device_printf(dev, 2153 "reinitialization failed, stopping device...\n"); 2154 vtnet_stop(sc); 2155 return; 2156 } 2157 2158 /* Update host with assigned MAC address. */ 2159 bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); 2160 vtnet_set_hwaddr(sc); 2161 2162 ifp->if_hwassist = 0; 2163 if (ifp->if_capenable & IFCAP_TXCSUM) 2164 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 2165 if (ifp->if_capenable & IFCAP_TSO4) 2166 ifp->if_hwassist |= CSUM_TSO; 2167 2168 error = vtnet_init_rx_vq(sc); 2169 if (error) { 2170 device_printf(dev, 2171 "cannot allocate mbufs for Rx virtqueue\n"); 2172 vtnet_stop(sc); 2173 return; 2174 } 2175 2176 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 2177 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 2178 /* Restore promiscuous and all-multicast modes. */ 2179 vtnet_rx_filter(sc); 2180 2181 /* Restore filtered MAC addresses. */ 2182 vtnet_rx_filter_mac(sc); 2183 } 2184 2185 /* Restore VLAN filters. */ 2186 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) 2187 vtnet_rx_filter_vlan(sc); 2188 } 2189 2190 #ifdef DEVICE_POLLING 2191 if (ifp->if_capenable & IFCAP_POLLING) { 2192 vtnet_disable_rx_intr(sc); 2193 vtnet_disable_tx_intr(sc); 2194 } else 2195 #endif 2196 { 2197 vtnet_enable_rx_intr(sc); 2198 vtnet_enable_tx_intr(sc); 2199 } 2200 2201 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2202 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2203 2204 virtio_reinit_complete(dev); 2205 2206 vtnet_update_link_status(sc); 2207 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 2208 } 2209 2210 static void 2211 vtnet_init(void *xsc) 2212 { 2213 struct vtnet_softc *sc; 2214 2215 sc = xsc; 2216 2217 VTNET_LOCK(sc); 2218 vtnet_init_locked(sc); 2219 VTNET_UNLOCK(sc); 2220 } 2221 2222 static void 2223 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, 2224 struct sglist *sg, int readable, int writable) 2225 { 2226 struct virtqueue *vq; 2227 void *c; 2228 2229 vq = sc->vtnet_ctrl_vq; 2230 2231 VTNET_LOCK_ASSERT(sc); 2232 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, 2233 ("no control virtqueue")); 2234 KASSERT(virtqueue_empty(vq), 2235 ("control command already enqueued")); 2236 2237 if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) 2238 return; 2239 2240 virtqueue_notify(vq); 2241 2242 /* 2243 * Poll until the command is complete. Previously, we would 2244 * sleep until the control virtqueue interrupt handler woke 2245 * us up, but dropping the VTNET_MTX leads to serialization 2246 * difficulties. 2247 * 2248 * Furthermore, it appears QEMU/KVM only allocates three MSIX 2249 * vectors. Two of those vectors are needed for the Rx and Tx 2250 * virtqueues. We do not support sharing both a Vq and config 2251 * changed notification on the same MSIX vector. 2252 */ 2253 c = virtqueue_poll(vq, NULL); 2254 KASSERT(c == cookie, ("unexpected control command response")); 2255 } 2256 2257 static void 2258 vtnet_rx_filter(struct vtnet_softc *sc) 2259 { 2260 device_t dev; 2261 struct ifnet *ifp; 2262 2263 dev = sc->vtnet_dev; 2264 ifp = sc->vtnet_ifp; 2265 2266 VTNET_LOCK_ASSERT(sc); 2267 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 2268 ("CTRL_RX feature not negotiated")); 2269 2270 if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) 2271 device_printf(dev, "cannot %s promiscuous mode\n", 2272 ifp->if_flags & IFF_PROMISC ? "enable" : "disable"); 2273 2274 if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) 2275 device_printf(dev, "cannot %s all-multicast mode\n", 2276 ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable"); 2277 } 2278 2279 static int 2280 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) 2281 { 2282 struct virtio_net_ctrl_hdr hdr; 2283 struct sglist_seg segs[3]; 2284 struct sglist sg; 2285 uint8_t onoff, ack; 2286 int error; 2287 2288 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) 2289 return (ENOTSUP); 2290 2291 error = 0; 2292 2293 hdr.class = VIRTIO_NET_CTRL_RX; 2294 hdr.cmd = cmd; 2295 onoff = !!on; 2296 ack = VIRTIO_NET_ERR; 2297 2298 sglist_init(&sg, 3, segs); 2299 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2300 error |= sglist_append(&sg, &onoff, sizeof(uint8_t)); 2301 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2302 KASSERT(error == 0 && sg.sg_nseg == 3, 2303 ("error adding Rx filter message to sglist")); 2304 2305 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2306 2307 return (ack == VIRTIO_NET_OK ? 0 : EIO); 2308 } 2309 2310 static int 2311 vtnet_set_promisc(struct vtnet_softc *sc, int on) 2312 { 2313 2314 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); 2315 } 2316 2317 static int 2318 vtnet_set_allmulti(struct vtnet_softc *sc, int on) 2319 { 2320 2321 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); 2322 } 2323 2324 static void 2325 vtnet_rx_filter_mac(struct vtnet_softc *sc) 2326 { 2327 struct virtio_net_ctrl_hdr hdr; 2328 struct vtnet_mac_filter *filter; 2329 struct sglist_seg segs[4]; 2330 struct sglist sg; 2331 struct ifnet *ifp; 2332 struct ifaddr *ifa; 2333 struct ifmultiaddr *ifma; 2334 int ucnt, mcnt, promisc, allmulti, error; 2335 uint8_t ack; 2336 2337 ifp = sc->vtnet_ifp; 2338 filter = sc->vtnet_mac_filter; 2339 ucnt = 0; 2340 mcnt = 0; 2341 promisc = 0; 2342 allmulti = 0; 2343 error = 0; 2344 2345 VTNET_LOCK_ASSERT(sc); 2346 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 2347 ("CTRL_RX feature not negotiated")); 2348 2349 /* Unicast MAC addresses: */ 2350 if_addr_rlock(ifp); 2351 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2352 if (ifa->ifa_addr->sa_family != AF_LINK) 2353 continue; 2354 else if (ucnt == VTNET_MAX_MAC_ENTRIES) 2355 break; 2356 2357 bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 2358 &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); 2359 ucnt++; 2360 } 2361 if_addr_runlock(ifp); 2362 2363 if (ucnt >= VTNET_MAX_MAC_ENTRIES) { 2364 promisc = 1; 2365 filter->vmf_unicast.nentries = 0; 2366 2367 if_printf(ifp, "more than %d MAC addresses assigned, " 2368 "falling back to promiscuous mode\n", 2369 VTNET_MAX_MAC_ENTRIES); 2370 } else 2371 filter->vmf_unicast.nentries = ucnt; 2372 2373 /* Multicast MAC addresses: */ 2374 if_maddr_rlock(ifp); 2375 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2376 if (ifma->ifma_addr->sa_family != AF_LINK) 2377 continue; 2378 else if (mcnt == VTNET_MAX_MAC_ENTRIES) 2379 break; 2380 2381 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2382 &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); 2383 mcnt++; 2384 } 2385 if_maddr_runlock(ifp); 2386 2387 if (mcnt >= VTNET_MAX_MAC_ENTRIES) { 2388 allmulti = 1; 2389 filter->vmf_multicast.nentries = 0; 2390 2391 if_printf(ifp, "more than %d multicast MAC addresses " 2392 "assigned, falling back to all-multicast mode\n", 2393 VTNET_MAX_MAC_ENTRIES); 2394 } else 2395 filter->vmf_multicast.nentries = mcnt; 2396 2397 if (promisc && allmulti) 2398 goto out; 2399 2400 hdr.class = VIRTIO_NET_CTRL_MAC; 2401 hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 2402 ack = VIRTIO_NET_ERR; 2403 2404 sglist_init(&sg, 4, segs); 2405 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2406 error |= sglist_append(&sg, &filter->vmf_unicast, 2407 sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN); 2408 error |= sglist_append(&sg, &filter->vmf_multicast, 2409 sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN); 2410 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2411 KASSERT(error == 0 && sg.sg_nseg == 4, 2412 ("error adding MAC filtering message to sglist")); 2413 2414 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2415 2416 if (ack != VIRTIO_NET_OK) 2417 if_printf(ifp, "error setting host MAC filter table\n"); 2418 2419 out: 2420 if (promisc) 2421 if (vtnet_set_promisc(sc, 1) != 0) 2422 if_printf(ifp, "cannot enable promiscuous mode\n"); 2423 if (allmulti) 2424 if (vtnet_set_allmulti(sc, 1) != 0) 2425 if_printf(ifp, "cannot enable all-multicast mode\n"); 2426 } 2427 2428 static int 2429 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 2430 { 2431 struct virtio_net_ctrl_hdr hdr; 2432 struct sglist_seg segs[3]; 2433 struct sglist sg; 2434 uint8_t ack; 2435 int error; 2436 2437 hdr.class = VIRTIO_NET_CTRL_VLAN; 2438 hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; 2439 ack = VIRTIO_NET_ERR; 2440 error = 0; 2441 2442 sglist_init(&sg, 3, segs); 2443 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2444 error |= sglist_append(&sg, &tag, sizeof(uint16_t)); 2445 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2446 KASSERT(error == 0 && sg.sg_nseg == 3, 2447 ("error adding VLAN control message to sglist")); 2448 2449 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2450 2451 return (ack == VIRTIO_NET_OK ? 0 : EIO); 2452 } 2453 2454 static void 2455 vtnet_rx_filter_vlan(struct vtnet_softc *sc) 2456 { 2457 device_t dev; 2458 uint32_t w, mask; 2459 uint16_t tag; 2460 int i, nvlans, error; 2461 2462 VTNET_LOCK_ASSERT(sc); 2463 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 2464 ("VLAN_FILTER feature not negotiated")); 2465 2466 dev = sc->vtnet_dev; 2467 nvlans = sc->vtnet_nvlans; 2468 error = 0; 2469 2470 /* Enable filtering for each configured VLAN. */ 2471 for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) { 2472 w = sc->vtnet_vlan_shadow[i]; 2473 for (mask = 1, tag = i * 32; w != 0; mask <<= 1, tag++) { 2474 if ((w & mask) != 0) { 2475 w &= ~mask; 2476 nvlans--; 2477 if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) 2478 error++; 2479 } 2480 } 2481 } 2482 2483 KASSERT(nvlans == 0, ("VLAN count incorrect")); 2484 if (error) 2485 device_printf(dev, "cannot restore VLAN filter table\n"); 2486 } 2487 2488 static void 2489 vtnet_set_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 2490 { 2491 struct ifnet *ifp; 2492 int idx, bit; 2493 2494 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 2495 ("VLAN_FILTER feature not negotiated")); 2496 2497 if ((tag == 0) || (tag > 4095)) 2498 return; 2499 2500 ifp = sc->vtnet_ifp; 2501 idx = (tag >> 5) & 0x7F; 2502 bit = tag & 0x1F; 2503 2504 VTNET_LOCK(sc); 2505 2506 /* Update shadow VLAN table. */ 2507 if (add) { 2508 sc->vtnet_nvlans++; 2509 sc->vtnet_vlan_shadow[idx] |= (1 << bit); 2510 } else { 2511 sc->vtnet_nvlans--; 2512 sc->vtnet_vlan_shadow[idx] &= ~(1 << bit); 2513 } 2514 2515 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) { 2516 if (vtnet_exec_vlan_filter(sc, add, tag) != 0) { 2517 device_printf(sc->vtnet_dev, 2518 "cannot %s VLAN %d %s the host filter table\n", 2519 add ? "add" : "remove", tag, 2520 add ? "to" : "from"); 2521 } 2522 } 2523 2524 VTNET_UNLOCK(sc); 2525 } 2526 2527 static void 2528 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 2529 { 2530 2531 if (ifp->if_softc != arg) 2532 return; 2533 2534 vtnet_set_vlan_filter(arg, 1, tag); 2535 } 2536 2537 static void 2538 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 2539 { 2540 2541 if (ifp->if_softc != arg) 2542 return; 2543 2544 vtnet_set_vlan_filter(arg, 0, tag); 2545 } 2546 2547 static int 2548 vtnet_ifmedia_upd(struct ifnet *ifp) 2549 { 2550 struct vtnet_softc *sc; 2551 struct ifmedia *ifm; 2552 2553 sc = ifp->if_softc; 2554 ifm = &sc->vtnet_media; 2555 2556 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2557 return (EINVAL); 2558 2559 return (0); 2560 } 2561 2562 static void 2563 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2564 { 2565 struct vtnet_softc *sc; 2566 2567 sc = ifp->if_softc; 2568 2569 ifmr->ifm_status = IFM_AVALID; 2570 ifmr->ifm_active = IFM_ETHER; 2571 2572 VTNET_LOCK(sc); 2573 if (vtnet_is_link_up(sc) != 0) { 2574 ifmr->ifm_status |= IFM_ACTIVE; 2575 ifmr->ifm_active |= VTNET_MEDIATYPE; 2576 } else 2577 ifmr->ifm_active |= IFM_NONE; 2578 VTNET_UNLOCK(sc); 2579 } 2580 2581 static void 2582 vtnet_add_statistics(struct vtnet_softc *sc) 2583 { 2584 device_t dev; 2585 struct vtnet_statistics *stats; 2586 struct sysctl_ctx_list *ctx; 2587 struct sysctl_oid *tree; 2588 struct sysctl_oid_list *child; 2589 2590 dev = sc->vtnet_dev; 2591 stats = &sc->vtnet_stats; 2592 ctx = device_get_sysctl_ctx(dev); 2593 tree = device_get_sysctl_tree(dev); 2594 child = SYSCTL_CHILDREN(tree); 2595 2596 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_failed", 2597 CTLFLAG_RD, &stats->mbuf_alloc_failed, 2598 "Mbuf cluster allocation failures"); 2599 2600 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_frame_too_large", 2601 CTLFLAG_RD, &stats->rx_frame_too_large, 2602 "Received frame larger than the mbuf chain"); 2603 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_enq_replacement_failed", 2604 CTLFLAG_RD, &stats->rx_enq_replacement_failed, 2605 "Enqueuing the replacement receive mbuf failed"); 2606 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_mergeable_failed", 2607 CTLFLAG_RD, &stats->rx_mergeable_failed, 2608 "Mergeable buffers receive failures"); 2609 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", 2610 CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 2611 "Received checksum offloaded buffer with unsupported " 2612 "Ethernet type"); 2613 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_start", 2614 CTLFLAG_RD, &stats->rx_csum_bad_start, 2615 "Received checksum offloaded buffer with incorrect start offset"); 2616 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", 2617 CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 2618 "Received checksum offloaded buffer with incorrect IP protocol"); 2619 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_offset", 2620 CTLFLAG_RD, &stats->rx_csum_bad_offset, 2621 "Received checksum offloaded buffer with incorrect offset"); 2622 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_failed", 2623 CTLFLAG_RD, &stats->rx_csum_failed, 2624 "Received buffer checksum offload failed"); 2625 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_offloaded", 2626 CTLFLAG_RD, &stats->rx_csum_offloaded, 2627 "Received buffer checksum offload succeeded"); 2628 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_task_rescheduled", 2629 CTLFLAG_RD, &stats->rx_task_rescheduled, 2630 "Times the receive interrupt task rescheduled itself"); 2631 2632 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_offloaded", 2633 CTLFLAG_RD, &stats->tx_csum_offloaded, 2634 "Offloaded checksum of transmitted buffer"); 2635 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_offloaded", 2636 CTLFLAG_RD, &stats->tx_tso_offloaded, 2637 "Segmentation offload of transmitted buffer"); 2638 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", 2639 CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 2640 "Aborted transmit of checksum offloaded buffer with unknown " 2641 "Ethernet type"); 2642 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", 2643 CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 2644 "Aborted transmit of TSO buffer with unknown Ethernet type"); 2645 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_task_rescheduled", 2646 CTLFLAG_RD, &stats->tx_task_rescheduled, 2647 "Times the transmit interrupt task rescheduled itself"); 2648 } 2649 2650 static int 2651 vtnet_enable_rx_intr(struct vtnet_softc *sc) 2652 { 2653 2654 return (virtqueue_enable_intr(sc->vtnet_rx_vq)); 2655 } 2656 2657 static void 2658 vtnet_disable_rx_intr(struct vtnet_softc *sc) 2659 { 2660 2661 virtqueue_disable_intr(sc->vtnet_rx_vq); 2662 } 2663 2664 static int 2665 vtnet_enable_tx_intr(struct vtnet_softc *sc) 2666 { 2667 2668 #ifdef VTNET_TX_INTR_MODERATION 2669 return (0); 2670 #else 2671 return (virtqueue_enable_intr(sc->vtnet_tx_vq)); 2672 #endif 2673 } 2674 2675 static void 2676 vtnet_disable_tx_intr(struct vtnet_softc *sc) 2677 { 2678 2679 virtqueue_disable_intr(sc->vtnet_tx_vq); 2680 } 2681