1 /*- 2 * Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* Driver for VirtIO network devices. */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/eventhandler.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/sockio.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/socket.h> 41 #include <sys/sysctl.h> 42 #include <sys/random.h> 43 #include <sys/sglist.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/taskqueue.h> 47 #include <sys/smp.h> 48 #include <machine/smp.h> 49 50 #include <vm/uma.h> 51 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_arp.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/if_media.h> 59 #include <net/if_vlan_var.h> 60 61 #include <net/bpf.h> 62 63 #include <netinet/in_systm.h> 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet6/ip6_var.h> 68 #include <netinet/udp.h> 69 #include <netinet/tcp.h> 70 #include <netinet/sctp.h> 71 72 #include <machine/bus.h> 73 #include <machine/resource.h> 74 #include <sys/bus.h> 75 #include <sys/rman.h> 76 77 #include <dev/virtio/virtio.h> 78 #include <dev/virtio/virtqueue.h> 79 #include <dev/virtio/network/virtio_net.h> 80 #include <dev/virtio/network/if_vtnetvar.h> 81 82 #include "virtio_if.h" 83 84 #include "opt_inet.h" 85 #include "opt_inet6.h" 86 87 static int vtnet_modevent(module_t, int, void *); 88 89 static int vtnet_probe(device_t); 90 static int vtnet_attach(device_t); 91 static int vtnet_detach(device_t); 92 static int vtnet_suspend(device_t); 93 static int vtnet_resume(device_t); 94 static int vtnet_shutdown(device_t); 95 static int vtnet_attach_completed(device_t); 96 static int vtnet_config_change(device_t); 97 98 static void vtnet_negotiate_features(struct vtnet_softc *); 99 static void vtnet_setup_features(struct vtnet_softc *); 100 static int vtnet_init_rxq(struct vtnet_softc *, int); 101 static int vtnet_init_txq(struct vtnet_softc *, int); 102 static int vtnet_alloc_rxtx_queues(struct vtnet_softc *); 103 static void vtnet_free_rxtx_queues(struct vtnet_softc *); 104 static int vtnet_alloc_rx_filters(struct vtnet_softc *); 105 static void vtnet_free_rx_filters(struct vtnet_softc *); 106 static int vtnet_alloc_virtqueues(struct vtnet_softc *); 107 static int vtnet_setup_interface(struct vtnet_softc *); 108 static int vtnet_change_mtu(struct vtnet_softc *, int); 109 static int vtnet_ioctl(struct ifnet *, u_long, caddr_t); 110 static uint64_t vtnet_get_counter(struct ifnet *, ift_counter); 111 112 static int vtnet_rxq_populate(struct vtnet_rxq *); 113 static void vtnet_rxq_free_mbufs(struct vtnet_rxq *); 114 static struct mbuf * 115 vtnet_rx_alloc_buf(struct vtnet_softc *, int , struct mbuf **); 116 static int vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *, 117 struct mbuf *, int); 118 static int vtnet_rxq_replace_buf(struct vtnet_rxq *, struct mbuf *, int); 119 static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *, struct mbuf *); 120 static int vtnet_rxq_new_buf(struct vtnet_rxq *); 121 static int vtnet_rxq_csum(struct vtnet_rxq *, struct mbuf *, 122 struct virtio_net_hdr *); 123 static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *, int); 124 static void vtnet_rxq_discard_buf(struct vtnet_rxq *, struct mbuf *); 125 static int vtnet_rxq_merged_eof(struct vtnet_rxq *, struct mbuf *, int); 126 static void vtnet_rxq_input(struct vtnet_rxq *, struct mbuf *, 127 struct virtio_net_hdr *); 128 static int vtnet_rxq_eof(struct vtnet_rxq *); 129 static void vtnet_rx_vq_intr(void *); 130 static void vtnet_rxq_tq_intr(void *, int); 131 132 static int vtnet_txq_below_threshold(struct vtnet_txq *); 133 static int vtnet_txq_notify(struct vtnet_txq *); 134 static void vtnet_txq_free_mbufs(struct vtnet_txq *); 135 static int vtnet_txq_offload_ctx(struct vtnet_txq *, struct mbuf *, 136 int *, int *, int *); 137 static int vtnet_txq_offload_tso(struct vtnet_txq *, struct mbuf *, int, 138 int, struct virtio_net_hdr *); 139 static struct mbuf * 140 vtnet_txq_offload(struct vtnet_txq *, struct mbuf *, 141 struct virtio_net_hdr *); 142 static int vtnet_txq_enqueue_buf(struct vtnet_txq *, struct mbuf **, 143 struct vtnet_tx_header *); 144 static int vtnet_txq_encap(struct vtnet_txq *, struct mbuf **); 145 #ifdef VTNET_LEGACY_TX 146 static void vtnet_start_locked(struct vtnet_txq *, struct ifnet *); 147 static void vtnet_start(struct ifnet *); 148 #else 149 static int vtnet_txq_mq_start_locked(struct vtnet_txq *, struct mbuf *); 150 static int vtnet_txq_mq_start(struct ifnet *, struct mbuf *); 151 static void vtnet_txq_tq_deferred(void *, int); 152 #endif 153 static void vtnet_txq_start(struct vtnet_txq *); 154 static void vtnet_txq_tq_intr(void *, int); 155 static int vtnet_txq_eof(struct vtnet_txq *); 156 static void vtnet_tx_vq_intr(void *); 157 static void vtnet_tx_start_all(struct vtnet_softc *); 158 159 #ifndef VTNET_LEGACY_TX 160 static void vtnet_qflush(struct ifnet *); 161 #endif 162 163 static int vtnet_watchdog(struct vtnet_txq *); 164 static void vtnet_accum_stats(struct vtnet_softc *, 165 struct vtnet_rxq_stats *, struct vtnet_txq_stats *); 166 static void vtnet_tick(void *); 167 168 static void vtnet_start_taskqueues(struct vtnet_softc *); 169 static void vtnet_free_taskqueues(struct vtnet_softc *); 170 static void vtnet_drain_taskqueues(struct vtnet_softc *); 171 172 static void vtnet_drain_rxtx_queues(struct vtnet_softc *); 173 static void vtnet_stop_rendezvous(struct vtnet_softc *); 174 static void vtnet_stop(struct vtnet_softc *); 175 static int vtnet_virtio_reinit(struct vtnet_softc *); 176 static void vtnet_init_rx_filters(struct vtnet_softc *); 177 static int vtnet_init_rx_queues(struct vtnet_softc *); 178 static int vtnet_init_tx_queues(struct vtnet_softc *); 179 static int vtnet_init_rxtx_queues(struct vtnet_softc *); 180 static void vtnet_set_active_vq_pairs(struct vtnet_softc *); 181 static int vtnet_reinit(struct vtnet_softc *); 182 static void vtnet_init_locked(struct vtnet_softc *); 183 static void vtnet_init(void *); 184 185 static void vtnet_free_ctrl_vq(struct vtnet_softc *); 186 static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, 187 struct sglist *, int, int); 188 static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *); 189 static int vtnet_ctrl_mq_cmd(struct vtnet_softc *, uint16_t); 190 static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); 191 static int vtnet_set_promisc(struct vtnet_softc *, int); 192 static int vtnet_set_allmulti(struct vtnet_softc *, int); 193 static void vtnet_attach_disable_promisc(struct vtnet_softc *); 194 static void vtnet_rx_filter(struct vtnet_softc *); 195 static void vtnet_rx_filter_mac(struct vtnet_softc *); 196 static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); 197 static void vtnet_rx_filter_vlan(struct vtnet_softc *); 198 static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t); 199 static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); 200 static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); 201 202 static int vtnet_is_link_up(struct vtnet_softc *); 203 static void vtnet_update_link_status(struct vtnet_softc *); 204 static int vtnet_ifmedia_upd(struct ifnet *); 205 static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); 206 static void vtnet_get_hwaddr(struct vtnet_softc *); 207 static void vtnet_set_hwaddr(struct vtnet_softc *); 208 static void vtnet_vlan_tag_remove(struct mbuf *); 209 static void vtnet_set_rx_process_limit(struct vtnet_softc *); 210 static void vtnet_set_tx_intr_threshold(struct vtnet_softc *); 211 212 static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *, 213 struct sysctl_oid_list *, struct vtnet_rxq *); 214 static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *, 215 struct sysctl_oid_list *, struct vtnet_txq *); 216 static void vtnet_setup_queue_sysctl(struct vtnet_softc *); 217 static void vtnet_setup_sysctl(struct vtnet_softc *); 218 219 static int vtnet_rxq_enable_intr(struct vtnet_rxq *); 220 static void vtnet_rxq_disable_intr(struct vtnet_rxq *); 221 static int vtnet_txq_enable_intr(struct vtnet_txq *); 222 static void vtnet_txq_disable_intr(struct vtnet_txq *); 223 static void vtnet_enable_rx_interrupts(struct vtnet_softc *); 224 static void vtnet_enable_tx_interrupts(struct vtnet_softc *); 225 static void vtnet_enable_interrupts(struct vtnet_softc *); 226 static void vtnet_disable_rx_interrupts(struct vtnet_softc *); 227 static void vtnet_disable_tx_interrupts(struct vtnet_softc *); 228 static void vtnet_disable_interrupts(struct vtnet_softc *); 229 230 static int vtnet_tunable_int(struct vtnet_softc *, const char *, int); 231 232 /* Tunables. */ 233 static int vtnet_csum_disable = 0; 234 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); 235 static int vtnet_tso_disable = 0; 236 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); 237 static int vtnet_lro_disable = 0; 238 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); 239 static int vtnet_mq_disable = 0; 240 TUNABLE_INT("hw.vtnet.mq_disable", &vtnet_mq_disable); 241 static int vtnet_mq_max_pairs = 0; 242 TUNABLE_INT("hw.vtnet.mq_max_pairs", &vtnet_mq_max_pairs); 243 static int vtnet_rx_process_limit = 512; 244 TUNABLE_INT("hw.vtnet.rx_process_limit", &vtnet_rx_process_limit); 245 246 static uma_zone_t vtnet_tx_header_zone; 247 248 static struct virtio_feature_desc vtnet_feature_desc[] = { 249 { VIRTIO_NET_F_CSUM, "TxChecksum" }, 250 { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, 251 { VIRTIO_NET_F_MAC, "MacAddress" }, 252 { VIRTIO_NET_F_GSO, "TxAllGSO" }, 253 { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, 254 { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, 255 { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, 256 { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, 257 { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, 258 { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, 259 { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, 260 { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, 261 { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, 262 { VIRTIO_NET_F_STATUS, "Status" }, 263 { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, 264 { VIRTIO_NET_F_CTRL_RX, "RxMode" }, 265 { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, 266 { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, 267 { VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" }, 268 { VIRTIO_NET_F_MQ, "Multiqueue" }, 269 { VIRTIO_NET_F_CTRL_MAC_ADDR, "SetMacAddress" }, 270 271 { 0, NULL } 272 }; 273 274 static device_method_t vtnet_methods[] = { 275 /* Device methods. */ 276 DEVMETHOD(device_probe, vtnet_probe), 277 DEVMETHOD(device_attach, vtnet_attach), 278 DEVMETHOD(device_detach, vtnet_detach), 279 DEVMETHOD(device_suspend, vtnet_suspend), 280 DEVMETHOD(device_resume, vtnet_resume), 281 DEVMETHOD(device_shutdown, vtnet_shutdown), 282 283 /* VirtIO methods. */ 284 DEVMETHOD(virtio_attach_completed, vtnet_attach_completed), 285 DEVMETHOD(virtio_config_change, vtnet_config_change), 286 287 DEVMETHOD_END 288 }; 289 290 #ifdef DEV_NETMAP 291 #include <dev/netmap/if_vtnet_netmap.h> 292 #endif /* DEV_NETMAP */ 293 294 static driver_t vtnet_driver = { 295 "vtnet", 296 vtnet_methods, 297 sizeof(struct vtnet_softc) 298 }; 299 static devclass_t vtnet_devclass; 300 301 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, 302 vtnet_modevent, 0); 303 MODULE_VERSION(vtnet, 1); 304 MODULE_DEPEND(vtnet, virtio, 1, 1, 1); 305 306 static int 307 vtnet_modevent(module_t mod, int type, void *unused) 308 { 309 int error; 310 311 error = 0; 312 313 switch (type) { 314 case MOD_LOAD: 315 vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", 316 sizeof(struct vtnet_tx_header), 317 NULL, NULL, NULL, NULL, 0, 0); 318 break; 319 case MOD_QUIESCE: 320 case MOD_UNLOAD: 321 if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) 322 error = EBUSY; 323 else if (type == MOD_UNLOAD) { 324 uma_zdestroy(vtnet_tx_header_zone); 325 vtnet_tx_header_zone = NULL; 326 } 327 break; 328 case MOD_SHUTDOWN: 329 break; 330 default: 331 error = EOPNOTSUPP; 332 break; 333 } 334 335 return (error); 336 } 337 338 static int 339 vtnet_probe(device_t dev) 340 { 341 342 if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK) 343 return (ENXIO); 344 345 device_set_desc(dev, "VirtIO Networking Adapter"); 346 347 return (BUS_PROBE_DEFAULT); 348 } 349 350 static int 351 vtnet_attach(device_t dev) 352 { 353 struct vtnet_softc *sc; 354 int error; 355 356 sc = device_get_softc(dev); 357 sc->vtnet_dev = dev; 358 359 /* Register our feature descriptions. */ 360 virtio_set_feature_desc(dev, vtnet_feature_desc); 361 362 VTNET_CORE_LOCK_INIT(sc); 363 callout_init_mtx(&sc->vtnet_tick_ch, VTNET_CORE_MTX(sc), 0); 364 365 vtnet_setup_sysctl(sc); 366 vtnet_setup_features(sc); 367 368 error = vtnet_alloc_rx_filters(sc); 369 if (error) { 370 device_printf(dev, "cannot allocate Rx filters\n"); 371 goto fail; 372 } 373 374 error = vtnet_alloc_rxtx_queues(sc); 375 if (error) { 376 device_printf(dev, "cannot allocate queues\n"); 377 goto fail; 378 } 379 380 error = vtnet_alloc_virtqueues(sc); 381 if (error) { 382 device_printf(dev, "cannot allocate virtqueues\n"); 383 goto fail; 384 } 385 386 error = vtnet_setup_interface(sc); 387 if (error) { 388 device_printf(dev, "cannot setup interface\n"); 389 goto fail; 390 } 391 392 error = virtio_setup_intr(dev, INTR_TYPE_NET); 393 if (error) { 394 device_printf(dev, "cannot setup virtqueue interrupts\n"); 395 /* BMV: This will crash if during boot! */ 396 ether_ifdetach(sc->vtnet_ifp); 397 goto fail; 398 } 399 400 #ifdef DEV_NETMAP 401 vtnet_netmap_attach(sc); 402 #endif /* DEV_NETMAP */ 403 404 vtnet_start_taskqueues(sc); 405 406 fail: 407 if (error) 408 vtnet_detach(dev); 409 410 return (error); 411 } 412 413 static int 414 vtnet_detach(device_t dev) 415 { 416 struct vtnet_softc *sc; 417 struct ifnet *ifp; 418 419 sc = device_get_softc(dev); 420 ifp = sc->vtnet_ifp; 421 422 if (device_is_attached(dev)) { 423 VTNET_CORE_LOCK(sc); 424 vtnet_stop(sc); 425 VTNET_CORE_UNLOCK(sc); 426 427 callout_drain(&sc->vtnet_tick_ch); 428 vtnet_drain_taskqueues(sc); 429 430 ether_ifdetach(ifp); 431 } 432 433 #ifdef DEV_NETMAP 434 netmap_detach(ifp); 435 #endif /* DEV_NETMAP */ 436 437 vtnet_free_taskqueues(sc); 438 439 if (sc->vtnet_vlan_attach != NULL) { 440 EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); 441 sc->vtnet_vlan_attach = NULL; 442 } 443 if (sc->vtnet_vlan_detach != NULL) { 444 EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach); 445 sc->vtnet_vlan_detach = NULL; 446 } 447 448 ifmedia_removeall(&sc->vtnet_media); 449 450 if (ifp != NULL) { 451 if_free(ifp); 452 sc->vtnet_ifp = NULL; 453 } 454 455 vtnet_free_rxtx_queues(sc); 456 vtnet_free_rx_filters(sc); 457 458 if (sc->vtnet_ctrl_vq != NULL) 459 vtnet_free_ctrl_vq(sc); 460 461 VTNET_CORE_LOCK_DESTROY(sc); 462 463 return (0); 464 } 465 466 static int 467 vtnet_suspend(device_t dev) 468 { 469 struct vtnet_softc *sc; 470 471 sc = device_get_softc(dev); 472 473 VTNET_CORE_LOCK(sc); 474 vtnet_stop(sc); 475 sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; 476 VTNET_CORE_UNLOCK(sc); 477 478 return (0); 479 } 480 481 static int 482 vtnet_resume(device_t dev) 483 { 484 struct vtnet_softc *sc; 485 struct ifnet *ifp; 486 487 sc = device_get_softc(dev); 488 ifp = sc->vtnet_ifp; 489 490 VTNET_CORE_LOCK(sc); 491 if (ifp->if_flags & IFF_UP) 492 vtnet_init_locked(sc); 493 sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; 494 VTNET_CORE_UNLOCK(sc); 495 496 return (0); 497 } 498 499 static int 500 vtnet_shutdown(device_t dev) 501 { 502 503 /* 504 * Suspend already does all of what we need to 505 * do here; we just never expect to be resumed. 506 */ 507 return (vtnet_suspend(dev)); 508 } 509 510 static int 511 vtnet_attach_completed(device_t dev) 512 { 513 514 vtnet_attach_disable_promisc(device_get_softc(dev)); 515 516 return (0); 517 } 518 519 static int 520 vtnet_config_change(device_t dev) 521 { 522 struct vtnet_softc *sc; 523 524 sc = device_get_softc(dev); 525 526 VTNET_CORE_LOCK(sc); 527 vtnet_update_link_status(sc); 528 if (sc->vtnet_link_active != 0) 529 vtnet_tx_start_all(sc); 530 VTNET_CORE_UNLOCK(sc); 531 532 return (0); 533 } 534 535 static void 536 vtnet_negotiate_features(struct vtnet_softc *sc) 537 { 538 device_t dev; 539 uint64_t mask, features; 540 541 dev = sc->vtnet_dev; 542 mask = 0; 543 544 /* 545 * TSO and LRO are only available when their corresponding checksum 546 * offload feature is also negotiated. 547 */ 548 if (vtnet_tunable_int(sc, "csum_disable", vtnet_csum_disable)) { 549 mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; 550 mask |= VTNET_TSO_FEATURES | VTNET_LRO_FEATURES; 551 } 552 if (vtnet_tunable_int(sc, "tso_disable", vtnet_tso_disable)) 553 mask |= VTNET_TSO_FEATURES; 554 if (vtnet_tunable_int(sc, "lro_disable", vtnet_lro_disable)) 555 mask |= VTNET_LRO_FEATURES; 556 #ifndef VTNET_LEGACY_TX 557 if (vtnet_tunable_int(sc, "mq_disable", vtnet_mq_disable)) 558 mask |= VIRTIO_NET_F_MQ; 559 #else 560 mask |= VIRTIO_NET_F_MQ; 561 #endif 562 563 features = VTNET_FEATURES & ~mask; 564 sc->vtnet_features = virtio_negotiate_features(dev, features); 565 566 if (virtio_with_feature(dev, VTNET_LRO_FEATURES) && 567 virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) { 568 /* 569 * LRO without mergeable buffers requires special care. This 570 * is not ideal because every receive buffer must be large 571 * enough to hold the maximum TCP packet, the Ethernet header, 572 * and the header. This requires up to 34 descriptors with 573 * MCLBYTES clusters. If we do not have indirect descriptors, 574 * LRO is disabled since the virtqueue will not contain very 575 * many receive buffers. 576 */ 577 if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) { 578 device_printf(dev, 579 "LRO disabled due to both mergeable buffers and " 580 "indirect descriptors not negotiated\n"); 581 582 features &= ~VTNET_LRO_FEATURES; 583 sc->vtnet_features = 584 virtio_negotiate_features(dev, features); 585 } else 586 sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; 587 } 588 } 589 590 static void 591 vtnet_setup_features(struct vtnet_softc *sc) 592 { 593 device_t dev; 594 int max_pairs, max; 595 596 dev = sc->vtnet_dev; 597 598 vtnet_negotiate_features(sc); 599 600 if (virtio_with_feature(dev, VIRTIO_RING_F_EVENT_IDX)) 601 sc->vtnet_flags |= VTNET_FLAG_EVENT_IDX; 602 603 if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { 604 /* This feature should always be negotiated. */ 605 sc->vtnet_flags |= VTNET_FLAG_MAC; 606 } 607 608 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { 609 sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; 610 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); 611 } else 612 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); 613 614 if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) 615 sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS; 616 else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) 617 sc->vtnet_rx_nsegs = VTNET_MAX_RX_SEGS; 618 else 619 sc->vtnet_rx_nsegs = VTNET_MIN_RX_SEGS; 620 621 if (virtio_with_feature(dev, VIRTIO_NET_F_GSO) || 622 virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) || 623 virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 624 sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS; 625 else 626 sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS; 627 628 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { 629 sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; 630 631 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) 632 sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; 633 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) 634 sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; 635 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR)) 636 sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC; 637 } 638 639 if (virtio_with_feature(dev, VIRTIO_NET_F_MQ) && 640 sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 641 max_pairs = virtio_read_dev_config_2(dev, 642 offsetof(struct virtio_net_config, max_virtqueue_pairs)); 643 if (max_pairs < VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN || 644 max_pairs > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX) 645 max_pairs = 1; 646 } else 647 max_pairs = 1; 648 649 if (max_pairs > 1) { 650 /* 651 * Limit the maximum number of queue pairs to the number of 652 * CPUs or the configured maximum. The actual number of 653 * queues that get used may be less. 654 */ 655 max = vtnet_tunable_int(sc, "mq_max_pairs", vtnet_mq_max_pairs); 656 if (max > 0 && max_pairs > max) 657 max_pairs = max; 658 if (max_pairs > mp_ncpus) 659 max_pairs = mp_ncpus; 660 if (max_pairs > VTNET_MAX_QUEUE_PAIRS) 661 max_pairs = VTNET_MAX_QUEUE_PAIRS; 662 if (max_pairs > 1) 663 sc->vtnet_flags |= VTNET_FLAG_MULTIQ; 664 } 665 666 sc->vtnet_max_vq_pairs = max_pairs; 667 } 668 669 static int 670 vtnet_init_rxq(struct vtnet_softc *sc, int id) 671 { 672 struct vtnet_rxq *rxq; 673 674 rxq = &sc->vtnet_rxqs[id]; 675 676 snprintf(rxq->vtnrx_name, sizeof(rxq->vtnrx_name), "%s-rx%d", 677 device_get_nameunit(sc->vtnet_dev), id); 678 mtx_init(&rxq->vtnrx_mtx, rxq->vtnrx_name, NULL, MTX_DEF); 679 680 rxq->vtnrx_sc = sc; 681 rxq->vtnrx_id = id; 682 683 rxq->vtnrx_sg = sglist_alloc(sc->vtnet_rx_nsegs, M_NOWAIT); 684 if (rxq->vtnrx_sg == NULL) 685 return (ENOMEM); 686 687 TASK_INIT(&rxq->vtnrx_intrtask, 0, vtnet_rxq_tq_intr, rxq); 688 rxq->vtnrx_tq = taskqueue_create(rxq->vtnrx_name, M_NOWAIT, 689 taskqueue_thread_enqueue, &rxq->vtnrx_tq); 690 691 return (rxq->vtnrx_tq == NULL ? ENOMEM : 0); 692 } 693 694 static int 695 vtnet_init_txq(struct vtnet_softc *sc, int id) 696 { 697 struct vtnet_txq *txq; 698 699 txq = &sc->vtnet_txqs[id]; 700 701 snprintf(txq->vtntx_name, sizeof(txq->vtntx_name), "%s-tx%d", 702 device_get_nameunit(sc->vtnet_dev), id); 703 mtx_init(&txq->vtntx_mtx, txq->vtntx_name, NULL, MTX_DEF); 704 705 txq->vtntx_sc = sc; 706 txq->vtntx_id = id; 707 708 txq->vtntx_sg = sglist_alloc(sc->vtnet_tx_nsegs, M_NOWAIT); 709 if (txq->vtntx_sg == NULL) 710 return (ENOMEM); 711 712 #ifndef VTNET_LEGACY_TX 713 txq->vtntx_br = buf_ring_alloc(VTNET_DEFAULT_BUFRING_SIZE, M_DEVBUF, 714 M_NOWAIT, &txq->vtntx_mtx); 715 if (txq->vtntx_br == NULL) 716 return (ENOMEM); 717 718 TASK_INIT(&txq->vtntx_defrtask, 0, vtnet_txq_tq_deferred, txq); 719 #endif 720 TASK_INIT(&txq->vtntx_intrtask, 0, vtnet_txq_tq_intr, txq); 721 txq->vtntx_tq = taskqueue_create(txq->vtntx_name, M_NOWAIT, 722 taskqueue_thread_enqueue, &txq->vtntx_tq); 723 if (txq->vtntx_tq == NULL) 724 return (ENOMEM); 725 726 return (0); 727 } 728 729 static int 730 vtnet_alloc_rxtx_queues(struct vtnet_softc *sc) 731 { 732 int i, npairs, error; 733 734 npairs = sc->vtnet_max_vq_pairs; 735 736 sc->vtnet_rxqs = malloc(sizeof(struct vtnet_rxq) * npairs, M_DEVBUF, 737 M_NOWAIT | M_ZERO); 738 sc->vtnet_txqs = malloc(sizeof(struct vtnet_txq) * npairs, M_DEVBUF, 739 M_NOWAIT | M_ZERO); 740 if (sc->vtnet_rxqs == NULL || sc->vtnet_txqs == NULL) 741 return (ENOMEM); 742 743 for (i = 0; i < npairs; i++) { 744 error = vtnet_init_rxq(sc, i); 745 if (error) 746 return (error); 747 error = vtnet_init_txq(sc, i); 748 if (error) 749 return (error); 750 } 751 752 vtnet_setup_queue_sysctl(sc); 753 754 return (0); 755 } 756 757 static void 758 vtnet_destroy_rxq(struct vtnet_rxq *rxq) 759 { 760 761 rxq->vtnrx_sc = NULL; 762 rxq->vtnrx_id = -1; 763 764 if (rxq->vtnrx_sg != NULL) { 765 sglist_free(rxq->vtnrx_sg); 766 rxq->vtnrx_sg = NULL; 767 } 768 769 if (mtx_initialized(&rxq->vtnrx_mtx) != 0) 770 mtx_destroy(&rxq->vtnrx_mtx); 771 } 772 773 static void 774 vtnet_destroy_txq(struct vtnet_txq *txq) 775 { 776 777 txq->vtntx_sc = NULL; 778 txq->vtntx_id = -1; 779 780 if (txq->vtntx_sg != NULL) { 781 sglist_free(txq->vtntx_sg); 782 txq->vtntx_sg = NULL; 783 } 784 785 #ifndef VTNET_LEGACY_TX 786 if (txq->vtntx_br != NULL) { 787 buf_ring_free(txq->vtntx_br, M_DEVBUF); 788 txq->vtntx_br = NULL; 789 } 790 #endif 791 792 if (mtx_initialized(&txq->vtntx_mtx) != 0) 793 mtx_destroy(&txq->vtntx_mtx); 794 } 795 796 static void 797 vtnet_free_rxtx_queues(struct vtnet_softc *sc) 798 { 799 int i; 800 801 if (sc->vtnet_rxqs != NULL) { 802 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) 803 vtnet_destroy_rxq(&sc->vtnet_rxqs[i]); 804 free(sc->vtnet_rxqs, M_DEVBUF); 805 sc->vtnet_rxqs = NULL; 806 } 807 808 if (sc->vtnet_txqs != NULL) { 809 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) 810 vtnet_destroy_txq(&sc->vtnet_txqs[i]); 811 free(sc->vtnet_txqs, M_DEVBUF); 812 sc->vtnet_txqs = NULL; 813 } 814 } 815 816 static int 817 vtnet_alloc_rx_filters(struct vtnet_softc *sc) 818 { 819 820 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 821 sc->vtnet_mac_filter = malloc(sizeof(struct vtnet_mac_filter), 822 M_DEVBUF, M_NOWAIT | M_ZERO); 823 if (sc->vtnet_mac_filter == NULL) 824 return (ENOMEM); 825 } 826 827 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 828 sc->vtnet_vlan_filter = malloc(sizeof(uint32_t) * 829 VTNET_VLAN_FILTER_NWORDS, M_DEVBUF, M_NOWAIT | M_ZERO); 830 if (sc->vtnet_vlan_filter == NULL) 831 return (ENOMEM); 832 } 833 834 return (0); 835 } 836 837 static void 838 vtnet_free_rx_filters(struct vtnet_softc *sc) 839 { 840 841 if (sc->vtnet_mac_filter != NULL) { 842 free(sc->vtnet_mac_filter, M_DEVBUF); 843 sc->vtnet_mac_filter = NULL; 844 } 845 846 if (sc->vtnet_vlan_filter != NULL) { 847 free(sc->vtnet_vlan_filter, M_DEVBUF); 848 sc->vtnet_vlan_filter = NULL; 849 } 850 } 851 852 static int 853 vtnet_alloc_virtqueues(struct vtnet_softc *sc) 854 { 855 device_t dev; 856 struct vq_alloc_info *info; 857 struct vtnet_rxq *rxq; 858 struct vtnet_txq *txq; 859 int i, idx, flags, nvqs, error; 860 861 dev = sc->vtnet_dev; 862 flags = 0; 863 864 nvqs = sc->vtnet_max_vq_pairs * 2; 865 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) 866 nvqs++; 867 868 info = malloc(sizeof(struct vq_alloc_info) * nvqs, M_TEMP, M_NOWAIT); 869 if (info == NULL) 870 return (ENOMEM); 871 872 for (i = 0, idx = 0; i < sc->vtnet_max_vq_pairs; i++, idx+=2) { 873 rxq = &sc->vtnet_rxqs[i]; 874 VQ_ALLOC_INFO_INIT(&info[idx], sc->vtnet_rx_nsegs, 875 vtnet_rx_vq_intr, rxq, &rxq->vtnrx_vq, 876 "%s-%d rx", device_get_nameunit(dev), rxq->vtnrx_id); 877 878 txq = &sc->vtnet_txqs[i]; 879 VQ_ALLOC_INFO_INIT(&info[idx+1], sc->vtnet_tx_nsegs, 880 vtnet_tx_vq_intr, txq, &txq->vtntx_vq, 881 "%s-%d tx", device_get_nameunit(dev), txq->vtntx_id); 882 } 883 884 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 885 VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, NULL, 886 &sc->vtnet_ctrl_vq, "%s ctrl", device_get_nameunit(dev)); 887 } 888 889 /* 890 * Enable interrupt binding if this is multiqueue. This only matters 891 * when per-vq MSIX is available. 892 */ 893 if (sc->vtnet_flags & VTNET_FLAG_MULTIQ) 894 flags |= 0; 895 896 error = virtio_alloc_virtqueues(dev, flags, nvqs, info); 897 free(info, M_TEMP); 898 899 return (error); 900 } 901 902 static int 903 vtnet_setup_interface(struct vtnet_softc *sc) 904 { 905 device_t dev; 906 struct ifnet *ifp; 907 908 dev = sc->vtnet_dev; 909 910 ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); 911 if (ifp == NULL) { 912 device_printf(dev, "cannot allocate ifnet structure\n"); 913 return (ENOSPC); 914 } 915 916 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 917 ifp->if_baudrate = IF_Gbps(10); /* Approx. */ 918 ifp->if_softc = sc; 919 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 920 ifp->if_init = vtnet_init; 921 ifp->if_ioctl = vtnet_ioctl; 922 ifp->if_get_counter = vtnet_get_counter; 923 #ifndef VTNET_LEGACY_TX 924 ifp->if_transmit = vtnet_txq_mq_start; 925 ifp->if_qflush = vtnet_qflush; 926 #else 927 struct virtqueue *vq = sc->vtnet_txqs[0].vtntx_vq; 928 ifp->if_start = vtnet_start; 929 IFQ_SET_MAXLEN(&ifp->if_snd, virtqueue_size(vq) - 1); 930 ifp->if_snd.ifq_drv_maxlen = virtqueue_size(vq) - 1; 931 IFQ_SET_READY(&ifp->if_snd); 932 #endif 933 934 ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, 935 vtnet_ifmedia_sts); 936 ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); 937 ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); 938 939 /* Read (or generate) the MAC address for the adapter. */ 940 vtnet_get_hwaddr(sc); 941 942 ether_ifattach(ifp, sc->vtnet_hwaddr); 943 944 if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) 945 ifp->if_capabilities |= IFCAP_LINKSTATE; 946 947 /* Tell the upper layer(s) we support long frames. */ 948 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 949 ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; 950 951 if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { 952 ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6; 953 954 if (virtio_with_feature(dev, VIRTIO_NET_F_GSO)) { 955 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6; 956 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 957 } else { 958 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) 959 ifp->if_capabilities |= IFCAP_TSO4; 960 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 961 ifp->if_capabilities |= IFCAP_TSO6; 962 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) 963 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 964 } 965 966 if (ifp->if_capabilities & IFCAP_TSO) 967 ifp->if_capabilities |= IFCAP_VLAN_HWTSO; 968 } 969 970 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) 971 ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6; 972 973 if (ifp->if_capabilities & IFCAP_HWCSUM) { 974 /* 975 * VirtIO does not support VLAN tagging, but we can fake 976 * it by inserting and removing the 802.1Q header during 977 * transmit and receive. We are then able to do checksum 978 * offloading of VLAN frames. 979 */ 980 ifp->if_capabilities |= 981 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 982 } 983 984 ifp->if_capenable = ifp->if_capabilities; 985 986 /* 987 * Capabilities after here are not enabled by default. 988 */ 989 990 if (ifp->if_capabilities & IFCAP_RXCSUM) { 991 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || 992 virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) 993 ifp->if_capabilities |= IFCAP_LRO; 994 } 995 996 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 997 ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; 998 999 sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, 1000 vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); 1001 sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, 1002 vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); 1003 } 1004 1005 vtnet_set_rx_process_limit(sc); 1006 vtnet_set_tx_intr_threshold(sc); 1007 1008 return (0); 1009 } 1010 1011 static int 1012 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) 1013 { 1014 struct ifnet *ifp; 1015 int frame_size, clsize; 1016 1017 ifp = sc->vtnet_ifp; 1018 1019 if (new_mtu < ETHERMIN || new_mtu > VTNET_MAX_MTU) 1020 return (EINVAL); 1021 1022 frame_size = sc->vtnet_hdr_size + sizeof(struct ether_vlan_header) + 1023 new_mtu; 1024 1025 /* 1026 * Based on the new MTU (and hence frame size) determine which 1027 * cluster size is most appropriate for the receive queues. 1028 */ 1029 if (frame_size <= MCLBYTES) { 1030 clsize = MCLBYTES; 1031 } else if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1032 /* Avoid going past 9K jumbos. */ 1033 if (frame_size > MJUM9BYTES) 1034 return (EINVAL); 1035 clsize = MJUM9BYTES; 1036 } else 1037 clsize = MJUMPAGESIZE; 1038 1039 ifp->if_mtu = new_mtu; 1040 sc->vtnet_rx_new_clsize = clsize; 1041 1042 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1043 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1044 vtnet_init_locked(sc); 1045 } 1046 1047 return (0); 1048 } 1049 1050 static int 1051 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1052 { 1053 struct vtnet_softc *sc; 1054 struct ifreq *ifr; 1055 int reinit, mask, error; 1056 1057 sc = ifp->if_softc; 1058 ifr = (struct ifreq *) data; 1059 error = 0; 1060 1061 switch (cmd) { 1062 case SIOCSIFMTU: 1063 if (ifp->if_mtu != ifr->ifr_mtu) { 1064 VTNET_CORE_LOCK(sc); 1065 error = vtnet_change_mtu(sc, ifr->ifr_mtu); 1066 VTNET_CORE_UNLOCK(sc); 1067 } 1068 break; 1069 1070 case SIOCSIFFLAGS: 1071 VTNET_CORE_LOCK(sc); 1072 if ((ifp->if_flags & IFF_UP) == 0) { 1073 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1074 vtnet_stop(sc); 1075 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1076 if ((ifp->if_flags ^ sc->vtnet_if_flags) & 1077 (IFF_PROMISC | IFF_ALLMULTI)) { 1078 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) 1079 vtnet_rx_filter(sc); 1080 else 1081 error = ENOTSUP; 1082 } 1083 } else 1084 vtnet_init_locked(sc); 1085 1086 if (error == 0) 1087 sc->vtnet_if_flags = ifp->if_flags; 1088 VTNET_CORE_UNLOCK(sc); 1089 break; 1090 1091 case SIOCADDMULTI: 1092 case SIOCDELMULTI: 1093 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) 1094 break; 1095 VTNET_CORE_LOCK(sc); 1096 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1097 vtnet_rx_filter_mac(sc); 1098 VTNET_CORE_UNLOCK(sc); 1099 break; 1100 1101 case SIOCSIFMEDIA: 1102 case SIOCGIFMEDIA: 1103 error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); 1104 break; 1105 1106 case SIOCSIFCAP: 1107 VTNET_CORE_LOCK(sc); 1108 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1109 1110 if (mask & IFCAP_TXCSUM) 1111 ifp->if_capenable ^= IFCAP_TXCSUM; 1112 if (mask & IFCAP_TXCSUM_IPV6) 1113 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1114 if (mask & IFCAP_TSO4) 1115 ifp->if_capenable ^= IFCAP_TSO4; 1116 if (mask & IFCAP_TSO6) 1117 ifp->if_capenable ^= IFCAP_TSO6; 1118 1119 if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO | 1120 IFCAP_VLAN_HWFILTER)) { 1121 /* These Rx features require us to renegotiate. */ 1122 reinit = 1; 1123 1124 if (mask & IFCAP_RXCSUM) 1125 ifp->if_capenable ^= IFCAP_RXCSUM; 1126 if (mask & IFCAP_RXCSUM_IPV6) 1127 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1128 if (mask & IFCAP_LRO) 1129 ifp->if_capenable ^= IFCAP_LRO; 1130 if (mask & IFCAP_VLAN_HWFILTER) 1131 ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; 1132 } else 1133 reinit = 0; 1134 1135 if (mask & IFCAP_VLAN_HWTSO) 1136 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1137 if (mask & IFCAP_VLAN_HWTAGGING) 1138 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1139 1140 if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1141 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1142 vtnet_init_locked(sc); 1143 } 1144 1145 VTNET_CORE_UNLOCK(sc); 1146 VLAN_CAPABILITIES(ifp); 1147 1148 break; 1149 1150 default: 1151 error = ether_ioctl(ifp, cmd, data); 1152 break; 1153 } 1154 1155 VTNET_CORE_LOCK_ASSERT_NOTOWNED(sc); 1156 1157 return (error); 1158 } 1159 1160 static int 1161 vtnet_rxq_populate(struct vtnet_rxq *rxq) 1162 { 1163 struct virtqueue *vq; 1164 int nbufs, error; 1165 1166 vq = rxq->vtnrx_vq; 1167 error = ENOSPC; 1168 1169 for (nbufs = 0; !virtqueue_full(vq); nbufs++) { 1170 error = vtnet_rxq_new_buf(rxq); 1171 if (error) 1172 break; 1173 } 1174 1175 if (nbufs > 0) { 1176 virtqueue_notify(vq); 1177 /* 1178 * EMSGSIZE signifies the virtqueue did not have enough 1179 * entries available to hold the last mbuf. This is not 1180 * an error. 1181 */ 1182 if (error == EMSGSIZE) 1183 error = 0; 1184 } 1185 1186 return (error); 1187 } 1188 1189 static void 1190 vtnet_rxq_free_mbufs(struct vtnet_rxq *rxq) 1191 { 1192 struct virtqueue *vq; 1193 struct mbuf *m; 1194 int last; 1195 1196 vq = rxq->vtnrx_vq; 1197 last = 0; 1198 1199 while ((m = virtqueue_drain(vq, &last)) != NULL) 1200 m_freem(m); 1201 1202 KASSERT(virtqueue_empty(vq), 1203 ("%s: mbufs remaining in rx queue %p", __func__, rxq)); 1204 } 1205 1206 static struct mbuf * 1207 vtnet_rx_alloc_buf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) 1208 { 1209 struct mbuf *m_head, *m_tail, *m; 1210 int i, clsize; 1211 1212 clsize = sc->vtnet_rx_clsize; 1213 1214 KASSERT(nbufs == 1 || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, 1215 ("%s: chained mbuf %d request without LRO_NOMRG", __func__, nbufs)); 1216 1217 m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize); 1218 if (m_head == NULL) 1219 goto fail; 1220 1221 m_head->m_len = clsize; 1222 m_tail = m_head; 1223 1224 /* Allocate the rest of the chain. */ 1225 for (i = 1; i < nbufs; i++) { 1226 m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize); 1227 if (m == NULL) 1228 goto fail; 1229 1230 m->m_len = clsize; 1231 m_tail->m_next = m; 1232 m_tail = m; 1233 } 1234 1235 if (m_tailp != NULL) 1236 *m_tailp = m_tail; 1237 1238 return (m_head); 1239 1240 fail: 1241 sc->vtnet_stats.mbuf_alloc_failed++; 1242 m_freem(m_head); 1243 1244 return (NULL); 1245 } 1246 1247 /* 1248 * Slow path for when LRO without mergeable buffers is negotiated. 1249 */ 1250 static int 1251 vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *rxq, struct mbuf *m0, 1252 int len0) 1253 { 1254 struct vtnet_softc *sc; 1255 struct mbuf *m, *m_prev; 1256 struct mbuf *m_new, *m_tail; 1257 int len, clsize, nreplace, error; 1258 1259 sc = rxq->vtnrx_sc; 1260 clsize = sc->vtnet_rx_clsize; 1261 1262 m_prev = NULL; 1263 m_tail = NULL; 1264 nreplace = 0; 1265 1266 m = m0; 1267 len = len0; 1268 1269 /* 1270 * Since these mbuf chains are so large, we avoid allocating an 1271 * entire replacement chain if possible. When the received frame 1272 * did not consume the entire chain, the unused mbufs are moved 1273 * to the replacement chain. 1274 */ 1275 while (len > 0) { 1276 /* 1277 * Something is seriously wrong if we received a frame 1278 * larger than the chain. Drop it. 1279 */ 1280 if (m == NULL) { 1281 sc->vtnet_stats.rx_frame_too_large++; 1282 return (EMSGSIZE); 1283 } 1284 1285 /* We always allocate the same cluster size. */ 1286 KASSERT(m->m_len == clsize, 1287 ("%s: mbuf size %d is not the cluster size %d", 1288 __func__, m->m_len, clsize)); 1289 1290 m->m_len = MIN(m->m_len, len); 1291 len -= m->m_len; 1292 1293 m_prev = m; 1294 m = m->m_next; 1295 nreplace++; 1296 } 1297 1298 KASSERT(nreplace <= sc->vtnet_rx_nmbufs, 1299 ("%s: too many replacement mbufs %d max %d", __func__, nreplace, 1300 sc->vtnet_rx_nmbufs)); 1301 1302 m_new = vtnet_rx_alloc_buf(sc, nreplace, &m_tail); 1303 if (m_new == NULL) { 1304 m_prev->m_len = clsize; 1305 return (ENOBUFS); 1306 } 1307 1308 /* 1309 * Move any unused mbufs from the received chain onto the end 1310 * of the new chain. 1311 */ 1312 if (m_prev->m_next != NULL) { 1313 m_tail->m_next = m_prev->m_next; 1314 m_prev->m_next = NULL; 1315 } 1316 1317 error = vtnet_rxq_enqueue_buf(rxq, m_new); 1318 if (error) { 1319 /* 1320 * BAD! We could not enqueue the replacement mbuf chain. We 1321 * must restore the m0 chain to the original state if it was 1322 * modified so we can subsequently discard it. 1323 * 1324 * NOTE: The replacement is suppose to be an identical copy 1325 * to the one just dequeued so this is an unexpected error. 1326 */ 1327 sc->vtnet_stats.rx_enq_replacement_failed++; 1328 1329 if (m_tail->m_next != NULL) { 1330 m_prev->m_next = m_tail->m_next; 1331 m_tail->m_next = NULL; 1332 } 1333 1334 m_prev->m_len = clsize; 1335 m_freem(m_new); 1336 } 1337 1338 return (error); 1339 } 1340 1341 static int 1342 vtnet_rxq_replace_buf(struct vtnet_rxq *rxq, struct mbuf *m, int len) 1343 { 1344 struct vtnet_softc *sc; 1345 struct mbuf *m_new; 1346 int error; 1347 1348 sc = rxq->vtnrx_sc; 1349 1350 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, 1351 ("%s: chained mbuf without LRO_NOMRG", __func__)); 1352 1353 if (m->m_next == NULL) { 1354 /* Fast-path for the common case of just one mbuf. */ 1355 if (m->m_len < len) 1356 return (EINVAL); 1357 1358 m_new = vtnet_rx_alloc_buf(sc, 1, NULL); 1359 if (m_new == NULL) 1360 return (ENOBUFS); 1361 1362 error = vtnet_rxq_enqueue_buf(rxq, m_new); 1363 if (error) { 1364 /* 1365 * The new mbuf is suppose to be an identical 1366 * copy of the one just dequeued so this is an 1367 * unexpected error. 1368 */ 1369 m_freem(m_new); 1370 sc->vtnet_stats.rx_enq_replacement_failed++; 1371 } else 1372 m->m_len = len; 1373 } else 1374 error = vtnet_rxq_replace_lro_nomgr_buf(rxq, m, len); 1375 1376 return (error); 1377 } 1378 1379 static int 1380 vtnet_rxq_enqueue_buf(struct vtnet_rxq *rxq, struct mbuf *m) 1381 { 1382 struct vtnet_softc *sc; 1383 struct sglist *sg; 1384 struct vtnet_rx_header *rxhdr; 1385 uint8_t *mdata; 1386 int offset, error; 1387 1388 sc = rxq->vtnrx_sc; 1389 sg = rxq->vtnrx_sg; 1390 mdata = mtod(m, uint8_t *); 1391 1392 VTNET_RXQ_LOCK_ASSERT(rxq); 1393 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL, 1394 ("%s: chained mbuf without LRO_NOMRG", __func__)); 1395 KASSERT(m->m_len == sc->vtnet_rx_clsize, 1396 ("%s: unexpected cluster size %d/%d", __func__, m->m_len, 1397 sc->vtnet_rx_clsize)); 1398 1399 sglist_reset(sg); 1400 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1401 MPASS(sc->vtnet_hdr_size == sizeof(struct virtio_net_hdr)); 1402 rxhdr = (struct vtnet_rx_header *) mdata; 1403 sglist_append(sg, &rxhdr->vrh_hdr, sc->vtnet_hdr_size); 1404 offset = sizeof(struct vtnet_rx_header); 1405 } else 1406 offset = 0; 1407 1408 sglist_append(sg, mdata + offset, m->m_len - offset); 1409 if (m->m_next != NULL) { 1410 error = sglist_append_mbuf(sg, m->m_next); 1411 MPASS(error == 0); 1412 } 1413 1414 error = virtqueue_enqueue(rxq->vtnrx_vq, m, sg, 0, sg->sg_nseg); 1415 1416 return (error); 1417 } 1418 1419 static int 1420 vtnet_rxq_new_buf(struct vtnet_rxq *rxq) 1421 { 1422 struct vtnet_softc *sc; 1423 struct mbuf *m; 1424 int error; 1425 1426 sc = rxq->vtnrx_sc; 1427 1428 m = vtnet_rx_alloc_buf(sc, sc->vtnet_rx_nmbufs, NULL); 1429 if (m == NULL) 1430 return (ENOBUFS); 1431 1432 error = vtnet_rxq_enqueue_buf(rxq, m); 1433 if (error) 1434 m_freem(m); 1435 1436 return (error); 1437 } 1438 1439 /* 1440 * Use the checksum offset in the VirtIO header to set the 1441 * correct CSUM_* flags. 1442 */ 1443 static int 1444 vtnet_rxq_csum_by_offset(struct vtnet_rxq *rxq, struct mbuf *m, 1445 uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) 1446 { 1447 struct vtnet_softc *sc; 1448 #if defined(INET) || defined(INET6) 1449 int offset = hdr->csum_start + hdr->csum_offset; 1450 #endif 1451 1452 sc = rxq->vtnrx_sc; 1453 1454 /* Only do a basic sanity check on the offset. */ 1455 switch (eth_type) { 1456 #if defined(INET) 1457 case ETHERTYPE_IP: 1458 if (__predict_false(offset < ip_start + sizeof(struct ip))) 1459 return (1); 1460 break; 1461 #endif 1462 #if defined(INET6) 1463 case ETHERTYPE_IPV6: 1464 if (__predict_false(offset < ip_start + sizeof(struct ip6_hdr))) 1465 return (1); 1466 break; 1467 #endif 1468 default: 1469 sc->vtnet_stats.rx_csum_bad_ethtype++; 1470 return (1); 1471 } 1472 1473 /* 1474 * Use the offset to determine the appropriate CSUM_* flags. This is 1475 * a bit dirty, but we can get by with it since the checksum offsets 1476 * happen to be different. We assume the host host does not do IPv4 1477 * header checksum offloading. 1478 */ 1479 switch (hdr->csum_offset) { 1480 case offsetof(struct udphdr, uh_sum): 1481 case offsetof(struct tcphdr, th_sum): 1482 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1483 m->m_pkthdr.csum_data = 0xFFFF; 1484 break; 1485 case offsetof(struct sctphdr, checksum): 1486 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1487 break; 1488 default: 1489 sc->vtnet_stats.rx_csum_bad_offset++; 1490 return (1); 1491 } 1492 1493 return (0); 1494 } 1495 1496 static int 1497 vtnet_rxq_csum_by_parse(struct vtnet_rxq *rxq, struct mbuf *m, 1498 uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr) 1499 { 1500 struct vtnet_softc *sc; 1501 int offset, proto; 1502 1503 sc = rxq->vtnrx_sc; 1504 1505 switch (eth_type) { 1506 #if defined(INET) 1507 case ETHERTYPE_IP: { 1508 struct ip *ip; 1509 if (__predict_false(m->m_len < ip_start + sizeof(struct ip))) 1510 return (1); 1511 ip = (struct ip *)(m->m_data + ip_start); 1512 proto = ip->ip_p; 1513 offset = ip_start + (ip->ip_hl << 2); 1514 break; 1515 } 1516 #endif 1517 #if defined(INET6) 1518 case ETHERTYPE_IPV6: 1519 if (__predict_false(m->m_len < ip_start + 1520 sizeof(struct ip6_hdr))) 1521 return (1); 1522 offset = ip6_lasthdr(m, ip_start, IPPROTO_IPV6, &proto); 1523 if (__predict_false(offset < 0)) 1524 return (1); 1525 break; 1526 #endif 1527 default: 1528 sc->vtnet_stats.rx_csum_bad_ethtype++; 1529 return (1); 1530 } 1531 1532 switch (proto) { 1533 case IPPROTO_TCP: 1534 if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) 1535 return (1); 1536 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1537 m->m_pkthdr.csum_data = 0xFFFF; 1538 break; 1539 case IPPROTO_UDP: 1540 if (__predict_false(m->m_len < offset + sizeof(struct udphdr))) 1541 return (1); 1542 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1543 m->m_pkthdr.csum_data = 0xFFFF; 1544 break; 1545 case IPPROTO_SCTP: 1546 if (__predict_false(m->m_len < offset + sizeof(struct sctphdr))) 1547 return (1); 1548 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1549 break; 1550 default: 1551 /* 1552 * For the remaining protocols, FreeBSD does not support 1553 * checksum offloading, so the checksum will be recomputed. 1554 */ 1555 #if 0 1556 if_printf(sc->vtnet_ifp, "cksum offload of unsupported " 1557 "protocol eth_type=%#x proto=%d csum_start=%d " 1558 "csum_offset=%d\n", __func__, eth_type, proto, 1559 hdr->csum_start, hdr->csum_offset); 1560 #endif 1561 break; 1562 } 1563 1564 return (0); 1565 } 1566 1567 /* 1568 * Set the appropriate CSUM_* flags. Unfortunately, the information 1569 * provided is not directly useful to us. The VirtIO header gives the 1570 * offset of the checksum, which is all Linux needs, but this is not 1571 * how FreeBSD does things. We are forced to peek inside the packet 1572 * a bit. 1573 * 1574 * It would be nice if VirtIO gave us the L4 protocol or if FreeBSD 1575 * could accept the offsets and let the stack figure it out. 1576 */ 1577 static int 1578 vtnet_rxq_csum(struct vtnet_rxq *rxq, struct mbuf *m, 1579 struct virtio_net_hdr *hdr) 1580 { 1581 struct ether_header *eh; 1582 struct ether_vlan_header *evh; 1583 uint16_t eth_type; 1584 int offset, error; 1585 1586 eh = mtod(m, struct ether_header *); 1587 eth_type = ntohs(eh->ether_type); 1588 if (eth_type == ETHERTYPE_VLAN) { 1589 /* BMV: We should handle nested VLAN tags too. */ 1590 evh = mtod(m, struct ether_vlan_header *); 1591 eth_type = ntohs(evh->evl_proto); 1592 offset = sizeof(struct ether_vlan_header); 1593 } else 1594 offset = sizeof(struct ether_header); 1595 1596 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1597 error = vtnet_rxq_csum_by_offset(rxq, m, eth_type, offset, hdr); 1598 else 1599 error = vtnet_rxq_csum_by_parse(rxq, m, eth_type, offset, hdr); 1600 1601 return (error); 1602 } 1603 1604 static void 1605 vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *rxq, int nbufs) 1606 { 1607 struct mbuf *m; 1608 1609 while (--nbufs > 0) { 1610 m = virtqueue_dequeue(rxq->vtnrx_vq, NULL); 1611 if (m == NULL) 1612 break; 1613 vtnet_rxq_discard_buf(rxq, m); 1614 } 1615 } 1616 1617 static void 1618 vtnet_rxq_discard_buf(struct vtnet_rxq *rxq, struct mbuf *m) 1619 { 1620 int error; 1621 1622 /* 1623 * Requeue the discarded mbuf. This should always be successful 1624 * since it was just dequeued. 1625 */ 1626 error = vtnet_rxq_enqueue_buf(rxq, m); 1627 KASSERT(error == 0, 1628 ("%s: cannot requeue discarded mbuf %d", __func__, error)); 1629 } 1630 1631 static int 1632 vtnet_rxq_merged_eof(struct vtnet_rxq *rxq, struct mbuf *m_head, int nbufs) 1633 { 1634 struct vtnet_softc *sc; 1635 struct ifnet *ifp; 1636 struct virtqueue *vq; 1637 struct mbuf *m, *m_tail; 1638 int len; 1639 1640 sc = rxq->vtnrx_sc; 1641 vq = rxq->vtnrx_vq; 1642 ifp = sc->vtnet_ifp; 1643 m_tail = m_head; 1644 1645 while (--nbufs > 0) { 1646 m = virtqueue_dequeue(vq, &len); 1647 if (m == NULL) { 1648 rxq->vtnrx_stats.vrxs_ierrors++; 1649 goto fail; 1650 } 1651 1652 if (vtnet_rxq_new_buf(rxq) != 0) { 1653 rxq->vtnrx_stats.vrxs_iqdrops++; 1654 vtnet_rxq_discard_buf(rxq, m); 1655 if (nbufs > 1) 1656 vtnet_rxq_discard_merged_bufs(rxq, nbufs); 1657 goto fail; 1658 } 1659 1660 if (m->m_len < len) 1661 len = m->m_len; 1662 1663 m->m_len = len; 1664 m->m_flags &= ~M_PKTHDR; 1665 1666 m_head->m_pkthdr.len += len; 1667 m_tail->m_next = m; 1668 m_tail = m; 1669 } 1670 1671 return (0); 1672 1673 fail: 1674 sc->vtnet_stats.rx_mergeable_failed++; 1675 m_freem(m_head); 1676 1677 return (1); 1678 } 1679 1680 static void 1681 vtnet_rxq_input(struct vtnet_rxq *rxq, struct mbuf *m, 1682 struct virtio_net_hdr *hdr) 1683 { 1684 struct vtnet_softc *sc; 1685 struct ifnet *ifp; 1686 struct ether_header *eh; 1687 1688 sc = rxq->vtnrx_sc; 1689 ifp = sc->vtnet_ifp; 1690 1691 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 1692 eh = mtod(m, struct ether_header *); 1693 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1694 vtnet_vlan_tag_remove(m); 1695 /* 1696 * With the 802.1Q header removed, update the 1697 * checksum starting location accordingly. 1698 */ 1699 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1700 hdr->csum_start -= ETHER_VLAN_ENCAP_LEN; 1701 } 1702 } 1703 1704 m->m_pkthdr.flowid = rxq->vtnrx_id; 1705 m->m_flags |= M_FLOWID; 1706 1707 /* 1708 * BMV: FreeBSD does not have the UNNECESSARY and PARTIAL checksum 1709 * distinction that Linux does. Need to reevaluate if performing 1710 * offloading for the NEEDS_CSUM case is really appropriate. 1711 */ 1712 if (hdr->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM | 1713 VIRTIO_NET_HDR_F_DATA_VALID)) { 1714 if (vtnet_rxq_csum(rxq, m, hdr) == 0) 1715 rxq->vtnrx_stats.vrxs_csum++; 1716 else 1717 rxq->vtnrx_stats.vrxs_csum_failed++; 1718 } 1719 1720 rxq->vtnrx_stats.vrxs_ipackets++; 1721 rxq->vtnrx_stats.vrxs_ibytes += m->m_pkthdr.len; 1722 1723 VTNET_RXQ_UNLOCK(rxq); 1724 (*ifp->if_input)(ifp, m); 1725 VTNET_RXQ_LOCK(rxq); 1726 } 1727 1728 static int 1729 vtnet_rxq_eof(struct vtnet_rxq *rxq) 1730 { 1731 struct virtio_net_hdr lhdr, *hdr; 1732 struct vtnet_softc *sc; 1733 struct ifnet *ifp; 1734 struct virtqueue *vq; 1735 struct mbuf *m; 1736 struct virtio_net_hdr_mrg_rxbuf *mhdr; 1737 int len, deq, nbufs, adjsz, count; 1738 1739 sc = rxq->vtnrx_sc; 1740 vq = rxq->vtnrx_vq; 1741 ifp = sc->vtnet_ifp; 1742 hdr = &lhdr; 1743 deq = 0; 1744 count = sc->vtnet_rx_process_limit; 1745 1746 VTNET_RXQ_LOCK_ASSERT(rxq); 1747 1748 #ifdef DEV_NETMAP 1749 if (netmap_rx_irq(ifp, 0, &deq)) { 1750 return (FALSE); 1751 } 1752 #endif /* DEV_NETMAP */ 1753 1754 while (count-- > 0) { 1755 m = virtqueue_dequeue(vq, &len); 1756 if (m == NULL) 1757 break; 1758 deq++; 1759 1760 if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { 1761 rxq->vtnrx_stats.vrxs_ierrors++; 1762 vtnet_rxq_discard_buf(rxq, m); 1763 continue; 1764 } 1765 1766 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1767 nbufs = 1; 1768 adjsz = sizeof(struct vtnet_rx_header); 1769 /* 1770 * Account for our pad inserted between the header 1771 * and the actual start of the frame. 1772 */ 1773 len += VTNET_RX_HEADER_PAD; 1774 } else { 1775 mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); 1776 nbufs = mhdr->num_buffers; 1777 adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); 1778 } 1779 1780 if (vtnet_rxq_replace_buf(rxq, m, len) != 0) { 1781 rxq->vtnrx_stats.vrxs_iqdrops++; 1782 vtnet_rxq_discard_buf(rxq, m); 1783 if (nbufs > 1) 1784 vtnet_rxq_discard_merged_bufs(rxq, nbufs); 1785 continue; 1786 } 1787 1788 m->m_pkthdr.len = len; 1789 m->m_pkthdr.rcvif = ifp; 1790 m->m_pkthdr.csum_flags = 0; 1791 1792 if (nbufs > 1) { 1793 /* Dequeue the rest of chain. */ 1794 if (vtnet_rxq_merged_eof(rxq, m, nbufs) != 0) 1795 continue; 1796 } 1797 1798 /* 1799 * Save copy of header before we strip it. For both mergeable 1800 * and non-mergeable, the header is at the beginning of the 1801 * mbuf data. We no longer need num_buffers, so always use a 1802 * regular header. 1803 * 1804 * BMV: Is this memcpy() expensive? We know the mbuf data is 1805 * still valid even after the m_adj(). 1806 */ 1807 memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); 1808 m_adj(m, adjsz); 1809 1810 vtnet_rxq_input(rxq, m, hdr); 1811 1812 /* Must recheck after dropping the Rx lock. */ 1813 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1814 break; 1815 } 1816 1817 if (deq > 0) 1818 virtqueue_notify(vq); 1819 1820 return (count > 0 ? 0 : EAGAIN); 1821 } 1822 1823 static void 1824 vtnet_rx_vq_intr(void *xrxq) 1825 { 1826 struct vtnet_softc *sc; 1827 struct vtnet_rxq *rxq; 1828 struct ifnet *ifp; 1829 int tries, more; 1830 1831 rxq = xrxq; 1832 sc = rxq->vtnrx_sc; 1833 ifp = sc->vtnet_ifp; 1834 tries = 0; 1835 1836 if (__predict_false(rxq->vtnrx_id >= sc->vtnet_act_vq_pairs)) { 1837 /* 1838 * Ignore this interrupt. Either this is a spurious interrupt 1839 * or multiqueue without per-VQ MSIX so every queue needs to 1840 * be polled (a brain dead configuration we could try harder 1841 * to avoid). 1842 */ 1843 vtnet_rxq_disable_intr(rxq); 1844 return; 1845 } 1846 1847 VTNET_RXQ_LOCK(rxq); 1848 1849 again: 1850 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1851 VTNET_RXQ_UNLOCK(rxq); 1852 return; 1853 } 1854 1855 more = vtnet_rxq_eof(rxq); 1856 if (more || vtnet_rxq_enable_intr(rxq) != 0) { 1857 if (!more) 1858 vtnet_rxq_disable_intr(rxq); 1859 /* 1860 * This is an occasional condition or race (when !more), 1861 * so retry a few times before scheduling the taskqueue. 1862 */ 1863 if (tries++ < VTNET_INTR_DISABLE_RETRIES) 1864 goto again; 1865 1866 VTNET_RXQ_UNLOCK(rxq); 1867 rxq->vtnrx_stats.vrxs_rescheduled++; 1868 taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 1869 } else 1870 VTNET_RXQ_UNLOCK(rxq); 1871 } 1872 1873 static void 1874 vtnet_rxq_tq_intr(void *xrxq, int pending) 1875 { 1876 struct vtnet_softc *sc; 1877 struct vtnet_rxq *rxq; 1878 struct ifnet *ifp; 1879 int more; 1880 1881 rxq = xrxq; 1882 sc = rxq->vtnrx_sc; 1883 ifp = sc->vtnet_ifp; 1884 1885 VTNET_RXQ_LOCK(rxq); 1886 1887 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1888 VTNET_RXQ_UNLOCK(rxq); 1889 return; 1890 } 1891 1892 more = vtnet_rxq_eof(rxq); 1893 if (more || vtnet_rxq_enable_intr(rxq) != 0) { 1894 if (!more) 1895 vtnet_rxq_disable_intr(rxq); 1896 rxq->vtnrx_stats.vrxs_rescheduled++; 1897 taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 1898 } 1899 1900 VTNET_RXQ_UNLOCK(rxq); 1901 } 1902 1903 static int 1904 vtnet_txq_below_threshold(struct vtnet_txq *txq) 1905 { 1906 struct vtnet_softc *sc; 1907 struct virtqueue *vq; 1908 1909 sc = txq->vtntx_sc; 1910 vq = txq->vtntx_vq; 1911 1912 return (virtqueue_nfree(vq) <= sc->vtnet_tx_intr_thresh); 1913 } 1914 1915 static int 1916 vtnet_txq_notify(struct vtnet_txq *txq) 1917 { 1918 struct virtqueue *vq; 1919 1920 vq = txq->vtntx_vq; 1921 1922 txq->vtntx_watchdog = VTNET_TX_TIMEOUT; 1923 virtqueue_notify(vq); 1924 1925 if (vtnet_txq_enable_intr(txq) == 0) 1926 return (0); 1927 1928 /* 1929 * Drain frames that were completed since last checked. If this 1930 * causes the queue to go above the threshold, the caller should 1931 * continue transmitting. 1932 */ 1933 if (vtnet_txq_eof(txq) != 0 && vtnet_txq_below_threshold(txq) == 0) { 1934 virtqueue_disable_intr(vq); 1935 return (1); 1936 } 1937 1938 return (0); 1939 } 1940 1941 static void 1942 vtnet_txq_free_mbufs(struct vtnet_txq *txq) 1943 { 1944 struct virtqueue *vq; 1945 struct vtnet_tx_header *txhdr; 1946 int last; 1947 1948 vq = txq->vtntx_vq; 1949 last = 0; 1950 1951 while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { 1952 m_freem(txhdr->vth_mbuf); 1953 uma_zfree(vtnet_tx_header_zone, txhdr); 1954 } 1955 1956 KASSERT(virtqueue_empty(vq), 1957 ("%s: mbufs remaining in tx queue %p", __func__, txq)); 1958 } 1959 1960 /* 1961 * BMV: Much of this can go away once we finally have offsets in 1962 * the mbuf packet header. Bug andre@. 1963 */ 1964 static int 1965 vtnet_txq_offload_ctx(struct vtnet_txq *txq, struct mbuf *m, 1966 int *etype, int *proto, int *start) 1967 { 1968 struct vtnet_softc *sc; 1969 struct ether_vlan_header *evh; 1970 int offset; 1971 1972 sc = txq->vtntx_sc; 1973 1974 evh = mtod(m, struct ether_vlan_header *); 1975 if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 1976 /* BMV: We should handle nested VLAN tags too. */ 1977 *etype = ntohs(evh->evl_proto); 1978 offset = sizeof(struct ether_vlan_header); 1979 } else { 1980 *etype = ntohs(evh->evl_encap_proto); 1981 offset = sizeof(struct ether_header); 1982 } 1983 1984 switch (*etype) { 1985 #if defined(INET) 1986 case ETHERTYPE_IP: { 1987 struct ip *ip, iphdr; 1988 if (__predict_false(m->m_len < offset + sizeof(struct ip))) { 1989 m_copydata(m, offset, sizeof(struct ip), 1990 (caddr_t) &iphdr); 1991 ip = &iphdr; 1992 } else 1993 ip = (struct ip *)(m->m_data + offset); 1994 *proto = ip->ip_p; 1995 *start = offset + (ip->ip_hl << 2); 1996 break; 1997 } 1998 #endif 1999 #if defined(INET6) 2000 case ETHERTYPE_IPV6: 2001 *proto = -1; 2002 *start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto); 2003 /* Assert the network stack sent us a valid packet. */ 2004 KASSERT(*start > offset, 2005 ("%s: mbuf %p start %d offset %d proto %d", __func__, m, 2006 *start, offset, *proto)); 2007 break; 2008 #endif 2009 default: 2010 sc->vtnet_stats.tx_csum_bad_ethtype++; 2011 return (EINVAL); 2012 } 2013 2014 return (0); 2015 } 2016 2017 static int 2018 vtnet_txq_offload_tso(struct vtnet_txq *txq, struct mbuf *m, int eth_type, 2019 int offset, struct virtio_net_hdr *hdr) 2020 { 2021 static struct timeval lastecn; 2022 static int curecn; 2023 struct vtnet_softc *sc; 2024 struct tcphdr *tcp, tcphdr; 2025 2026 sc = txq->vtntx_sc; 2027 2028 if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) { 2029 m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr); 2030 tcp = &tcphdr; 2031 } else 2032 tcp = (struct tcphdr *)(m->m_data + offset); 2033 2034 hdr->hdr_len = offset + (tcp->th_off << 2); 2035 hdr->gso_size = m->m_pkthdr.tso_segsz; 2036 hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 : 2037 VIRTIO_NET_HDR_GSO_TCPV6; 2038 2039 if (tcp->th_flags & TH_CWR) { 2040 /* 2041 * Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In FreeBSD, 2042 * ECN support is not on a per-interface basis, but globally via 2043 * the net.inet.tcp.ecn.enable sysctl knob. The default is off. 2044 */ 2045 if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { 2046 if (ppsratecheck(&lastecn, &curecn, 1)) 2047 if_printf(sc->vtnet_ifp, 2048 "TSO with ECN not negotiated with host\n"); 2049 return (ENOTSUP); 2050 } 2051 hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; 2052 } 2053 2054 txq->vtntx_stats.vtxs_tso++; 2055 2056 return (0); 2057 } 2058 2059 static struct mbuf * 2060 vtnet_txq_offload(struct vtnet_txq *txq, struct mbuf *m, 2061 struct virtio_net_hdr *hdr) 2062 { 2063 struct vtnet_softc *sc; 2064 int flags, etype, csum_start, proto, error; 2065 2066 sc = txq->vtntx_sc; 2067 flags = m->m_pkthdr.csum_flags; 2068 2069 error = vtnet_txq_offload_ctx(txq, m, &etype, &proto, &csum_start); 2070 if (error) 2071 goto drop; 2072 2073 if ((etype == ETHERTYPE_IP && flags & VTNET_CSUM_OFFLOAD) || 2074 (etype == ETHERTYPE_IPV6 && flags & VTNET_CSUM_OFFLOAD_IPV6)) { 2075 /* 2076 * We could compare the IP protocol vs the CSUM_ flag too, 2077 * but that really should not be necessary. 2078 */ 2079 hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; 2080 hdr->csum_start = csum_start; 2081 hdr->csum_offset = m->m_pkthdr.csum_data; 2082 txq->vtntx_stats.vtxs_csum++; 2083 } 2084 2085 if (flags & CSUM_TSO) { 2086 if (__predict_false(proto != IPPROTO_TCP)) { 2087 /* Likely failed to correctly parse the mbuf. */ 2088 sc->vtnet_stats.tx_tso_not_tcp++; 2089 goto drop; 2090 } 2091 2092 KASSERT(hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM, 2093 ("%s: mbuf %p TSO without checksum offload %#x", 2094 __func__, m, flags)); 2095 2096 error = vtnet_txq_offload_tso(txq, m, etype, csum_start, hdr); 2097 if (error) 2098 goto drop; 2099 } 2100 2101 return (m); 2102 2103 drop: 2104 m_freem(m); 2105 return (NULL); 2106 } 2107 2108 static int 2109 vtnet_txq_enqueue_buf(struct vtnet_txq *txq, struct mbuf **m_head, 2110 struct vtnet_tx_header *txhdr) 2111 { 2112 struct vtnet_softc *sc; 2113 struct virtqueue *vq; 2114 struct sglist *sg; 2115 struct mbuf *m; 2116 int error; 2117 2118 sc = txq->vtntx_sc; 2119 vq = txq->vtntx_vq; 2120 sg = txq->vtntx_sg; 2121 m = *m_head; 2122 2123 sglist_reset(sg); 2124 error = sglist_append(sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); 2125 KASSERT(error == 0 && sg->sg_nseg == 1, 2126 ("%s: error %d adding header to sglist", __func__, error)); 2127 2128 error = sglist_append_mbuf(sg, m); 2129 if (error) { 2130 m = m_defrag(m, M_NOWAIT); 2131 if (m == NULL) 2132 goto fail; 2133 2134 *m_head = m; 2135 sc->vtnet_stats.tx_defragged++; 2136 2137 error = sglist_append_mbuf(sg, m); 2138 if (error) 2139 goto fail; 2140 } 2141 2142 txhdr->vth_mbuf = m; 2143 error = virtqueue_enqueue(vq, txhdr, sg, sg->sg_nseg, 0); 2144 2145 return (error); 2146 2147 fail: 2148 sc->vtnet_stats.tx_defrag_failed++; 2149 m_freem(*m_head); 2150 *m_head = NULL; 2151 2152 return (ENOBUFS); 2153 } 2154 2155 static int 2156 vtnet_txq_encap(struct vtnet_txq *txq, struct mbuf **m_head) 2157 { 2158 struct vtnet_tx_header *txhdr; 2159 struct virtio_net_hdr *hdr; 2160 struct mbuf *m; 2161 int error; 2162 2163 m = *m_head; 2164 M_ASSERTPKTHDR(m); 2165 2166 txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO); 2167 if (txhdr == NULL) { 2168 m_freem(m); 2169 *m_head = NULL; 2170 return (ENOMEM); 2171 } 2172 2173 /* 2174 * Always use the non-mergeable header, regardless if the feature 2175 * was negotiated. For transmit, num_buffers is always zero. The 2176 * vtnet_hdr_size is used to enqueue the correct header size. 2177 */ 2178 hdr = &txhdr->vth_uhdr.hdr; 2179 2180 if (m->m_flags & M_VLANTAG) { 2181 m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); 2182 if ((*m_head = m) == NULL) { 2183 error = ENOBUFS; 2184 goto fail; 2185 } 2186 m->m_flags &= ~M_VLANTAG; 2187 } 2188 2189 if (m->m_pkthdr.csum_flags & VTNET_CSUM_ALL_OFFLOAD) { 2190 m = vtnet_txq_offload(txq, m, hdr); 2191 if ((*m_head = m) == NULL) { 2192 error = ENOBUFS; 2193 goto fail; 2194 } 2195 } 2196 2197 error = vtnet_txq_enqueue_buf(txq, m_head, txhdr); 2198 if (error == 0) 2199 return (0); 2200 2201 fail: 2202 uma_zfree(vtnet_tx_header_zone, txhdr); 2203 2204 return (error); 2205 } 2206 2207 #ifdef VTNET_LEGACY_TX 2208 2209 static void 2210 vtnet_start_locked(struct vtnet_txq *txq, struct ifnet *ifp) 2211 { 2212 struct vtnet_softc *sc; 2213 struct virtqueue *vq; 2214 struct mbuf *m0; 2215 int tries, enq; 2216 2217 sc = txq->vtntx_sc; 2218 vq = txq->vtntx_vq; 2219 tries = 0; 2220 2221 VTNET_TXQ_LOCK_ASSERT(txq); 2222 2223 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2224 sc->vtnet_link_active == 0) 2225 return; 2226 2227 vtnet_txq_eof(txq); 2228 2229 again: 2230 enq = 0; 2231 2232 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 2233 if (virtqueue_full(vq)) 2234 break; 2235 2236 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2237 if (m0 == NULL) 2238 break; 2239 2240 if (vtnet_txq_encap(txq, &m0) != 0) { 2241 if (m0 != NULL) 2242 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2243 break; 2244 } 2245 2246 enq++; 2247 ETHER_BPF_MTAP(ifp, m0); 2248 } 2249 2250 if (enq > 0 && vtnet_txq_notify(txq) != 0) { 2251 if (tries++ < VTNET_NOTIFY_RETRIES) 2252 goto again; 2253 2254 txq->vtntx_stats.vtxs_rescheduled++; 2255 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); 2256 } 2257 } 2258 2259 static void 2260 vtnet_start(struct ifnet *ifp) 2261 { 2262 struct vtnet_softc *sc; 2263 struct vtnet_txq *txq; 2264 2265 sc = ifp->if_softc; 2266 txq = &sc->vtnet_txqs[0]; 2267 2268 VTNET_TXQ_LOCK(txq); 2269 vtnet_start_locked(txq, ifp); 2270 VTNET_TXQ_UNLOCK(txq); 2271 } 2272 2273 #else /* !VTNET_LEGACY_TX */ 2274 2275 static int 2276 vtnet_txq_mq_start_locked(struct vtnet_txq *txq, struct mbuf *m) 2277 { 2278 struct vtnet_softc *sc; 2279 struct virtqueue *vq; 2280 struct buf_ring *br; 2281 struct ifnet *ifp; 2282 int enq, tries, error; 2283 2284 sc = txq->vtntx_sc; 2285 vq = txq->vtntx_vq; 2286 br = txq->vtntx_br; 2287 ifp = sc->vtnet_ifp; 2288 tries = 0; 2289 error = 0; 2290 2291 VTNET_TXQ_LOCK_ASSERT(txq); 2292 2293 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2294 sc->vtnet_link_active == 0) { 2295 if (m != NULL) 2296 error = drbr_enqueue(ifp, br, m); 2297 return (error); 2298 } 2299 2300 if (m != NULL) { 2301 error = drbr_enqueue(ifp, br, m); 2302 if (error) 2303 return (error); 2304 } 2305 2306 vtnet_txq_eof(txq); 2307 2308 again: 2309 enq = 0; 2310 2311 while ((m = drbr_peek(ifp, br)) != NULL) { 2312 if (virtqueue_full(vq)) { 2313 drbr_putback(ifp, br, m); 2314 break; 2315 } 2316 2317 if (vtnet_txq_encap(txq, &m) != 0) { 2318 if (m != NULL) 2319 drbr_putback(ifp, br, m); 2320 else 2321 drbr_advance(ifp, br); 2322 break; 2323 } 2324 drbr_advance(ifp, br); 2325 2326 enq++; 2327 ETHER_BPF_MTAP(ifp, m); 2328 } 2329 2330 if (enq > 0 && vtnet_txq_notify(txq) != 0) { 2331 if (tries++ < VTNET_NOTIFY_RETRIES) 2332 goto again; 2333 2334 txq->vtntx_stats.vtxs_rescheduled++; 2335 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); 2336 } 2337 2338 return (0); 2339 } 2340 2341 static int 2342 vtnet_txq_mq_start(struct ifnet *ifp, struct mbuf *m) 2343 { 2344 struct vtnet_softc *sc; 2345 struct vtnet_txq *txq; 2346 int i, npairs, error; 2347 2348 sc = ifp->if_softc; 2349 npairs = sc->vtnet_act_vq_pairs; 2350 2351 if (m->m_flags & M_FLOWID) 2352 i = m->m_pkthdr.flowid % npairs; 2353 else 2354 i = curcpu % npairs; 2355 2356 txq = &sc->vtnet_txqs[i]; 2357 2358 if (VTNET_TXQ_TRYLOCK(txq) != 0) { 2359 error = vtnet_txq_mq_start_locked(txq, m); 2360 VTNET_TXQ_UNLOCK(txq); 2361 } else { 2362 error = drbr_enqueue(ifp, txq->vtntx_br, m); 2363 taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_defrtask); 2364 } 2365 2366 return (error); 2367 } 2368 2369 static void 2370 vtnet_txq_tq_deferred(void *xtxq, int pending) 2371 { 2372 struct vtnet_softc *sc; 2373 struct vtnet_txq *txq; 2374 2375 txq = xtxq; 2376 sc = txq->vtntx_sc; 2377 2378 VTNET_TXQ_LOCK(txq); 2379 if (!drbr_empty(sc->vtnet_ifp, txq->vtntx_br)) 2380 vtnet_txq_mq_start_locked(txq, NULL); 2381 VTNET_TXQ_UNLOCK(txq); 2382 } 2383 2384 #endif /* VTNET_LEGACY_TX */ 2385 2386 static void 2387 vtnet_txq_start(struct vtnet_txq *txq) 2388 { 2389 struct vtnet_softc *sc; 2390 struct ifnet *ifp; 2391 2392 sc = txq->vtntx_sc; 2393 ifp = sc->vtnet_ifp; 2394 2395 #ifdef VTNET_LEGACY_TX 2396 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2397 vtnet_start_locked(txq, ifp); 2398 #else 2399 if (!drbr_empty(ifp, txq->vtntx_br)) 2400 vtnet_txq_mq_start_locked(txq, NULL); 2401 #endif 2402 } 2403 2404 static void 2405 vtnet_txq_tq_intr(void *xtxq, int pending) 2406 { 2407 struct vtnet_softc *sc; 2408 struct vtnet_txq *txq; 2409 struct ifnet *ifp; 2410 2411 txq = xtxq; 2412 sc = txq->vtntx_sc; 2413 ifp = sc->vtnet_ifp; 2414 2415 VTNET_TXQ_LOCK(txq); 2416 2417 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2418 VTNET_TXQ_UNLOCK(txq); 2419 return; 2420 } 2421 2422 vtnet_txq_eof(txq); 2423 vtnet_txq_start(txq); 2424 2425 VTNET_TXQ_UNLOCK(txq); 2426 } 2427 2428 static int 2429 vtnet_txq_eof(struct vtnet_txq *txq) 2430 { 2431 struct virtqueue *vq; 2432 struct vtnet_tx_header *txhdr; 2433 struct mbuf *m; 2434 int deq; 2435 2436 vq = txq->vtntx_vq; 2437 deq = 0; 2438 VTNET_TXQ_LOCK_ASSERT(txq); 2439 2440 #ifdef DEV_NETMAP 2441 if (netmap_tx_irq(txq->vtntx_sc->vtnet_ifp, txq->vtntx_id)) { 2442 virtqueue_disable_intr(vq); // XXX luigi 2443 return 0; // XXX or 1 ? 2444 } 2445 #endif /* DEV_NETMAP */ 2446 2447 while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { 2448 m = txhdr->vth_mbuf; 2449 deq++; 2450 2451 txq->vtntx_stats.vtxs_opackets++; 2452 txq->vtntx_stats.vtxs_obytes += m->m_pkthdr.len; 2453 if (m->m_flags & M_MCAST) 2454 txq->vtntx_stats.vtxs_omcasts++; 2455 2456 m_freem(m); 2457 uma_zfree(vtnet_tx_header_zone, txhdr); 2458 } 2459 2460 if (virtqueue_empty(vq)) 2461 txq->vtntx_watchdog = 0; 2462 2463 return (deq); 2464 } 2465 2466 static void 2467 vtnet_tx_vq_intr(void *xtxq) 2468 { 2469 struct vtnet_softc *sc; 2470 struct vtnet_txq *txq; 2471 struct ifnet *ifp; 2472 2473 txq = xtxq; 2474 sc = txq->vtntx_sc; 2475 ifp = sc->vtnet_ifp; 2476 2477 if (__predict_false(txq->vtntx_id >= sc->vtnet_act_vq_pairs)) { 2478 /* 2479 * Ignore this interrupt. Either this is a spurious interrupt 2480 * or multiqueue without per-VQ MSIX so every queue needs to 2481 * be polled (a brain dead configuration we could try harder 2482 * to avoid). 2483 */ 2484 vtnet_txq_disable_intr(txq); 2485 return; 2486 } 2487 2488 VTNET_TXQ_LOCK(txq); 2489 2490 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2491 VTNET_TXQ_UNLOCK(txq); 2492 return; 2493 } 2494 2495 vtnet_txq_eof(txq); 2496 vtnet_txq_start(txq); 2497 2498 VTNET_TXQ_UNLOCK(txq); 2499 } 2500 2501 static void 2502 vtnet_tx_start_all(struct vtnet_softc *sc) 2503 { 2504 struct vtnet_txq *txq; 2505 int i; 2506 2507 VTNET_CORE_LOCK_ASSERT(sc); 2508 2509 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2510 txq = &sc->vtnet_txqs[i]; 2511 2512 VTNET_TXQ_LOCK(txq); 2513 vtnet_txq_start(txq); 2514 VTNET_TXQ_UNLOCK(txq); 2515 } 2516 } 2517 2518 #ifndef VTNET_LEGACY_TX 2519 static void 2520 vtnet_qflush(struct ifnet *ifp) 2521 { 2522 struct vtnet_softc *sc; 2523 struct vtnet_txq *txq; 2524 struct mbuf *m; 2525 int i; 2526 2527 sc = ifp->if_softc; 2528 2529 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2530 txq = &sc->vtnet_txqs[i]; 2531 2532 VTNET_TXQ_LOCK(txq); 2533 while ((m = buf_ring_dequeue_sc(txq->vtntx_br)) != NULL) 2534 m_freem(m); 2535 VTNET_TXQ_UNLOCK(txq); 2536 } 2537 2538 if_qflush(ifp); 2539 } 2540 #endif 2541 2542 static int 2543 vtnet_watchdog(struct vtnet_txq *txq) 2544 { 2545 struct ifnet *ifp; 2546 2547 ifp = txq->vtntx_sc->vtnet_ifp; 2548 2549 VTNET_TXQ_LOCK(txq); 2550 if (txq->vtntx_watchdog == 1) { 2551 /* 2552 * Only drain completed frames if the watchdog is about to 2553 * expire. If any frames were drained, there may be enough 2554 * free descriptors now available to transmit queued frames. 2555 * In that case, the timer will immediately be decremented 2556 * below, but the timeout is generous enough that should not 2557 * be a problem. 2558 */ 2559 if (vtnet_txq_eof(txq) != 0) 2560 vtnet_txq_start(txq); 2561 } 2562 2563 if (txq->vtntx_watchdog == 0 || --txq->vtntx_watchdog) { 2564 VTNET_TXQ_UNLOCK(txq); 2565 return (0); 2566 } 2567 VTNET_TXQ_UNLOCK(txq); 2568 2569 if_printf(ifp, "watchdog timeout on queue %d\n", txq->vtntx_id); 2570 return (1); 2571 } 2572 2573 static void 2574 vtnet_accum_stats(struct vtnet_softc *sc, struct vtnet_rxq_stats *rxacc, 2575 struct vtnet_txq_stats *txacc) 2576 { 2577 2578 bzero(rxacc, sizeof(struct vtnet_rxq_stats)); 2579 bzero(txacc, sizeof(struct vtnet_txq_stats)); 2580 2581 for (int i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2582 struct vtnet_rxq_stats *rxst; 2583 struct vtnet_txq_stats *txst; 2584 2585 rxst = &sc->vtnet_rxqs[i].vtnrx_stats; 2586 rxacc->vrxs_ipackets += rxst->vrxs_ipackets; 2587 rxacc->vrxs_ibytes += rxst->vrxs_ibytes; 2588 rxacc->vrxs_iqdrops += rxst->vrxs_iqdrops; 2589 rxacc->vrxs_csum += rxst->vrxs_csum; 2590 rxacc->vrxs_csum_failed += rxst->vrxs_csum_failed; 2591 rxacc->vrxs_rescheduled += rxst->vrxs_rescheduled; 2592 2593 txst = &sc->vtnet_txqs[i].vtntx_stats; 2594 txacc->vtxs_opackets += txst->vtxs_opackets; 2595 txacc->vtxs_obytes += txst->vtxs_obytes; 2596 txacc->vtxs_csum += txst->vtxs_csum; 2597 txacc->vtxs_tso += txst->vtxs_tso; 2598 txacc->vtxs_rescheduled += txst->vtxs_rescheduled; 2599 } 2600 } 2601 2602 static uint64_t 2603 vtnet_get_counter(if_t ifp, ift_counter cnt) 2604 { 2605 struct vtnet_softc *sc; 2606 struct vtnet_rxq_stats rxaccum; 2607 struct vtnet_txq_stats txaccum; 2608 2609 sc = if_getsoftc(ifp); 2610 vtnet_accum_stats(sc, &rxaccum, &txaccum); 2611 2612 switch (cnt) { 2613 case IFCOUNTER_IPACKETS: 2614 return (rxaccum.vrxs_ipackets); 2615 case IFCOUNTER_IQDROPS: 2616 return (rxaccum.vrxs_iqdrops); 2617 case IFCOUNTER_IERRORS: 2618 return (rxaccum.vrxs_ierrors); 2619 case IFCOUNTER_OPACKETS: 2620 return (txaccum.vtxs_opackets); 2621 #ifndef VTNET_LEGACY_TX 2622 case IFCOUNTER_OBYTES: 2623 return (txaccum.vtxs_obytes); 2624 case IFCOUNTER_OMCASTS: 2625 return (txaccum.vtxs_omcasts); 2626 #endif 2627 default: 2628 return (if_get_counter_default(ifp, cnt)); 2629 } 2630 } 2631 2632 static void 2633 vtnet_tick(void *xsc) 2634 { 2635 struct vtnet_softc *sc; 2636 struct ifnet *ifp; 2637 int i, timedout; 2638 2639 sc = xsc; 2640 ifp = sc->vtnet_ifp; 2641 timedout = 0; 2642 2643 VTNET_CORE_LOCK_ASSERT(sc); 2644 2645 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 2646 timedout |= vtnet_watchdog(&sc->vtnet_txqs[i]); 2647 2648 if (timedout != 0) { 2649 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2650 vtnet_init_locked(sc); 2651 } else 2652 callout_schedule(&sc->vtnet_tick_ch, hz); 2653 } 2654 2655 static void 2656 vtnet_start_taskqueues(struct vtnet_softc *sc) 2657 { 2658 device_t dev; 2659 struct vtnet_rxq *rxq; 2660 struct vtnet_txq *txq; 2661 int i, error; 2662 2663 dev = sc->vtnet_dev; 2664 2665 /* 2666 * Errors here are very difficult to recover from - we cannot 2667 * easily fail because, if this is during boot, we will hang 2668 * when freeing any successfully started taskqueues because 2669 * the scheduler isn't up yet. 2670 * 2671 * Most drivers just ignore the return value - it only fails 2672 * with ENOMEM so an error is not likely. 2673 */ 2674 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2675 rxq = &sc->vtnet_rxqs[i]; 2676 error = taskqueue_start_threads(&rxq->vtnrx_tq, 1, PI_NET, 2677 "%s rxq %d", device_get_nameunit(dev), rxq->vtnrx_id); 2678 if (error) { 2679 device_printf(dev, "failed to start rx taskq %d\n", 2680 rxq->vtnrx_id); 2681 } 2682 2683 txq = &sc->vtnet_txqs[i]; 2684 error = taskqueue_start_threads(&txq->vtntx_tq, 1, PI_NET, 2685 "%s txq %d", device_get_nameunit(dev), txq->vtntx_id); 2686 if (error) { 2687 device_printf(dev, "failed to start tx taskq %d\n", 2688 txq->vtntx_id); 2689 } 2690 } 2691 } 2692 2693 static void 2694 vtnet_free_taskqueues(struct vtnet_softc *sc) 2695 { 2696 struct vtnet_rxq *rxq; 2697 struct vtnet_txq *txq; 2698 int i; 2699 2700 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2701 rxq = &sc->vtnet_rxqs[i]; 2702 if (rxq->vtnrx_tq != NULL) { 2703 taskqueue_free(rxq->vtnrx_tq); 2704 rxq->vtnrx_vq = NULL; 2705 } 2706 2707 txq = &sc->vtnet_txqs[i]; 2708 if (txq->vtntx_tq != NULL) { 2709 taskqueue_free(txq->vtntx_tq); 2710 txq->vtntx_tq = NULL; 2711 } 2712 } 2713 } 2714 2715 static void 2716 vtnet_drain_taskqueues(struct vtnet_softc *sc) 2717 { 2718 struct vtnet_rxq *rxq; 2719 struct vtnet_txq *txq; 2720 int i; 2721 2722 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2723 rxq = &sc->vtnet_rxqs[i]; 2724 if (rxq->vtnrx_tq != NULL) 2725 taskqueue_drain(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); 2726 2727 txq = &sc->vtnet_txqs[i]; 2728 if (txq->vtntx_tq != NULL) { 2729 taskqueue_drain(txq->vtntx_tq, &txq->vtntx_intrtask); 2730 #ifndef VTNET_LEGACY_TX 2731 taskqueue_drain(txq->vtntx_tq, &txq->vtntx_defrtask); 2732 #endif 2733 } 2734 } 2735 } 2736 2737 static void 2738 vtnet_drain_rxtx_queues(struct vtnet_softc *sc) 2739 { 2740 struct vtnet_rxq *rxq; 2741 struct vtnet_txq *txq; 2742 int i; 2743 2744 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2745 rxq = &sc->vtnet_rxqs[i]; 2746 vtnet_rxq_free_mbufs(rxq); 2747 2748 txq = &sc->vtnet_txqs[i]; 2749 vtnet_txq_free_mbufs(txq); 2750 } 2751 } 2752 2753 static void 2754 vtnet_stop_rendezvous(struct vtnet_softc *sc) 2755 { 2756 struct vtnet_rxq *rxq; 2757 struct vtnet_txq *txq; 2758 int i; 2759 2760 /* 2761 * Lock and unlock the per-queue mutex so we known the stop 2762 * state is visible. Doing only the active queues should be 2763 * sufficient, but it does not cost much extra to do all the 2764 * queues. Note we hold the core mutex here too. 2765 */ 2766 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 2767 rxq = &sc->vtnet_rxqs[i]; 2768 VTNET_RXQ_LOCK(rxq); 2769 VTNET_RXQ_UNLOCK(rxq); 2770 2771 txq = &sc->vtnet_txqs[i]; 2772 VTNET_TXQ_LOCK(txq); 2773 VTNET_TXQ_UNLOCK(txq); 2774 } 2775 } 2776 2777 static void 2778 vtnet_stop(struct vtnet_softc *sc) 2779 { 2780 device_t dev; 2781 struct ifnet *ifp; 2782 2783 dev = sc->vtnet_dev; 2784 ifp = sc->vtnet_ifp; 2785 2786 VTNET_CORE_LOCK_ASSERT(sc); 2787 2788 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2789 sc->vtnet_link_active = 0; 2790 callout_stop(&sc->vtnet_tick_ch); 2791 2792 /* Only advisory. */ 2793 vtnet_disable_interrupts(sc); 2794 2795 /* 2796 * Stop the host adapter. This resets it to the pre-initialized 2797 * state. It will not generate any interrupts until after it is 2798 * reinitialized. 2799 */ 2800 virtio_stop(dev); 2801 vtnet_stop_rendezvous(sc); 2802 2803 /* Free any mbufs left in the virtqueues. */ 2804 vtnet_drain_rxtx_queues(sc); 2805 } 2806 2807 static int 2808 vtnet_virtio_reinit(struct vtnet_softc *sc) 2809 { 2810 device_t dev; 2811 struct ifnet *ifp; 2812 uint64_t features; 2813 int mask, error; 2814 2815 dev = sc->vtnet_dev; 2816 ifp = sc->vtnet_ifp; 2817 features = sc->vtnet_features; 2818 2819 mask = 0; 2820 #if defined(INET) 2821 mask |= IFCAP_RXCSUM; 2822 #endif 2823 #if defined (INET6) 2824 mask |= IFCAP_RXCSUM_IPV6; 2825 #endif 2826 2827 /* 2828 * Re-negotiate with the host, removing any disabled receive 2829 * features. Transmit features are disabled only on our side 2830 * via if_capenable and if_hwassist. 2831 */ 2832 2833 if (ifp->if_capabilities & mask) { 2834 /* 2835 * We require both IPv4 and IPv6 offloading to be enabled 2836 * in order to negotiated it: VirtIO does not distinguish 2837 * between the two. 2838 */ 2839 if ((ifp->if_capenable & mask) != mask) 2840 features &= ~VIRTIO_NET_F_GUEST_CSUM; 2841 } 2842 2843 if (ifp->if_capabilities & IFCAP_LRO) { 2844 if ((ifp->if_capenable & IFCAP_LRO) == 0) 2845 features &= ~VTNET_LRO_FEATURES; 2846 } 2847 2848 if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { 2849 if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) 2850 features &= ~VIRTIO_NET_F_CTRL_VLAN; 2851 } 2852 2853 error = virtio_reinit(dev, features); 2854 if (error) 2855 device_printf(dev, "virtio reinit error %d\n", error); 2856 2857 return (error); 2858 } 2859 2860 static void 2861 vtnet_init_rx_filters(struct vtnet_softc *sc) 2862 { 2863 struct ifnet *ifp; 2864 2865 ifp = sc->vtnet_ifp; 2866 2867 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 2868 /* Restore promiscuous and all-multicast modes. */ 2869 vtnet_rx_filter(sc); 2870 /* Restore filtered MAC addresses. */ 2871 vtnet_rx_filter_mac(sc); 2872 } 2873 2874 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) 2875 vtnet_rx_filter_vlan(sc); 2876 } 2877 2878 static int 2879 vtnet_init_rx_queues(struct vtnet_softc *sc) 2880 { 2881 device_t dev; 2882 struct vtnet_rxq *rxq; 2883 int i, clsize, error; 2884 2885 dev = sc->vtnet_dev; 2886 2887 /* 2888 * Use the new cluster size if one has been set (via a MTU 2889 * change). Otherwise, use the standard 2K clusters. 2890 * 2891 * BMV: It might make sense to use page sized clusters as 2892 * the default (depending on the features negotiated). 2893 */ 2894 if (sc->vtnet_rx_new_clsize != 0) { 2895 clsize = sc->vtnet_rx_new_clsize; 2896 sc->vtnet_rx_new_clsize = 0; 2897 } else 2898 clsize = MCLBYTES; 2899 2900 sc->vtnet_rx_clsize = clsize; 2901 sc->vtnet_rx_nmbufs = VTNET_NEEDED_RX_MBUFS(sc, clsize); 2902 2903 KASSERT(sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS || 2904 sc->vtnet_rx_nmbufs < sc->vtnet_rx_nsegs, 2905 ("%s: too many rx mbufs %d for %d segments", __func__, 2906 sc->vtnet_rx_nmbufs, sc->vtnet_rx_nsegs)); 2907 2908 #ifdef DEV_NETMAP 2909 if (vtnet_netmap_init_rx_buffers(sc)) 2910 return 0; 2911 #endif /* DEV_NETMAP */ 2912 2913 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2914 rxq = &sc->vtnet_rxqs[i]; 2915 2916 /* Hold the lock to satisfy asserts. */ 2917 VTNET_RXQ_LOCK(rxq); 2918 error = vtnet_rxq_populate(rxq); 2919 VTNET_RXQ_UNLOCK(rxq); 2920 2921 if (error) { 2922 device_printf(dev, 2923 "cannot allocate mbufs for Rx queue %d\n", i); 2924 return (error); 2925 } 2926 } 2927 2928 return (0); 2929 } 2930 2931 static int 2932 vtnet_init_tx_queues(struct vtnet_softc *sc) 2933 { 2934 struct vtnet_txq *txq; 2935 int i; 2936 2937 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { 2938 txq = &sc->vtnet_txqs[i]; 2939 txq->vtntx_watchdog = 0; 2940 } 2941 2942 return (0); 2943 } 2944 2945 static int 2946 vtnet_init_rxtx_queues(struct vtnet_softc *sc) 2947 { 2948 int error; 2949 2950 error = vtnet_init_rx_queues(sc); 2951 if (error) 2952 return (error); 2953 2954 error = vtnet_init_tx_queues(sc); 2955 if (error) 2956 return (error); 2957 2958 return (0); 2959 } 2960 2961 static void 2962 vtnet_set_active_vq_pairs(struct vtnet_softc *sc) 2963 { 2964 device_t dev; 2965 int npairs; 2966 2967 dev = sc->vtnet_dev; 2968 2969 if ((sc->vtnet_flags & VTNET_FLAG_MULTIQ) == 0) { 2970 MPASS(sc->vtnet_max_vq_pairs == 1); 2971 sc->vtnet_act_vq_pairs = 1; 2972 return; 2973 } 2974 2975 /* BMV: Just use the maximum configured for now. */ 2976 npairs = sc->vtnet_max_vq_pairs; 2977 2978 if (vtnet_ctrl_mq_cmd(sc, npairs) != 0) { 2979 device_printf(dev, 2980 "cannot set active queue pairs to %d\n", npairs); 2981 npairs = 1; 2982 } 2983 2984 sc->vtnet_act_vq_pairs = npairs; 2985 } 2986 2987 static int 2988 vtnet_reinit(struct vtnet_softc *sc) 2989 { 2990 struct ifnet *ifp; 2991 int error; 2992 2993 ifp = sc->vtnet_ifp; 2994 2995 /* Use the current MAC address. */ 2996 bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); 2997 vtnet_set_hwaddr(sc); 2998 2999 vtnet_set_active_vq_pairs(sc); 3000 3001 ifp->if_hwassist = 0; 3002 if (ifp->if_capenable & IFCAP_TXCSUM) 3003 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 3004 if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) 3005 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD_IPV6; 3006 if (ifp->if_capenable & IFCAP_TSO4) 3007 ifp->if_hwassist |= CSUM_TSO; 3008 if (ifp->if_capenable & IFCAP_TSO6) 3009 ifp->if_hwassist |= CSUM_TSO; /* No CSUM_TSO_IPV6. */ 3010 3011 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) 3012 vtnet_init_rx_filters(sc); 3013 3014 error = vtnet_init_rxtx_queues(sc); 3015 if (error) 3016 return (error); 3017 3018 vtnet_enable_interrupts(sc); 3019 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3020 3021 return (0); 3022 } 3023 3024 static void 3025 vtnet_init_locked(struct vtnet_softc *sc) 3026 { 3027 device_t dev; 3028 struct ifnet *ifp; 3029 3030 dev = sc->vtnet_dev; 3031 ifp = sc->vtnet_ifp; 3032 3033 VTNET_CORE_LOCK_ASSERT(sc); 3034 3035 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3036 return; 3037 3038 vtnet_stop(sc); 3039 3040 /* Reinitialize with the host. */ 3041 if (vtnet_virtio_reinit(sc) != 0) 3042 goto fail; 3043 3044 if (vtnet_reinit(sc) != 0) 3045 goto fail; 3046 3047 virtio_reinit_complete(dev); 3048 3049 vtnet_update_link_status(sc); 3050 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 3051 3052 return; 3053 3054 fail: 3055 vtnet_stop(sc); 3056 } 3057 3058 static void 3059 vtnet_init(void *xsc) 3060 { 3061 struct vtnet_softc *sc; 3062 3063 sc = xsc; 3064 3065 #ifdef DEV_NETMAP 3066 if (!NA(sc->vtnet_ifp)) { 3067 D("try to attach again"); 3068 vtnet_netmap_attach(sc); 3069 } 3070 #endif /* DEV_NETMAP */ 3071 3072 VTNET_CORE_LOCK(sc); 3073 vtnet_init_locked(sc); 3074 VTNET_CORE_UNLOCK(sc); 3075 } 3076 3077 static void 3078 vtnet_free_ctrl_vq(struct vtnet_softc *sc) 3079 { 3080 struct virtqueue *vq; 3081 3082 vq = sc->vtnet_ctrl_vq; 3083 3084 /* 3085 * The control virtqueue is only polled and therefore it should 3086 * already be empty. 3087 */ 3088 KASSERT(virtqueue_empty(vq), 3089 ("%s: ctrl vq %p not empty", __func__, vq)); 3090 } 3091 3092 static void 3093 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, 3094 struct sglist *sg, int readable, int writable) 3095 { 3096 struct virtqueue *vq; 3097 3098 vq = sc->vtnet_ctrl_vq; 3099 3100 VTNET_CORE_LOCK_ASSERT(sc); 3101 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, 3102 ("%s: CTRL_VQ feature not negotiated", __func__)); 3103 3104 if (!virtqueue_empty(vq)) 3105 return; 3106 if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) 3107 return; 3108 3109 /* 3110 * Poll for the response, but the command is likely already 3111 * done when we return from the notify. 3112 */ 3113 virtqueue_notify(vq); 3114 virtqueue_poll(vq, NULL); 3115 } 3116 3117 static int 3118 vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr) 3119 { 3120 struct virtio_net_ctrl_hdr hdr __aligned(2); 3121 struct sglist_seg segs[3]; 3122 struct sglist sg; 3123 uint8_t ack; 3124 int error; 3125 3126 hdr.class = VIRTIO_NET_CTRL_MAC; 3127 hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET; 3128 ack = VIRTIO_NET_ERR; 3129 3130 sglist_init(&sg, 3, segs); 3131 error = 0; 3132 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 3133 error |= sglist_append(&sg, hwaddr, ETHER_ADDR_LEN); 3134 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 3135 KASSERT(error == 0 && sg.sg_nseg == 3, 3136 ("%s: error %d adding set MAC msg to sglist", __func__, error)); 3137 3138 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 3139 3140 return (ack == VIRTIO_NET_OK ? 0 : EIO); 3141 } 3142 3143 static int 3144 vtnet_ctrl_mq_cmd(struct vtnet_softc *sc, uint16_t npairs) 3145 { 3146 struct sglist_seg segs[3]; 3147 struct sglist sg; 3148 struct { 3149 struct virtio_net_ctrl_hdr hdr; 3150 uint8_t pad1; 3151 struct virtio_net_ctrl_mq mq; 3152 uint8_t pad2; 3153 uint8_t ack; 3154 } s __aligned(2); 3155 int error; 3156 3157 s.hdr.class = VIRTIO_NET_CTRL_MQ; 3158 s.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET; 3159 s.mq.virtqueue_pairs = npairs; 3160 s.ack = VIRTIO_NET_ERR; 3161 3162 sglist_init(&sg, 3, segs); 3163 error = 0; 3164 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3165 error |= sglist_append(&sg, &s.mq, sizeof(struct virtio_net_ctrl_mq)); 3166 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3167 KASSERT(error == 0 && sg.sg_nseg == 3, 3168 ("%s: error %d adding MQ message to sglist", __func__, error)); 3169 3170 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3171 3172 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3173 } 3174 3175 static int 3176 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) 3177 { 3178 struct sglist_seg segs[3]; 3179 struct sglist sg; 3180 struct { 3181 struct virtio_net_ctrl_hdr hdr; 3182 uint8_t pad1; 3183 uint8_t onoff; 3184 uint8_t pad2; 3185 uint8_t ack; 3186 } s __aligned(2); 3187 int error; 3188 3189 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 3190 ("%s: CTRL_RX feature not negotiated", __func__)); 3191 3192 s.hdr.class = VIRTIO_NET_CTRL_RX; 3193 s.hdr.cmd = cmd; 3194 s.onoff = !!on; 3195 s.ack = VIRTIO_NET_ERR; 3196 3197 sglist_init(&sg, 3, segs); 3198 error = 0; 3199 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3200 error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t)); 3201 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3202 KASSERT(error == 0 && sg.sg_nseg == 3, 3203 ("%s: error %d adding Rx message to sglist", __func__, error)); 3204 3205 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3206 3207 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3208 } 3209 3210 static int 3211 vtnet_set_promisc(struct vtnet_softc *sc, int on) 3212 { 3213 3214 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); 3215 } 3216 3217 static int 3218 vtnet_set_allmulti(struct vtnet_softc *sc, int on) 3219 { 3220 3221 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); 3222 } 3223 3224 /* 3225 * The device defaults to promiscuous mode for backwards compatibility. 3226 * Turn it off at attach time if possible. 3227 */ 3228 static void 3229 vtnet_attach_disable_promisc(struct vtnet_softc *sc) 3230 { 3231 struct ifnet *ifp; 3232 3233 ifp = sc->vtnet_ifp; 3234 3235 VTNET_CORE_LOCK(sc); 3236 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) { 3237 ifp->if_flags |= IFF_PROMISC; 3238 } else if (vtnet_set_promisc(sc, 0) != 0) { 3239 ifp->if_flags |= IFF_PROMISC; 3240 device_printf(sc->vtnet_dev, 3241 "cannot disable default promiscuous mode\n"); 3242 } 3243 VTNET_CORE_UNLOCK(sc); 3244 } 3245 3246 static void 3247 vtnet_rx_filter(struct vtnet_softc *sc) 3248 { 3249 device_t dev; 3250 struct ifnet *ifp; 3251 3252 dev = sc->vtnet_dev; 3253 ifp = sc->vtnet_ifp; 3254 3255 VTNET_CORE_LOCK_ASSERT(sc); 3256 3257 if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) 3258 device_printf(dev, "cannot %s promiscuous mode\n", 3259 ifp->if_flags & IFF_PROMISC ? "enable" : "disable"); 3260 3261 if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) 3262 device_printf(dev, "cannot %s all-multicast mode\n", 3263 ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable"); 3264 } 3265 3266 static void 3267 vtnet_rx_filter_mac(struct vtnet_softc *sc) 3268 { 3269 struct virtio_net_ctrl_hdr hdr __aligned(2); 3270 struct vtnet_mac_filter *filter; 3271 struct sglist_seg segs[4]; 3272 struct sglist sg; 3273 struct ifnet *ifp; 3274 struct ifaddr *ifa; 3275 struct ifmultiaddr *ifma; 3276 int ucnt, mcnt, promisc, allmulti, error; 3277 uint8_t ack; 3278 3279 ifp = sc->vtnet_ifp; 3280 filter = sc->vtnet_mac_filter; 3281 ucnt = 0; 3282 mcnt = 0; 3283 promisc = 0; 3284 allmulti = 0; 3285 3286 VTNET_CORE_LOCK_ASSERT(sc); 3287 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 3288 ("%s: CTRL_RX feature not negotiated", __func__)); 3289 3290 /* Unicast MAC addresses: */ 3291 if_addr_rlock(ifp); 3292 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3293 if (ifa->ifa_addr->sa_family != AF_LINK) 3294 continue; 3295 else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 3296 sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0) 3297 continue; 3298 else if (ucnt == VTNET_MAX_MAC_ENTRIES) { 3299 promisc = 1; 3300 break; 3301 } 3302 3303 bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 3304 &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); 3305 ucnt++; 3306 } 3307 if_addr_runlock(ifp); 3308 3309 if (promisc != 0) { 3310 filter->vmf_unicast.nentries = 0; 3311 if_printf(ifp, "more than %d MAC addresses assigned, " 3312 "falling back to promiscuous mode\n", 3313 VTNET_MAX_MAC_ENTRIES); 3314 } else 3315 filter->vmf_unicast.nentries = ucnt; 3316 3317 /* Multicast MAC addresses: */ 3318 if_maddr_rlock(ifp); 3319 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3320 if (ifma->ifma_addr->sa_family != AF_LINK) 3321 continue; 3322 else if (mcnt == VTNET_MAX_MAC_ENTRIES) { 3323 allmulti = 1; 3324 break; 3325 } 3326 3327 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3328 &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); 3329 mcnt++; 3330 } 3331 if_maddr_runlock(ifp); 3332 3333 if (allmulti != 0) { 3334 filter->vmf_multicast.nentries = 0; 3335 if_printf(ifp, "more than %d multicast MAC addresses " 3336 "assigned, falling back to all-multicast mode\n", 3337 VTNET_MAX_MAC_ENTRIES); 3338 } else 3339 filter->vmf_multicast.nentries = mcnt; 3340 3341 if (promisc != 0 && allmulti != 0) 3342 goto out; 3343 3344 hdr.class = VIRTIO_NET_CTRL_MAC; 3345 hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 3346 ack = VIRTIO_NET_ERR; 3347 3348 sglist_init(&sg, 4, segs); 3349 error = 0; 3350 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 3351 error |= sglist_append(&sg, &filter->vmf_unicast, 3352 sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN); 3353 error |= sglist_append(&sg, &filter->vmf_multicast, 3354 sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN); 3355 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 3356 KASSERT(error == 0 && sg.sg_nseg == 4, 3357 ("%s: error %d adding MAC filter msg to sglist", __func__, error)); 3358 3359 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 3360 3361 if (ack != VIRTIO_NET_OK) 3362 if_printf(ifp, "error setting host MAC filter table\n"); 3363 3364 out: 3365 if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0) 3366 if_printf(ifp, "cannot enable promiscuous mode\n"); 3367 if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0) 3368 if_printf(ifp, "cannot enable all-multicast mode\n"); 3369 } 3370 3371 static int 3372 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 3373 { 3374 struct sglist_seg segs[3]; 3375 struct sglist sg; 3376 struct { 3377 struct virtio_net_ctrl_hdr hdr; 3378 uint8_t pad1; 3379 uint16_t tag; 3380 uint8_t pad2; 3381 uint8_t ack; 3382 } s __aligned(2); 3383 int error; 3384 3385 s.hdr.class = VIRTIO_NET_CTRL_VLAN; 3386 s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; 3387 s.tag = tag; 3388 s.ack = VIRTIO_NET_ERR; 3389 3390 sglist_init(&sg, 3, segs); 3391 error = 0; 3392 error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); 3393 error |= sglist_append(&sg, &s.tag, sizeof(uint16_t)); 3394 error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); 3395 KASSERT(error == 0 && sg.sg_nseg == 3, 3396 ("%s: error %d adding VLAN message to sglist", __func__, error)); 3397 3398 vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); 3399 3400 return (s.ack == VIRTIO_NET_OK ? 0 : EIO); 3401 } 3402 3403 static void 3404 vtnet_rx_filter_vlan(struct vtnet_softc *sc) 3405 { 3406 uint32_t w; 3407 uint16_t tag; 3408 int i, bit; 3409 3410 VTNET_CORE_LOCK_ASSERT(sc); 3411 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 3412 ("%s: VLAN_FILTER feature not negotiated", __func__)); 3413 3414 /* Enable the filter for each configured VLAN. */ 3415 for (i = 0; i < VTNET_VLAN_FILTER_NWORDS; i++) { 3416 w = sc->vtnet_vlan_filter[i]; 3417 3418 while ((bit = ffs(w) - 1) != -1) { 3419 w &= ~(1 << bit); 3420 tag = sizeof(w) * CHAR_BIT * i + bit; 3421 3422 if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) { 3423 device_printf(sc->vtnet_dev, 3424 "cannot enable VLAN %d filter\n", tag); 3425 } 3426 } 3427 } 3428 } 3429 3430 static void 3431 vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 3432 { 3433 struct ifnet *ifp; 3434 int idx, bit; 3435 3436 ifp = sc->vtnet_ifp; 3437 idx = (tag >> 5) & 0x7F; 3438 bit = tag & 0x1F; 3439 3440 if (tag == 0 || tag > 4095) 3441 return; 3442 3443 VTNET_CORE_LOCK(sc); 3444 3445 if (add) 3446 sc->vtnet_vlan_filter[idx] |= (1 << bit); 3447 else 3448 sc->vtnet_vlan_filter[idx] &= ~(1 << bit); 3449 3450 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER && 3451 vtnet_exec_vlan_filter(sc, add, tag) != 0) { 3452 device_printf(sc->vtnet_dev, 3453 "cannot %s VLAN %d %s the host filter table\n", 3454 add ? "add" : "remove", tag, add ? "to" : "from"); 3455 } 3456 3457 VTNET_CORE_UNLOCK(sc); 3458 } 3459 3460 static void 3461 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 3462 { 3463 3464 if (ifp->if_softc != arg) 3465 return; 3466 3467 vtnet_update_vlan_filter(arg, 1, tag); 3468 } 3469 3470 static void 3471 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 3472 { 3473 3474 if (ifp->if_softc != arg) 3475 return; 3476 3477 vtnet_update_vlan_filter(arg, 0, tag); 3478 } 3479 3480 static int 3481 vtnet_is_link_up(struct vtnet_softc *sc) 3482 { 3483 device_t dev; 3484 struct ifnet *ifp; 3485 uint16_t status; 3486 3487 dev = sc->vtnet_dev; 3488 ifp = sc->vtnet_ifp; 3489 3490 if ((ifp->if_capabilities & IFCAP_LINKSTATE) == 0) 3491 status = VIRTIO_NET_S_LINK_UP; 3492 else 3493 status = virtio_read_dev_config_2(dev, 3494 offsetof(struct virtio_net_config, status)); 3495 3496 return ((status & VIRTIO_NET_S_LINK_UP) != 0); 3497 } 3498 3499 static void 3500 vtnet_update_link_status(struct vtnet_softc *sc) 3501 { 3502 struct ifnet *ifp; 3503 int link; 3504 3505 ifp = sc->vtnet_ifp; 3506 3507 VTNET_CORE_LOCK_ASSERT(sc); 3508 link = vtnet_is_link_up(sc); 3509 3510 /* Notify if the link status has changed. */ 3511 if (link != 0 && sc->vtnet_link_active == 0) { 3512 sc->vtnet_link_active = 1; 3513 if_link_state_change(ifp, LINK_STATE_UP); 3514 } else if (link == 0 && sc->vtnet_link_active != 0) { 3515 sc->vtnet_link_active = 0; 3516 if_link_state_change(ifp, LINK_STATE_DOWN); 3517 } 3518 } 3519 3520 static int 3521 vtnet_ifmedia_upd(struct ifnet *ifp) 3522 { 3523 struct vtnet_softc *sc; 3524 struct ifmedia *ifm; 3525 3526 sc = ifp->if_softc; 3527 ifm = &sc->vtnet_media; 3528 3529 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3530 return (EINVAL); 3531 3532 return (0); 3533 } 3534 3535 static void 3536 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3537 { 3538 struct vtnet_softc *sc; 3539 3540 sc = ifp->if_softc; 3541 3542 ifmr->ifm_status = IFM_AVALID; 3543 ifmr->ifm_active = IFM_ETHER; 3544 3545 VTNET_CORE_LOCK(sc); 3546 if (vtnet_is_link_up(sc) != 0) { 3547 ifmr->ifm_status |= IFM_ACTIVE; 3548 ifmr->ifm_active |= VTNET_MEDIATYPE; 3549 } else 3550 ifmr->ifm_active |= IFM_NONE; 3551 VTNET_CORE_UNLOCK(sc); 3552 } 3553 3554 static void 3555 vtnet_set_hwaddr(struct vtnet_softc *sc) 3556 { 3557 device_t dev; 3558 int i; 3559 3560 dev = sc->vtnet_dev; 3561 3562 if (sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) { 3563 if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0) 3564 device_printf(dev, "unable to set MAC address\n"); 3565 } else if (sc->vtnet_flags & VTNET_FLAG_MAC) { 3566 for (i = 0; i < ETHER_ADDR_LEN; i++) { 3567 virtio_write_dev_config_1(dev, 3568 offsetof(struct virtio_net_config, mac) + i, 3569 sc->vtnet_hwaddr[i]); 3570 } 3571 } 3572 } 3573 3574 static void 3575 vtnet_get_hwaddr(struct vtnet_softc *sc) 3576 { 3577 device_t dev; 3578 int i; 3579 3580 dev = sc->vtnet_dev; 3581 3582 if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) { 3583 /* 3584 * Generate a random locally administered unicast address. 3585 * 3586 * It would be nice to generate the same MAC address across 3587 * reboots, but it seems all the hosts currently available 3588 * support the MAC feature, so this isn't too important. 3589 */ 3590 sc->vtnet_hwaddr[0] = 0xB2; 3591 arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); 3592 vtnet_set_hwaddr(sc); 3593 return; 3594 } 3595 3596 for (i = 0; i < ETHER_ADDR_LEN; i++) { 3597 sc->vtnet_hwaddr[i] = virtio_read_dev_config_1(dev, 3598 offsetof(struct virtio_net_config, mac) + i); 3599 } 3600 } 3601 3602 static void 3603 vtnet_vlan_tag_remove(struct mbuf *m) 3604 { 3605 struct ether_vlan_header *evh; 3606 3607 evh = mtod(m, struct ether_vlan_header *); 3608 m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag); 3609 m->m_flags |= M_VLANTAG; 3610 3611 /* Strip the 802.1Q header. */ 3612 bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN, 3613 ETHER_HDR_LEN - ETHER_TYPE_LEN); 3614 m_adj(m, ETHER_VLAN_ENCAP_LEN); 3615 } 3616 3617 static void 3618 vtnet_set_rx_process_limit(struct vtnet_softc *sc) 3619 { 3620 int limit; 3621 3622 limit = vtnet_tunable_int(sc, "rx_process_limit", 3623 vtnet_rx_process_limit); 3624 if (limit < 0) 3625 limit = INT_MAX; 3626 sc->vtnet_rx_process_limit = limit; 3627 } 3628 3629 static void 3630 vtnet_set_tx_intr_threshold(struct vtnet_softc *sc) 3631 { 3632 device_t dev; 3633 int size, thresh; 3634 3635 dev = sc->vtnet_dev; 3636 size = virtqueue_size(sc->vtnet_txqs[0].vtntx_vq); 3637 3638 /* 3639 * The Tx interrupt is disabled until the queue free count falls 3640 * below our threshold. Completed frames are drained from the Tx 3641 * virtqueue before transmitting new frames and in the watchdog 3642 * callout, so the frequency of Tx interrupts is greatly reduced, 3643 * at the cost of not freeing mbufs as quickly as they otherwise 3644 * would be. 3645 * 3646 * N.B. We assume all the Tx queues are the same size. 3647 */ 3648 thresh = size / 4; 3649 3650 /* 3651 * Without indirect descriptors, leave enough room for the most 3652 * segments we handle. 3653 */ 3654 if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC) == 0 && 3655 thresh < sc->vtnet_tx_nsegs) 3656 thresh = sc->vtnet_tx_nsegs; 3657 3658 sc->vtnet_tx_intr_thresh = thresh; 3659 } 3660 3661 static void 3662 vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *ctx, 3663 struct sysctl_oid_list *child, struct vtnet_rxq *rxq) 3664 { 3665 struct sysctl_oid *node; 3666 struct sysctl_oid_list *list; 3667 struct vtnet_rxq_stats *stats; 3668 char namebuf[16]; 3669 3670 snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vtnrx_id); 3671 node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3672 CTLFLAG_RD, NULL, "Receive Queue"); 3673 list = SYSCTL_CHILDREN(node); 3674 3675 stats = &rxq->vtnrx_stats; 3676 3677 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD, 3678 &stats->vrxs_ipackets, "Receive packets"); 3679 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD, 3680 &stats->vrxs_ibytes, "Receive bytes"); 3681 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD, 3682 &stats->vrxs_iqdrops, "Receive drops"); 3683 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD, 3684 &stats->vrxs_ierrors, "Receive errors"); 3685 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, 3686 &stats->vrxs_csum, "Receive checksum offloaded"); 3687 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum_failed", CTLFLAG_RD, 3688 &stats->vrxs_csum_failed, "Receive checksum offload failed"); 3689 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, 3690 &stats->vrxs_rescheduled, 3691 "Receive interrupt handler rescheduled"); 3692 } 3693 3694 static void 3695 vtnet_setup_txq_sysctl(struct sysctl_ctx_list *ctx, 3696 struct sysctl_oid_list *child, struct vtnet_txq *txq) 3697 { 3698 struct sysctl_oid *node; 3699 struct sysctl_oid_list *list; 3700 struct vtnet_txq_stats *stats; 3701 char namebuf[16]; 3702 3703 snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vtntx_id); 3704 node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3705 CTLFLAG_RD, NULL, "Transmit Queue"); 3706 list = SYSCTL_CHILDREN(node); 3707 3708 stats = &txq->vtntx_stats; 3709 3710 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD, 3711 &stats->vtxs_opackets, "Transmit packets"); 3712 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD, 3713 &stats->vtxs_obytes, "Transmit bytes"); 3714 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD, 3715 &stats->vtxs_omcasts, "Transmit multicasts"); 3716 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, 3717 &stats->vtxs_csum, "Transmit checksum offloaded"); 3718 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD, 3719 &stats->vtxs_tso, "Transmit segmentation offloaded"); 3720 SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, 3721 &stats->vtxs_rescheduled, 3722 "Transmit interrupt handler rescheduled"); 3723 } 3724 3725 static void 3726 vtnet_setup_queue_sysctl(struct vtnet_softc *sc) 3727 { 3728 device_t dev; 3729 struct sysctl_ctx_list *ctx; 3730 struct sysctl_oid *tree; 3731 struct sysctl_oid_list *child; 3732 int i; 3733 3734 dev = sc->vtnet_dev; 3735 ctx = device_get_sysctl_ctx(dev); 3736 tree = device_get_sysctl_tree(dev); 3737 child = SYSCTL_CHILDREN(tree); 3738 3739 for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { 3740 vtnet_setup_rxq_sysctl(ctx, child, &sc->vtnet_rxqs[i]); 3741 vtnet_setup_txq_sysctl(ctx, child, &sc->vtnet_txqs[i]); 3742 } 3743 } 3744 3745 static void 3746 vtnet_setup_stat_sysctl(struct sysctl_ctx_list *ctx, 3747 struct sysctl_oid_list *child, struct vtnet_softc *sc) 3748 { 3749 struct vtnet_statistics *stats; 3750 struct vtnet_rxq_stats rxaccum; 3751 struct vtnet_txq_stats txaccum; 3752 3753 vtnet_accum_stats(sc, &rxaccum, &txaccum); 3754 3755 stats = &sc->vtnet_stats; 3756 stats->rx_csum_offloaded = rxaccum.vrxs_csum; 3757 stats->rx_csum_failed = rxaccum.vrxs_csum_failed; 3758 stats->rx_task_rescheduled = rxaccum.vrxs_rescheduled; 3759 stats->tx_csum_offloaded = txaccum.vtxs_csum; 3760 stats->tx_tso_offloaded = txaccum.vtxs_tso; 3761 stats->tx_task_rescheduled = txaccum.vtxs_rescheduled; 3762 3763 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed", 3764 CTLFLAG_RD, &stats->mbuf_alloc_failed, 3765 "Mbuf cluster allocation failures"); 3766 3767 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large", 3768 CTLFLAG_RD, &stats->rx_frame_too_large, 3769 "Received frame larger than the mbuf chain"); 3770 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed", 3771 CTLFLAG_RD, &stats->rx_enq_replacement_failed, 3772 "Enqueuing the replacement receive mbuf failed"); 3773 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed", 3774 CTLFLAG_RD, &stats->rx_mergeable_failed, 3775 "Mergeable buffers receive failures"); 3776 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", 3777 CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 3778 "Received checksum offloaded buffer with unsupported " 3779 "Ethernet type"); 3780 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", 3781 CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 3782 "Received checksum offloaded buffer with incorrect IP protocol"); 3783 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset", 3784 CTLFLAG_RD, &stats->rx_csum_bad_offset, 3785 "Received checksum offloaded buffer with incorrect offset"); 3786 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_proto", 3787 CTLFLAG_RD, &stats->rx_csum_bad_proto, 3788 "Received checksum offloaded buffer with incorrect protocol"); 3789 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed", 3790 CTLFLAG_RD, &stats->rx_csum_failed, 3791 "Received buffer checksum offload failed"); 3792 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded", 3793 CTLFLAG_RD, &stats->rx_csum_offloaded, 3794 "Received buffer checksum offload succeeded"); 3795 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled", 3796 CTLFLAG_RD, &stats->rx_task_rescheduled, 3797 "Times the receive interrupt task rescheduled itself"); 3798 3799 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", 3800 CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 3801 "Aborted transmit of checksum offloaded buffer with unknown " 3802 "Ethernet type"); 3803 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", 3804 CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 3805 "Aborted transmit of TSO buffer with unknown Ethernet type"); 3806 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_not_tcp", 3807 CTLFLAG_RD, &stats->tx_tso_not_tcp, 3808 "Aborted transmit of TSO buffer with non TCP protocol"); 3809 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged", 3810 CTLFLAG_RD, &stats->tx_defragged, 3811 "Transmit mbufs defragged"); 3812 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed", 3813 CTLFLAG_RD, &stats->tx_defrag_failed, 3814 "Aborted transmit of buffer because defrag failed"); 3815 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded", 3816 CTLFLAG_RD, &stats->tx_csum_offloaded, 3817 "Offloaded checksum of transmitted buffer"); 3818 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded", 3819 CTLFLAG_RD, &stats->tx_tso_offloaded, 3820 "Segmentation offload of transmitted buffer"); 3821 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled", 3822 CTLFLAG_RD, &stats->tx_task_rescheduled, 3823 "Times the transmit interrupt task rescheduled itself"); 3824 } 3825 3826 static void 3827 vtnet_setup_sysctl(struct vtnet_softc *sc) 3828 { 3829 device_t dev; 3830 struct sysctl_ctx_list *ctx; 3831 struct sysctl_oid *tree; 3832 struct sysctl_oid_list *child; 3833 3834 dev = sc->vtnet_dev; 3835 ctx = device_get_sysctl_ctx(dev); 3836 tree = device_get_sysctl_tree(dev); 3837 child = SYSCTL_CHILDREN(tree); 3838 3839 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_vq_pairs", 3840 CTLFLAG_RD, &sc->vtnet_max_vq_pairs, 0, 3841 "Maximum number of supported virtqueue pairs"); 3842 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "act_vq_pairs", 3843 CTLFLAG_RD, &sc->vtnet_act_vq_pairs, 0, 3844 "Number of active virtqueue pairs"); 3845 3846 vtnet_setup_stat_sysctl(ctx, child, sc); 3847 } 3848 3849 static int 3850 vtnet_rxq_enable_intr(struct vtnet_rxq *rxq) 3851 { 3852 3853 return (virtqueue_enable_intr(rxq->vtnrx_vq)); 3854 } 3855 3856 static void 3857 vtnet_rxq_disable_intr(struct vtnet_rxq *rxq) 3858 { 3859 3860 virtqueue_disable_intr(rxq->vtnrx_vq); 3861 } 3862 3863 static int 3864 vtnet_txq_enable_intr(struct vtnet_txq *txq) 3865 { 3866 struct virtqueue *vq; 3867 3868 vq = txq->vtntx_vq; 3869 3870 if (vtnet_txq_below_threshold(txq) != 0) 3871 return (virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG)); 3872 3873 /* 3874 * The free count is above our threshold. Keep the Tx interrupt 3875 * disabled until the queue is fuller. 3876 */ 3877 return (0); 3878 } 3879 3880 static void 3881 vtnet_txq_disable_intr(struct vtnet_txq *txq) 3882 { 3883 3884 virtqueue_disable_intr(txq->vtntx_vq); 3885 } 3886 3887 static void 3888 vtnet_enable_rx_interrupts(struct vtnet_softc *sc) 3889 { 3890 int i; 3891 3892 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3893 vtnet_rxq_enable_intr(&sc->vtnet_rxqs[i]); 3894 } 3895 3896 static void 3897 vtnet_enable_tx_interrupts(struct vtnet_softc *sc) 3898 { 3899 int i; 3900 3901 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3902 vtnet_txq_enable_intr(&sc->vtnet_txqs[i]); 3903 } 3904 3905 static void 3906 vtnet_enable_interrupts(struct vtnet_softc *sc) 3907 { 3908 3909 vtnet_enable_rx_interrupts(sc); 3910 vtnet_enable_tx_interrupts(sc); 3911 } 3912 3913 static void 3914 vtnet_disable_rx_interrupts(struct vtnet_softc *sc) 3915 { 3916 int i; 3917 3918 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3919 vtnet_rxq_disable_intr(&sc->vtnet_rxqs[i]); 3920 } 3921 3922 static void 3923 vtnet_disable_tx_interrupts(struct vtnet_softc *sc) 3924 { 3925 int i; 3926 3927 for (i = 0; i < sc->vtnet_act_vq_pairs; i++) 3928 vtnet_txq_disable_intr(&sc->vtnet_txqs[i]); 3929 } 3930 3931 static void 3932 vtnet_disable_interrupts(struct vtnet_softc *sc) 3933 { 3934 3935 vtnet_disable_rx_interrupts(sc); 3936 vtnet_disable_tx_interrupts(sc); 3937 } 3938 3939 static int 3940 vtnet_tunable_int(struct vtnet_softc *sc, const char *knob, int def) 3941 { 3942 char path[64]; 3943 3944 snprintf(path, sizeof(path), 3945 "hw.vtnet.%d.%s", device_get_unit(sc->vtnet_dev), knob); 3946 TUNABLE_INT_FETCH(path, &def); 3947 3948 return (def); 3949 } 3950