1 /*- 2 * Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* Driver for VirtIO network devices. */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/eventhandler.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/sockio.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/socket.h> 41 #include <sys/sysctl.h> 42 #include <sys/random.h> 43 #include <sys/sglist.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/taskqueue.h> 47 #include <sys/smp.h> 48 #include <machine/smp.h> 49 50 #include <vm/uma.h> 51 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_arp.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/if_media.h> 59 #include <net/if_vlan_var.h> 60 61 #include <net/bpf.h> 62 63 #include <netinet/in_systm.h> 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet6/ip6_var.h> 68 #include <netinet/udp.h> 69 #include <netinet/tcp.h> 70 #include <netinet/sctp.h> 71 72 #include <machine/bus.h> 73 #include <machine/resource.h> 74 #include <sys/bus.h> 75 #include <sys/rman.h> 76 77 #include <dev/virtio/virtio.h> 78 #include <dev/virtio/virtqueue.h> 79 #include <dev/virtio/network/virtio_net.h> 80 #include <dev/virtio/network/if_vtnetvar.h> 81 82 #include "virtio_if.h" 83 84 #include "opt_inet.h" 85 #include "opt_inet6.h" 86 87 static int vtnet_modevent(module_t, int, void *); 88 89 static int vtnet_probe(device_t); 90 static int vtnet_attach(device_t); 91 static int vtnet_detach(device_t); 92 static int vtnet_suspend(device_t); 93 static int vtnet_resume(device_t); 94 static int vtnet_shutdown(device_t); 95 static int vtnet_attach_completed(device_t); 96 static int vtnet_config_change(device_t); 97 98 static void vtnet_negotiate_features(struct vtnet_softc *); 99 static void vtnet_setup_features(struct vtnet_softc *); 100 static int vtnet_init_rxq(struct vtnet_softc *, int); 101 static int vtnet_init_txq(struct vtnet_softc *, int); 102 static int vtnet_alloc_rxtx_queues(struct vtnet_softc *); 103 static void vtnet_free_rxtx_queues(struct vtnet_softc *); 104 static int vtnet_alloc_rx_filters(struct vtnet_softc *); 105 static void vtnet_free_rx_filters(struct vtnet_softc *); 106 static int vtnet_alloc_virtqueues(struct vtnet_softc *); 107 static int vtnet_setup_interface(struct vtnet_softc *); 108 static int vtnet_change_mtu(struct vtnet_softc *, int); 109 static int vtnet_ioctl(struct ifnet *, u_long, caddr_t); 110 static uint64_t vtnet_get_counter(struct ifnet *, ift_counter); 111 112 static int vtnet_rxq_populate(struct vtnet_rxq *); 113 static void vtnet_rxq_free_mbufs(struct vtnet_rxq *); 114 static struct mbuf * 115 vtnet_rx_alloc_buf(struct vtnet_softc *, int , struct mbuf **); 116 static int vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *, 117 struct mbuf *, int); 118 static int vtnet_rxq_replace_buf(struct vtnet_rxq *, struct mbuf *, int); 119 static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *, struct mbuf *); 120 static int vtnet_rxq_new_buf(struct vtnet_rxq *); 121 static int vtnet_rxq_csum(struct vtnet_rxq *, struct mbuf *, 122 struct virtio_net_hdr *); 123 static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *, int); 124 static void vtnet_rxq_discard_buf(struct vtnet_rxq *, struct mbuf *); 125 static int vtnet_rxq_merged_eof(struct vtnet_rxq *, struct mbuf *, int); 126 static void vtnet_rxq_input(struct vtnet_rxq *, struct mbuf *, 127 struct virtio_net_hdr *); 128 static int vtnet_rxq_eof(struct vtnet_rxq *); 129 static void vtnet_rx_vq_intr(void *); 130 static void vtnet_rxq_tq_intr(void *, int); 131 132 static int vtnet_txq_below_threshold(struct vtnet_txq *); 133 static int vtnet_txq_notify(struct vtnet_txq *); 134 static void vtnet_txq_free_mbufs(struct vtnet_txq *); 135 static int vtnet_txq_offload_ctx(struct vtnet_txq *, struct mbuf *, 136 int *, int *, int *); 137 static int vtnet_txq_offload_tso(struct vtnet_txq *, struct mbuf *, int, 138 int, struct virtio_net_hdr *); 139 static struct mbuf * 140 vtnet_txq_offload(struct vtnet_txq *, struct mbuf *, 141 struct virtio_net_hdr *); 142 static int vtnet_txq_enqueue_buf(struct vtnet_txq *, struct mbuf **, 143 struct vtnet_tx_header *); 144 static int vtnet_txq_encap(struct vtnet_txq *, struct mbuf **); 145 #ifdef VTNET_LEGACY_TX 146 static void vtnet_start_locked(struct vtnet_txq *, struct ifnet *); 147 static void vtnet_start(struct ifnet *); 148 #else 149 static int vtnet_txq_mq_start_locked(struct vtnet_txq *, struct mbuf *); 150 static int vtnet_txq_mq_start(struct ifnet *, struct mbuf *); 151 static void vtnet_txq_tq_deferred(void *, int); 152 #endif 153 static void vtnet_txq_start(struct vtnet_txq *); 154 static void vtnet_txq_tq_intr(void *, int); 155 static int vtnet_txq_eof(struct vtnet_txq *); 156 static void vtnet_tx_vq_intr(void *); 157 static void vtnet_tx_start_all(struct vtnet_softc *); 158 159 #ifndef VTNET_LEGACY_TX 160 static void vtnet_qflush(struct ifnet *); 161 #endif 162 163 static int vtnet_watchdog(struct vtnet_txq *); 164 static void vtnet_accum_stats(struct vtnet_softc *, 165 struct vtnet_rxq_stats *, struct vtnet_txq_stats *); 166 static void vtnet_tick(void *); 167 168 static void vtnet_start_taskqueues(struct vtnet_softc *); 169 static void vtnet_free_taskqueues(struct vtnet_softc *); 170 static void vtnet_drain_taskqueues(struct vtnet_softc *); 171 172 static void vtnet_drain_rxtx_queues(struct vtnet_softc *); 173 static void vtnet_stop_rendezvous(struct vtnet_softc *); 174 static void vtnet_stop(struct vtnet_softc *); 175 static int vtnet_virtio_reinit(struct vtnet_softc *); 176 static void vtnet_init_rx_filters(struct vtnet_softc *); 177 static int vtnet_init_rx_queues(struct vtnet_softc *); 178 static int vtnet_init_tx_queues(struct vtnet_softc *); 179 static int vtnet_init_rxtx_queues(struct vtnet_softc *); 180 static void vtnet_set_active_vq_pairs(struct vtnet_softc *); 181 static int vtnet_reinit(struct vtnet_softc *); 182 static void vtnet_init_locked(struct vtnet_softc *); 183 static void vtnet_init(void *); 184 185 static void vtnet_free_ctrl_vq(struct vtnet_softc *); 186 static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, 187 struct sglist *, int, int); 188 static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *); 189 static int vtnet_ctrl_mq_cmd(struct vtnet_softc *, uint16_t); 190 static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); 191 static int vtnet_set_promisc(struct vtnet_softc *, int); 192 static int vtnet_set_allmulti(struct vtnet_softc *, int); 193 static void vtnet_attach_disable_promisc(struct vtnet_softc *); 194 static void vtnet_rx_filter(struct vtnet_softc *); 195 static void vtnet_rx_filter_mac(struct vtnet_softc *); 196 static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); 197 static void vtnet_rx_filter_vlan(struct vtnet_softc *); 198 static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t); 199 static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); 200 static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); 201 202 static int vtnet_is_link_up(struct vtnet_softc *); 203 static void vtnet_update_link_status(struct vtnet_softc *); 204 static int vtnet_ifmedia_upd(struct ifnet *); 205 static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); 206 static void vtnet_get_hwaddr(struct vtnet_softc *); 207 static void vtnet_set_hwaddr(struct vtnet_softc *); 208 static void vtnet_vlan_tag_remove(struct mbuf *); 209 static void vtnet_set_rx_process_limit(struct vtnet_softc *); 210 static void vtnet_set_tx_intr_threshold(struct vtnet_softc *); 211 212 static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *, 213 struct sysctl_oid_list *, struct vtnet_rxq *); 214 static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *, 215 struct sysctl_oid_list *, struct vtnet_txq *); 216 static void vtnet_setup_queue_sysctl(struct vtnet_softc *); 217 static void vtnet_setup_sysctl(struct vtnet_softc *); 218 219 static int vtnet_rxq_enable_intr(struct vtnet_rxq *); 220 static void vtnet_rxq_disable_intr(struct vtnet_rxq *); 221 static int vtnet_txq_enable_intr(struct vtnet_txq *); 222 static void vtnet_txq_disable_intr(struct vtnet_txq *); 223 static void vtnet_enable_rx_interrupts(struct vtnet_softc *); 224 static void vtnet_enable_tx_interrupts(struct vtnet_softc *); 225 static void vtnet_enable_interrupts(struct vtnet_softc *); 226 static void vtnet_disable_rx_interrupts(struct vtnet_softc *); 227 static void vtnet_disable_tx_interrupts(struct vtnet_softc *); 228 static void vtnet_disable_interrupts(struct vtnet_softc *); 229 230 static int vtnet_tunable_int(struct vtnet_softc *, const char *, int); 231 232 /* Tunables. */ 233 static int vtnet_csum_disable = 0; 234 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); 235 static int vtnet_tso_disable = 0; 236 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); 237 static int vtnet_lro_disable = 0; 238 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); 239 static int vtnet_mq_disable = 0; 240 TUNABLE_INT("hw.vtnet.mq_disable", &vtnet_mq_disable); 241 static int vtnet_mq_max_pairs = 0; 242 TUNABLE_INT("hw.vtnet.mq_max_pairs", &vtnet_mq_max_pairs); 243 static int vtnet_rx_process_limit = 512; 244 TUNABLE_INT("hw.vtnet.rx_process_limit", &vtnet_rx_process_limit); 245 246 static uma_zone_t vtnet_tx_header_zone; 247 248 static struct virtio_feature_desc vtnet_feature_desc[] = { 249 { VIRTIO_NET_F_CSUM, "TxChecksum" }, 250 { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, 251 { VIRTIO_NET_F_MAC, "MacAddress" }, 252 { VIRTIO_NET_F_GSO, "TxAllGSO" }, 253 { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, 254 { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, 255 { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, 256 { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, 257 { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, 258 { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, 259 { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, 260 { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, 261 { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, 262 { VIRTIO_NET_F_STATUS, "Status" }, 263 { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, 264 { VIRTIO_NET_F_CTRL_RX, "RxMode" }, 265 { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, 266 { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, 267 { VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" }, 268 { VIRTIO_NET_F_MQ, "Multiqueue" }, 269 { VIRTIO_NET_F_CTRL_MAC_ADDR, "SetMacAddress" }, 270 271 { 0, NULL } 272 }; 273 274 static device_method_t vtnet_methods[] = { 275 /* Device methods. */ 276 DEVMETHOD(device_probe, vtnet_probe), 277 DEVMETHOD(device_attach, vtnet_attach), 278 DEVMETHOD(device_detach, vtnet_detach), 279 DEVMETHOD(device_suspend, vtnet_suspend), 280 DEVMETHOD(device_resume, vtnet_resume), 281 DEVMETHOD(device_shutdown, vtnet_shutdown), 282 283 /* VirtIO methods. */ 284 DEVMETHOD(virtio_attach_completed, vtnet_attach_completed), 285 DEVMETHOD(virtio_config_change, vtnet_config_change), 286 287 DEVMETHOD_END 288 }; 289 290 #ifdef DEV_NETMAP 291 #include <dev/netmap/if_vtnet_netmap.h> 292 #endif /* DEV_NETMAP */ 293 294 static driver_t vtnet_driver = { 295 "vtnet", 296 vtnet_methods, 297 sizeof(struct vtnet_softc) 298 }; 299 static devclass_t vtnet_devclass; 300 301 DRIVER_MODULE(vtnet, virtio_mmio, vtnet_driver, vtnet_devclass, 302 vtnet_modevent, 0); 303 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, 304 vtnet_modevent, 0); 305 MODULE_VERSION(vtnet, 1); 306 MODULE_DEPEND(vtnet, virtio, 1, 1, 1); 307 308 static int 309 vtnet_modevent(module_t mod, int type, void *unused) 310 { 311 int error; 312 313 error = 0; 314 315 switch (type) { 316 case MOD_LOAD: 317 vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", 318 sizeof(struct vtnet_tx_header), 319 NULL, NULL, NULL, NULL, 0, 0); 320 break; 321 case MOD_QUIESCE: 322 case MOD_UNLOAD: 323 if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) 324 error = EBUSY; 325 else if (type == MOD_UNLOAD) { 326 uma_zdestroy(vtnet_tx_header_zone); 327 vtnet_tx_header_zone = NULL; 328 } 329 break; 330 case MOD_SHUTDOWN: 331 break; 332 default: 333 error = EOPNOTSUPP; 334 break; 335 } 336 337 return (error); 338 } 339 340 static int 341 vtnet_probe(device_t dev) 342 { 343 344 if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK) 345 return (ENXIO); 346 347 device_set_desc(dev, "VirtIO Networking Adapter"); 348 349 return (BUS_PROBE_DEFAULT); 350 } 351 352 static int 353 vtnet_attach(device_t dev) 354 { 355 struct vtnet_softc *sc; 356 int error; 357 358 sc = device_get_softc(dev); 359 sc->vtnet_dev = dev; 360 361 /* Register our feature descriptions. */ 362 virtio_set_feature_desc(dev, vtnet_feature_desc); 363 364 VTNET_CORE_LOCK_INIT(sc); 365 callout_init_mtx(&sc->vtnet_tick_ch, VTNET_CORE_MTX(sc), 0); 366 367 vtnet_setup_sysctl(sc); 368 vtnet_setup_features(sc); 369 370 error = vtnet_alloc_rx_filters(sc); 371 if (error) { 372 device_printf(dev, "cannot allocate Rx filters\n"); 373 goto fail; 374 } 375 376 error = vtnet_alloc_rxtx_queues(sc); 377 if (error) { 378 device_printf(dev, "cannot allocate queues\n"); 379 goto fail; 380 } 381 382 error = vtnet_alloc_virtqueues(sc); 383 if (error) { 384 device_printf(dev, "cannot allocate virtqueues\n"); 385 goto fail; 386 } 387 388 error = vtnet_setup_interface(sc); 389 if (error) { 390 device_printf(dev, "cannot setup interface\n"); 391 goto fail; 392 } 393 394 error = virtio_setup_intr(dev, INTR_TYPE_NET); 395 if (error) { 396 device_printf(dev, "cannot setup virtqueue interrupts\n"); 397 /* BMV: This will crash if during boot! */ 398 ether_ifdetach(sc->vtnet_ifp); 399 goto fail; 400 } 401 402 #ifdef DEV_NETMAP 403 vtnet_netmap_attach(sc); 404 #endif /* DEV_NETMAP */ 405 406 vtnet_start_taskqueues(sc); 407 408 fail: 409 if (error) 410 vtnet_detach(dev); 411 412 return (error); 413 } 414 415 static int 416 vtnet_detach(device_t dev) 417 { 418 struct vtnet_softc *sc; 419 struct ifnet *ifp; 420 421 sc = device_get_softc(dev); 422 ifp = sc->vtnet_ifp; 423 424 if (device_is_attached(dev)) { 425 VTNET_CORE_LOCK(sc); 426 vtnet_stop(sc); 427 VTNET_CORE_UNLOCK(sc); 428 429 callout_drain(&sc->vtnet_tick_ch); 430 vtnet_drain_taskqueues(sc); 431 432 ether_ifdetach(ifp); 433 } 434 435 #ifdef DEV_NETMAP 436 netmap_detach(ifp); 437 #endif /* DEV_NETMAP */ 438 439 vtnet_free_taskqueues(sc); 440 441 if (sc->vtnet_vlan_attach != NULL) { 442 EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); 443 sc->vtnet_vlan_attach = NULL; 444 } 445 if (sc->vtnet_vlan_detach != NULL) { 446 EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach); 447 sc->vtnet_vlan_detach = NULL; 448 } 449 450 ifmedia_removeall(&sc->vtnet_media); 451 452 if (ifp != NULL) { 453 if_free(ifp); 454 sc->vtnet_ifp = NULL; 455 } 456 457 vtnet_free_rxtx_queues(sc); 458 vtnet_free_rx_filters(sc); 459 460 if (sc->vtnet_ctrl_vq != NULL) 461 vtnet_free_ctrl_vq(sc); 462 463 VTNET_CORE_LOCK_DESTROY(sc); 464 465 return (0); 466 } 467 468 static int 469 vtnet_suspend(device_t dev) 470 { 471 struct vtnet_softc *sc; 472 473 sc = device_get_softc(dev); 474 475 VTNET_CORE_LOCK(sc); 476 vtnet_stop(sc); 477 sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; 478 VTNET_CORE_UNLOCK(sc); 479 480 return (0); 481 } 482 483 static int 484 vtnet_resume(device_t dev) 485 { 486 struct vtnet_softc *sc; 487 struct ifnet *ifp; 488 489 sc = device_get_softc(dev); 490 ifp = sc->vtnet_ifp; 491 492 VTNET_CORE_LOCK(sc); 493 if (ifp->if_flags & IFF_UP) 494 vtnet_init_locked(sc); 495 sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; 496 VTNET_CORE_UNLOCK(sc); 497 498 return (0); 499 } 500 501 static int 502 vtnet_shutdown(device_t dev) 503 { 504 505 /* 506 * Suspend already does all of what we need to 507 * do here; we just never expect to be resumed. 508 */ 509 return (vtnet_suspend(dev)); 510 } 511 512 static int 513 vtnet_attach_completed(device_t dev) 514 { 515 516 vtnet_attach_disable_promisc(device_get_softc(dev)); 517 518 return (0); 519 } 520 521 static int 522 vtnet_config_change(device_t dev) 523 { 524 struct vtnet_softc *sc; 525 526 sc = device_get_softc(dev); 527 528 VTNET_CORE_LOCK(sc); 529 vtnet_update_link_status(sc); 530 if (sc->vtnet_link_active != 0) 531 vtnet_tx_start_all(sc); 532 VTNET_CORE_UNLOCK(sc); 533 534 return (0); 535 } 536 537 static void 538 vtnet_negotiate_features(struct vtnet_softc *sc) 539 { 540 device_t dev; 541 uint64_t mask, features; 542 543 dev = sc->vtnet_dev; 544 mask = 0; 545 546 /* 547 * TSO and LRO are only available when their corresponding checksum 548 * offload feature is also negotiated. 549 */ 550 if (vtnet_tunable_int(sc, "csum_disable", vtnet_csum_disable)) { 551 mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; 552 mask |= VTNET_TSO_FEATURES | VTNET_LRO_FEATURES; 553 } 554 if (vtnet_tunable_int(sc, "tso_disable", vtnet_tso_disable)) 555 mask |= VTNET_TSO_FEATURES; 556 if (vtnet_tunable_int(sc, "lro_disable", vtnet_lro_disable)) 557 mask |= VTNET_LRO_FEATURES; 558 #ifndef VTNET_LEGACY_TX 559 if (vtnet_tunable_int(sc, "mq_disable", vtnet_mq_disable)) 560 mask |= VIRTIO_NET_F_MQ; 561 #else 562 mask |= VIRTIO_NET_F_MQ; 563 #endif 564 565 features = VTNET_FEATURES & ~mask; 566 sc->vtnet_features = virtio_negotiate_features(dev, features); 567 568 if (virtio_with_feature(dev, VTNET_LRO_FEATURES) && 569 virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) { 570 /* 571 * LRO without mergeable buffers requires special care. This 572 * is not ideal because every receive buffer must be large 573 * enough to hold the maximum TCP packet, the Ethernet header, 574 * and the header. This requires up to 34 descriptors with 575 * MCLBYTES clusters. If we do not have indirect descriptors, 576 * LRO is disabled since the virtqueue will not contain very 577 * many receive buffers. 578 */ 579 if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) { 580 device_printf(dev, 581 "LRO disabled due to both mergeable buffers and " 582 "indirect descriptors not negotiated\n"); 583 584 features &= ~VTNET_LRO_FEATURES; 585 sc->vtnet_features = 586 virtio_negotiate_features(dev, features); 587 } else 588 sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; 589 } 590 } 591 592 static void 593 vtnet_setup_features(struct vtnet_softc *sc) 594 { 595 device_t dev; 596 int max_pairs, max; 597 598 dev = sc->vtnet_dev; 599 600 vtnet_negotiate_features(sc); 601 602 if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) 603 sc->vtnet_flags |= VTNET_FLAG_INDIRECT; 604 if (virtio_with_feature(dev, VIRTIO_RING_F_EVENT_IDX)) 605 sc->vtnet_flags |= VTNET_FLAG_EVENT_IDX; 606 607 if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { 608 /* This feature should always be negotiated. */ 609 sc->vtnet_flags |= VTNET_FLAG_MAC; 610 } 611 612 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { 613 sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; 614 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); 615 } else 616 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); 617 618 if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) 619 sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS; 620 else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) 621 sc->vtnet_rx_nsegs = VTNET_MAX_RX_SEGS; 622 else 623 sc->vtnet_rx_nsegs = VTNET_MIN_RX_SEGS; 624 625 if (virtio_with_feature(dev, VIRTIO_NET_F_GSO) || 626 virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) || 627 virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 628 sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS; 629 else 630 sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS; 631 632 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { 633 sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; 634 635 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) 636 sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; 637 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) 638 sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; 639 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR)) 640 sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC; 641 } 642 643 if (virtio_with_feature(dev, VIRTIO_NET_F_MQ) && 644 sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 645 max_pairs = virtio_read_dev_config_2(dev, 646 offsetof(struct virtio_net_config, max_virtqueue_pairs)); 647 if (max_pairs < VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN || 648 max_pairs > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX) 649 max_pairs = 1; 650 } else 651 max_pairs = 1; 652 653 if (max_pairs > 1) { 654 /* 655 * Limit the maximum number of queue pairs to the number of 656 * CPUs or the configured maximum. The actual number of 657 * queues that get used may be less. 658 */ 659 max = vtnet_tunable_int(sc, "mq_max_pairs", vtnet_mq_max_pairs); 660 if (max > 0 && max_pairs > max) 661 max_pairs = max; 662 if (max_pairs > mp_ncpus) 663 max_pairs = mp_ncpus; 664 if (max_pairs > VTNET_MAX_QUEUE_PAIRS) 665 max_pairs = VTNET_MAX_QUEUE_PAIRS; 666 if (max_pairs > 1) 667 sc->vtnet_flags |= VTNET_FLAG_MULTIQ; 668 } 669 670 sc->vtnet_max_vq_pairs = max_pairs; 671 } 672 673 static int 674 vtnet_init_rxq(struct vtnet_softc *sc, int id) 675 { 676 struct vtnet_rxq *rxq; 677 678 rxq = &sc->vtnet_rxqs[id]; 679 680 snprintf(rxq->vtnrx_name, sizeof(rxq->vtnrx_name), "%s-rx%d", 681 device_get_nameunit(sc->vtnet_dev), id); 682 mtx_init(&rxq->vtnrx_mtx, rxq->vtnrx_name, NULL, MTX_DEF); 683 684 rxq->vtnrx_sc = sc; 685 rxq->vtnrx_id = id; 686 687 rxq->vtnrx_sg = sglist_alloc(sc->vtnet_rx_nsegs, M_NOWAIT); 688 if (rxq->vtnrx_sg == NULL) 689 return (ENOMEM); 690 691 TASK_INIT(&rxq->vtnrx_intrtask, 0, vtnet_rxq_tq_intr, rxq); 692 rxq->vtnrx_tq = taskqueue_create(rxq->vtnrx_name, M_NOWAIT, 693 taskqueue_thread_enqueue, &rxq->vtnrx_tq); 694 695 return (rxq->vtnrx_tq == NULL ? ENOMEM : 0); 696 } 697 698 static int 699 vtnet_init_txq(struct vtnet_softc *sc, int id) 700 { 701 struct vtnet_txq *txq; 702 703 txq = &sc->vtnet_txqs[id]; 704 705 snprintf(txq->vtntx_name, sizeof(txq->vtntx_name), "%s-tx%d", 706 device_get_nameunit(sc->vtnet_dev), id); 707 mtx_init(&txq->vtntx_mtx, txq->vtntx_name, NULL, MTX_DEF); 708 709 txq->vtntx_sc = sc; 710 txq->vtntx_id = id; 711 712 txq->vtntx_sg = sglist_alloc(sc->vtnet_tx_nsegs, M_NOWAIT); 713 if (txq->vtntx_sg == NULL) 714 return (ENOMEM); 715 716 #ifndef VTNET_LEGACY_TX 717 txq->vtntx_br = buf_ring_alloc(VTNET_DEFAULT_BUFRING_SIZE, M_DEVBUF, 718 M_NOWAIT, &txq->vtntx_mtx); 719 if (txq->vtntx_br == NULL) 720 return (ENOMEM); 721 722 TASK_INIT(&txq->vtntx_defrtask, 0, vtnet_txq_tq_deferred, txq); 723 #endif 724 TASK_INIT(&txq->vtntx_intrtask, 0, vtnet_txq_tq_intr, txq); 725 txq->vtntx_tq = taskqueue_create(txq->vtntx_name, M_NOWAIT, 726 taskqueue_thread_enqueue, &txq->vtntx_tq); 727 if (txq->vtntx_tq == NULL) 728 return (ENOMEM); 729 730 return (0); 731 } 732 733 static int 734 vtnet_alloc_rxtx_queues(struct vtnet_softc *sc) 735 { 736 int i, npairs, error; 737 738 npairs = sc->vtnet_max_vq_pairs; 739 740 sc->vtnet_rxqs = malloc(sizeof(struct vtnet_rxq) * npairs, M_DEVBUF, 741 M_NOWAIT | M_ZERO); 742 sc->vtnet_txqs = malloc(sizeof(struct vtnet_txq) * npairs, M_DEVBUF, 743 M_NOWAIT | M_ZERO); 744 if (sc->vtnet_rxqs == NULL || sc->vtnet_txqs == NULL) 745 return (ENOMEM); 746 747 for (i = 0; i < npairs; i++) { 748 error = vtnet_init_rxq(sc, i); 749 if (error) 750 return (error); 751 error = vtnet_init_txq(sc, i); 752 if (error) 753 return (error); 754 } 755 756 vtnet_setup_queue_sysctl(sc); 757 758 return (0); 759 } 760 761 static void 762 vtnet_destroy_rxq(struct vtnet_rxq *rxq) 763 { 764 765 rxq->vtnrx_sc = NULL; 766 rxq->vtnrx_id = -1; 767 768 if (rxq->vtnrx_sg != NULL) { 769 sglist_free(rxq->vtnrx_sg); 770 rxq->vtnrx_sg = NULL; 771 } 772 773 if (mtx_initialized(&rxq->vtnrx_mtx) != 0) 774 mtx_destroy(&rxq->vtnrx_mtx); 775 } 776 777 static void 778 vtnet_destroy_txq(struct vtnet_txq *txq) 779 { 780 781 txq->vtntx_sc = NULL; 782 txq->vtntx_id = -1; 783 784 if (txq->vtntx_sg != NULL) { 785 sglist_free(txq->vtntx_sg); 786 txq->vtntx_sg = NULL; 787 } 788 789 #ifndef VTNET_LEGACY_TX 790 if (txq->vtntx_br != NULL) { 791 buf_ring_free(txq->vtntx_br, M_DEVBUF); 792 txq->vtntx_br = NULL; 793 } 794 #endif 795 796 if (mtx_initialized(&txq->vtntx_mtx) != 0) 797 mtx_destroy(&txq->vtntx_mtx); 798 } 799 800 static void 801 vtnet_free_rxtx_queues(struct vtnet_softc *sc) 802 { 803 int i; 804 805 if (sc->vtnet_rxqs != NULL) { 806 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) 807 vtnet_destroy_rxq(&sc->vtnet_rxqs[i]); 808 free(sc->vtnet_rxqs, M_DEVBUF); 809 sc->vtnet_rxqs = NULL; 810 } 811 812 if (sc->vtnet_txqs != NULL) { 813 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) 814 vtnet_destroy_txq(&sc->vtnet_txqs[i]); 815 free(sc->vtnet_txqs, M_DEVBUF); 816 sc->vtnet_txqs = NULL; 817 } 818 } 819 820 static int 821 vtnet_alloc_rx_filters(struct vtnet_softc *sc) 822 { 823 824 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 825 sc->vtnet_mac_filter = malloc(sizeof(struct vtnet_mac_filter), 826 M_DEVBUF, M_NOWAIT | M_ZERO); 827 if (sc->vtnet_mac_filter == NULL) 828 return (ENOMEM); 829 } 830 831 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 832 sc->vtnet_vlan_filter = malloc(sizeof(uint32_t) * 833 VTNET_VLAN_FILTER_NWORDS, M_DEVBUF, M_NOWAIT | M_ZERO); 834 if (sc->vtnet_vlan_filter == NULL) 835 return (ENOMEM); 836 } 837 838 return (0); 839 } 840 841 static void 842 vtnet_free_rx_filters(struct vtnet_softc *sc) 843 { 844 845 if (sc->vtnet_mac_filter != NULL) { 846 free(sc->vtnet_mac_filter, M_DEVBUF); 847 sc->vtnet_mac_filter = NULL; 848 } 849 850 if (sc->vtnet_vlan_filter != NULL) { 851 free(sc->vtnet_vlan_filter, M_DEVBUF); 852 sc->vtnet_vlan_filter = NULL; 853 } 854 } 855 856 static int 857 vtnet_alloc_virtqueues(struct vtnet_softc *sc) 858 { 859 device_t dev; 860 struct vq_alloc_info *info; 861 struct vtnet_rxq *rxq; 862 struct vtnet_txq *txq; 863 int i, idx, flags, nvqs, error; 864 865 dev = sc->vtnet_dev; 866 flags = 0; 867 868 nvqs = sc->vtnet_max_vq_pairs * 2; 869 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) 870 nvqs++; 871 872 info = malloc(sizeof(struct vq_alloc_info) * nvqs, M_TEMP, M_NOWAIT); 873 if (info == NULL) 874 return (ENOMEM); 875 876 for (i = 0, idx = 0; i < sc->vtnet_max_vq_pairs; i++, idx+=2) { 877 rxq = &sc->vtnet_rxqs[i]; 878 VQ_ALLOC_INFO_INIT(&info[idx], sc->vtnet_rx_nsegs, 879 vtnet_rx_vq_intr, rxq, &rxq->vtnrx_vq, 880 "%s-%d rx", device_get_nameunit(dev), rxq->vtnrx_id); 881 882 txq = &sc->vtnet_txqs[i]; 883 VQ_ALLOC_INFO_INIT(&info[idx+1], sc->vtnet_tx_nsegs, 884 vtnet_tx_vq_intr, txq, &txq->vtntx_vq, 885 "%s-%d tx", device_get_nameunit(dev), txq->vtntx_id); 886 } 887 888 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 889 VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, NULL, 890 &sc->vtnet_ctrl_vq, "%s ctrl", device_get_nameunit(dev)); 891 } 892 893 /* 894 * Enable interrupt binding if this is multiqueue. This only matters 895 * when per-vq MSIX is available. 896 */ 897 if (sc->vtnet_flags & VTNET_FLAG_MULTIQ) 898 flags |= 0; 899 900 error = virtio_alloc_virtqueues(dev, flags, nvqs, info); 901 free(info, M_TEMP); 902 903 return (error); 904 } 905 906 static int 907 vtnet_setup_interface(struct vtnet_softc *sc) 908 { 909 device_t dev; 910 struct ifnet *ifp; 911 912 dev = sc->vtnet_dev; 913 914 ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); 915 if (ifp == NULL) { 916 device_printf(dev, "cannot allocate ifnet structure\n"); 917 return (ENOSPC); 918 } 919 920 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 921 ifp->if_baudrate = IF_Gbps(10); /* Approx. */ 922 ifp->if_softc = sc; 923 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 924 ifp->if_init = vtnet_init; 925 ifp->if_ioctl = vtnet_ioctl; 926 ifp->if_get_counter = vtnet_get_counter; 927 #ifndef VTNET_LEGACY_TX 928 ifp->if_transmit = vtnet_txq_mq_start; 929 ifp->if_qflush = vtnet_qflush; 930 #else 931 struct virtqueue *vq = sc->vtnet_txqs[0].vtntx_vq; 932 ifp->if_start = vtnet_start; 933 IFQ_SET_MAXLEN(&ifp->if_snd, virtqueue_size(vq) - 1); 934 ifp->if_snd.ifq_drv_maxlen = virtqueue_size(vq) - 1; 935 IFQ_SET_READY(&ifp->if_snd); 936 #endif 937 938 ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, 939 vtnet_ifmedia_sts); 940 ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); 941 ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); 942 943 /* Read (or generate) the MAC address for the adapter. */ 944 vtnet_get_hwaddr(sc); 945 946 ether_ifattach(ifp, sc->vtnet_hwaddr); 947 948 if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) 949 ifp->if_capabilities |= IFCAP_LINKSTATE; 950 951 /* Tell the upper layer(s) we support long frames. */ 952 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 953 ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; 954 955 if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { 956 ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6; 957 958 if (virtio_with_feature(dev, VIRTIO_NET_F_GSO)) { 959 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6; 960 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 961 } else { 962 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) 963 ifp->if_capabilities |= IFCAP_TSO4; 964 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 965 ifp->if_capabilities |= IFCAP_TSO6; 966 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) 967 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 968 } 969 970 if (ifp->if_capabilities & IFCAP_TSO) 971 ifp->if_capabilities |= IFCAP_VLAN_HWTSO; 972 } 973 974 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { 975 ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; 976 977 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || 978 virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) 979 ifp->if_capabilities |= IFCAP_LRO; 980 } 981 982 if (ifp->if_capabilities & IFCAP_HWCSUM) { 983 /* 984 * VirtIO does not support VLAN tagging, but we can fake 985 * it by inserting and removing the 802.1Q header during 986 * transmit and receive. We are then able to do checksum 987 * offloading of VLAN frames. 988 */ 989 ifp->if_capabilities |= 990 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 991 } 992 993 ifp->if_capenable = ifp->if_capabilities; 994 995 /* 996 * Capabilities after here are not enabled by default. 997 */ 998 999 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 1000 ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; 1001 1002 sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, 1003 vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); 1004 sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, 1005 vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); 1006 } 1007 1008 vtnet_set_rx_process_limit(sc); 1009 vtnet_set_tx_intr_threshold(sc); 1010 1011 return (0); 1012 } 1013 1014 static int 1015 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) 1016 { 1017 struct ifnet *ifp; 1018 int frame_size, clsize; 1019 1020 ifp = sc->vtnet_ifp; 1021 1022 if (new_mtu < ETHERMIN || new_mtu > VTNET_MAX_MTU) 1023 return (EINVAL); 1024 1025 frame_size = sc->vtnet_hdr_size + sizeof(struct ether_vlan_header) + 1026 new_mtu; 1027 1028 /* 1029 * Based on the new MTU (and hence frame size) determine which 1030 * cluster size is most appropriate for the receive queues. 1031 */ 1032 if (frame_size <= MCLBYTES) { 1033 clsize = MCLBYTES; 1034 } else if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1035 /* Avoid going past 9K jumbos. */ 1036 if (frame_size > MJUM9BYTES) 1037 return (EINVAL); 1038 clsize = MJUM9BYTES; 1039 } else 1040 clsize = MJUMPAGESIZE; 1041 1042 ifp->if_mtu = new_mtu; 1043 sc->vtnet_rx_new_clsize = clsize; 1044 1045 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1046 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1047 vtnet_init_locked(sc); 1048 } 1049 1050 return (0); 1051 } 1052 1053 static int 1054 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1055 { 1056 struct vtnet_softc *sc; 1057 struct ifreq *ifr; 1058 int reinit, mask, error; 1059 1060 sc = ifp->if_softc; 1061 ifr = (struct ifreq *) data; 1062 error = 0; 1063 1064 switch (cmd) { 1065 case SIOCSIFMTU: 1066 if (ifp->if_mtu != ifr->ifr_mtu) { 1067 VTNET_CORE_LOCK(sc); 1068 error = vtnet_change_mtu(sc, ifr->ifr_mtu); 1069 VTNET_CORE_UNLOCK(sc); 1070 } 1071 break; 1072 1073 case SIOCSIFFLAGS: 1074 VTNET_CORE_LOCK(sc); 1075 if ((ifp->if_flags & IFF_UP) == 0) { 1076 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1077 vtnet_stop(sc); 1078 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1079 if ((ifp->if_flags ^ sc->vtnet_if_flags) & 1080 (IFF_PROMISC | IFF_ALLMULTI)) { 1081 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) 1082 vtnet_rx_filter(sc); 1083 else 1084 error = ENOTSUP; 1085 } 1086 } else 1087 vtnet_init_locked(sc); 1088 1089 if (error == 0) 1090 sc->vtnet_if_flags = ifp->if_flags; 1091 VTNET_CORE_UNLOCK(sc); 1092 break; 1093 1094 case SIOCADDMULTI: 1095 case SIOCDELMULTI: 1096 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) 1097 break; 1098 VTNET_CORE_LOCK(sc); 1099 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1100 vtnet_rx_filter_mac(sc); 1101 VTNET_CORE_UNLOCK(sc); 1102 break; 1103 1104 case SIOCSIFMEDIA: 1105 case SIOCGIFMEDIA: 1106 error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); 1107 break; 1108 1109 case SIOCSIFCAP: 1110 VTNET_CORE_LOCK(sc); 1111 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1112 1113 if (mask & IFCAP_TXCSUM) 1114 ifp->if_capenable ^= IFCAP_TXCSUM; 1115 if (mask & IFCAP_TXCSUM_IPV6) 1116 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1117 if (mask & IFCAP_TSO4) 1118 ifp->if_capenable ^= IFCAP_TSO4; 1119 if (mask & IFCAP_TSO6) 1120 ifp->if_capenable ^= IFCAP_TSO6; 1121 1122 if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO | 1123 IFCAP_VLAN_HWFILTER)) { 1124 /* These Rx features require us to renegotiate. */ 1125 reinit = 1; 1126 1127 if (mask & IFCAP_RXCSUM) 1128 ifp->if_capenable ^= IFCAP_RXCSUM; 1129 if (mask & IFCAP_RXCSUM_IPV6) 1130 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1131 if (mask & IFCAP_LRO) 1132 ifp->if_capenable ^= IFCAP_LRO; 1133 if (mask & IFCAP_VLAN_HWFILTER) 1134 ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; 1135 } else 1136 reinit = 0; 1137 1138 if (mask & IFCAP_VLAN_HWTSO) 1139 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1140 if (mask & IFCAP_VLAN_HWTAGGING) 1141 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1142 1143 if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1144 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1145 vtnet_init_locked(sc); 1146 } 1147 1148 VTNET_CORE_UNLOCK(sc); 1149 VLAN_CAPABILITIES(ifp); 1150 1151 break; 1152 1153 default: 1154 error = ether_ioctl(ifp, cmd, data); 1155 break; 1156 } 1157 1158 VTNET_CORE_LOCK_ASSERT_NOTOWNED(sc); 1159 1160 return (error); 1161 } 1162 1163 static int 1164 vtnet_rxq_populate(struct vtnet_rxq *rxq) 1165 { 1166 struct virtqueue *vq; 1167 int nbufs, error; 1168 1169 vq = rxq->vtnrx_vq; 1170 error = ENOSPC; 1171 1172 for (nbufs = 0; !virtqueue_full(vq); nbufs++) { 1173 error = vtnet_rxq_new_buf(rxq); 1174 if (error) 1175 break; 1176 } 1177 1178 if (nbufs > 0) { 1179 virtqueue_notify(vq); 1180 /* 1181 * EMSGSIZE signifies the virtqueue did not have enough 1182 * entries available to hold the last mbuf. This is not 1183 * an error. 1184 */ 1185 if (error == EMSGSIZE) 1186 error = 0; 1187 } 1188 1189 return (error); 1190 } 1191 1192 static void 1193 vtnet_rxq_free_mbufs(struct vtnet_rxq *rxq) 1194 { 1195 struct virtqueue *vq; 1196 struct mbuf *m; 1197 int last; 1198 1199 vq = rxq->vtnrx_vq; 1200 last = 0; 1201 1202 while ((m = virtqueue_drain(vq, &last)) != NULL) 1203 m_freem(m); 1204 1205 KASSERT(virtqueue_empty(vq), 1206 ("%s: mbufs remaining in rx queue %p", __func__, rxq)); 1207 } 1208 1209 static struct mbuf * 1210 vtnet_rx_alloc_buf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) 1211 { 1212 struct mbuf *m_head, *m_tail, *m; 1213 int i, clsize; 1214 1215 clsize = sc->vtnet_rx_clsize; 1216 1217 KASSERT(nbufs == 1 || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, 1218 ("%s: chained mbuf %d request without LRO_NOMRG", __func__, nbufs)); 1219 1220 m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize); 1221 if (m_head == NULL) 1222 goto fail; 1223 1224 m_head->m_len = clsize; 1225 m_tail = m_head; 1226 1227 /* Allocate the rest of the chain. */ 1228 for (i = 1; i < nbufs; i++) { 1229 m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize); 1230 if (m == NULL) 1231 goto fail; 1232 1233 m->m_len = clsize; 1234 m_tail->m_next = m; 1235 m_tail = m; 1236 } 1237 1238 if (m_tailp != NULL) 1239 *m_tailp = m_tail; 1240 1241 return (m_head); 1242 1243 fail: 1244 sc->vtnet_stats.mbuf_alloc_failed++; 1245 m_freem(m_head); 1246 1247 return (NULL); 1248 } 1249 1250 /* 1251 * Slow path for when LRO without mergeable buffers is negotiated. 1252 */ 1253 static int 1254 vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *rxq, struct mbuf *m0, 1255 int len0) 1256 { 1257 struct vtnet_softc *sc; 1258 struct mbuf *m, *m_prev; 1259 struct mbuf *m_new, *m_tail; 1260 int len, clsize, nreplace, error; 1261 1262 sc = rxq->vtnrx_sc; 1263 clsize = sc->vtnet_rx_clsize; 1264 1265 m_prev = NULL; 1266 m_tail = NULL; 1267 nreplace = 0; 1268 1269 m = m0; 1270 len = len0; 1271 1272 /* 1273 * Since these mbuf chains are so large, we avoid allocating an 1274 * entire replacement chain if possible. When the received frame 1275 * did not consume the entire chain, the unused mbufs are moved 1276 * to the replacement chain. 1277 */ 1278 while (len > 0) { 1279 /* 1280 * Something is seriously wrong if we received a frame 1281 * larger than the chain. Drop it. 1282 */ 1283 if (m == NULL) { 1284 sc->vtnet_stats.rx_frame_too_large++; 1285 return (EMSGSIZE); 1286 } 1287 1288 /* We always allocate the same cluster size. */ 1289 KASSERT(m->m_len == clsize, 1290 ("%s: mbuf size %d is not the cluster size %d", 1291 __func__, m->m_len, clsize)); 1292 1293 m->m_len = MIN(m->m_len, len); 1294 len -= m->m_len; 1295 1296 m_prev = m; 1297 m = m->m_next; 1298 nreplace++; 1299 } 1300 1301 KASSERT(nreplace <= sc->vtnet_rx_nmbufs, 1302 ("%s: too many replacement mbufs %d max %d", __func__, nreplace, 1303 sc->vtnet_rx_nmbufs)); 1304 1305 m_new = vtnet_rx_alloc_buf(sc, nreplace, &m_tail); 1306 if (m_new == NULL) { 1307 m_prev->m_len = clsize; 1308 return (ENOBUFS); 1309 } 1310 1311 /* 1312 * Move any unused mbufs from the received chain onto the end 1313 * of the new chain. 1314 */ 1315 if (m_prev->m_next != NULL) { 1316 m_tail->m_next = m_prev->m_next; 1317 m_prev->m_next = NULL; 1318 } 1319 1320 error = vtnet_rxq_enqueue_buf(rxq, m_new); 1321 if (error) { 1322 /* 1323 * BAD! We could not enqueue the replacement mbuf chain. We 1324 * must restore the m0 chain to the original state if it was 1325 * modified so we can subsequently discard it. 1326 * 1327 * NOTE: The replacement is suppose to be an identical copy 1328 * to the one just dequeued so this is an unexpected error. 1329 */ 1330 sc->vtnet_stats.rx_enq_replacement_failed++; 1331 1332 if (m_tail->m_next != NULL) { 1333 m_prev->m_next = m_tail->m_next; 1334 m_tail->m_next = NULL; 1335 } 1336 1337 m_prev->m_len = clsize; 1338 m_freem(m_new); 1339 } 1340 1341 return (error); 1342 } 1343 1344 static int 1345 vtnet_rxq_replace_buf(struct vtnet_rxq *rxq, struct mbuf *m, int len) 1346 { 1347 struct vtnet_softc *sc; 1348 struct mbuf *m_new; 1349 int error; 1350 1351 sc = rxq->vtnrx_sc; 1352 1353 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, 1354 ("%s: chained mbuf without LRO_NOMRG", __func__)); 1355 1356 if (m->m_next == NULL) { 1357 /* Fast-path for the common case of just one mbuf. */ 1358 if (m->m_len < len) 1359 return (EINVAL); 1360 1361 m_new = vtnet_rx_alloc_buf(sc, 1, NULL); 1362 if (m_new == NULL) 1363 return (ENOBUFS); 1364 1365 error = vtnet_rxq_enqueue_buf(rxq, m_new); 1366 if (error) { 1367 /* 1368 * The new mbuf is suppose to be an identical 1369 * copy of the one just dequeued so this is an 1370 * unexpected error. 1371 */ 1372 m_freem(m_new); 1373 sc->vtnet_stats.rx_enq_replacement_failed++; 1374 } else 1375 m->m_len = len; 1376 } else 1377 error = vtnet_rxq_replace_lro_nomgr_buf(rxq, m, len); 1378 1379 return (error); 1380 } 1381 1382 static int 1383 vtnet_rxq_enqueue_buf(struct vtnet_rxq *rxq, struct mbuf *m) 1384 { 1385 struct vtnet_softc *sc; 1386 struct sglist *sg; 1387 struct vtnet_rx_header *rxhdr; 1388 uint8_t *mdata; 1389 int offset, error; 1390 1391 sc = rxq->vtnrx_sc; 1392 sg = rxq->vtnrx_sg; 1393 mdata = mtod(m, uint8_t *); 1394 1395 VTNET_RXQ_LOCK_ASSERT(rxq); 1396 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, 1397 ("%s: chained mbuf without LRO_NOMRG", __func__)); 1398 KASSERT(m->m_len == sc->vtnet_rx_clsize, 1399 ("%s: unexpected cluster size %d/%d", __func__, m->m_len, 1400 sc->vtnet_rx_clsize)); 1401 1402 sglist_reset(sg); 1403 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1404 MPASS(sc->vtnet_hdr_size == sizeof(struct virtio_net_hdr)); 1405 rxhdr = (struct vtnet_rx_header *) mdata; 1406 sglist_append(sg, &rxhdr->vrh_hdr, sc->vtnet_hdr_size); 1407 offset = sizeof(struct vtnet_rx_header); 1408 } else 1409 offset = 0; 1410 1411 sglist_append(sg, mdata + offset, m->m_len - offset); 1412 if (m->m_next != NULL) { 1413 error = sglist_append_mbuf(sg, m->m_next); 1414 MPASS(error == 0); 1415 } 1416 1417 error = virtqueue_enqueue(rxq->vtnrx_vq, m, sg, 0, sg->sg_nseg); 1418 1419 return (error); 1420 } 1421 1422 static int 1423 vtnet_rxq_new_buf(struct vtnet_rxq *rxq) 1424 { 1425 struct vtnet_softc *sc; 1426 struct mbuf *m; 1427 int error; 1428 1429 sc = rxq->vtnrx_sc; 1430 1431 m = vtnet_rx_alloc_buf(sc, sc->vtnet_rx_nmbufs, NULL); 1432 if (m == NULL) 1433 return (ENOBUFS); 1434 1435 error = vtnet_rxq_enqueue_buf(rxq, m); 1436 if (error) 1437 m_freem(m); 1438 1439 return (error); 1440 } 1441 1442 /* 1443 * Use the checksum offset in the VirtIO header to set the 1444 * correct CSUM_* flags. 1445 */ 1446 static int 1447 vtnet_rxq_csum_by_offset(struct vtnet_rxq *rxq, struct mbuf *m, 1448 uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) 1449 { 1450 struct vtnet_softc *sc; 1451 #if defined(INET) || defined(INET6) 1452 int offset = hdr->csum_start + hdr->csum_offset; 1453 #endif 1454 1455 sc = rxq->vtnrx_sc; 1456 1457 /* Only do a basic sanity check on the offset. */ 1458 switch (eth_type) { 1459 #if defined(INET) 1460 case ETHERTYPE_IP: 1461 if (__predict_false(offset < ip_start + sizeof(struct ip))) 1462 return (1); 1463 break; 1464 #endif 1465 #if defined(INET6) 1466 case ETHERTYPE_IPV6: 1467 if (__predict_false(offset < ip_start + sizeof(struct ip6_hdr))) 1468 return (1); 1469 break; 1470 #endif 1471 default: 1472 sc->vtnet_stats.rx_csum_bad_ethtype++; 1473 return (1); 1474 } 1475 1476 /* 1477 * Use the offset to determine the appropriate CSUM_* flags. This is 1478 * a bit dirty, but we can get by with it since the checksum offsets 1479 * happen to be different. We assume the host host does not do IPv4 1480 * header checksum offloading. 1481 */ 1482 switch (hdr->csum_offset) { 1483 case offsetof(struct udphdr, uh_sum): 1484 case offsetof(struct tcphdr, th_sum): 1485 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1486 m->m_pkthdr.csum_data = 0xFFFF; 1487 break; 1488 case offsetof(struct sctphdr, checksum): 1489 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1490 break; 1491 default: 1492 sc->vtnet_stats.rx_csum_bad_offset++; 1493 return (1); 1494 } 1495 1496 return (0); 1497 } 1498 1499 static int 1500 vtnet_rxq_csum_by_parse(struct vtnet_rxq *rxq, struct mbuf *m, 1501 uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) 1502 { 1503 struct vtnet_softc *sc; 1504 int offset, proto; 1505 1506 sc = rxq->vtnrx_sc; 1507 1508 switch (eth_type) { 1509 #if defined(INET) 1510 case ETHERTYPE_IP: { 1511 struct ip *ip; 1512 if (__predict_false(m->m_len < ip_start + sizeof(struct ip))) 1513 return (1); 1514 ip = (struct ip *)(m->m_data + ip_start); 1515 proto = ip->ip_p; 1516 offset = ip_start + (ip->ip_hl << 2); 1517 break; 1518 } 1519 #endif 1520 #if defined(INET6) 1521 case ETHERTYPE_IPV6: 1522 if (__predict_false(m->m_len < ip_start + 1523 sizeof(struct ip6_hdr))) 1524 return (1); 1525 offset = ip6_lasthdr(m, ip_start, IPPROTO_IPV6, &proto); 1526 if (__predict_false(offset < 0)) 1527 return (1); 1528 break; 1529 #endif 1530 default: 1531 sc->vtnet_stats.rx_csum_bad_ethtype++; 1532 return (1); 1533 } 1534 1535 switch (proto) { 1536 case IPPROTO_TCP: 1537 if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) 1538 return (1); 1539 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1540 m->m_pkthdr.csum_data = 0xFFFF; 1541 break; 1542 case IPPROTO_UDP: 1543 if (__predict_false(m->m_len < offset + sizeof(struct udphdr))) 1544 return (1); 1545 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1546 m->m_pkthdr.csum_data = 0xFFFF; 1547 break; 1548 case IPPROTO_SCTP: 1549 if (__predict_false(m->m_len < offset + sizeof(struct sctphdr))) 1550 return (1); 1551 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1552 break; 1553 default: 1554 /* 1555 * For the remaining protocols, FreeBSD does not support 1556 * checksum offloading, so the checksum will be recomputed. 1557 */ 1558 #if 0 1559 if_printf(sc->vtnet_ifp, "cksum offload of unsupported " 1560 "protocol eth_type=%#x proto=%d csum_start=%d " 1561 "csum_offset=%d\n", __func__, eth_type, proto, 1562 hdr->csum_start, hdr->csum_offset); 1563 #endif 1564 break; 1565 } 1566 1567 return (0); 1568 } 1569 1570 /* 1571 * Set the appropriate CSUM_* flags. Unfortunately, the information 1572 * provided is not directly useful to us. The VirtIO header gives the 1573 * offset of the checksum, which is all Linux needs, but this is not 1574 * how FreeBSD does things. We are forced to peek inside the packet 1575 * a bit. 1576 * 1577 * It would be nice if VirtIO gave us the L4 protocol or if FreeBSD 1578 * could accept the offsets and let the stack figure it out. 1579 */ 1580 static int 1581 vtnet_rxq_csum(struct vtnet_rxq *rxq, struct mbuf *m, 1582 struct virtio_net_hdr *hdr) 1583 { 1584 struct ether_header *eh; 1585 struct ether_vlan_header *evh; 1586 uint16_t eth_type; 1587 int offset, error; 1588 1589 eh = mtod(m, struct ether_header *); 1590 eth_type = ntohs(eh->ether_type); 1591 if (eth_type == ETHERTYPE_VLAN) { 1592 /* BMV: We should handle nested VLAN tags too. */ 1593 evh = mtod(m, struct ether_vlan_header *); 1594 eth_type = ntohs(evh->evl_proto); 1595 offset = sizeof(struct ether_vlan_header); 1596 } else 1597 offset = sizeof(struct ether_header); 1598 1599 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1600 error = vtnet_rxq_csum_by_offset(rxq, m, eth_type, offset, hdr); 1601 else 1602 error = vtnet_rxq_csum_by_parse(rxq, m, eth_type, offset, hdr); 1603 1604 return (error); 1605 } 1606 1607 static void 1608 vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *rxq, int nbufs) 1609 { 1610 struct mbuf *m; 1611 1612 while (--nbufs > 0) { 1613 m = virtqueue_dequeue(rxq->vtnrx_vq, NULL); 1614 if (m == NULL) 1615 break; 1616 vtnet_rxq_discard_buf(rxq, m); 1617 } 1618 } 1619 1620 static void 1621 vtnet_rxq_discard_buf(struct vtnet_rxq *rxq, struct mbuf *m) 1622 { 1623 int error; 1624 1625 /* 1626 * Requeue the discarded mbuf. This should always be successful 1627 * since it was just dequeued. 1628 */ 1629 error = vtnet_rxq_enqueue_buf(rxq, m); 1630 KASSERT(error == 0, 1631 ("%s: cannot requeue discarded mbuf %d", __func__, error)); 1632 } 1633 1634 static int 1635 vtnet_rxq_merged_eof(struct vtnet_rxq *rxq, struct mbuf *m_head, int nbufs) 1636 { 1637 struct vtnet_softc *sc; 1638 struct ifnet *ifp; 1639 struct virtqueue *vq; 1640 struct mbuf *m, *m_tail; 1641 int len; 1642 1643 sc = rxq->vtnrx_sc; 1644 vq = rxq->vtnrx_vq; 1645 ifp = sc->vtnet_ifp; 1646 m_tail = m_head; 1647 1648 while (--nbufs > 0) { 1649 m = virtqueue_dequeue(vq, &len); 1650 if (m == NULL) { 1651 rxq->vtnrx_stats.vrxs_ierrors++; 1652 goto fail; 1653 } 1654 1655 if (vtnet_rxq_new_buf(rxq) != 0) { 1656 rxq->vtnrx_stats.vrxs_iqdrops++; 1657 vtnet_rxq_discard_buf(rxq, m); 1658 if (nbufs > 1) 1659 vtnet_rxq_discard_merged_bufs(rxq, nbufs); 1660 goto fail; 1661 } 1662 1663 if (m->m_len < len) 1664 len = m->m_len; 1665 1666 m->m_len = len; 1667 m->m_flags &= ~M_PKTHDR; 1668 1669 m_head->m_pkthdr.len += len; 1670 m_tail->m_next = m; 1671 m_tail = m; 1672 } 1673 1674 return (0); 1675 1676 fail: 1677 sc->vtnet_stats.rx_mergeable_failed++; 1678 m_freem(m_head); 1679 1680 return (1); 1681 } 1682 1683 static void 1684 vtnet_rxq_input(struct vtnet_rxq *rxq, struct mbuf *m, 1685 struct virtio_net_hdr *hdr) 1686 { 1687 struct vtnet_softc *sc; 1688 struct ifnet *ifp; 1689 struct ether_header *eh; 1690 1691 sc = rxq->vtnrx_sc; 1692 ifp = sc->vtnet_ifp; 1693 1694 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 1695 eh = mtod(m, struct ether_header *); 1696 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1697 vtnet_vlan_tag_remove(m); 1698 /* 1699 * With the 802.1Q header removed, update the 1700 * checksum starting location accordingly. 1701 */ 1702 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1703 hdr->csum_start -= ETHER_VLAN_ENCAP_LEN; 1704 } 1705 } 1706 1707 m->m_pkthdr.flowid = rxq->vtnrx_id; 1708 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 1709 1710 /* 1711 * BMV: FreeBSD does not have the UNNECESSARY and PARTIAL checksum 1712 * distinction that Linux does. Need to reevaluate if performing 1713 * offloading for the NEEDS_CSUM case is really appropriate. 1714 */ 1715 if (hdr->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM | 1716 VIRTIO_NET_HDR_F_DATA_VALID)) { 1717 if (vtnet_rxq_csum(rxq, m, hdr) == 0) 1718 rxq->vtnrx_stats.vrxs_csum++; 1719 else 1720 rxq->vtnrx_stats.vrxs_csum_failed++; 1721 } 1722 1723 rxq->vtnrx_stats.vrxs_ipackets++; 1724 rxq->vtnrx_stats.vrxs_ibytes += m->m_pkthdr.len; 1725 1726 VTNET_RXQ_UNLOCK(rxq); 1727 (*ifp->if_input)(ifp, m); 1728 VTNET_RXQ_LOCK(rxq); 1729 } 1730 1731 static int 1732 vtnet_rxq_eof(struct vtnet_rxq *rxq) 1733 { 1734 struct virtio_net_hdr lhdr, *hdr; 1735 struct vtnet_softc *sc; 1736 struct ifnet *ifp; 1737 struct virtqueue *vq; 1738 struct mbuf *m; 1739 struct virtio_net_hdr_mrg_rxbuf *mhdr; 1740 int len, deq, nbufs, adjsz, count; 1741 1742 sc = rxq->vtnrx_sc; 1743 vq = rxq->vtnrx_vq; 1744 ifp = sc->vtnet_ifp; 1745 hdr = &lhdr; 1746 deq = 0; 1747 count = sc->vtnet_rx_process_limit; 1748 1749 VTNET_RXQ_LOCK_ASSERT(rxq); 1750 1751 #ifdef DEV_NETMAP 1752 if (netmap_rx_irq(ifp, 0, &deq)) { 1753 return (FALSE); 1754 } 1755 #endif /* DEV_NETMAP */ 1756 1757 while (count-- > 0) { 1758 m = virtqueue_dequeue(vq, &len); 1759 if (m == NULL) 1760 break; 1761 deq++; 1762 1763 if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { 1764 rxq->vtnrx_stats.vrxs_ierrors++; 1765 vtnet_rxq_discard_buf(rxq, m); 1766 continue; 1767 } 1768 1769 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1770 nbufs = 1; 1771 adjsz = sizeof(struct vtnet_rx_header); 1772 /* 1773 * Account for our pad inserted between the header 1774 * and the actual start of the frame. 1775 */ 1776 len += VTNET_RX_HEADER_PAD; 1777 } else { 1778 mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); 1779 nbufs = mhdr->num_buffers; 1780 adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); 1781 } 1782 1783 if (vtnet_rxq_replace_buf(rxq, m, len) != 0) { 1784 rxq->vtnrx_stats.vrxs_iqdrops++; 1785 vtnet_rxq_discard_buf(rxq, m); 1786 if (nbufs > 1) 1787 vtnet_rxq_discard_merged_bufs(rxq, nbufs); 1788 continue; 1789 } 1790 1791 m->m_pkthdr.len = len; 1792 m->m_pkthdr.rcvif = ifp; 1793 m->m_pkthdr.csum_flags = 0; 1794 1795 if (nbufs > 1) { 1796 /* Dequeue the rest of chain. */ 1797 if (vtnet_rxq_merged_eof(rxq, m, nbufs) != 0) 1798 continue; 1799 } 1800 1801 /* 1802 * Save copy of header before we strip it. For both mergeable 1803 * and non-mergeable, the header is at the beginning of the 1804 * mbuf data. We no longer need num_buffers, so always use a 1805 * regular header. 1806 * 1807 * BMV: Is this memcpy() expensive? We know the mbuf data is 1808 * still valid even after the m_adj(). 1809 */ 1810 memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); 1811 m_adj(m, adjsz); 1812 1813 vtnet_rxq_input(rxq, m, hdr); 1814 1815 /* Must recheck after dropping the Rx lock. */ 1816 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1817 break; 1818 } 1819 1820 if (deq > 0) 1821 virtqueue_notify(vq); 1822 1823 return (count > 0 ? 0 : EAGAIN); 1824 } 1825 1826 static void 1827 vtnet_rx_vq_intr(void *xrxq) 1828 { 1829 struct vtnet_softc *sc; 1830 struct vtnet_rxq *rxq; 1831 struct ifnet *ifp; 1832 int tries, more; 1833 1834 rxq = xrxq; 1835 sc = rxq->vtnrx_sc; 1836 ifp = sc->vtnet_ifp; 1837 tries = 0; 1838 1839 if (__predict_false(rxq->vtnrx_id >= sc->vtnet_act_vq_pairs)) { 1840 /* 1841 * Ignore this interrupt. Either this is a spurious interrupt 1842 * or multiqueue without per-VQ MSIX so every queue needs to 1843 * be polled (a brain dead configuration we could try harder 1844 * to avoid). 1845 */ 1846 vtnet_rxq_disable_intr(rxq); 1847 return; 1848 } 1849 1850 VTNET_RXQ_LOCK(rxq); 1851 1852 again: 1853 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1854 VTNET_RXQ_UNLOCK(rxq); 1855 return; 1856 } 1857 1858 more = vtnet_rxq_eof(rxq); 1859 if (more || vtnet_rxq_enable_intr(rxq) != 0) { 1860 if (!more) 1861 vtnet_rxq_disable_intr(rxq); 1862 /* 1863 * This is an occasional condition or race (when !more), 1864 * so retry a few times before scheduling the taskqueue. 1865 */ 1866 if (tries++ < VTNET_INTR_DISABLE_RETRIES) 1867 goto again; 1868 1869 VTNET_RXQ_UNLOCK(rxq); 1870 rxq->vtnrx_stats.vrxs_rescheduled++; 1871 taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 1872 } else 1873 VTNET_RXQ_UNLOCK(rxq); 1874 } 1875 1876 static void 1877 vtnet_rxq_tq_intr(void *xrxq, int pending) 1878 { 1879 struct vtnet_softc *sc; 1880 struct vtnet_rxq *rxq; 1881 struct ifnet *ifp; 1882 int more; 1883 1884 rxq = xrxq; 1885 sc = rxq->vtnrx_sc; 1886 ifp = sc->vtnet_ifp; 1887 1888 VTNET_RXQ_LOCK(rxq); 1889 1890 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1891 VTNET_RXQ_UNLOCK(rxq); 1892 return; 1893 } 1894 1895 more = vtnet_rxq_eof(rxq); 1896 if (more || vtnet_rxq_enable_intr(rxq) != 0) { 1897 if (!more) 1898 vtnet_rxq_disable_intr(rxq); 1899 rxq->vtnrx_stats.vrxs_rescheduled++; 1900 taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 1901 } 1902 1903 VTNET_RXQ_UNLOCK(rxq); 1904 } 1905 1906 static int 1907 vtnet_txq_below_threshold(struct vtnet_txq *txq) 1908 { 1909 struct vtnet_softc *sc; 1910 struct virtqueue *vq; 1911 1912 sc = txq->vtntx_sc; 1913 vq = txq->vtntx_vq; 1914 1915 return (virtqueue_nfree(vq) <= sc->vtnet_tx_intr_thresh); 1916 } 1917 1918 static int 1919 vtnet_txq_notify(struct vtnet_txq *txq) 1920 { 1921 struct virtqueue *vq; 1922 1923 vq = txq->vtntx_vq; 1924 1925 txq->vtntx_watchdog = VTNET_TX_TIMEOUT; 1926 virtqueue_notify(vq); 1927 1928 if (vtnet_txq_enable_intr(txq) == 0) 1929 return (0); 1930 1931 /* 1932 * Drain frames that were completed since last checked. If this 1933 * causes the queue to go above the threshold, the caller should 1934 * continue transmitting. 1935 */ 1936 if (vtnet_txq_eof(txq) != 0 && vtnet_txq_below_threshold(txq) == 0) { 1937 virtqueue_disable_intr(vq); 1938 return (1); 1939 } 1940 1941 return (0); 1942 } 1943 1944 static void 1945 vtnet_txq_free_mbufs(struct vtnet_txq *txq) 1946 { 1947 struct virtqueue *vq; 1948 struct vtnet_tx_header *txhdr; 1949 int last; 1950 1951 vq = txq->vtntx_vq; 1952 last = 0; 1953 1954 while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { 1955 m_freem(txhdr->vth_mbuf); 1956 uma_zfree(vtnet_tx_header_zone, txhdr); 1957 } 1958 1959 KASSERT(virtqueue_empty(vq), 1960 ("%s: mbufs remaining in tx queue %p", __func__, txq)); 1961 } 1962 1963 /* 1964 * BMV: Much of this can go away once we finally have offsets in 1965 * the mbuf packet header. Bug andre@. 1966 */ 1967 static int 1968 vtnet_txq_offload_ctx(struct vtnet_txq *txq, struct mbuf *m, 1969 int *etype, int *proto, int *start) 1970 { 1971 struct vtnet_softc *sc; 1972 struct ether_vlan_header *evh; 1973 int offset; 1974 1975 sc = txq->vtntx_sc; 1976 1977 evh = mtod(m, struct ether_vlan_header *); 1978 if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 1979 /* BMV: We should handle nested VLAN tags too. */ 1980 *etype = ntohs(evh->evl_proto); 1981 offset = sizeof(struct ether_vlan_header); 1982 } else { 1983 *etype = ntohs(evh->evl_encap_proto); 1984 offset = sizeof(struct ether_header); 1985 } 1986 1987 switch (*etype) { 1988 #if defined(INET) 1989 case ETHERTYPE_IP: { 1990 struct ip *ip, iphdr; 1991 if (__predict_false(m->m_len < offset + sizeof(struct ip))) { 1992 m_copydata(m, offset, sizeof(struct ip), 1993 (caddr_t) &iphdr); 1994 ip = &iphdr; 1995 } else 1996 ip = (struct ip *)(m->m_data + offset); 1997 *proto = ip->ip_p; 1998 *start = offset + (ip->ip_hl << 2); 1999 break; 2000 } 2001 #endif 2002 #if defined(INET6) 2003 case ETHERTYPE_IPV6: 2004 *proto = -1; 2005 *start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto); 2006 /* Assert the network stack sent us a valid packet. */ 2007 KASSERT(*start > offset, 2008 ("%s: mbuf %p start %d offset %d proto %d", __func__, m, 2009 *start, offset, *proto)); 2010 break; 2011 #endif 2012 default: 2013 sc->vtnet_stats.tx_csum_bad_ethtype++; 2014 return (EINVAL); 2015 } 2016 2017 return (0); 2018 } 2019 2020 static int 2021 vtnet_txq_offload_tso(struct vtnet_txq *txq, struct mbuf *m, int eth_type, 2022 int offset, struct virtio_net_hdr *hdr) 2023 { 2024 static struct timeval lastecn; 2025 static int curecn; 2026 struct vtnet_softc *sc; 2027 struct tcphdr *tcp, tcphdr; 2028 2029 sc = txq->vtntx_sc; 2030 2031 if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) { 2032 m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr); 2033 tcp = &tcphdr; 2034 } else 2035 tcp = (struct tcphdr *)(m->m_data + offset); 2036 2037 hdr->hdr_len = offset + (tcp->th_off << 2); 2038 hdr->gso_size = m->m_pkthdr.tso_segsz; 2039 hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 : 2040 VIRTIO_NET_HDR_GSO_TCPV6; 2041 2042 if (tcp->th_flags & TH_CWR) { 2043 /* 2044 * Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In FreeBSD, 2045 * ECN support is not on a per-interface basis, but globally via 2046 * the net.inet.tcp.ecn.enable sysctl knob. The default is off. 2047 */ 2048 if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { 2049 if (ppsratecheck(&lastecn, &curecn, 1)) 2050 if_printf(sc->vtnet_ifp, 2051 "TSO with ECN not negotiated with host\n"); 2052 return (ENOTSUP); 2053 } 2054 hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; 2055 } 2056 2057 txq->vtntx_stats.vtxs_tso++; 2058 2059 return (0); 2060 } 2061 2062 static struct mbuf * 2063 vtnet_txq_offload(struct vtnet_txq *txq, struct mbuf *m, 2064 struct virtio_net_hdr *hdr) 2065 { 2066 struct vtnet_softc *sc; 2067 int flags, etype, csum_start, proto, error; 2068 2069 sc = txq->vtntx_sc; 2070 flags = m->m_pkthdr.csum_flags; 2071 2072 error = vtnet_txq_offload_ctx(txq, m, &etype, &proto, &csum_start); 2073 if (error) 2074 goto drop; 2075 2076 if ((etype == ETHERTYPE_IP && flags & VTNET_CSUM_OFFLOAD) || 2077 (etype == ETHERTYPE_IPV6 && flags & VTNET_CSUM_OFFLOAD_IPV6)) { 2078 /* 2079 * We could compare the IP protocol vs the CSUM_ flag too, 2080 * but that really should not be necessary. 2081 */ 2082 hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; 2083 hdr->csum_start = csum_start; 2084 hdr->csum_offset = m->m_pkthdr.csum_data; 2085 txq->vtntx_stats.vtxs_csum++; 2086 } 2087 2088 if (flags & CSUM_TSO) { 2089 if (__predict_false(proto != IPPROTO_TCP)) { 2090 /* Likely failed to correctly parse the mbuf. */ 2091 sc->vtnet_stats.tx_tso_not_tcp++; 2092 goto drop; 2093 } 2094 2095 KASSERT(hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM, 2096 ("%s: mbuf %p TSO without checksum offload %#x", 2097 __func__, m, flags)); 2098 2099 error = vtnet_txq_offload_tso(txq, m, etype, csum_start, hdr); 2100 if (error) 2101 goto drop; 2102 } 2103 2104 return (m); 2105 2106 drop: 2107 m_freem(m); 2108 return (NULL); 2109 } 2110 2111 static int 2112 vtnet_txq_enqueue_buf(struct vtnet_txq *txq, struct mbuf **m_head, 2113 struct vtnet_tx_header *txhdr) 2114 { 2115 struct vtnet_softc *sc; 2116 struct virtqueue *vq; 2117 struct sglist *sg; 2118 struct mbuf *m; 2119 int error; 2120 2121 sc = txq->vtntx_sc; 2122 vq = txq->vtntx_vq; 2123 sg = txq->vtntx_sg; 2124 m = *m_head; 2125 2126 sglist_reset(sg); 2127 error = sglist_append(sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); 2128 KASSERT(error == 0 && sg->sg_nseg == 1, 2129 ("%s: error %d adding header to sglist", __func__, error)); 2130 2131 error = sglist_append_mbuf(sg, m); 2132 if (error) { 2133 m = m_defrag(m, M_NOWAIT); 2134 if (m == NULL) 2135 goto fail; 2136 2137 *m_head = m; 2138 sc->vtnet_stats.tx_defragged++; 2139 2140 error = sglist_append_mbuf(sg, m); 2141 if (error) 2142 goto fail; 2143 } 2144 2145 txhdr->vth_mbuf = m; 2146 error = virtqueue_enqueue(vq, txhdr, sg, sg->sg_nseg, 0); 2147 2148 return (error); 2149 2150 fail: 2151 sc->vtnet_stats.tx_defrag_failed++; 2152 m_freem(*m_head); 2153 *m_head = NULL; 2154 2155 return (ENOBUFS); 2156 } 2157 2158 static int 2159 vtnet_txq_encap(struct vtnet_txq *txq, struct mbuf **m_head) 2160 { 2161 struct vtnet_tx_header *txhdr; 2162 struct virtio_net_hdr *hdr; 2163 struct mbuf *m; 2164 int error; 2165 2166 m = *m_head; 2167 M_ASSERTPKTHDR(m); 2168 2169 txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO); 2170 if (txhdr == NULL) { 2171 m_freem(m); 2172 *m_head = NULL; 2173 return (ENOMEM); 2174 } 2175 2176 /* 2177 * Always use the non-mergeable header, regardless if the feature 2178 * was negotiated. For transmit, num_buffers is always zero. The 2179 * vtnet_hdr_size is used to enqueue the correct header size. 2180 */ 2181 hdr = &txhdr->vth_uhdr.hdr; 2182 2183 if (m->m_flags & M_VLANTAG) { 2184 m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); 2185 if ((*m_head = m) == NULL) { 2186 error = ENOBUFS; 2187 goto fail; 2188 } 2189 m->m_flags &= ~M_VLANTAG; 2190 } 2191 2192 if (m->m_pkthdr.csum_flags & VTNET_CSUM_ALL_OFFLOAD) { 2193 m = vtnet_txq_offload(txq, m, hdr); 2194 if ((*m_head = m) == NULL) { 2195 error = ENOBUFS; 2196 goto fail; 2197 } 2198 } 2199 2200 error = vtnet_txq_enqueue_buf(txq, m_head, txhdr); 2201 if (error == 0) 2202 return (0); 2203 2204 fail: 2205 uma_zfree(vtnet_tx_header_zone, txhdr); 2206 2207 return (error); 2208 } 2209 2210 #ifdef VTNET_LEGACY_TX 2211 2212 static void 2213 vtnet_start_locked(struct vtnet_txq *txq, struct ifnet *ifp) 2214 { 2215 struct vtnet_softc *sc; 2216 struct virtqueue *vq; 2217 struct mbuf *m0; 2218 int tries, enq; 2219 2220 sc = txq->vtntx_sc; 2221 vq = txq->vtntx_vq; 2222 tries = 0; 2223 2224 VTNET_TXQ_LOCK_ASSERT(txq); 2225 2226 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2227 sc->vtnet_link_active == 0) 2228 return; 2229 2230 vtnet_txq_eof(txq); 2231 2232 again: 2233 enq = 0; 2234 2235 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 2236 if (virtqueue_full(vq)) 2237 break; 2238 2239 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2240 if (m0 == NULL) 2241 break; 2242 2243 if (vtnet_txq_encap(txq, &m0) != 0) { 2244 if (m0 != NULL) 2245 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2246 break; 2247 } 2248 2249 enq++; 2250 ETHER_BPF_MTAP(ifp, m0); 2251 } 2252 2253 if (enq > 0 && vtnet_txq_notify(txq) != 0) { 2254 if (tries++ < VTNET_NOTIFY_RETRIES) 2255 goto again; 2256 2257 txq->vtntx_stats.vtxs_rescheduled++; 2258 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); 2259 } 2260 } 2261 2262 static void 2263 vtnet_start(struct ifnet *ifp) 2264 { 2265 struct vtnet_softc *sc; 2266 struct vtnet_txq *txq; 2267 2268 sc = ifp->if_softc; 2269 txq = &sc->vtnet_txqs[0]; 2270 2271 VTNET_TXQ_LOCK(txq); 2272 vtnet_start_locked(txq, ifp); 2273 VTNET_TXQ_UNLOCK(txq); 2274 } 2275 2276 #else /* !VTNET_LEGACY_TX */ 2277 2278 static int 2279 vtnet_txq_mq_start_locked(struct vtnet_txq *txq, struct mbuf *m) 2280 { 2281 struct vtnet_softc *sc; 2282 struct virtqueue *vq; 2283 struct buf_ring *br; 2284 struct ifnet *ifp; 2285 int enq, tries, error; 2286 2287 sc = txq->vtntx_sc; 2288 vq = txq->vtntx_vq; 2289 br = txq->vtntx_br; 2290 ifp = sc->vtnet_ifp; 2291 tries = 0; 2292 error = 0; 2293 2294 VTNET_TXQ_LOCK_ASSERT(txq); 2295 2296 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2297 sc->vtnet_link_active == 0) { 2298 if (m != NULL) 2299 error = drbr_enqueue(ifp, br, m); 2300 return (error); 2301 } 2302 2303 if (m != NULL) { 2304 error = drbr_enqueue(ifp, br, m); 2305 if (error) 2306 return (error); 2307 } 2308 2309 vtnet_txq_eof(txq); 2310 2311 again: 2312 enq = 0; 2313 2314 while ((m = drbr_peek(ifp, br)) != NULL) { 2315 if (virtqueue_full(vq)) { 2316 drbr_putback(ifp, br, m); 2317 break; 2318 } 2319 2320 if (vtnet_txq_encap(txq, &m) != 0) { 2321 if (m != NULL) 2322 drbr_putback(ifp, br, m); 2323 else 2324 drbr_advance(ifp, br); 2325 break; 2326 } 2327 drbr_advance(ifp, br); 2328 2329 enq++; 2330 ETHER_BPF_MTAP(ifp, m); 2331 } 2332 2333 if (enq > 0 && vtnet_txq_notify(txq) != 0) { 2334 if (tries++ < VTNET_NOTIFY_RETRIES) 2335 goto again; 2336 2337 txq->vtntx_stats.vtxs_rescheduled++; 2338 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); 2339 } 2340 2341 return (0); 2342 } 2343 2344 static int 2345 vtnet_txq_mq_start(struct ifnet *ifp, struct mbuf *m) 2346 { 2347 struct vtnet_softc *sc; 2348 struct vtnet_txq *txq; 2349 int i, npairs, error; 2350 2351 sc = ifp->if_softc; 2352 npairs = sc->vtnet_act_vq_pairs; 2353 2354 /* check if flowid is set */ 2355 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2356 i = m->m_pkthdr.flowid % npairs; 2357 else 2358 i = curcpu % npairs; 2359 2360 txq = &sc->vtnet_txqs[i]; 2361 2362 if (VTNET_TXQ_TRYLOCK(txq) != 0) { 2363 error = vtnet_txq_mq_start_locked(txq, m); 2364 VTNET_TXQ_UNLOCK(txq); 2365 } else { 2366 error = drbr_enqueue(ifp, txq->vtntx_br, m); 2367 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_defrtask); 2368 } 2369 2370 return (error); 2371 } 2372 2373 static void 2374 vtnet_txq_tq_deferred(void *xtxq, int pending) 2375 { 2376 struct vtnet_softc *sc; 2377 struct vtnet_txq *txq; 2378 2379 txq = xtxq; 2380 sc = txq->vtntx_sc; 2381 2382 VTNET_TXQ_LOCK(txq); 2383 if (!drbr_empty(sc->vtnet_ifp, txq->vtntx_br)) 2384 vtnet_txq_mq_start_locked(txq, NULL); 2385 VTNET_TXQ_UNLOCK(txq); 2386 } 2387 2388 #endif /* VTNET_LEGACY_TX */ 2389 2390 static void 2391 vtnet_txq_start(struct vtnet_txq *txq) 2392 { 2393 struct vtnet_softc *sc; 2394 struct ifnet *ifp; 2395 2396 sc = txq->vtntx_sc; 2397 ifp = sc->vtnet_ifp; 2398 2399 #ifdef VTNET_LEGACY_TX 2400 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2401 vtnet_start_locked(txq, ifp); 2402 #else 2403 if (!drbr_empty(ifp, txq->vtntx_br)) 2404 vtnet_txq_mq_start_locked(txq, NULL); 2405 #endif 2406 } 2407 2408 static void 2409 vtnet_txq_tq_intr(void *xtxq, int pending) 2410 { 2411 struct vtnet_softc *sc; 2412 struct vtnet_txq *txq; 2413 struct ifnet *ifp; 2414 2415 txq = xtxq; 2416 sc = txq->vtntx_sc; 2417 ifp = sc->vtnet_ifp; 2418 2419 VTNET_TXQ_LOCK(txq); 2420 2421 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2422 VTNET_TXQ_UNLOCK(txq); 2423 return; 2424 } 2425 2426 vtnet_txq_eof(txq); 2427 vtnet_txq_start(txq); 2428 2429 VTNET_TXQ_UNLOCK(txq); 2430 } 2431 2432 static int 2433 vtnet_txq_eof(struct vtnet_txq *txq) 2434 { 2435 struct virtqueue *vq; 2436 struct vtnet_tx_header *txhdr; 2437 struct mbuf *m; 2438 int deq; 2439 2440 vq = txq->vtntx_vq; 2441 deq = 0; 2442 VTNET_TXQ_LOCK_ASSERT(txq); 2443 2444 #ifdef DEV_NETMAP 2445 if (netmap_tx_irq(txq->vtntx_sc->vtnet_ifp, txq->vtntx_id)) { 2446 virtqueue_disable_intr(vq); // XXX luigi 2447 return 0; // XXX or 1 ? 2448 } 2449 #endif /* DEV_NETMAP */ 2450 2451 while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { 2452 m = txhdr->vth_mbuf; 2453 deq++; 2454 2455 txq->vtntx_stats.vtxs_opackets++; 2456 txq->vtntx_stats.vtxs_obytes += m->m_pkthdr.len; 2457 if (m->m_flags & M_MCAST) 2458 txq->vtntx_stats.vtxs_omcasts++; 2459 2460 m_freem(m); 2461 uma_zfree(vtnet_tx_header_zone, txhdr); 2462 } 2463 2464 if (virtqueue_empty(vq)) 2465 txq->vtntx_watchdog = 0; 2466 2467 return (deq); 2468 } 2469 2470 static void 2471 vtnet_tx_vq_intr(void *xtxq) 2472 { 2473 struct vtnet_softc *sc; 2474 struct vtnet_txq *txq; 2475 struct ifnet *ifp; 2476 2477 txq = xtxq; 2478 sc = txq->vtntx_sc; 2479 ifp = sc->vtnet_ifp; 2480 2481 if (__predict_false(txq->vtntx_id >= sc->vtnet_act_vq_pairs)) { 2482 /* 2483 * Ignore this interrupt. Either this is a spurious interrupt 2484 * or multiqueue without per-VQ MSIX so every queue needs to 2485 * be polled (a brain dead configuration we could try harder 2486 * to avoid). 2487 */ 2488 vtnet_txq_disable_intr(txq); 2489 return; 2490 } 2491 2492 VTNET_TXQ_LOCK(txq); 2493 2494 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2495 VTNET_TXQ_UNLOCK(txq); 2496 return; 2497 } 2498 2499 vtnet_txq_eof(txq); 2500 vtnet_txq_start(txq); 2501 2502 VTNET_TXQ_UNLOCK(txq); 2503 } 2504 2505 static void 2506 vtnet_tx_start_all(struct vtnet_softc *sc) 2507 { 2508 struct vtnet_txq *txq; 2509 int i; 2510 2511 VTNET_CORE_LOCK_ASSERT(sc); 2512 2513 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2514 txq = &sc->vtnet_txqs[i]; 2515 2516 VTNET_TXQ_LOCK(txq); 2517 vtnet_txq_start(txq); 2518 VTNET_TXQ_UNLOCK(txq); 2519 } 2520 } 2521 2522 #ifndef VTNET_LEGACY_TX 2523 static void 2524 vtnet_qflush(struct ifnet *ifp) 2525 { 2526 struct vtnet_softc *sc; 2527 struct vtnet_txq *txq; 2528 struct mbuf *m; 2529 int i; 2530 2531 sc = ifp->if_softc; 2532 2533 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2534 txq = &sc->vtnet_txqs[i]; 2535 2536 VTNET_TXQ_LOCK(txq); 2537 while ((m = buf_ring_dequeue_sc(txq->vtntx_br)) != NULL) 2538 m_freem(m); 2539 VTNET_TXQ_UNLOCK(txq); 2540 } 2541 2542 if_qflush(ifp); 2543 } 2544 #endif 2545 2546 static int 2547 vtnet_watchdog(struct vtnet_txq *txq) 2548 { 2549 struct ifnet *ifp; 2550 2551 ifp = txq->vtntx_sc->vtnet_ifp; 2552 2553 VTNET_TXQ_LOCK(txq); 2554 if (txq->vtntx_watchdog == 1) { 2555 /* 2556 * Only drain completed frames if the watchdog is about to 2557 * expire. If any frames were drained, there may be enough 2558 * free descriptors now available to transmit queued frames. 2559 * In that case, the timer will immediately be decremented 2560 * below, but the timeout is generous enough that should not 2561 * be a problem. 2562 */ 2563 if (vtnet_txq_eof(txq) != 0) 2564 vtnet_txq_start(txq); 2565 } 2566 2567 if (txq->vtntx_watchdog == 0 || --txq->vtntx_watchdog) { 2568 VTNET_TXQ_UNLOCK(txq); 2569 return (0); 2570 } 2571 VTNET_TXQ_UNLOCK(txq); 2572 2573 if_printf(ifp, "watchdog timeout on queue %d\n", txq->vtntx_id); 2574 return (1); 2575 } 2576 2577 static void 2578 vtnet_accum_stats(struct vtnet_softc *sc, struct vtnet_rxq_stats *rxacc, 2579 struct vtnet_txq_stats *txacc) 2580 { 2581 2582 bzero(rxacc, sizeof(struct vtnet_rxq_stats)); 2583 bzero(txacc, sizeof(struct vtnet_txq_stats)); 2584 2585 for (int i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2586 struct vtnet_rxq_stats *rxst; 2587 struct vtnet_txq_stats *txst; 2588 2589 rxst = &sc->vtnet_rxqs[i].vtnrx_stats; 2590 rxacc->vrxs_ipackets += rxst->vrxs_ipackets; 2591 rxacc->vrxs_ibytes += rxst->vrxs_ibytes; 2592 rxacc->vrxs_iqdrops += rxst->vrxs_iqdrops; 2593 rxacc->vrxs_csum += rxst->vrxs_csum; 2594 rxacc->vrxs_csum_failed += rxst->vrxs_csum_failed; 2595 rxacc->vrxs_rescheduled += rxst->vrxs_rescheduled; 2596 2597 txst = &sc->vtnet_txqs[i].vtntx_stats; 2598 txacc->vtxs_opackets += txst->vtxs_opackets; 2599 txacc->vtxs_obytes += txst->vtxs_obytes; 2600 txacc->vtxs_csum += txst->vtxs_csum; 2601 txacc->vtxs_tso += txst->vtxs_tso; 2602 txacc->vtxs_rescheduled += txst->vtxs_rescheduled; 2603 } 2604 } 2605 2606 static uint64_t 2607 vtnet_get_counter(if_t ifp, ift_counter cnt) 2608 { 2609 struct vtnet_softc *sc; 2610 struct vtnet_rxq_stats rxaccum; 2611 struct vtnet_txq_stats txaccum; 2612 2613 sc = if_getsoftc(ifp); 2614 vtnet_accum_stats(sc, &rxaccum, &txaccum); 2615 2616 switch (cnt) { 2617 case IFCOUNTER_IPACKETS: 2618 return (rxaccum.vrxs_ipackets); 2619 case IFCOUNTER_IQDROPS: 2620 return (rxaccum.vrxs_iqdrops); 2621 case IFCOUNTER_IERRORS: 2622 return (rxaccum.vrxs_ierrors); 2623 case IFCOUNTER_OPACKETS: 2624 return (txaccum.vtxs_opackets); 2625 #ifndef VTNET_LEGACY_TX 2626 case IFCOUNTER_OBYTES: 2627 return (txaccum.vtxs_obytes); 2628 case IFCOUNTER_OMCASTS: 2629 return (txaccum.vtxs_omcasts); 2630 #endif 2631 default: 2632 return (if_get_counter_default(ifp, cnt)); 2633 } 2634 } 2635 2636 static void 2637 vtnet_tick(void *xsc) 2638 { 2639 struct vtnet_softc *sc; 2640 struct ifnet *ifp; 2641 int i, timedout; 2642 2643 sc = xsc; 2644 ifp = sc->vtnet_ifp; 2645 timedout = 0; 2646 2647 VTNET_CORE_LOCK_ASSERT(sc); 2648 2649 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 2650 timedout |= vtnet_watchdog(&sc->vtnet_txqs[i]); 2651 2652 if (timedout != 0) { 2653 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2654 vtnet_init_locked(sc); 2655 } else 2656 callout_schedule(&sc->vtnet_tick_ch, hz); 2657 } 2658 2659 static void 2660 vtnet_start_taskqueues(struct vtnet_softc *sc) 2661 { 2662 device_t dev; 2663 struct vtnet_rxq *rxq; 2664 struct vtnet_txq *txq; 2665 int i, error; 2666 2667 dev = sc->vtnet_dev; 2668 2669 /* 2670 * Errors here are very difficult to recover from - we cannot 2671 * easily fail because, if this is during boot, we will hang 2672 * when freeing any successfully started taskqueues because 2673 * the scheduler isn't up yet. 2674 * 2675 * Most drivers just ignore the return value - it only fails 2676 * with ENOMEM so an error is not likely. 2677 */ 2678 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2679 rxq = &sc->vtnet_rxqs[i]; 2680 error = taskqueue_start_threads(&rxq->vtnrx_tq, 1, PI_NET, 2681 "%s rxq %d", device_get_nameunit(dev), rxq->vtnrx_id); 2682 if (error) { 2683 device_printf(dev, "failed to start rx taskq %d\n", 2684 rxq->vtnrx_id); 2685 } 2686 2687 txq = &sc->vtnet_txqs[i]; 2688 error = taskqueue_start_threads(&txq->vtntx_tq, 1, PI_NET, 2689 "%s txq %d", device_get_nameunit(dev), txq->vtntx_id); 2690 if (error) { 2691 device_printf(dev, "failed to start tx taskq %d\n", 2692 txq->vtntx_id); 2693 } 2694 } 2695 } 2696 2697 static void 2698 vtnet_free_taskqueues(struct vtnet_softc *sc) 2699 { 2700 struct vtnet_rxq *rxq; 2701 struct vtnet_txq *txq; 2702 int i; 2703 2704 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2705 rxq = &sc->vtnet_rxqs[i]; 2706 if (rxq->vtnrx_tq != NULL) { 2707 taskqueue_free(rxq->vtnrx_tq); 2708 rxq->vtnrx_vq = NULL; 2709 } 2710 2711 txq = &sc->vtnet_txqs[i]; 2712 if (txq->vtntx_tq != NULL) { 2713 taskqueue_free(txq->vtntx_tq); 2714 txq->vtntx_tq = NULL; 2715 } 2716 } 2717 } 2718 2719 static void 2720 vtnet_drain_taskqueues(struct vtnet_softc *sc) 2721 { 2722 struct vtnet_rxq *rxq; 2723 struct vtnet_txq *txq; 2724 int i; 2725 2726 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2727 rxq = &sc->vtnet_rxqs[i]; 2728 if (rxq->vtnrx_tq != NULL) 2729 taskqueue_drain(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 2730 2731 txq = &sc->vtnet_txqs[i]; 2732 if (txq->vtntx_tq != NULL) { 2733 taskqueue_drain(txq->vtntx_tq, &txq->vtntx_intrtask); 2734 #ifndef VTNET_LEGACY_TX 2735 taskqueue_drain(txq->vtntx_tq, &txq->vtntx_defrtask); 2736 #endif 2737 } 2738 } 2739 } 2740 2741 static void 2742 vtnet_drain_rxtx_queues(struct vtnet_softc *sc) 2743 { 2744 struct vtnet_rxq *rxq; 2745 struct vtnet_txq *txq; 2746 int i; 2747 2748 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2749 rxq = &sc->vtnet_rxqs[i]; 2750 vtnet_rxq_free_mbufs(rxq); 2751 2752 txq = &sc->vtnet_txqs[i]; 2753 vtnet_txq_free_mbufs(txq); 2754 } 2755 } 2756 2757 static void 2758 vtnet_stop_rendezvous(struct vtnet_softc *sc) 2759 { 2760 struct vtnet_rxq *rxq; 2761 struct vtnet_txq *txq; 2762 int i; 2763 2764 /* 2765 * Lock and unlock the per-queue mutex so we known the stop 2766 * state is visible. Doing only the active queues should be 2767 * sufficient, but it does not cost much extra to do all the 2768 * queues. Note we hold the core mutex here too. 2769 */ 2770 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2771 rxq = &sc->vtnet_rxqs[i]; 2772 VTNET_RXQ_LOCK(rxq); 2773 VTNET_RXQ_UNLOCK(rxq); 2774 2775 txq = &sc->vtnet_txqs[i]; 2776 VTNET_TXQ_LOCK(txq); 2777 VTNET_TXQ_UNLOCK(txq); 2778 } 2779 } 2780 2781 static void 2782 vtnet_stop(struct vtnet_softc *sc) 2783 { 2784 device_t dev; 2785 struct ifnet *ifp; 2786 2787 dev = sc->vtnet_dev; 2788 ifp = sc->vtnet_ifp; 2789 2790 VTNET_CORE_LOCK_ASSERT(sc); 2791 2792 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2793 sc->vtnet_link_active = 0; 2794 callout_stop(&sc->vtnet_tick_ch); 2795 2796 /* Only advisory. */ 2797 vtnet_disable_interrupts(sc); 2798 2799 /* 2800 * Stop the host adapter. This resets it to the pre-initialized 2801 * state. It will not generate any interrupts until after it is 2802 * reinitialized. 2803 */ 2804 virtio_stop(dev); 2805 vtnet_stop_rendezvous(sc); 2806 2807 /* Free any mbufs left in the virtqueues. */ 2808 vtnet_drain_rxtx_queues(sc); 2809 } 2810 2811 static int 2812 vtnet_virtio_reinit(struct vtnet_softc *sc) 2813 { 2814 device_t dev; 2815 struct ifnet *ifp; 2816 uint64_t features; 2817 int mask, error; 2818 2819 dev = sc->vtnet_dev; 2820 ifp = sc->vtnet_ifp; 2821 features = sc->vtnet_features; 2822 2823 mask = 0; 2824 #if defined(INET) 2825 mask |= IFCAP_RXCSUM; 2826 #endif 2827 #if defined (INET6) 2828 mask |= IFCAP_RXCSUM_IPV6; 2829 #endif 2830 2831 /* 2832 * Re-negotiate with the host, removing any disabled receive 2833 * features. Transmit features are disabled only on our side 2834 * via if_capenable and if_hwassist. 2835 */ 2836 2837 if (ifp->if_capabilities & mask) { 2838 /* 2839 * We require both IPv4 and IPv6 offloading to be enabled 2840 * in order to negotiated it: VirtIO does not distinguish 2841 * between the two. 2842 */ 2843 if ((ifp->if_capenable & mask) != mask) 2844 features &= ~VIRTIO_NET_F_GUEST_CSUM; 2845 } 2846 2847 if (ifp->if_capabilities & IFCAP_LRO) { 2848 if ((ifp->if_capenable & IFCAP_LRO) == 0) 2849 features &= ~VTNET_LRO_FEATURES; 2850 } 2851 2852 if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { 2853 if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) 2854 features &= ~VIRTIO_NET_F_CTRL_VLAN; 2855 } 2856 2857 error = virtio_reinit(dev, features); 2858 if (error) 2859 device_printf(dev, "virtio reinit error %d\n", error); 2860 2861 return (error); 2862 } 2863 2864 static void 2865 vtnet_init_rx_filters(struct vtnet_softc *sc) 2866 { 2867 struct ifnet *ifp; 2868 2869 ifp = sc->vtnet_ifp; 2870 2871 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 2872 /* Restore promiscuous and all-multicast modes. */ 2873 vtnet_rx_filter(sc); 2874 /* Restore filtered MAC addresses. */ 2875 vtnet_rx_filter_mac(sc); 2876 } 2877 2878 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) 2879 vtnet_rx_filter_vlan(sc); 2880 } 2881 2882 static int 2883 vtnet_init_rx_queues(struct vtnet_softc *sc) 2884 { 2885 device_t dev; 2886 struct vtnet_rxq *rxq; 2887 int i, clsize, error; 2888 2889 dev = sc->vtnet_dev; 2890 2891 /* 2892 * Use the new cluster size if one has been set (via a MTU 2893 * change). Otherwise, use the standard 2K clusters. 2894 * 2895 * BMV: It might make sense to use page sized clusters as 2896 * the default (depending on the features negotiated). 2897 */ 2898 if (sc->vtnet_rx_new_clsize != 0) { 2899 clsize = sc->vtnet_rx_new_clsize; 2900 sc->vtnet_rx_new_clsize = 0; 2901 } else 2902 clsize = MCLBYTES; 2903 2904 sc->vtnet_rx_clsize = clsize; 2905 sc->vtnet_rx_nmbufs = VTNET_NEEDED_RX_MBUFS(sc, clsize); 2906 2907 KASSERT(sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS || 2908 sc->vtnet_rx_nmbufs < sc->vtnet_rx_nsegs, 2909 ("%s: too many rx mbufs %d for %d segments", __func__, 2910 sc->vtnet_rx_nmbufs, sc->vtnet_rx_nsegs)); 2911 2912 #ifdef DEV_NETMAP 2913 if (vtnet_netmap_init_rx_buffers(sc)) 2914 return 0; 2915 #endif /* DEV_NETMAP */ 2916 2917 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2918 rxq = &sc->vtnet_rxqs[i]; 2919 2920 /* Hold the lock to satisfy asserts. */ 2921 VTNET_RXQ_LOCK(rxq); 2922 error = vtnet_rxq_populate(rxq); 2923 VTNET_RXQ_UNLOCK(rxq); 2924 2925 if (error) { 2926 device_printf(dev, 2927 "cannot allocate mbufs for Rx queue %d\n", i); 2928 return (error); 2929 } 2930 } 2931 2932 return (0); 2933 } 2934 2935 static int 2936 vtnet_init_tx_queues(struct vtnet_softc *sc) 2937 { 2938 struct vtnet_txq *txq; 2939 int i; 2940 2941 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2942 txq = &sc->vtnet_txqs[i]; 2943 txq->vtntx_watchdog = 0; 2944 } 2945 2946 return (0); 2947 } 2948 2949 static int 2950 vtnet_init_rxtx_queues(struct vtnet_softc *sc) 2951 { 2952 int error; 2953 2954 error = vtnet_init_rx_queues(sc); 2955 if (error) 2956 return (error); 2957 2958 error = vtnet_init_tx_queues(sc); 2959 if (error) 2960 return (error); 2961 2962 return (0); 2963 } 2964 2965 static void 2966 vtnet_set_active_vq_pairs(struct vtnet_softc *sc) 2967 { 2968 device_t dev; 2969 int npairs; 2970 2971 dev = sc->vtnet_dev; 2972 2973 if ((sc->vtnet_flags & VTNET_FLAG_MULTIQ) == 0) { 2974 MPASS(sc->vtnet_max_vq_pairs == 1); 2975 sc->vtnet_act_vq_pairs = 1; 2976 return; 2977 } 2978 2979 /* BMV: Just use the maximum configured for now. */ 2980 npairs = sc->vtnet_max_vq_pairs; 2981 2982 if (vtnet_ctrl_mq_cmd(sc, npairs) != 0) { 2983 device_printf(dev, 2984 "cannot set active queue pairs to %d\n", npairs); 2985 npairs = 1; 2986 } 2987 2988 sc->vtnet_act_vq_pairs = npairs; 2989 } 2990 2991 static int 2992 vtnet_reinit(struct vtnet_softc *sc) 2993 { 2994 struct ifnet *ifp; 2995 int error; 2996 2997 ifp = sc->vtnet_ifp; 2998 2999 /* Use the current MAC address. */ 3000 bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); 3001 vtnet_set_hwaddr(sc); 3002 3003 vtnet_set_active_vq_pairs(sc); 3004 3005 ifp->if_hwassist = 0; 3006 if (ifp->if_capenable & IFCAP_TXCSUM) 3007 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 3008 if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) 3009 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD_IPV6; 3010 if (ifp->if_capenable & IFCAP_TSO4) 3011 ifp->if_hwassist |= CSUM_IP_TSO; 3012 if (ifp->if_capenable & IFCAP_TSO6) 3013 ifp->if_hwassist |= CSUM_IP6_TSO; 3014 3015 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) 3016 vtnet_init_rx_filters(sc); 3017 3018 error = vtnet_init_rxtx_queues(sc); 3019 if (error) 3020 return (error); 3021 3022 vtnet_enable_interrupts(sc); 3023 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3024 3025 return (0); 3026 } 3027 3028 static void 3029 vtnet_init_locked(struct vtnet_softc *sc) 3030 { 3031 device_t dev; 3032 struct ifnet *ifp; 3033 3034 dev = sc->vtnet_dev; 3035 ifp = sc->vtnet_ifp; 3036 3037 VTNET_CORE_LOCK_ASSERT(sc); 3038 3039 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3040 return; 3041 3042 vtnet_stop(sc); 3043 3044 /* Reinitialize with the host. */ 3045 if (vtnet_virtio_reinit(sc) != 0) 3046 goto fail; 3047 3048 if (vtnet_reinit(sc) != 0) 3049 goto fail; 3050 3051 virtio_reinit_complete(dev); 3052 3053 vtnet_update_link_status(sc); 3054 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 3055 3056 return; 3057 3058 fail: 3059 vtnet_stop(sc); 3060 } 3061 3062 static void 3063 vtnet_init(void *xsc) 3064 { 3065 struct vtnet_softc *sc; 3066 3067 sc = xsc; 3068 3069 #ifdef DEV_NETMAP 3070 if (!NA(sc->vtnet_ifp)) { 3071 D("try to attach again"); 3072 vtnet_netmap_attach(sc); 3073 } 3074 #endif /* DEV_NETMAP */ 3075 3076 VTNET_CORE_LOCK(sc); 3077 vtnet_init_locked(sc); 3078 VTNET_CORE_UNLOCK(sc); 3079 } 3080 3081 static void 3082 vtnet_free_ctrl_vq(struct vtnet_softc *sc) 3083 { 3084 struct virtqueue *vq; 3085 3086 vq = sc->vtnet_ctrl_vq; 3087 3088 /* 3089 * The control virtqueue is only polled and therefore it should 3090 * already be empty. 3091 */ 3092 KASSERT(virtqueue_empty(vq), 3093 ("%s: ctrl vq %p not empty", __func__, vq)); 3094 } 3095 3096 static void 3097 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, 3098 struct sglist *sg, int readable, int writable) 3099 { 3100 struct virtqueue *vq; 3101 3102 vq = sc->vtnet_ctrl_vq; 3103 3104 VTNET_CORE_LOCK_ASSERT(sc); 3105 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, 3106 ("%s: CTRL_VQ feature not negotiated", __func__)); 3107 3108 if (!virtqueue_empty(vq)) 3109 return; 3110 if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) 3111 return; 3112 3113 /* 3114 * Poll for the response, but the command is likely already 3115 * done when we return from the notify. 3116 */ 3117 virtqueue_notify(vq); 3118 virtqueue_poll(vq, NULL); 3119 } 3120 3121 static int 3122 vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr) 3123 { 3124 struct virtio_net_ctrl_hdr hdr __aligned(2); 3125 struct sglist_seg segs[3]; 3126 struct sglist sg; 3127 uint8_t ack; 3128 int error; 3129 3130 hdr.class = VIRTIO_NET_CTRL_MAC; 3131 hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET; 3132 ack = VIRTIO_NET_ERR; 3133 3134 sglist_init(&sg, 3, segs); 3135 error = 0; 3136 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 3137 error |= sglist_append(&sg, hwaddr, ETHER_ADDR_LEN); 3138 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 3139 KASSERT(error == 0 && sg.sg_nseg == 3, 3140 ("%s: error %d adding set MAC msg to sglist", __func__, error)); 3141 3142 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 3143 3144 return (ack == VIRTIO_NET_OK ? 0 : EIO); 3145 } 3146 3147 static int 3148 vtnet_ctrl_mq_cmd(struct vtnet_softc *sc, uint16_t npairs) 3149 { 3150 struct sglist_seg segs[3]; 3151 struct sglist sg; 3152 struct { 3153 struct virtio_net_ctrl_hdr hdr; 3154 uint8_t pad1; 3155 struct virtio_net_ctrl_mq mq; 3156 uint8_t pad2; 3157 uint8_t ack; 3158 } s __aligned(2); 3159 int error; 3160 3161 s.hdr.class = VIRTIO_NET_CTRL_MQ; 3162 s.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET; 3163 s.mq.virtqueue_pairs = npairs; 3164 s.ack = VIRTIO_NET_ERR; 3165 3166 sglist_init(&sg, 3, segs); 3167 error = 0; 3168 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3169 error |= sglist_append(&sg, &s.mq, sizeof(struct virtio_net_ctrl_mq)); 3170 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3171 KASSERT(error == 0 && sg.sg_nseg == 3, 3172 ("%s: error %d adding MQ message to sglist", __func__, error)); 3173 3174 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3175 3176 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3177 } 3178 3179 static int 3180 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) 3181 { 3182 struct sglist_seg segs[3]; 3183 struct sglist sg; 3184 struct { 3185 struct virtio_net_ctrl_hdr hdr; 3186 uint8_t pad1; 3187 uint8_t onoff; 3188 uint8_t pad2; 3189 uint8_t ack; 3190 } s __aligned(2); 3191 int error; 3192 3193 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 3194 ("%s: CTRL_RX feature not negotiated", __func__)); 3195 3196 s.hdr.class = VIRTIO_NET_CTRL_RX; 3197 s.hdr.cmd = cmd; 3198 s.onoff = !!on; 3199 s.ack = VIRTIO_NET_ERR; 3200 3201 sglist_init(&sg, 3, segs); 3202 error = 0; 3203 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3204 error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t)); 3205 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3206 KASSERT(error == 0 && sg.sg_nseg == 3, 3207 ("%s: error %d adding Rx message to sglist", __func__, error)); 3208 3209 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3210 3211 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3212 } 3213 3214 static int 3215 vtnet_set_promisc(struct vtnet_softc *sc, int on) 3216 { 3217 3218 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); 3219 } 3220 3221 static int 3222 vtnet_set_allmulti(struct vtnet_softc *sc, int on) 3223 { 3224 3225 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); 3226 } 3227 3228 /* 3229 * The device defaults to promiscuous mode for backwards compatibility. 3230 * Turn it off at attach time if possible. 3231 */ 3232 static void 3233 vtnet_attach_disable_promisc(struct vtnet_softc *sc) 3234 { 3235 struct ifnet *ifp; 3236 3237 ifp = sc->vtnet_ifp; 3238 3239 VTNET_CORE_LOCK(sc); 3240 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) { 3241 ifp->if_flags |= IFF_PROMISC; 3242 } else if (vtnet_set_promisc(sc, 0) != 0) { 3243 ifp->if_flags |= IFF_PROMISC; 3244 device_printf(sc->vtnet_dev, 3245 "cannot disable default promiscuous mode\n"); 3246 } 3247 VTNET_CORE_UNLOCK(sc); 3248 } 3249 3250 static void 3251 vtnet_rx_filter(struct vtnet_softc *sc) 3252 { 3253 device_t dev; 3254 struct ifnet *ifp; 3255 3256 dev = sc->vtnet_dev; 3257 ifp = sc->vtnet_ifp; 3258 3259 VTNET_CORE_LOCK_ASSERT(sc); 3260 3261 if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) 3262 device_printf(dev, "cannot %s promiscuous mode\n", 3263 ifp->if_flags & IFF_PROMISC ? "enable" : "disable"); 3264 3265 if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) 3266 device_printf(dev, "cannot %s all-multicast mode\n", 3267 ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable"); 3268 } 3269 3270 static void 3271 vtnet_rx_filter_mac(struct vtnet_softc *sc) 3272 { 3273 struct virtio_net_ctrl_hdr hdr __aligned(2); 3274 struct vtnet_mac_filter *filter; 3275 struct sglist_seg segs[4]; 3276 struct sglist sg; 3277 struct ifnet *ifp; 3278 struct ifaddr *ifa; 3279 struct ifmultiaddr *ifma; 3280 int ucnt, mcnt, promisc, allmulti, error; 3281 uint8_t ack; 3282 3283 ifp = sc->vtnet_ifp; 3284 filter = sc->vtnet_mac_filter; 3285 ucnt = 0; 3286 mcnt = 0; 3287 promisc = 0; 3288 allmulti = 0; 3289 3290 VTNET_CORE_LOCK_ASSERT(sc); 3291 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 3292 ("%s: CTRL_RX feature not negotiated", __func__)); 3293 3294 /* Unicast MAC addresses: */ 3295 if_addr_rlock(ifp); 3296 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3297 if (ifa->ifa_addr->sa_family != AF_LINK) 3298 continue; 3299 else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 3300 sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0) 3301 continue; 3302 else if (ucnt == VTNET_MAX_MAC_ENTRIES) { 3303 promisc = 1; 3304 break; 3305 } 3306 3307 bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 3308 &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); 3309 ucnt++; 3310 } 3311 if_addr_runlock(ifp); 3312 3313 if (promisc != 0) { 3314 filter->vmf_unicast.nentries = 0; 3315 if_printf(ifp, "more than %d MAC addresses assigned, " 3316 "falling back to promiscuous mode\n", 3317 VTNET_MAX_MAC_ENTRIES); 3318 } else 3319 filter->vmf_unicast.nentries = ucnt; 3320 3321 /* Multicast MAC addresses: */ 3322 if_maddr_rlock(ifp); 3323 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3324 if (ifma->ifma_addr->sa_family != AF_LINK) 3325 continue; 3326 else if (mcnt == VTNET_MAX_MAC_ENTRIES) { 3327 allmulti = 1; 3328 break; 3329 } 3330 3331 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3332 &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); 3333 mcnt++; 3334 } 3335 if_maddr_runlock(ifp); 3336 3337 if (allmulti != 0) { 3338 filter->vmf_multicast.nentries = 0; 3339 if_printf(ifp, "more than %d multicast MAC addresses " 3340 "assigned, falling back to all-multicast mode\n", 3341 VTNET_MAX_MAC_ENTRIES); 3342 } else 3343 filter->vmf_multicast.nentries = mcnt; 3344 3345 if (promisc != 0 && allmulti != 0) 3346 goto out; 3347 3348 hdr.class = VIRTIO_NET_CTRL_MAC; 3349 hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 3350 ack = VIRTIO_NET_ERR; 3351 3352 sglist_init(&sg, 4, segs); 3353 error = 0; 3354 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 3355 error |= sglist_append(&sg, &filter->vmf_unicast, 3356 sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN); 3357 error |= sglist_append(&sg, &filter->vmf_multicast, 3358 sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN); 3359 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 3360 KASSERT(error == 0 && sg.sg_nseg == 4, 3361 ("%s: error %d adding MAC filter msg to sglist", __func__, error)); 3362 3363 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 3364 3365 if (ack != VIRTIO_NET_OK) 3366 if_printf(ifp, "error setting host MAC filter table\n"); 3367 3368 out: 3369 if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0) 3370 if_printf(ifp, "cannot enable promiscuous mode\n"); 3371 if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0) 3372 if_printf(ifp, "cannot enable all-multicast mode\n"); 3373 } 3374 3375 static int 3376 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 3377 { 3378 struct sglist_seg segs[3]; 3379 struct sglist sg; 3380 struct { 3381 struct virtio_net_ctrl_hdr hdr; 3382 uint8_t pad1; 3383 uint16_t tag; 3384 uint8_t pad2; 3385 uint8_t ack; 3386 } s __aligned(2); 3387 int error; 3388 3389 s.hdr.class = VIRTIO_NET_CTRL_VLAN; 3390 s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; 3391 s.tag = tag; 3392 s.ack = VIRTIO_NET_ERR; 3393 3394 sglist_init(&sg, 3, segs); 3395 error = 0; 3396 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3397 error |= sglist_append(&sg, &s.tag, sizeof(uint16_t)); 3398 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3399 KASSERT(error == 0 && sg.sg_nseg == 3, 3400 ("%s: error %d adding VLAN message to sglist", __func__, error)); 3401 3402 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3403 3404 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3405 } 3406 3407 static void 3408 vtnet_rx_filter_vlan(struct vtnet_softc *sc) 3409 { 3410 uint32_t w; 3411 uint16_t tag; 3412 int i, bit; 3413 3414 VTNET_CORE_LOCK_ASSERT(sc); 3415 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 3416 ("%s: VLAN_FILTER feature not negotiated", __func__)); 3417 3418 /* Enable the filter for each configured VLAN. */ 3419 for (i = 0; i < VTNET_VLAN_FILTER_NWORDS; i++) { 3420 w = sc->vtnet_vlan_filter[i]; 3421 3422 while ((bit = ffs(w) - 1) != -1) { 3423 w &= ~(1 << bit); 3424 tag = sizeof(w) * CHAR_BIT * i + bit; 3425 3426 if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) { 3427 device_printf(sc->vtnet_dev, 3428 "cannot enable VLAN %d filter\n", tag); 3429 } 3430 } 3431 } 3432 } 3433 3434 static void 3435 vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 3436 { 3437 struct ifnet *ifp; 3438 int idx, bit; 3439 3440 ifp = sc->vtnet_ifp; 3441 idx = (tag >> 5) & 0x7F; 3442 bit = tag & 0x1F; 3443 3444 if (tag == 0 || tag > 4095) 3445 return; 3446 3447 VTNET_CORE_LOCK(sc); 3448 3449 if (add) 3450 sc->vtnet_vlan_filter[idx] |= (1 << bit); 3451 else 3452 sc->vtnet_vlan_filter[idx] &= ~(1 << bit); 3453 3454 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER && 3455 vtnet_exec_vlan_filter(sc, add, tag) != 0) { 3456 device_printf(sc->vtnet_dev, 3457 "cannot %s VLAN %d %s the host filter table\n", 3458 add ? "add" : "remove", tag, add ? "to" : "from"); 3459 } 3460 3461 VTNET_CORE_UNLOCK(sc); 3462 } 3463 3464 static void 3465 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 3466 { 3467 3468 if (ifp->if_softc != arg) 3469 return; 3470 3471 vtnet_update_vlan_filter(arg, 1, tag); 3472 } 3473 3474 static void 3475 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 3476 { 3477 3478 if (ifp->if_softc != arg) 3479 return; 3480 3481 vtnet_update_vlan_filter(arg, 0, tag); 3482 } 3483 3484 static int 3485 vtnet_is_link_up(struct vtnet_softc *sc) 3486 { 3487 device_t dev; 3488 struct ifnet *ifp; 3489 uint16_t status; 3490 3491 dev = sc->vtnet_dev; 3492 ifp = sc->vtnet_ifp; 3493 3494 if ((ifp->if_capabilities & IFCAP_LINKSTATE) == 0) 3495 status = VIRTIO_NET_S_LINK_UP; 3496 else 3497 status = virtio_read_dev_config_2(dev, 3498 offsetof(struct virtio_net_config, status)); 3499 3500 return ((status & VIRTIO_NET_S_LINK_UP) != 0); 3501 } 3502 3503 static void 3504 vtnet_update_link_status(struct vtnet_softc *sc) 3505 { 3506 struct ifnet *ifp; 3507 int link; 3508 3509 ifp = sc->vtnet_ifp; 3510 3511 VTNET_CORE_LOCK_ASSERT(sc); 3512 link = vtnet_is_link_up(sc); 3513 3514 /* Notify if the link status has changed. */ 3515 if (link != 0 && sc->vtnet_link_active == 0) { 3516 sc->vtnet_link_active = 1; 3517 if_link_state_change(ifp, LINK_STATE_UP); 3518 } else if (link == 0 && sc->vtnet_link_active != 0) { 3519 sc->vtnet_link_active = 0; 3520 if_link_state_change(ifp, LINK_STATE_DOWN); 3521 } 3522 } 3523 3524 static int 3525 vtnet_ifmedia_upd(struct ifnet *ifp) 3526 { 3527 struct vtnet_softc *sc; 3528 struct ifmedia *ifm; 3529 3530 sc = ifp->if_softc; 3531 ifm = &sc->vtnet_media; 3532 3533 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3534 return (EINVAL); 3535 3536 return (0); 3537 } 3538 3539 static void 3540 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3541 { 3542 struct vtnet_softc *sc; 3543 3544 sc = ifp->if_softc; 3545 3546 ifmr->ifm_status = IFM_AVALID; 3547 ifmr->ifm_active = IFM_ETHER; 3548 3549 VTNET_CORE_LOCK(sc); 3550 if (vtnet_is_link_up(sc) != 0) { 3551 ifmr->ifm_status |= IFM_ACTIVE; 3552 ifmr->ifm_active |= VTNET_MEDIATYPE; 3553 } else 3554 ifmr->ifm_active |= IFM_NONE; 3555 VTNET_CORE_UNLOCK(sc); 3556 } 3557 3558 static void 3559 vtnet_set_hwaddr(struct vtnet_softc *sc) 3560 { 3561 device_t dev; 3562 int i; 3563 3564 dev = sc->vtnet_dev; 3565 3566 if (sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) { 3567 if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0) 3568 device_printf(dev, "unable to set MAC address\n"); 3569 } else if (sc->vtnet_flags & VTNET_FLAG_MAC) { 3570 for (i = 0; i < ETHER_ADDR_LEN; i++) { 3571 virtio_write_dev_config_1(dev, 3572 offsetof(struct virtio_net_config, mac) + i, 3573 sc->vtnet_hwaddr[i]); 3574 } 3575 } 3576 } 3577 3578 static void 3579 vtnet_get_hwaddr(struct vtnet_softc *sc) 3580 { 3581 device_t dev; 3582 int i; 3583 3584 dev = sc->vtnet_dev; 3585 3586 if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) { 3587 /* 3588 * Generate a random locally administered unicast address. 3589 * 3590 * It would be nice to generate the same MAC address across 3591 * reboots, but it seems all the hosts currently available 3592 * support the MAC feature, so this isn't too important. 3593 */ 3594 sc->vtnet_hwaddr[0] = 0xB2; 3595 arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); 3596 vtnet_set_hwaddr(sc); 3597 return; 3598 } 3599 3600 for (i = 0; i < ETHER_ADDR_LEN; i++) { 3601 sc->vtnet_hwaddr[i] = virtio_read_dev_config_1(dev, 3602 offsetof(struct virtio_net_config, mac) + i); 3603 } 3604 } 3605 3606 static void 3607 vtnet_vlan_tag_remove(struct mbuf *m) 3608 { 3609 struct ether_vlan_header *evh; 3610 3611 evh = mtod(m, struct ether_vlan_header *); 3612 m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag); 3613 m->m_flags |= M_VLANTAG; 3614 3615 /* Strip the 802.1Q header. */ 3616 bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN, 3617 ETHER_HDR_LEN - ETHER_TYPE_LEN); 3618 m_adj(m, ETHER_VLAN_ENCAP_LEN); 3619 } 3620 3621 static void 3622 vtnet_set_rx_process_limit(struct vtnet_softc *sc) 3623 { 3624 int limit; 3625 3626 limit = vtnet_tunable_int(sc, "rx_process_limit", 3627 vtnet_rx_process_limit); 3628 if (limit < 0) 3629 limit = INT_MAX; 3630 sc->vtnet_rx_process_limit = limit; 3631 } 3632 3633 static void 3634 vtnet_set_tx_intr_threshold(struct vtnet_softc *sc) 3635 { 3636 device_t dev; 3637 int size, thresh; 3638 3639 dev = sc->vtnet_dev; 3640 size = virtqueue_size(sc->vtnet_txqs[0].vtntx_vq); 3641 3642 /* 3643 * The Tx interrupt is disabled until the queue free count falls 3644 * below our threshold. Completed frames are drained from the Tx 3645 * virtqueue before transmitting new frames and in the watchdog 3646 * callout, so the frequency of Tx interrupts is greatly reduced, 3647 * at the cost of not freeing mbufs as quickly as they otherwise 3648 * would be. 3649 * 3650 * N.B. We assume all the Tx queues are the same size. 3651 */ 3652 thresh = size / 4; 3653 3654 /* 3655 * Without indirect descriptors, leave enough room for the most 3656 * segments we handle. 3657 */ 3658 if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) == 0 && 3659 thresh < sc->vtnet_tx_nsegs) 3660 thresh = sc->vtnet_tx_nsegs; 3661 3662 sc->vtnet_tx_intr_thresh = thresh; 3663 } 3664 3665 static void 3666 vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *ctx, 3667 struct sysctl_oid_list *child, struct vtnet_rxq *rxq) 3668 { 3669 struct sysctl_oid *node; 3670 struct sysctl_oid_list *list; 3671 struct vtnet_rxq_stats *stats; 3672 char namebuf[16]; 3673 3674 snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vtnrx_id); 3675 node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3676 CTLFLAG_RD, NULL, "Receive Queue"); 3677 list = SYSCTL_CHILDREN(node); 3678 3679 stats = &rxq->vtnrx_stats; 3680 3681 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD, 3682 &stats->vrxs_ipackets, "Receive packets"); 3683 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD, 3684 &stats->vrxs_ibytes, "Receive bytes"); 3685 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD, 3686 &stats->vrxs_iqdrops, "Receive drops"); 3687 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD, 3688 &stats->vrxs_ierrors, "Receive errors"); 3689 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, 3690 &stats->vrxs_csum, "Receive checksum offloaded"); 3691 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum_failed", CTLFLAG_RD, 3692 &stats->vrxs_csum_failed, "Receive checksum offload failed"); 3693 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, 3694 &stats->vrxs_rescheduled, 3695 "Receive interrupt handler rescheduled"); 3696 } 3697 3698 static void 3699 vtnet_setup_txq_sysctl(struct sysctl_ctx_list *ctx, 3700 struct sysctl_oid_list *child, struct vtnet_txq *txq) 3701 { 3702 struct sysctl_oid *node; 3703 struct sysctl_oid_list *list; 3704 struct vtnet_txq_stats *stats; 3705 char namebuf[16]; 3706 3707 snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vtntx_id); 3708 node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3709 CTLFLAG_RD, NULL, "Transmit Queue"); 3710 list = SYSCTL_CHILDREN(node); 3711 3712 stats = &txq->vtntx_stats; 3713 3714 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD, 3715 &stats->vtxs_opackets, "Transmit packets"); 3716 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD, 3717 &stats->vtxs_obytes, "Transmit bytes"); 3718 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD, 3719 &stats->vtxs_omcasts, "Transmit multicasts"); 3720 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, 3721 &stats->vtxs_csum, "Transmit checksum offloaded"); 3722 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD, 3723 &stats->vtxs_tso, "Transmit segmentation offloaded"); 3724 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, 3725 &stats->vtxs_rescheduled, 3726 "Transmit interrupt handler rescheduled"); 3727 } 3728 3729 static void 3730 vtnet_setup_queue_sysctl(struct vtnet_softc *sc) 3731 { 3732 device_t dev; 3733 struct sysctl_ctx_list *ctx; 3734 struct sysctl_oid *tree; 3735 struct sysctl_oid_list *child; 3736 int i; 3737 3738 dev = sc->vtnet_dev; 3739 ctx = device_get_sysctl_ctx(dev); 3740 tree = device_get_sysctl_tree(dev); 3741 child = SYSCTL_CHILDREN(tree); 3742 3743 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 3744 vtnet_setup_rxq_sysctl(ctx, child, &sc->vtnet_rxqs[i]); 3745 vtnet_setup_txq_sysctl(ctx, child, &sc->vtnet_txqs[i]); 3746 } 3747 } 3748 3749 static void 3750 vtnet_setup_stat_sysctl(struct sysctl_ctx_list *ctx, 3751 struct sysctl_oid_list *child, struct vtnet_softc *sc) 3752 { 3753 struct vtnet_statistics *stats; 3754 struct vtnet_rxq_stats rxaccum; 3755 struct vtnet_txq_stats txaccum; 3756 3757 vtnet_accum_stats(sc, &rxaccum, &txaccum); 3758 3759 stats = &sc->vtnet_stats; 3760 stats->rx_csum_offloaded = rxaccum.vrxs_csum; 3761 stats->rx_csum_failed = rxaccum.vrxs_csum_failed; 3762 stats->rx_task_rescheduled = rxaccum.vrxs_rescheduled; 3763 stats->tx_csum_offloaded = txaccum.vtxs_csum; 3764 stats->tx_tso_offloaded = txaccum.vtxs_tso; 3765 stats->tx_task_rescheduled = txaccum.vtxs_rescheduled; 3766 3767 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed", 3768 CTLFLAG_RD, &stats->mbuf_alloc_failed, 3769 "Mbuf cluster allocation failures"); 3770 3771 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large", 3772 CTLFLAG_RD, &stats->rx_frame_too_large, 3773 "Received frame larger than the mbuf chain"); 3774 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed", 3775 CTLFLAG_RD, &stats->rx_enq_replacement_failed, 3776 "Enqueuing the replacement receive mbuf failed"); 3777 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed", 3778 CTLFLAG_RD, &stats->rx_mergeable_failed, 3779 "Mergeable buffers receive failures"); 3780 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", 3781 CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 3782 "Received checksum offloaded buffer with unsupported " 3783 "Ethernet type"); 3784 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", 3785 CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 3786 "Received checksum offloaded buffer with incorrect IP protocol"); 3787 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset", 3788 CTLFLAG_RD, &stats->rx_csum_bad_offset, 3789 "Received checksum offloaded buffer with incorrect offset"); 3790 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_proto", 3791 CTLFLAG_RD, &stats->rx_csum_bad_proto, 3792 "Received checksum offloaded buffer with incorrect protocol"); 3793 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed", 3794 CTLFLAG_RD, &stats->rx_csum_failed, 3795 "Received buffer checksum offload failed"); 3796 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded", 3797 CTLFLAG_RD, &stats->rx_csum_offloaded, 3798 "Received buffer checksum offload succeeded"); 3799 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled", 3800 CTLFLAG_RD, &stats->rx_task_rescheduled, 3801 "Times the receive interrupt task rescheduled itself"); 3802 3803 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", 3804 CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 3805 "Aborted transmit of checksum offloaded buffer with unknown " 3806 "Ethernet type"); 3807 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", 3808 CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 3809 "Aborted transmit of TSO buffer with unknown Ethernet type"); 3810 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_not_tcp", 3811 CTLFLAG_RD, &stats->tx_tso_not_tcp, 3812 "Aborted transmit of TSO buffer with non TCP protocol"); 3813 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged", 3814 CTLFLAG_RD, &stats->tx_defragged, 3815 "Transmit mbufs defragged"); 3816 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed", 3817 CTLFLAG_RD, &stats->tx_defrag_failed, 3818 "Aborted transmit of buffer because defrag failed"); 3819 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded", 3820 CTLFLAG_RD, &stats->tx_csum_offloaded, 3821 "Offloaded checksum of transmitted buffer"); 3822 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded", 3823 CTLFLAG_RD, &stats->tx_tso_offloaded, 3824 "Segmentation offload of transmitted buffer"); 3825 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled", 3826 CTLFLAG_RD, &stats->tx_task_rescheduled, 3827 "Times the transmit interrupt task rescheduled itself"); 3828 } 3829 3830 static void 3831 vtnet_setup_sysctl(struct vtnet_softc *sc) 3832 { 3833 device_t dev; 3834 struct sysctl_ctx_list *ctx; 3835 struct sysctl_oid *tree; 3836 struct sysctl_oid_list *child; 3837 3838 dev = sc->vtnet_dev; 3839 ctx = device_get_sysctl_ctx(dev); 3840 tree = device_get_sysctl_tree(dev); 3841 child = SYSCTL_CHILDREN(tree); 3842 3843 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_vq_pairs", 3844 CTLFLAG_RD, &sc->vtnet_max_vq_pairs, 0, 3845 "Maximum number of supported virtqueue pairs"); 3846 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "act_vq_pairs", 3847 CTLFLAG_RD, &sc->vtnet_act_vq_pairs, 0, 3848 "Number of active virtqueue pairs"); 3849 3850 vtnet_setup_stat_sysctl(ctx, child, sc); 3851 } 3852 3853 static int 3854 vtnet_rxq_enable_intr(struct vtnet_rxq *rxq) 3855 { 3856 3857 return (virtqueue_enable_intr(rxq->vtnrx_vq)); 3858 } 3859 3860 static void 3861 vtnet_rxq_disable_intr(struct vtnet_rxq *rxq) 3862 { 3863 3864 virtqueue_disable_intr(rxq->vtnrx_vq); 3865 } 3866 3867 static int 3868 vtnet_txq_enable_intr(struct vtnet_txq *txq) 3869 { 3870 struct virtqueue *vq; 3871 3872 vq = txq->vtntx_vq; 3873 3874 if (vtnet_txq_below_threshold(txq) != 0) 3875 return (virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG)); 3876 3877 /* 3878 * The free count is above our threshold. Keep the Tx interrupt 3879 * disabled until the queue is fuller. 3880 */ 3881 return (0); 3882 } 3883 3884 static void 3885 vtnet_txq_disable_intr(struct vtnet_txq *txq) 3886 { 3887 3888 virtqueue_disable_intr(txq->vtntx_vq); 3889 } 3890 3891 static void 3892 vtnet_enable_rx_interrupts(struct vtnet_softc *sc) 3893 { 3894 int i; 3895 3896 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3897 vtnet_rxq_enable_intr(&sc->vtnet_rxqs[i]); 3898 } 3899 3900 static void 3901 vtnet_enable_tx_interrupts(struct vtnet_softc *sc) 3902 { 3903 int i; 3904 3905 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3906 vtnet_txq_enable_intr(&sc->vtnet_txqs[i]); 3907 } 3908 3909 static void 3910 vtnet_enable_interrupts(struct vtnet_softc *sc) 3911 { 3912 3913 vtnet_enable_rx_interrupts(sc); 3914 vtnet_enable_tx_interrupts(sc); 3915 } 3916 3917 static void 3918 vtnet_disable_rx_interrupts(struct vtnet_softc *sc) 3919 { 3920 int i; 3921 3922 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3923 vtnet_rxq_disable_intr(&sc->vtnet_rxqs[i]); 3924 } 3925 3926 static void 3927 vtnet_disable_tx_interrupts(struct vtnet_softc *sc) 3928 { 3929 int i; 3930 3931 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3932 vtnet_txq_disable_intr(&sc->vtnet_txqs[i]); 3933 } 3934 3935 static void 3936 vtnet_disable_interrupts(struct vtnet_softc *sc) 3937 { 3938 3939 vtnet_disable_rx_interrupts(sc); 3940 vtnet_disable_tx_interrupts(sc); 3941 } 3942 3943 static int 3944 vtnet_tunable_int(struct vtnet_softc *sc, const char *knob, int def) 3945 { 3946 char path[64]; 3947 3948 snprintf(path, sizeof(path), 3949 "hw.vtnet.%d.%s", device_get_unit(sc->vtnet_dev), knob); 3950 TUNABLE_INT_FETCH(path, &def); 3951 3952 return (def); 3953 } 3954