1 /*- 2 * Copyright (c) 2011, Bryan Venteicher <bryanv@daemoninthecloset.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* Driver for VirtIO network devices. */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_device_polling.h" 34 #endif 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/sockio.h> 40 #include <sys/mbuf.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/socket.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 #include <sys/random.h> 47 #include <sys/sglist.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 51 #include <vm/uma.h> 52 53 #include <net/ethernet.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/if_media.h> 59 #include <net/if_vlan_var.h> 60 61 #include <net/bpf.h> 62 63 #include <netinet/in_systm.h> 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/udp.h> 68 #include <netinet/tcp.h> 69 #include <netinet/sctp.h> 70 71 #include <machine/bus.h> 72 #include <machine/resource.h> 73 #include <sys/bus.h> 74 #include <sys/rman.h> 75 76 #include <dev/virtio/virtio.h> 77 #include <dev/virtio/virtqueue.h> 78 #include <dev/virtio/network/virtio_net.h> 79 #include <dev/virtio/network/if_vtnetvar.h> 80 81 #include "virtio_if.h" 82 83 static int vtnet_modevent(module_t, int, void *); 84 85 static int vtnet_probe(device_t); 86 static int vtnet_attach(device_t); 87 static int vtnet_detach(device_t); 88 static int vtnet_suspend(device_t); 89 static int vtnet_resume(device_t); 90 static int vtnet_shutdown(device_t); 91 static int vtnet_config_change(device_t); 92 93 static void vtnet_negotiate_features(struct vtnet_softc *); 94 static int vtnet_alloc_virtqueues(struct vtnet_softc *); 95 static void vtnet_get_hwaddr(struct vtnet_softc *); 96 static void vtnet_set_hwaddr(struct vtnet_softc *); 97 static int vtnet_is_link_up(struct vtnet_softc *); 98 static void vtnet_update_link_status(struct vtnet_softc *); 99 static void vtnet_watchdog(struct vtnet_softc *); 100 static void vtnet_config_change_task(void *, int); 101 static int vtnet_change_mtu(struct vtnet_softc *, int); 102 static int vtnet_ioctl(struct ifnet *, u_long, caddr_t); 103 104 static int vtnet_init_rx_vq(struct vtnet_softc *); 105 static void vtnet_free_rx_mbufs(struct vtnet_softc *); 106 static void vtnet_free_tx_mbufs(struct vtnet_softc *); 107 static void vtnet_free_ctrl_vq(struct vtnet_softc *); 108 109 #ifdef DEVICE_POLLING 110 static poll_handler_t vtnet_poll; 111 #endif 112 113 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int, 114 struct mbuf **); 115 static int vtnet_replace_rxbuf(struct vtnet_softc *, 116 struct mbuf *, int); 117 static int vtnet_newbuf(struct vtnet_softc *); 118 static void vtnet_discard_merged_rxbuf(struct vtnet_softc *, int); 119 static void vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *); 120 static int vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *); 121 static void vtnet_vlan_tag_remove(struct mbuf *); 122 static int vtnet_rx_csum(struct vtnet_softc *, struct mbuf *, 123 struct virtio_net_hdr *); 124 static int vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int); 125 static int vtnet_rxeof(struct vtnet_softc *, int, int *); 126 static void vtnet_rx_intr_task(void *, int); 127 static int vtnet_rx_vq_intr(void *); 128 129 static void vtnet_txeof(struct vtnet_softc *); 130 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *, 131 struct virtio_net_hdr *); 132 static int vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **, 133 struct vtnet_tx_header *); 134 static int vtnet_encap(struct vtnet_softc *, struct mbuf **); 135 static void vtnet_start_locked(struct ifnet *); 136 static void vtnet_start(struct ifnet *); 137 static void vtnet_tick(void *); 138 static void vtnet_tx_intr_task(void *, int); 139 static int vtnet_tx_vq_intr(void *); 140 141 static void vtnet_stop(struct vtnet_softc *); 142 static int vtnet_reinit(struct vtnet_softc *); 143 static void vtnet_init_locked(struct vtnet_softc *); 144 static void vtnet_init(void *); 145 146 static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, 147 struct sglist *, int, int); 148 149 static void vtnet_rx_filter(struct vtnet_softc *sc); 150 static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int); 151 static int vtnet_set_promisc(struct vtnet_softc *, int); 152 static int vtnet_set_allmulti(struct vtnet_softc *, int); 153 static void vtnet_rx_filter_mac(struct vtnet_softc *); 154 155 static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); 156 static void vtnet_rx_filter_vlan(struct vtnet_softc *); 157 static void vtnet_set_vlan_filter(struct vtnet_softc *, int, uint16_t); 158 static void vtnet_register_vlan(void *, struct ifnet *, uint16_t); 159 static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t); 160 161 static int vtnet_ifmedia_upd(struct ifnet *); 162 static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *); 163 164 static void vtnet_add_statistics(struct vtnet_softc *); 165 166 static int vtnet_enable_rx_intr(struct vtnet_softc *); 167 static int vtnet_enable_tx_intr(struct vtnet_softc *); 168 static void vtnet_disable_rx_intr(struct vtnet_softc *); 169 static void vtnet_disable_tx_intr(struct vtnet_softc *); 170 171 /* Tunables. */ 172 static int vtnet_csum_disable = 0; 173 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable); 174 static int vtnet_tso_disable = 0; 175 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable); 176 static int vtnet_lro_disable = 0; 177 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable); 178 179 /* 180 * Reducing the number of transmit completed interrupts can 181 * improve performance. To do so, the define below keeps the 182 * Tx vq interrupt disabled and adds calls to vtnet_txeof() 183 * in the start and watchdog paths. The price to pay for this 184 * is the m_free'ing of transmitted mbufs may be delayed until 185 * the watchdog fires. 186 */ 187 #define VTNET_TX_INTR_MODERATION 188 189 static uma_zone_t vtnet_tx_header_zone; 190 191 static struct virtio_feature_desc vtnet_feature_desc[] = { 192 { VIRTIO_NET_F_CSUM, "TxChecksum" }, 193 { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, 194 { VIRTIO_NET_F_MAC, "MacAddress" }, 195 { VIRTIO_NET_F_GSO, "TxAllGSO" }, 196 { VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" }, 197 { VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" }, 198 { VIRTIO_NET_F_GUEST_ECN, "RxECN" }, 199 { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, 200 { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, 201 { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, 202 { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, 203 { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, 204 { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, 205 { VIRTIO_NET_F_STATUS, "Status" }, 206 { VIRTIO_NET_F_CTRL_VQ, "ControlVq" }, 207 { VIRTIO_NET_F_CTRL_RX, "RxMode" }, 208 { VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" }, 209 { VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" }, 210 211 { 0, NULL } 212 }; 213 214 static device_method_t vtnet_methods[] = { 215 /* Device methods. */ 216 DEVMETHOD(device_probe, vtnet_probe), 217 DEVMETHOD(device_attach, vtnet_attach), 218 DEVMETHOD(device_detach, vtnet_detach), 219 DEVMETHOD(device_suspend, vtnet_suspend), 220 DEVMETHOD(device_resume, vtnet_resume), 221 DEVMETHOD(device_shutdown, vtnet_shutdown), 222 223 /* VirtIO methods. */ 224 DEVMETHOD(virtio_config_change, vtnet_config_change), 225 226 { 0, 0 } 227 }; 228 229 static driver_t vtnet_driver = { 230 "vtnet", 231 vtnet_methods, 232 sizeof(struct vtnet_softc) 233 }; 234 static devclass_t vtnet_devclass; 235 236 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, 237 vtnet_modevent, 0); 238 MODULE_VERSION(vtnet, 1); 239 MODULE_DEPEND(vtnet, virtio, 1, 1, 1); 240 241 static int 242 vtnet_modevent(module_t mod, int type, void *unused) 243 { 244 int error; 245 246 error = 0; 247 248 switch (type) { 249 case MOD_LOAD: 250 vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", 251 sizeof(struct vtnet_tx_header), 252 NULL, NULL, NULL, NULL, 0, 0); 253 break; 254 case MOD_QUIESCE: 255 case MOD_UNLOAD: 256 if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) 257 error = EBUSY; 258 else if (type == MOD_UNLOAD) { 259 uma_zdestroy(vtnet_tx_header_zone); 260 vtnet_tx_header_zone = NULL; 261 } 262 break; 263 case MOD_SHUTDOWN: 264 break; 265 default: 266 error = EOPNOTSUPP; 267 break; 268 } 269 270 return (error); 271 } 272 273 static int 274 vtnet_probe(device_t dev) 275 { 276 277 if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK) 278 return (ENXIO); 279 280 device_set_desc(dev, "VirtIO Networking Adapter"); 281 282 return (BUS_PROBE_DEFAULT); 283 } 284 285 static int 286 vtnet_attach(device_t dev) 287 { 288 struct vtnet_softc *sc; 289 struct ifnet *ifp; 290 int tx_size, error; 291 292 sc = device_get_softc(dev); 293 sc->vtnet_dev = dev; 294 295 VTNET_LOCK_INIT(sc); 296 callout_init_mtx(&sc->vtnet_tick_ch, VTNET_MTX(sc), 0); 297 298 ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd, 299 vtnet_ifmedia_sts); 300 ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL); 301 ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE); 302 303 vtnet_add_statistics(sc); 304 305 virtio_set_feature_desc(dev, vtnet_feature_desc); 306 vtnet_negotiate_features(sc); 307 308 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { 309 sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; 310 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); 311 } else 312 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); 313 314 sc->vtnet_rx_mbuf_size = MCLBYTES; 315 sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); 316 317 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { 318 sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; 319 320 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) 321 sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; 322 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) 323 sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; 324 } 325 326 vtnet_get_hwaddr(sc); 327 328 error = vtnet_alloc_virtqueues(sc); 329 if (error) { 330 device_printf(dev, "cannot allocate virtqueues\n"); 331 goto fail; 332 } 333 334 ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER); 335 if (ifp == NULL) { 336 device_printf(dev, "cannot allocate ifnet structure\n"); 337 error = ENOSPC; 338 goto fail; 339 } 340 341 ifp->if_softc = sc; 342 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 343 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 344 ifp->if_init = vtnet_init; 345 ifp->if_start = vtnet_start; 346 ifp->if_ioctl = vtnet_ioctl; 347 348 sc->vtnet_rx_size = virtqueue_size(sc->vtnet_rx_vq); 349 sc->vtnet_rx_process_limit = sc->vtnet_rx_size; 350 351 tx_size = virtqueue_size(sc->vtnet_tx_vq); 352 sc->vtnet_tx_size = tx_size; 353 IFQ_SET_MAXLEN(&ifp->if_snd, tx_size - 1); 354 ifp->if_snd.ifq_drv_maxlen = tx_size - 1; 355 IFQ_SET_READY(&ifp->if_snd); 356 357 ether_ifattach(ifp, sc->vtnet_hwaddr); 358 359 if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) 360 ifp->if_capabilities |= IFCAP_LINKSTATE; 361 362 /* Tell the upper layer(s) we support long frames. */ 363 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 364 ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; 365 366 if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { 367 ifp->if_capabilities |= IFCAP_TXCSUM; 368 369 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) 370 ifp->if_capabilities |= IFCAP_TSO4; 371 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) 372 ifp->if_capabilities |= IFCAP_TSO6; 373 if (ifp->if_capabilities & IFCAP_TSO) 374 ifp->if_capabilities |= IFCAP_VLAN_HWTSO; 375 376 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) 377 sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; 378 } 379 380 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { 381 ifp->if_capabilities |= IFCAP_RXCSUM; 382 383 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) || 384 virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6)) 385 ifp->if_capabilities |= IFCAP_LRO; 386 } 387 388 if (ifp->if_capabilities & IFCAP_HWCSUM) { 389 /* 390 * VirtIO does not support VLAN tagging, but we can fake 391 * it by inserting and removing the 802.1Q header during 392 * transmit and receive. We are then able to do checksum 393 * offloading of VLAN frames. 394 */ 395 ifp->if_capabilities |= 396 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 397 } 398 399 ifp->if_capenable = ifp->if_capabilities; 400 401 /* 402 * Capabilities after here are not enabled by default. 403 */ 404 405 if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { 406 ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; 407 408 sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, 409 vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); 410 sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, 411 vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); 412 } 413 414 #ifdef DEVICE_POLLING 415 ifp->if_capabilities |= IFCAP_POLLING; 416 #endif 417 418 TASK_INIT(&sc->vtnet_rx_intr_task, 0, vtnet_rx_intr_task, sc); 419 TASK_INIT(&sc->vtnet_tx_intr_task, 0, vtnet_tx_intr_task, sc); 420 TASK_INIT(&sc->vtnet_cfgchg_task, 0, vtnet_config_change_task, sc); 421 422 sc->vtnet_tq = taskqueue_create_fast("vtnet_taskq", M_NOWAIT, 423 taskqueue_thread_enqueue, &sc->vtnet_tq); 424 if (sc->vtnet_tq == NULL) { 425 error = ENOMEM; 426 device_printf(dev, "cannot allocate taskqueue\n"); 427 ether_ifdetach(ifp); 428 goto fail; 429 } 430 taskqueue_start_threads(&sc->vtnet_tq, 1, PI_NET, "%s taskq", 431 device_get_nameunit(dev)); 432 433 error = virtio_setup_intr(dev, INTR_TYPE_NET); 434 if (error) { 435 device_printf(dev, "cannot setup virtqueue interrupts\n"); 436 taskqueue_free(sc->vtnet_tq); 437 sc->vtnet_tq = NULL; 438 ether_ifdetach(ifp); 439 goto fail; 440 } 441 442 /* 443 * Device defaults to promiscuous mode for backwards 444 * compatibility. Turn it off if possible. 445 */ 446 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 447 VTNET_LOCK(sc); 448 if (vtnet_set_promisc(sc, 0) != 0) { 449 ifp->if_flags |= IFF_PROMISC; 450 device_printf(dev, 451 "cannot disable promiscuous mode\n"); 452 } 453 VTNET_UNLOCK(sc); 454 } else 455 ifp->if_flags |= IFF_PROMISC; 456 457 fail: 458 if (error) 459 vtnet_detach(dev); 460 461 return (error); 462 } 463 464 static int 465 vtnet_detach(device_t dev) 466 { 467 struct vtnet_softc *sc; 468 struct ifnet *ifp; 469 470 sc = device_get_softc(dev); 471 ifp = sc->vtnet_ifp; 472 473 KASSERT(mtx_initialized(VTNET_MTX(sc)), 474 ("vtnet mutex not initialized")); 475 476 #ifdef DEVICE_POLLING 477 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 478 ether_poll_deregister(ifp); 479 #endif 480 481 if (device_is_attached(dev)) { 482 VTNET_LOCK(sc); 483 vtnet_stop(sc); 484 VTNET_UNLOCK(sc); 485 486 callout_drain(&sc->vtnet_tick_ch); 487 taskqueue_drain(taskqueue_fast, &sc->vtnet_cfgchg_task); 488 489 ether_ifdetach(ifp); 490 } 491 492 if (sc->vtnet_tq != NULL) { 493 taskqueue_drain(sc->vtnet_tq, &sc->vtnet_rx_intr_task); 494 taskqueue_drain(sc->vtnet_tq, &sc->vtnet_tx_intr_task); 495 taskqueue_free(sc->vtnet_tq); 496 sc->vtnet_tq = NULL; 497 } 498 499 if (sc->vtnet_vlan_attach != NULL) { 500 EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); 501 sc->vtnet_vlan_attach = NULL; 502 } 503 if (sc->vtnet_vlan_detach != NULL) { 504 EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach); 505 sc->vtnet_vlan_detach = NULL; 506 } 507 508 if (ifp) { 509 if_free(ifp); 510 sc->vtnet_ifp = NULL; 511 } 512 513 if (sc->vtnet_rx_vq != NULL) 514 vtnet_free_rx_mbufs(sc); 515 if (sc->vtnet_tx_vq != NULL) 516 vtnet_free_tx_mbufs(sc); 517 if (sc->vtnet_ctrl_vq != NULL) 518 vtnet_free_ctrl_vq(sc); 519 520 ifmedia_removeall(&sc->vtnet_media); 521 VTNET_LOCK_DESTROY(sc); 522 523 return (0); 524 } 525 526 static int 527 vtnet_suspend(device_t dev) 528 { 529 struct vtnet_softc *sc; 530 531 sc = device_get_softc(dev); 532 533 VTNET_LOCK(sc); 534 vtnet_stop(sc); 535 sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; 536 VTNET_UNLOCK(sc); 537 538 return (0); 539 } 540 541 static int 542 vtnet_resume(device_t dev) 543 { 544 struct vtnet_softc *sc; 545 struct ifnet *ifp; 546 547 sc = device_get_softc(dev); 548 ifp = sc->vtnet_ifp; 549 550 VTNET_LOCK(sc); 551 if (ifp->if_flags & IFF_UP) 552 vtnet_init_locked(sc); 553 sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; 554 VTNET_UNLOCK(sc); 555 556 return (0); 557 } 558 559 static int 560 vtnet_shutdown(device_t dev) 561 { 562 563 /* 564 * Suspend already does all of what we need to 565 * do here; we just never expect to be resumed. 566 */ 567 return (vtnet_suspend(dev)); 568 } 569 570 static int 571 vtnet_config_change(device_t dev) 572 { 573 struct vtnet_softc *sc; 574 575 sc = device_get_softc(dev); 576 577 taskqueue_enqueue_fast(taskqueue_fast, &sc->vtnet_cfgchg_task); 578 579 return (1); 580 } 581 582 static void 583 vtnet_negotiate_features(struct vtnet_softc *sc) 584 { 585 device_t dev; 586 uint64_t mask, features; 587 588 dev = sc->vtnet_dev; 589 mask = 0; 590 591 if (vtnet_csum_disable) 592 mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM; 593 594 /* 595 * TSO and LRO are only available when their corresponding 596 * checksum offload feature is also negotiated. 597 */ 598 599 if (vtnet_csum_disable || vtnet_tso_disable) 600 mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 | 601 VIRTIO_NET_F_HOST_ECN; 602 603 if (vtnet_csum_disable || vtnet_lro_disable) 604 mask |= VTNET_LRO_FEATURES; 605 606 features = VTNET_FEATURES & ~mask; 607 #ifdef VTNET_TX_INTR_MODERATION 608 features |= VIRTIO_F_NOTIFY_ON_EMPTY; 609 #endif 610 sc->vtnet_features = virtio_negotiate_features(dev, features); 611 612 if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0 && 613 virtio_with_feature(dev, VTNET_LRO_FEATURES)) { 614 /* 615 * LRO without mergeable buffers requires special care. This 616 * is not ideal because every receive buffer must be large 617 * enough to hold the maximum TCP packet, the Ethernet header, 618 * and the vtnet_rx_header. This requires up to 34 descriptors 619 * when using MCLBYTES clusters. If we do not have indirect 620 * descriptors, LRO is disabled since the virtqueue will not 621 * be able to contain very many receive buffers. 622 */ 623 if (virtio_with_feature(dev, 624 VIRTIO_RING_F_INDIRECT_DESC) == 0) { 625 device_printf(dev, 626 "LRO disabled due to lack of both mergeable " 627 "buffers and indirect descriptors\n"); 628 629 sc->vtnet_features = virtio_negotiate_features(dev, 630 features & ~VTNET_LRO_FEATURES); 631 } else 632 sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; 633 } 634 } 635 636 static int 637 vtnet_alloc_virtqueues(struct vtnet_softc *sc) 638 { 639 device_t dev; 640 struct vq_alloc_info vq_info[3]; 641 int nvqs, rxsegs; 642 643 dev = sc->vtnet_dev; 644 nvqs = 2; 645 646 /* 647 * Indirect descriptors are not needed for the Rx 648 * virtqueue when mergeable buffers are negotiated. 649 * The header is placed inline with the data, not 650 * in a separate descriptor, and mbuf clusters are 651 * always physically contiguous. 652 */ 653 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 654 rxsegs = sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ? 655 VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS; 656 } else 657 rxsegs = 0; 658 659 VQ_ALLOC_INFO_INIT(&vq_info[0], rxsegs, 660 vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq, 661 "%s receive", device_get_nameunit(dev)); 662 663 VQ_ALLOC_INFO_INIT(&vq_info[1], VTNET_MAX_TX_SEGS, 664 vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq, 665 "%s transmit", device_get_nameunit(dev)); 666 667 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 668 nvqs++; 669 670 VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL, 671 &sc->vtnet_ctrl_vq, "%s control", 672 device_get_nameunit(dev)); 673 } 674 675 return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info)); 676 } 677 678 static void 679 vtnet_get_hwaddr(struct vtnet_softc *sc) 680 { 681 device_t dev; 682 683 dev = sc->vtnet_dev; 684 685 if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { 686 virtio_read_device_config(dev, 687 offsetof(struct virtio_net_config, mac), 688 sc->vtnet_hwaddr, ETHER_ADDR_LEN); 689 } else { 690 /* Generate random locally administered unicast address. */ 691 sc->vtnet_hwaddr[0] = 0xB2; 692 arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); 693 694 vtnet_set_hwaddr(sc); 695 } 696 } 697 698 static void 699 vtnet_set_hwaddr(struct vtnet_softc *sc) 700 { 701 device_t dev; 702 703 dev = sc->vtnet_dev; 704 705 virtio_write_device_config(dev, 706 offsetof(struct virtio_net_config, mac), 707 sc->vtnet_hwaddr, ETHER_ADDR_LEN); 708 } 709 710 static int 711 vtnet_is_link_up(struct vtnet_softc *sc) 712 { 713 device_t dev; 714 struct ifnet *ifp; 715 uint16_t status; 716 717 dev = sc->vtnet_dev; 718 ifp = sc->vtnet_ifp; 719 720 VTNET_LOCK_ASSERT(sc); 721 722 if ((ifp->if_capenable & IFCAP_LINKSTATE) == 0) 723 return (1); 724 725 status = virtio_read_dev_config_2(dev, 726 offsetof(struct virtio_net_config, status)); 727 728 return ((status & VIRTIO_NET_S_LINK_UP) != 0); 729 } 730 731 static void 732 vtnet_update_link_status(struct vtnet_softc *sc) 733 { 734 device_t dev; 735 struct ifnet *ifp; 736 int link; 737 738 dev = sc->vtnet_dev; 739 ifp = sc->vtnet_ifp; 740 741 link = vtnet_is_link_up(sc); 742 743 if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) { 744 sc->vtnet_flags |= VTNET_FLAG_LINK; 745 if (bootverbose) 746 device_printf(dev, "Link is up\n"); 747 748 if_link_state_change(ifp, LINK_STATE_UP); 749 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 750 vtnet_start_locked(ifp); 751 } else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) { 752 sc->vtnet_flags &= ~VTNET_FLAG_LINK; 753 if (bootverbose) 754 device_printf(dev, "Link is down\n"); 755 756 if_link_state_change(ifp, LINK_STATE_DOWN); 757 } 758 } 759 760 static void 761 vtnet_watchdog(struct vtnet_softc *sc) 762 { 763 struct ifnet *ifp; 764 765 ifp = sc->vtnet_ifp; 766 767 #ifdef VTNET_TX_INTR_MODERATION 768 vtnet_txeof(sc); 769 #endif 770 771 if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer) 772 return; 773 774 if_printf(ifp, "watchdog timeout -- resetting\n"); 775 #ifdef VTNET_DEBUG 776 virtqueue_dump(sc->vtnet_tx_vq); 777 #endif 778 ifp->if_oerrors++; 779 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 780 vtnet_init_locked(sc); 781 } 782 783 static void 784 vtnet_config_change_task(void *arg, int pending) 785 { 786 struct vtnet_softc *sc; 787 788 sc = arg; 789 790 VTNET_LOCK(sc); 791 vtnet_update_link_status(sc); 792 VTNET_UNLOCK(sc); 793 } 794 795 static int 796 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 797 { 798 struct vtnet_softc *sc; 799 struct ifreq *ifr; 800 int reinit, mask, error; 801 802 sc = ifp->if_softc; 803 ifr = (struct ifreq *) data; 804 reinit = 0; 805 error = 0; 806 807 switch (cmd) { 808 case SIOCSIFMTU: 809 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU) 810 error = EINVAL; 811 else if (ifp->if_mtu != ifr->ifr_mtu) { 812 VTNET_LOCK(sc); 813 error = vtnet_change_mtu(sc, ifr->ifr_mtu); 814 VTNET_UNLOCK(sc); 815 } 816 break; 817 818 case SIOCSIFFLAGS: 819 VTNET_LOCK(sc); 820 if ((ifp->if_flags & IFF_UP) == 0) { 821 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 822 vtnet_stop(sc); 823 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 824 if ((ifp->if_flags ^ sc->vtnet_if_flags) & 825 (IFF_PROMISC | IFF_ALLMULTI)) { 826 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) 827 vtnet_rx_filter(sc); 828 else 829 error = ENOTSUP; 830 } 831 } else 832 vtnet_init_locked(sc); 833 834 if (error == 0) 835 sc->vtnet_if_flags = ifp->if_flags; 836 VTNET_UNLOCK(sc); 837 break; 838 839 case SIOCADDMULTI: 840 case SIOCDELMULTI: 841 VTNET_LOCK(sc); 842 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) && 843 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 844 vtnet_rx_filter_mac(sc); 845 VTNET_UNLOCK(sc); 846 break; 847 848 case SIOCSIFMEDIA: 849 case SIOCGIFMEDIA: 850 error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); 851 break; 852 853 case SIOCSIFCAP: 854 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 855 856 #ifdef DEVICE_POLLING 857 if (mask & IFCAP_POLLING) { 858 if (ifr->ifr_reqcap & IFCAP_POLLING) { 859 error = ether_poll_register(vtnet_poll, ifp); 860 if (error) 861 break; 862 863 VTNET_LOCK(sc); 864 vtnet_disable_rx_intr(sc); 865 vtnet_disable_tx_intr(sc); 866 ifp->if_capenable |= IFCAP_POLLING; 867 VTNET_UNLOCK(sc); 868 } else { 869 error = ether_poll_deregister(ifp); 870 871 /* Enable interrupts even in error case. */ 872 VTNET_LOCK(sc); 873 vtnet_enable_tx_intr(sc); 874 vtnet_enable_rx_intr(sc); 875 ifp->if_capenable &= ~IFCAP_POLLING; 876 VTNET_UNLOCK(sc); 877 } 878 } 879 #endif 880 VTNET_LOCK(sc); 881 882 if (mask & IFCAP_TXCSUM) { 883 ifp->if_capenable ^= IFCAP_TXCSUM; 884 if (ifp->if_capenable & IFCAP_TXCSUM) 885 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 886 else 887 ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD; 888 } 889 890 if (mask & IFCAP_TSO4) { 891 ifp->if_capenable ^= IFCAP_TSO4; 892 if (ifp->if_capenable & IFCAP_TSO4) 893 ifp->if_hwassist |= CSUM_TSO; 894 else 895 ifp->if_hwassist &= ~CSUM_TSO; 896 } 897 898 if (mask & IFCAP_RXCSUM) { 899 ifp->if_capenable ^= IFCAP_RXCSUM; 900 reinit = 1; 901 } 902 903 if (mask & IFCAP_LRO) { 904 ifp->if_capenable ^= IFCAP_LRO; 905 reinit = 1; 906 } 907 908 if (mask & IFCAP_VLAN_HWFILTER) { 909 ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; 910 reinit = 1; 911 } 912 913 if (mask & IFCAP_VLAN_HWTSO) 914 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 915 916 if (mask & IFCAP_VLAN_HWTAGGING) 917 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 918 919 if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 920 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 921 vtnet_init_locked(sc); 922 } 923 VLAN_CAPABILITIES(ifp); 924 925 VTNET_UNLOCK(sc); 926 break; 927 928 default: 929 error = ether_ioctl(ifp, cmd, data); 930 break; 931 } 932 933 VTNET_LOCK_ASSERT_NOTOWNED(sc); 934 935 return (error); 936 } 937 938 static int 939 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu) 940 { 941 struct ifnet *ifp; 942 int new_frame_size, clsize; 943 944 ifp = sc->vtnet_ifp; 945 946 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 947 new_frame_size = sizeof(struct vtnet_rx_header) + 948 sizeof(struct ether_vlan_header) + new_mtu; 949 950 if (new_frame_size > MJUM9BYTES) 951 return (EINVAL); 952 953 if (new_frame_size <= MCLBYTES) 954 clsize = MCLBYTES; 955 else 956 clsize = MJUM9BYTES; 957 } else { 958 new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) + 959 sizeof(struct ether_vlan_header) + new_mtu; 960 961 if (new_frame_size <= MCLBYTES) 962 clsize = MCLBYTES; 963 else 964 clsize = MJUMPAGESIZE; 965 } 966 967 sc->vtnet_rx_mbuf_size = clsize; 968 sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc); 969 KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS, 970 ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count)); 971 972 ifp->if_mtu = new_mtu; 973 974 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 975 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 976 vtnet_init_locked(sc); 977 } 978 979 return (0); 980 } 981 982 static int 983 vtnet_init_rx_vq(struct vtnet_softc *sc) 984 { 985 struct virtqueue *vq; 986 int nbufs, error; 987 988 vq = sc->vtnet_rx_vq; 989 nbufs = 0; 990 error = ENOSPC; 991 992 while (!virtqueue_full(vq)) { 993 if ((error = vtnet_newbuf(sc)) != 0) 994 break; 995 nbufs++; 996 } 997 998 if (nbufs > 0) { 999 virtqueue_notify(vq); 1000 1001 /* 1002 * EMSGSIZE signifies the virtqueue did not have enough 1003 * entries available to hold the last mbuf. This is not 1004 * an error. We should not get ENOSPC since we check if 1005 * the virtqueue is full before attempting to add a 1006 * buffer. 1007 */ 1008 if (error == EMSGSIZE) 1009 error = 0; 1010 } 1011 1012 return (error); 1013 } 1014 1015 static void 1016 vtnet_free_rx_mbufs(struct vtnet_softc *sc) 1017 { 1018 struct virtqueue *vq; 1019 struct mbuf *m; 1020 int last; 1021 1022 vq = sc->vtnet_rx_vq; 1023 last = 0; 1024 1025 while ((m = virtqueue_drain(vq, &last)) != NULL) 1026 m_freem(m); 1027 1028 KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq")); 1029 } 1030 1031 static void 1032 vtnet_free_tx_mbufs(struct vtnet_softc *sc) 1033 { 1034 struct virtqueue *vq; 1035 struct vtnet_tx_header *txhdr; 1036 int last; 1037 1038 vq = sc->vtnet_tx_vq; 1039 last = 0; 1040 1041 while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { 1042 m_freem(txhdr->vth_mbuf); 1043 uma_zfree(vtnet_tx_header_zone, txhdr); 1044 } 1045 1046 KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq")); 1047 } 1048 1049 static void 1050 vtnet_free_ctrl_vq(struct vtnet_softc *sc) 1051 { 1052 1053 /* 1054 * The control virtqueue is only polled, therefore 1055 * it should already be empty. 1056 */ 1057 KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq), 1058 ("Ctrl Vq not empty")); 1059 } 1060 1061 #ifdef DEVICE_POLLING 1062 static int 1063 vtnet_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1064 { 1065 struct vtnet_softc *sc; 1066 int rx_done; 1067 1068 sc = ifp->if_softc; 1069 rx_done = 0; 1070 1071 VTNET_LOCK(sc); 1072 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1073 if (cmd == POLL_AND_CHECK_STATUS) 1074 vtnet_update_link_status(sc); 1075 1076 if (virtqueue_nused(sc->vtnet_rx_vq) > 0) 1077 vtnet_rxeof(sc, count, &rx_done); 1078 1079 vtnet_txeof(sc); 1080 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1081 vtnet_start_locked(ifp); 1082 } 1083 VTNET_UNLOCK(sc); 1084 1085 return (rx_done); 1086 } 1087 #endif /* DEVICE_POLLING */ 1088 1089 static struct mbuf * 1090 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) 1091 { 1092 struct mbuf *m_head, *m_tail, *m; 1093 int i, clsize; 1094 1095 clsize = sc->vtnet_rx_mbuf_size; 1096 1097 m_head = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, clsize); 1098 if (m_head == NULL) 1099 goto fail; 1100 1101 m_head->m_len = clsize; 1102 m_tail = m_head; 1103 1104 if (nbufs > 1) { 1105 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, 1106 ("chained Rx mbuf requested without LRO_NOMRG")); 1107 1108 for (i = 0; i < nbufs - 1; i++) { 1109 m = m_getjcl(M_DONTWAIT, MT_DATA, 0, clsize); 1110 if (m == NULL) 1111 goto fail; 1112 1113 m->m_len = clsize; 1114 m_tail->m_next = m; 1115 m_tail = m; 1116 } 1117 } 1118 1119 if (m_tailp != NULL) 1120 *m_tailp = m_tail; 1121 1122 return (m_head); 1123 1124 fail: 1125 sc->vtnet_stats.mbuf_alloc_failed++; 1126 m_freem(m_head); 1127 1128 return (NULL); 1129 } 1130 1131 static int 1132 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0) 1133 { 1134 struct mbuf *m, *m_prev; 1135 struct mbuf *m_new, *m_tail; 1136 int len, clsize, nreplace, error; 1137 1138 m = m0; 1139 m_prev = NULL; 1140 len = len0; 1141 1142 m_tail = NULL; 1143 clsize = sc->vtnet_rx_mbuf_size; 1144 nreplace = 0; 1145 1146 if (m->m_next != NULL) 1147 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, 1148 ("chained Rx mbuf without LRO_NOMRG")); 1149 1150 /* 1151 * Since LRO_NOMRG mbuf chains are so large, we want to avoid 1152 * allocating an entire chain for each received frame. When 1153 * the received frame's length is less than that of the chain, 1154 * the unused mbufs are reassigned to the new chain. 1155 */ 1156 while (len > 0) { 1157 /* 1158 * Something is seriously wrong if we received 1159 * a frame larger than the mbuf chain. Drop it. 1160 */ 1161 if (m == NULL) { 1162 sc->vtnet_stats.rx_frame_too_large++; 1163 return (EMSGSIZE); 1164 } 1165 1166 KASSERT(m->m_len == clsize, 1167 ("mbuf length not expected cluster size: %d", 1168 m->m_len)); 1169 1170 m->m_len = MIN(m->m_len, len); 1171 len -= m->m_len; 1172 1173 m_prev = m; 1174 m = m->m_next; 1175 nreplace++; 1176 } 1177 1178 KASSERT(m_prev != NULL, ("m_prev == NULL")); 1179 KASSERT(nreplace <= sc->vtnet_rx_mbuf_count, 1180 ("too many replacement mbufs: %d/%d", nreplace, 1181 sc->vtnet_rx_mbuf_count)); 1182 1183 m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail); 1184 if (m_new == NULL) { 1185 m_prev->m_len = clsize; 1186 return (ENOBUFS); 1187 } 1188 1189 /* 1190 * Move unused mbufs, if any, from the original chain 1191 * onto the end of the new chain. 1192 */ 1193 if (m_prev->m_next != NULL) { 1194 m_tail->m_next = m_prev->m_next; 1195 m_prev->m_next = NULL; 1196 } 1197 1198 error = vtnet_enqueue_rxbuf(sc, m_new); 1199 if (error) { 1200 /* 1201 * BAD! We could not enqueue the replacement mbuf chain. We 1202 * must restore the m0 chain to the original state if it was 1203 * modified so we can subsequently discard it. 1204 * 1205 * NOTE: The replacement is suppose to be an identical copy 1206 * to the one just dequeued so this is an unexpected error. 1207 */ 1208 sc->vtnet_stats.rx_enq_replacement_failed++; 1209 1210 if (m_tail->m_next != NULL) { 1211 m_prev->m_next = m_tail->m_next; 1212 m_tail->m_next = NULL; 1213 } 1214 1215 m_prev->m_len = clsize; 1216 m_freem(m_new); 1217 } 1218 1219 return (error); 1220 } 1221 1222 static int 1223 vtnet_newbuf(struct vtnet_softc *sc) 1224 { 1225 struct mbuf *m; 1226 int error; 1227 1228 m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL); 1229 if (m == NULL) 1230 return (ENOBUFS); 1231 1232 error = vtnet_enqueue_rxbuf(sc, m); 1233 if (error) 1234 m_freem(m); 1235 1236 return (error); 1237 } 1238 1239 static void 1240 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs) 1241 { 1242 struct virtqueue *vq; 1243 struct mbuf *m; 1244 1245 vq = sc->vtnet_rx_vq; 1246 1247 while (--nbufs > 0) { 1248 if ((m = virtqueue_dequeue(vq, NULL)) == NULL) 1249 break; 1250 vtnet_discard_rxbuf(sc, m); 1251 } 1252 } 1253 1254 static void 1255 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m) 1256 { 1257 int error; 1258 1259 /* 1260 * Requeue the discarded mbuf. This should always be 1261 * successful since it was just dequeued. 1262 */ 1263 error = vtnet_enqueue_rxbuf(sc, m); 1264 KASSERT(error == 0, ("cannot requeue discarded mbuf")); 1265 } 1266 1267 static int 1268 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m) 1269 { 1270 struct sglist sg; 1271 struct sglist_seg segs[VTNET_MAX_RX_SEGS]; 1272 struct vtnet_rx_header *rxhdr; 1273 struct virtio_net_hdr *hdr; 1274 uint8_t *mdata; 1275 int offset, error; 1276 1277 VTNET_LOCK_ASSERT(sc); 1278 if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0) 1279 KASSERT(m->m_next == NULL, ("chained Rx mbuf")); 1280 1281 sglist_init(&sg, VTNET_MAX_RX_SEGS, segs); 1282 1283 mdata = mtod(m, uint8_t *); 1284 offset = 0; 1285 1286 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1287 rxhdr = (struct vtnet_rx_header *) mdata; 1288 hdr = &rxhdr->vrh_hdr; 1289 offset += sizeof(struct vtnet_rx_header); 1290 1291 error = sglist_append(&sg, hdr, sc->vtnet_hdr_size); 1292 KASSERT(error == 0, ("cannot add header to sglist")); 1293 } 1294 1295 error = sglist_append(&sg, mdata + offset, m->m_len - offset); 1296 if (error) 1297 return (error); 1298 1299 if (m->m_next != NULL) { 1300 error = sglist_append_mbuf(&sg, m->m_next); 1301 if (error) 1302 return (error); 1303 } 1304 1305 return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg)); 1306 } 1307 1308 static void 1309 vtnet_vlan_tag_remove(struct mbuf *m) 1310 { 1311 struct ether_vlan_header *evl; 1312 1313 evl = mtod(m, struct ether_vlan_header *); 1314 1315 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 1316 m->m_flags |= M_VLANTAG; 1317 1318 /* Strip the 802.1Q header. */ 1319 bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN, 1320 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1321 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1322 } 1323 1324 #ifdef notyet 1325 static int 1326 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m, 1327 struct virtio_net_hdr *hdr) 1328 { 1329 struct ether_header *eh; 1330 struct ether_vlan_header *evh; 1331 struct ip *ip; 1332 struct ip6_hdr *ip6; 1333 struct udphdr *udp; 1334 int ip_offset, csum_start, csum_offset, hlen; 1335 uint16_t eth_type; 1336 uint8_t ip_proto; 1337 1338 /* 1339 * Convert the VirtIO checksum interface to FreeBSD's interface. 1340 * The host only provides us with the offset at which to start 1341 * checksumming, and the offset from that to place the completed 1342 * checksum. While this maps well with how Linux does checksums, 1343 * for FreeBSD, we must parse the received packet in order to set 1344 * the appropriate CSUM_* flags. 1345 */ 1346 1347 /* 1348 * Every mbuf added to the receive virtqueue is always at least 1349 * MCLBYTES big, so assume something is amiss if the first mbuf 1350 * does not contain both the Ethernet and protocol headers. 1351 */ 1352 ip_offset = sizeof(struct ether_header); 1353 if (m->m_len < ip_offset) 1354 return (1); 1355 1356 eh = mtod(m, struct ether_header *); 1357 eth_type = ntohs(eh->ether_type); 1358 if (eth_type == ETHERTYPE_VLAN) { 1359 ip_offset = sizeof(struct ether_vlan_header); 1360 if (m->m_len < ip_offset) 1361 return (1); 1362 evh = mtod(m, struct ether_vlan_header *); 1363 eth_type = ntohs(evh->evl_proto); 1364 } 1365 1366 switch (eth_type) { 1367 case ETHERTYPE_IP: 1368 if (m->m_len < ip_offset + sizeof(struct ip)) 1369 return (1); 1370 1371 ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset); 1372 /* Sanity check the IP header. */ 1373 if (ip->ip_v != IPVERSION) 1374 return (1); 1375 hlen = ip->ip_hl << 2; 1376 if (hlen < sizeof(struct ip)) 1377 return (1); 1378 if (ntohs(ip->ip_len) < hlen) 1379 return (1); 1380 if (ntohs(ip->ip_len) != (m->m_pkthdr.len - ip_offset)) 1381 return (1); 1382 1383 ip_proto = ip->ip_p; 1384 csum_start = ip_offset + hlen; 1385 break; 1386 1387 case ETHERTYPE_IPV6: 1388 if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) 1389 return (1); 1390 1391 /* 1392 * XXX FreeBSD does not handle any IPv6 checksum offloading 1393 * at the moment. 1394 */ 1395 1396 ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset); 1397 /* XXX Assume no extension headers are present. */ 1398 ip_proto = ip6->ip6_nxt; 1399 csum_start = ip_offset + sizeof(struct ip6_hdr); 1400 break; 1401 1402 default: 1403 sc->vtnet_stats.rx_csum_bad_ethtype++; 1404 return (1); 1405 } 1406 1407 /* Assume checksum begins right after the IP header. */ 1408 if (hdr->csum_start != csum_start) { 1409 sc->vtnet_stats.rx_csum_bad_start++; 1410 return (1); 1411 } 1412 1413 switch (ip_proto) { 1414 case IPPROTO_TCP: 1415 csum_offset = offsetof(struct tcphdr, th_sum); 1416 break; 1417 1418 case IPPROTO_UDP: 1419 csum_offset = offsetof(struct udphdr, uh_sum); 1420 break; 1421 1422 case IPPROTO_SCTP: 1423 csum_offset = offsetof(struct sctphdr, checksum); 1424 break; 1425 1426 default: 1427 sc->vtnet_stats.rx_csum_bad_ipproto++; 1428 return (1); 1429 } 1430 1431 if (hdr->csum_offset != csum_offset) { 1432 sc->vtnet_stats.rx_csum_bad_offset++; 1433 return (1); 1434 } 1435 1436 /* 1437 * The IP header checksum is almost certainly valid but I'm 1438 * uncertain if that is guaranteed. 1439 * 1440 * m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; 1441 */ 1442 1443 switch (ip_proto) { 1444 case IPPROTO_UDP: 1445 if (m->m_len < csum_start + sizeof(struct udphdr)) 1446 return (1); 1447 1448 udp = (struct udphdr *)(mtod(m, uint8_t *) + csum_start); 1449 if (udp->uh_sum == 0) 1450 return (0); 1451 1452 /* FALLTHROUGH */ 1453 1454 case IPPROTO_TCP: 1455 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1456 m->m_pkthdr.csum_data = 0xFFFF; 1457 break; 1458 1459 case IPPROTO_SCTP: 1460 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1461 break; 1462 } 1463 1464 sc->vtnet_stats.rx_csum_offloaded++; 1465 1466 return (0); 1467 } 1468 #endif 1469 1470 /* 1471 * Alternative method of doing receive checksum offloading. Rather 1472 * than parsing the received frame down to the IP header, use the 1473 * csum_offset to determine which CSUM_* flags are appropriate. We 1474 * can get by with doing this only because the checksum offsets are 1475 * unique for the things we care about. 1476 */ 1477 static int 1478 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m, 1479 struct virtio_net_hdr *hdr) 1480 { 1481 struct ether_header *eh; 1482 struct ether_vlan_header *evh; 1483 struct udphdr *udp; 1484 int csum_len; 1485 uint16_t eth_type; 1486 1487 csum_len = hdr->csum_start + hdr->csum_offset; 1488 1489 if (csum_len < sizeof(struct ether_header) + sizeof(struct ip)) 1490 return (1); 1491 if (m->m_len < csum_len) 1492 return (1); 1493 1494 eh = mtod(m, struct ether_header *); 1495 eth_type = ntohs(eh->ether_type); 1496 if (eth_type == ETHERTYPE_VLAN) { 1497 evh = mtod(m, struct ether_vlan_header *); 1498 eth_type = ntohs(evh->evl_proto); 1499 } 1500 1501 if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) { 1502 sc->vtnet_stats.rx_csum_bad_ethtype++; 1503 return (1); 1504 } 1505 1506 /* Use the offset to determine the appropriate CSUM_* flags. */ 1507 switch (hdr->csum_offset) { 1508 case offsetof(struct udphdr, uh_sum): 1509 if (m->m_len < hdr->csum_start + sizeof(struct udphdr)) 1510 return (1); 1511 udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start); 1512 if (udp->uh_sum == 0) 1513 return (0); 1514 1515 /* FALLTHROUGH */ 1516 1517 case offsetof(struct tcphdr, th_sum): 1518 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1519 m->m_pkthdr.csum_data = 0xFFFF; 1520 break; 1521 1522 case offsetof(struct sctphdr, checksum): 1523 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1524 break; 1525 1526 default: 1527 sc->vtnet_stats.rx_csum_bad_offset++; 1528 return (1); 1529 } 1530 1531 sc->vtnet_stats.rx_csum_offloaded++; 1532 1533 return (0); 1534 } 1535 1536 static int 1537 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs) 1538 { 1539 struct ifnet *ifp; 1540 struct virtqueue *vq; 1541 struct mbuf *m, *m_tail; 1542 int len; 1543 1544 ifp = sc->vtnet_ifp; 1545 vq = sc->vtnet_rx_vq; 1546 m_tail = m_head; 1547 1548 while (--nbufs > 0) { 1549 m = virtqueue_dequeue(vq, &len); 1550 if (m == NULL) { 1551 ifp->if_ierrors++; 1552 goto fail; 1553 } 1554 1555 if (vtnet_newbuf(sc) != 0) { 1556 ifp->if_iqdrops++; 1557 vtnet_discard_rxbuf(sc, m); 1558 if (nbufs > 1) 1559 vtnet_discard_merged_rxbuf(sc, nbufs); 1560 goto fail; 1561 } 1562 1563 if (m->m_len < len) 1564 len = m->m_len; 1565 1566 m->m_len = len; 1567 m->m_flags &= ~M_PKTHDR; 1568 1569 m_head->m_pkthdr.len += len; 1570 m_tail->m_next = m; 1571 m_tail = m; 1572 } 1573 1574 return (0); 1575 1576 fail: 1577 sc->vtnet_stats.rx_mergeable_failed++; 1578 m_freem(m_head); 1579 1580 return (1); 1581 } 1582 1583 static int 1584 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp) 1585 { 1586 struct virtio_net_hdr lhdr; 1587 struct ifnet *ifp; 1588 struct virtqueue *vq; 1589 struct mbuf *m; 1590 struct ether_header *eh; 1591 struct virtio_net_hdr *hdr; 1592 struct virtio_net_hdr_mrg_rxbuf *mhdr; 1593 int len, deq, nbufs, adjsz, rx_npkts; 1594 1595 ifp = sc->vtnet_ifp; 1596 vq = sc->vtnet_rx_vq; 1597 hdr = &lhdr; 1598 deq = 0; 1599 rx_npkts = 0; 1600 1601 VTNET_LOCK_ASSERT(sc); 1602 1603 while (--count >= 0) { 1604 m = virtqueue_dequeue(vq, &len); 1605 if (m == NULL) 1606 break; 1607 deq++; 1608 1609 if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { 1610 ifp->if_ierrors++; 1611 vtnet_discard_rxbuf(sc, m); 1612 continue; 1613 } 1614 1615 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) { 1616 nbufs = 1; 1617 adjsz = sizeof(struct vtnet_rx_header); 1618 /* 1619 * Account for our pad between the header and 1620 * the actual start of the frame. 1621 */ 1622 len += VTNET_RX_HEADER_PAD; 1623 } else { 1624 mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); 1625 nbufs = mhdr->num_buffers; 1626 adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); 1627 } 1628 1629 if (vtnet_replace_rxbuf(sc, m, len) != 0) { 1630 ifp->if_iqdrops++; 1631 vtnet_discard_rxbuf(sc, m); 1632 if (nbufs > 1) 1633 vtnet_discard_merged_rxbuf(sc, nbufs); 1634 continue; 1635 } 1636 1637 m->m_pkthdr.len = len; 1638 m->m_pkthdr.rcvif = ifp; 1639 m->m_pkthdr.csum_flags = 0; 1640 1641 if (nbufs > 1) { 1642 if (vtnet_rxeof_merged(sc, m, nbufs) != 0) 1643 continue; 1644 } 1645 1646 ifp->if_ipackets++; 1647 1648 /* 1649 * Save copy of header before we strip it. For both mergeable 1650 * and non-mergeable, the VirtIO header is placed first in the 1651 * mbuf's data. We no longer need num_buffers, so always use a 1652 * virtio_net_hdr. 1653 */ 1654 memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr)); 1655 m_adj(m, adjsz); 1656 1657 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 1658 eh = mtod(m, struct ether_header *); 1659 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1660 vtnet_vlan_tag_remove(m); 1661 1662 /* 1663 * With the 802.1Q header removed, update the 1664 * checksum starting location accordingly. 1665 */ 1666 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) 1667 hdr->csum_start -= 1668 ETHER_VLAN_ENCAP_LEN; 1669 } 1670 } 1671 1672 if (ifp->if_capenable & IFCAP_RXCSUM && 1673 hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1674 if (vtnet_rx_csum(sc, m, hdr) != 0) 1675 sc->vtnet_stats.rx_csum_failed++; 1676 } 1677 1678 VTNET_UNLOCK(sc); 1679 rx_npkts++; 1680 (*ifp->if_input)(ifp, m); 1681 VTNET_LOCK(sc); 1682 1683 /* 1684 * The interface may have been stopped while we were 1685 * passing the packet up the network stack. 1686 */ 1687 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1688 break; 1689 } 1690 1691 virtqueue_notify(vq); 1692 1693 if (rx_npktsp != NULL) 1694 *rx_npktsp = rx_npkts; 1695 1696 return (count > 0 ? 0 : EAGAIN); 1697 } 1698 1699 static void 1700 vtnet_rx_intr_task(void *arg, int pending) 1701 { 1702 struct vtnet_softc *sc; 1703 struct ifnet *ifp; 1704 int more; 1705 1706 sc = arg; 1707 ifp = sc->vtnet_ifp; 1708 1709 VTNET_LOCK(sc); 1710 1711 #ifdef DEVICE_POLLING 1712 if (ifp->if_capenable & IFCAP_POLLING) { 1713 VTNET_UNLOCK(sc); 1714 return; 1715 } 1716 #endif 1717 1718 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1719 vtnet_enable_rx_intr(sc); 1720 VTNET_UNLOCK(sc); 1721 return; 1722 } 1723 1724 more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL); 1725 if (!more && vtnet_enable_rx_intr(sc) != 0) { 1726 vtnet_disable_rx_intr(sc); 1727 more = 1; 1728 } 1729 1730 VTNET_UNLOCK(sc); 1731 1732 if (more) { 1733 sc->vtnet_stats.rx_task_rescheduled++; 1734 taskqueue_enqueue_fast(sc->vtnet_tq, 1735 &sc->vtnet_rx_intr_task); 1736 } 1737 } 1738 1739 static int 1740 vtnet_rx_vq_intr(void *xsc) 1741 { 1742 struct vtnet_softc *sc; 1743 1744 sc = xsc; 1745 1746 vtnet_disable_rx_intr(sc); 1747 taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_rx_intr_task); 1748 1749 return (1); 1750 } 1751 1752 static void 1753 vtnet_txeof(struct vtnet_softc *sc) 1754 { 1755 struct virtqueue *vq; 1756 struct ifnet *ifp; 1757 struct vtnet_tx_header *txhdr; 1758 int deq; 1759 1760 vq = sc->vtnet_tx_vq; 1761 ifp = sc->vtnet_ifp; 1762 deq = 0; 1763 1764 VTNET_LOCK_ASSERT(sc); 1765 1766 while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { 1767 deq++; 1768 ifp->if_opackets++; 1769 m_freem(txhdr->vth_mbuf); 1770 uma_zfree(vtnet_tx_header_zone, txhdr); 1771 } 1772 1773 if (deq > 0) { 1774 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1775 if (virtqueue_empty(vq)) 1776 sc->vtnet_watchdog_timer = 0; 1777 } 1778 } 1779 1780 static struct mbuf * 1781 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m, 1782 struct virtio_net_hdr *hdr) 1783 { 1784 struct ifnet *ifp; 1785 struct ether_header *eh; 1786 struct ether_vlan_header *evh; 1787 struct ip *ip; 1788 struct ip6_hdr *ip6; 1789 struct tcphdr *tcp; 1790 int ip_offset; 1791 uint16_t eth_type, csum_start; 1792 uint8_t ip_proto, gso_type; 1793 1794 ifp = sc->vtnet_ifp; 1795 M_ASSERTPKTHDR(m); 1796 1797 ip_offset = sizeof(struct ether_header); 1798 if (m->m_len < ip_offset) { 1799 if ((m = m_pullup(m, ip_offset)) == NULL) 1800 return (NULL); 1801 } 1802 1803 eh = mtod(m, struct ether_header *); 1804 eth_type = ntohs(eh->ether_type); 1805 if (eth_type == ETHERTYPE_VLAN) { 1806 ip_offset = sizeof(struct ether_vlan_header); 1807 if (m->m_len < ip_offset) { 1808 if ((m = m_pullup(m, ip_offset)) == NULL) 1809 return (NULL); 1810 } 1811 evh = mtod(m, struct ether_vlan_header *); 1812 eth_type = ntohs(evh->evl_proto); 1813 } 1814 1815 switch (eth_type) { 1816 case ETHERTYPE_IP: 1817 if (m->m_len < ip_offset + sizeof(struct ip)) { 1818 m = m_pullup(m, ip_offset + sizeof(struct ip)); 1819 if (m == NULL) 1820 return (NULL); 1821 } 1822 1823 ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset); 1824 ip_proto = ip->ip_p; 1825 csum_start = ip_offset + (ip->ip_hl << 2); 1826 gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 1827 break; 1828 1829 case ETHERTYPE_IPV6: 1830 if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) { 1831 m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr)); 1832 if (m == NULL) 1833 return (NULL); 1834 } 1835 1836 ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset); 1837 /* 1838 * XXX Assume no extension headers are present. Presently, 1839 * this will always be true in the case of TSO, and FreeBSD 1840 * does not perform checksum offloading of IPv6 yet. 1841 */ 1842 ip_proto = ip6->ip6_nxt; 1843 csum_start = ip_offset + sizeof(struct ip6_hdr); 1844 gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 1845 break; 1846 1847 default: 1848 return (m); 1849 } 1850 1851 if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) { 1852 hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; 1853 hdr->csum_start = csum_start; 1854 hdr->csum_offset = m->m_pkthdr.csum_data; 1855 1856 sc->vtnet_stats.tx_csum_offloaded++; 1857 } 1858 1859 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1860 if (ip_proto != IPPROTO_TCP) 1861 return (m); 1862 1863 if (m->m_len < csum_start + sizeof(struct tcphdr)) { 1864 m = m_pullup(m, csum_start + sizeof(struct tcphdr)); 1865 if (m == NULL) 1866 return (NULL); 1867 } 1868 1869 tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start); 1870 hdr->gso_type = gso_type; 1871 hdr->hdr_len = csum_start + (tcp->th_off << 2); 1872 hdr->gso_size = m->m_pkthdr.tso_segsz; 1873 1874 if (tcp->th_flags & TH_CWR) { 1875 /* 1876 * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN. 1877 * ECN support is only configurable globally with the 1878 * net.inet.tcp.ecn.enable sysctl knob. 1879 */ 1880 if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { 1881 if_printf(ifp, "TSO with ECN not supported " 1882 "by host\n"); 1883 m_freem(m); 1884 return (NULL); 1885 } 1886 1887 hdr->flags |= VIRTIO_NET_HDR_GSO_ECN; 1888 } 1889 1890 sc->vtnet_stats.tx_tso_offloaded++; 1891 } 1892 1893 return (m); 1894 } 1895 1896 static int 1897 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head, 1898 struct vtnet_tx_header *txhdr) 1899 { 1900 struct sglist sg; 1901 struct sglist_seg segs[VTNET_MAX_TX_SEGS]; 1902 struct virtqueue *vq; 1903 struct mbuf *m; 1904 int collapsed, error; 1905 1906 vq = sc->vtnet_tx_vq; 1907 m = *m_head; 1908 collapsed = 0; 1909 1910 sglist_init(&sg, VTNET_MAX_TX_SEGS, segs); 1911 error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); 1912 KASSERT(error == 0 && sg.sg_nseg == 1, 1913 ("cannot add header to sglist")); 1914 1915 again: 1916 error = sglist_append_mbuf(&sg, m); 1917 if (error) { 1918 if (collapsed) 1919 goto fail; 1920 1921 m = m_collapse(m, M_DONTWAIT, VTNET_MAX_TX_SEGS - 1); 1922 if (m == NULL) 1923 goto fail; 1924 1925 *m_head = m; 1926 collapsed = 1; 1927 goto again; 1928 } 1929 1930 txhdr->vth_mbuf = m; 1931 1932 return (virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0)); 1933 1934 fail: 1935 m_freem(*m_head); 1936 *m_head = NULL; 1937 1938 return (ENOBUFS); 1939 } 1940 1941 static int 1942 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head) 1943 { 1944 struct vtnet_tx_header *txhdr; 1945 struct virtio_net_hdr *hdr; 1946 struct mbuf *m; 1947 int error; 1948 1949 txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO); 1950 if (txhdr == NULL) 1951 return (ENOMEM); 1952 1953 /* 1954 * Always use the non-mergeable header to simplify things. When 1955 * the mergeable feature is negotiated, the num_buffers field 1956 * must be set to zero. We use vtnet_hdr_size later to enqueue 1957 * the correct header size to the host. 1958 */ 1959 hdr = &txhdr->vth_uhdr.hdr; 1960 m = *m_head; 1961 1962 error = ENOBUFS; 1963 1964 if (m->m_flags & M_VLANTAG) { 1965 m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); 1966 if ((*m_head = m) == NULL) 1967 goto fail; 1968 m->m_flags &= ~M_VLANTAG; 1969 } 1970 1971 if (m->m_pkthdr.csum_flags != 0) { 1972 m = vtnet_tx_offload(sc, m, hdr); 1973 if ((*m_head = m) == NULL) 1974 goto fail; 1975 } 1976 1977 error = vtnet_enqueue_txbuf(sc, m_head, txhdr); 1978 fail: 1979 if (error) 1980 uma_zfree(vtnet_tx_header_zone, txhdr); 1981 1982 return (error); 1983 } 1984 1985 static void 1986 vtnet_start(struct ifnet *ifp) 1987 { 1988 struct vtnet_softc *sc; 1989 1990 sc = ifp->if_softc; 1991 1992 VTNET_LOCK(sc); 1993 vtnet_start_locked(ifp); 1994 VTNET_UNLOCK(sc); 1995 } 1996 1997 static void 1998 vtnet_start_locked(struct ifnet *ifp) 1999 { 2000 struct vtnet_softc *sc; 2001 struct virtqueue *vq; 2002 struct mbuf *m0; 2003 int enq; 2004 2005 sc = ifp->if_softc; 2006 vq = sc->vtnet_tx_vq; 2007 enq = 0; 2008 2009 VTNET_LOCK_ASSERT(sc); 2010 2011 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2012 IFF_DRV_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) 2013 return; 2014 2015 #ifdef VTNET_TX_INTR_MODERATION 2016 if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2) 2017 vtnet_txeof(sc); 2018 #endif 2019 2020 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 2021 if (virtqueue_full(vq)) { 2022 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2023 break; 2024 } 2025 2026 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2027 if (m0 == NULL) 2028 break; 2029 2030 if (vtnet_encap(sc, &m0) != 0) { 2031 if (m0 == NULL) 2032 break; 2033 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2034 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2035 break; 2036 } 2037 2038 enq++; 2039 ETHER_BPF_MTAP(ifp, m0); 2040 } 2041 2042 if (enq > 0) { 2043 virtqueue_notify(vq); 2044 sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT; 2045 } 2046 } 2047 2048 static void 2049 vtnet_tick(void *xsc) 2050 { 2051 struct vtnet_softc *sc; 2052 2053 sc = xsc; 2054 2055 VTNET_LOCK_ASSERT(sc); 2056 #ifdef VTNET_DEBUG 2057 virtqueue_dump(sc->vtnet_rx_vq); 2058 virtqueue_dump(sc->vtnet_tx_vq); 2059 #endif 2060 2061 vtnet_watchdog(sc); 2062 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 2063 } 2064 2065 static void 2066 vtnet_tx_intr_task(void *arg, int pending) 2067 { 2068 struct vtnet_softc *sc; 2069 struct ifnet *ifp; 2070 2071 sc = arg; 2072 ifp = sc->vtnet_ifp; 2073 2074 VTNET_LOCK(sc); 2075 2076 #ifdef DEVICE_POLLING 2077 if (ifp->if_capenable & IFCAP_POLLING) { 2078 VTNET_UNLOCK(sc); 2079 return; 2080 } 2081 #endif 2082 2083 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2084 vtnet_enable_tx_intr(sc); 2085 VTNET_UNLOCK(sc); 2086 return; 2087 } 2088 2089 vtnet_txeof(sc); 2090 2091 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2092 vtnet_start_locked(ifp); 2093 2094 if (vtnet_enable_tx_intr(sc) != 0) { 2095 vtnet_disable_tx_intr(sc); 2096 sc->vtnet_stats.tx_task_rescheduled++; 2097 VTNET_UNLOCK(sc); 2098 taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_tx_intr_task); 2099 return; 2100 } 2101 2102 VTNET_UNLOCK(sc); 2103 } 2104 2105 static int 2106 vtnet_tx_vq_intr(void *xsc) 2107 { 2108 struct vtnet_softc *sc; 2109 2110 sc = xsc; 2111 2112 vtnet_disable_tx_intr(sc); 2113 taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_tx_intr_task); 2114 2115 return (1); 2116 } 2117 2118 static void 2119 vtnet_stop(struct vtnet_softc *sc) 2120 { 2121 device_t dev; 2122 struct ifnet *ifp; 2123 2124 dev = sc->vtnet_dev; 2125 ifp = sc->vtnet_ifp; 2126 2127 VTNET_LOCK_ASSERT(sc); 2128 2129 sc->vtnet_watchdog_timer = 0; 2130 callout_stop(&sc->vtnet_tick_ch); 2131 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2132 2133 vtnet_disable_rx_intr(sc); 2134 vtnet_disable_tx_intr(sc); 2135 2136 /* 2137 * Stop the host VirtIO adapter. Note this will reset the host 2138 * adapter's state back to the pre-initialized state, so in 2139 * order to make the device usable again, we must drive it 2140 * through virtio_reinit() and virtio_reinit_complete(). 2141 */ 2142 virtio_stop(dev); 2143 2144 sc->vtnet_flags &= ~VTNET_FLAG_LINK; 2145 2146 vtnet_free_rx_mbufs(sc); 2147 vtnet_free_tx_mbufs(sc); 2148 } 2149 2150 static int 2151 vtnet_reinit(struct vtnet_softc *sc) 2152 { 2153 struct ifnet *ifp; 2154 uint64_t features; 2155 2156 ifp = sc->vtnet_ifp; 2157 features = sc->vtnet_features; 2158 2159 /* 2160 * Re-negotiate with the host, removing any disabled receive 2161 * features. Transmit features are disabled only on our side 2162 * via if_capenable and if_hwassist. 2163 */ 2164 2165 if (ifp->if_capabilities & IFCAP_RXCSUM) { 2166 if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) 2167 features &= ~VIRTIO_NET_F_GUEST_CSUM; 2168 } 2169 2170 if (ifp->if_capabilities & IFCAP_LRO) { 2171 if ((ifp->if_capenable & IFCAP_LRO) == 0) 2172 features &= ~VTNET_LRO_FEATURES; 2173 } 2174 2175 if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) { 2176 if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) 2177 features &= ~VIRTIO_NET_F_CTRL_VLAN; 2178 } 2179 2180 return (virtio_reinit(sc->vtnet_dev, features)); 2181 } 2182 2183 static void 2184 vtnet_init_locked(struct vtnet_softc *sc) 2185 { 2186 device_t dev; 2187 struct ifnet *ifp; 2188 int error; 2189 2190 dev = sc->vtnet_dev; 2191 ifp = sc->vtnet_ifp; 2192 2193 VTNET_LOCK_ASSERT(sc); 2194 2195 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2196 return; 2197 2198 /* Stop host's adapter, cancel any pending I/O. */ 2199 vtnet_stop(sc); 2200 2201 /* Reinitialize the host device. */ 2202 error = vtnet_reinit(sc); 2203 if (error) { 2204 device_printf(dev, 2205 "reinitialization failed, stopping device...\n"); 2206 vtnet_stop(sc); 2207 return; 2208 } 2209 2210 /* Update host with assigned MAC address. */ 2211 bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); 2212 vtnet_set_hwaddr(sc); 2213 2214 ifp->if_hwassist = 0; 2215 if (ifp->if_capenable & IFCAP_TXCSUM) 2216 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD; 2217 if (ifp->if_capenable & IFCAP_TSO4) 2218 ifp->if_hwassist |= CSUM_TSO; 2219 2220 error = vtnet_init_rx_vq(sc); 2221 if (error) { 2222 device_printf(dev, 2223 "cannot allocate mbufs for Rx virtqueue\n"); 2224 vtnet_stop(sc); 2225 return; 2226 } 2227 2228 if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { 2229 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { 2230 /* Restore promiscuous and all-multicast modes. */ 2231 vtnet_rx_filter(sc); 2232 2233 /* Restore filtered MAC addresses. */ 2234 vtnet_rx_filter_mac(sc); 2235 } 2236 2237 /* Restore VLAN filters. */ 2238 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) 2239 vtnet_rx_filter_vlan(sc); 2240 } 2241 2242 #ifdef DEVICE_POLLING 2243 if (ifp->if_capenable & IFCAP_POLLING) { 2244 vtnet_disable_rx_intr(sc); 2245 vtnet_disable_tx_intr(sc); 2246 } else 2247 #endif 2248 { 2249 vtnet_enable_rx_intr(sc); 2250 vtnet_enable_tx_intr(sc); 2251 } 2252 2253 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2254 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2255 2256 virtio_reinit_complete(dev); 2257 2258 vtnet_update_link_status(sc); 2259 callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); 2260 } 2261 2262 static void 2263 vtnet_init(void *xsc) 2264 { 2265 struct vtnet_softc *sc; 2266 2267 sc = xsc; 2268 2269 VTNET_LOCK(sc); 2270 vtnet_init_locked(sc); 2271 VTNET_UNLOCK(sc); 2272 } 2273 2274 static void 2275 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, 2276 struct sglist *sg, int readable, int writable) 2277 { 2278 struct virtqueue *vq; 2279 void *c; 2280 2281 vq = sc->vtnet_ctrl_vq; 2282 2283 VTNET_LOCK_ASSERT(sc); 2284 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ, 2285 ("no control virtqueue")); 2286 KASSERT(virtqueue_empty(vq), 2287 ("control command already enqueued")); 2288 2289 if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0) 2290 return; 2291 2292 virtqueue_notify(vq); 2293 2294 /* 2295 * Poll until the command is complete. Previously, we would 2296 * sleep until the control virtqueue interrupt handler woke 2297 * us up, but dropping the VTNET_MTX leads to serialization 2298 * difficulties. 2299 * 2300 * Furthermore, it appears QEMU/KVM only allocates three MSIX 2301 * vectors. Two of those vectors are needed for the Rx and Tx 2302 * virtqueues. We do not support sharing both a Vq and config 2303 * changed notification on the same MSIX vector. 2304 */ 2305 c = virtqueue_poll(vq, NULL); 2306 KASSERT(c == cookie, ("unexpected control command response")); 2307 } 2308 2309 static void 2310 vtnet_rx_filter(struct vtnet_softc *sc) 2311 { 2312 device_t dev; 2313 struct ifnet *ifp; 2314 2315 dev = sc->vtnet_dev; 2316 ifp = sc->vtnet_ifp; 2317 2318 VTNET_LOCK_ASSERT(sc); 2319 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 2320 ("CTRL_RX feature not negotiated")); 2321 2322 if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0) 2323 device_printf(dev, "cannot %s promiscuous mode\n", 2324 ifp->if_flags & IFF_PROMISC ? "enable" : "disable"); 2325 2326 if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0) 2327 device_printf(dev, "cannot %s all-multicast mode\n", 2328 ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable"); 2329 } 2330 2331 static int 2332 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on) 2333 { 2334 struct virtio_net_ctrl_hdr hdr; 2335 struct sglist_seg segs[3]; 2336 struct sglist sg; 2337 uint8_t onoff, ack; 2338 int error; 2339 2340 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) 2341 return (ENOTSUP); 2342 2343 error = 0; 2344 2345 hdr.class = VIRTIO_NET_CTRL_RX; 2346 hdr.cmd = cmd; 2347 onoff = !!on; 2348 ack = VIRTIO_NET_ERR; 2349 2350 sglist_init(&sg, 3, segs); 2351 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2352 error |= sglist_append(&sg, &onoff, sizeof(uint8_t)); 2353 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2354 KASSERT(error == 0 && sg.sg_nseg == 3, 2355 ("error adding Rx filter message to sglist")); 2356 2357 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2358 2359 return (ack == VIRTIO_NET_OK ? 0 : EIO); 2360 } 2361 2362 static int 2363 vtnet_set_promisc(struct vtnet_softc *sc, int on) 2364 { 2365 2366 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); 2367 } 2368 2369 static int 2370 vtnet_set_allmulti(struct vtnet_softc *sc, int on) 2371 { 2372 2373 return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); 2374 } 2375 2376 static void 2377 vtnet_rx_filter_mac(struct vtnet_softc *sc) 2378 { 2379 struct virtio_net_ctrl_hdr hdr; 2380 struct vtnet_mac_filter *filter; 2381 struct sglist_seg segs[4]; 2382 struct sglist sg; 2383 struct ifnet *ifp; 2384 struct ifaddr *ifa; 2385 struct ifmultiaddr *ifma; 2386 int ucnt, mcnt, promisc, allmulti, error; 2387 uint8_t ack; 2388 2389 ifp = sc->vtnet_ifp; 2390 ucnt = 0; 2391 mcnt = 0; 2392 promisc = 0; 2393 allmulti = 0; 2394 error = 0; 2395 2396 VTNET_LOCK_ASSERT(sc); 2397 KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX, 2398 ("CTRL_RX feature not negotiated")); 2399 2400 /* 2401 * Allocate the MAC filtering table. Note we could do this 2402 * at attach time, but it is probably not worth keeping it 2403 * around for an infrequent occurrence. 2404 */ 2405 filter = malloc(sizeof(struct vtnet_mac_filter), M_DEVBUF, 2406 M_NOWAIT | M_ZERO); 2407 if (filter == NULL) { 2408 device_printf(sc->vtnet_dev, 2409 "cannot allocate MAC address filtering table\n"); 2410 return; 2411 } 2412 2413 /* Unicast MAC addresses: */ 2414 if_addr_rlock(ifp); 2415 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2416 if (ifa->ifa_addr->sa_family != AF_LINK) 2417 continue; 2418 else if (ucnt == VTNET_MAX_MAC_ENTRIES) 2419 break; 2420 2421 bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 2422 &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); 2423 ucnt++; 2424 } 2425 if_addr_runlock(ifp); 2426 2427 if (ucnt >= VTNET_MAX_MAC_ENTRIES) { 2428 promisc = 1; 2429 filter->vmf_unicast.nentries = 0; 2430 2431 if_printf(ifp, "more than %d MAC addresses assigned, " 2432 "falling back to promiscuous mode\n", 2433 VTNET_MAX_MAC_ENTRIES); 2434 } else 2435 filter->vmf_unicast.nentries = ucnt; 2436 2437 /* Multicast MAC addresses: */ 2438 if_maddr_rlock(ifp); 2439 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2440 if (ifma->ifma_addr->sa_family != AF_LINK) 2441 continue; 2442 else if (mcnt == VTNET_MAX_MAC_ENTRIES) 2443 break; 2444 2445 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2446 &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); 2447 mcnt++; 2448 } 2449 if_maddr_runlock(ifp); 2450 2451 if (mcnt >= VTNET_MAX_MAC_ENTRIES) { 2452 allmulti = 1; 2453 filter->vmf_multicast.nentries = 0; 2454 2455 if_printf(ifp, "more than %d multicast MAC addresses " 2456 "assigned, falling back to all-multicast mode\n", 2457 VTNET_MAX_MAC_ENTRIES); 2458 } else 2459 filter->vmf_multicast.nentries = mcnt; 2460 2461 if (promisc && allmulti) 2462 goto out; 2463 2464 hdr.class = VIRTIO_NET_CTRL_MAC; 2465 hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 2466 ack = VIRTIO_NET_ERR; 2467 2468 sglist_init(&sg, 4, segs); 2469 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2470 error |= sglist_append(&sg, &filter->vmf_unicast, 2471 sizeof(struct vtnet_mac_table)); 2472 error |= sglist_append(&sg, &filter->vmf_multicast, 2473 sizeof(struct vtnet_mac_table)); 2474 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2475 KASSERT(error == 0 && sg.sg_nseg == 4, 2476 ("error adding MAC filtering message to sglist")); 2477 2478 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2479 2480 if (ack != VIRTIO_NET_OK) 2481 if_printf(ifp, "error setting host MAC filter table\n"); 2482 2483 out: 2484 free(filter, M_DEVBUF); 2485 2486 if (promisc) 2487 if (vtnet_set_promisc(sc, 1) != 0) 2488 if_printf(ifp, "cannot enable promiscuous mode\n"); 2489 if (allmulti) 2490 if (vtnet_set_allmulti(sc, 1) != 0) 2491 if_printf(ifp, "cannot enable all-multicast mode\n"); 2492 } 2493 2494 static int 2495 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 2496 { 2497 struct virtio_net_ctrl_hdr hdr; 2498 struct sglist_seg segs[3]; 2499 struct sglist sg; 2500 uint8_t ack; 2501 int error; 2502 2503 hdr.class = VIRTIO_NET_CTRL_VLAN; 2504 hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; 2505 ack = VIRTIO_NET_ERR; 2506 error = 0; 2507 2508 sglist_init(&sg, 3, segs); 2509 error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); 2510 error |= sglist_append(&sg, &tag, sizeof(uint16_t)); 2511 error |= sglist_append(&sg, &ack, sizeof(uint8_t)); 2512 KASSERT(error == 0 && sg.sg_nseg == 3, 2513 ("error adding VLAN control message to sglist")); 2514 2515 vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); 2516 2517 return (ack == VIRTIO_NET_OK ? 0 : EIO); 2518 } 2519 2520 static void 2521 vtnet_rx_filter_vlan(struct vtnet_softc *sc) 2522 { 2523 device_t dev; 2524 uint32_t w, mask; 2525 uint16_t tag; 2526 int i, nvlans, error; 2527 2528 VTNET_LOCK_ASSERT(sc); 2529 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 2530 ("VLAN_FILTER feature not negotiated")); 2531 2532 dev = sc->vtnet_dev; 2533 nvlans = sc->vtnet_nvlans; 2534 error = 0; 2535 2536 /* Enable filtering for each configured VLAN. */ 2537 for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) { 2538 w = sc->vtnet_vlan_shadow[i]; 2539 for (mask = 1, tag = i * 32; w != 0; mask <<= 1, tag++) { 2540 if ((w & mask) != 0) { 2541 w &= ~mask; 2542 nvlans--; 2543 if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) 2544 error++; 2545 } 2546 } 2547 } 2548 2549 KASSERT(nvlans == 0, ("VLAN count incorrect")); 2550 if (error) 2551 device_printf(dev, "cannot restore VLAN filter table\n"); 2552 } 2553 2554 static void 2555 vtnet_set_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) 2556 { 2557 struct ifnet *ifp; 2558 int idx, bit; 2559 2560 KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER, 2561 ("VLAN_FILTER feature not negotiated")); 2562 2563 if ((tag == 0) || (tag > 4095)) 2564 return; 2565 2566 ifp = sc->vtnet_ifp; 2567 idx = (tag >> 5) & 0x7F; 2568 bit = tag & 0x1F; 2569 2570 VTNET_LOCK(sc); 2571 2572 /* Update shadow VLAN table. */ 2573 if (add) { 2574 sc->vtnet_nvlans++; 2575 sc->vtnet_vlan_shadow[idx] |= (1 << bit); 2576 } else { 2577 sc->vtnet_nvlans--; 2578 sc->vtnet_vlan_shadow[idx] &= ~(1 << bit); 2579 } 2580 2581 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) { 2582 if (vtnet_exec_vlan_filter(sc, add, tag) != 0) { 2583 device_printf(sc->vtnet_dev, 2584 "cannot %s VLAN %d %s the host filter table\n", 2585 add ? "add" : "remove", tag, 2586 add ? "to" : "from"); 2587 } 2588 } 2589 2590 VTNET_UNLOCK(sc); 2591 } 2592 2593 static void 2594 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 2595 { 2596 2597 if (ifp->if_softc != arg) 2598 return; 2599 2600 vtnet_set_vlan_filter(arg, 1, tag); 2601 } 2602 2603 static void 2604 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag) 2605 { 2606 2607 if (ifp->if_softc != arg) 2608 return; 2609 2610 vtnet_set_vlan_filter(arg, 0, tag); 2611 } 2612 2613 static int 2614 vtnet_ifmedia_upd(struct ifnet *ifp) 2615 { 2616 struct vtnet_softc *sc; 2617 struct ifmedia *ifm; 2618 2619 sc = ifp->if_softc; 2620 ifm = &sc->vtnet_media; 2621 2622 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2623 return (EINVAL); 2624 2625 return (0); 2626 } 2627 2628 static void 2629 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2630 { 2631 struct vtnet_softc *sc; 2632 2633 sc = ifp->if_softc; 2634 2635 ifmr->ifm_status = IFM_AVALID; 2636 ifmr->ifm_active = IFM_ETHER; 2637 2638 VTNET_LOCK(sc); 2639 if (vtnet_is_link_up(sc) != 0) { 2640 ifmr->ifm_status |= IFM_ACTIVE; 2641 ifmr->ifm_active |= VTNET_MEDIATYPE; 2642 } else 2643 ifmr->ifm_active |= IFM_NONE; 2644 VTNET_UNLOCK(sc); 2645 } 2646 2647 static void 2648 vtnet_add_statistics(struct vtnet_softc *sc) 2649 { 2650 device_t dev; 2651 struct vtnet_statistics *stats; 2652 struct sysctl_ctx_list *ctx; 2653 struct sysctl_oid *tree; 2654 struct sysctl_oid_list *child; 2655 2656 dev = sc->vtnet_dev; 2657 stats = &sc->vtnet_stats; 2658 ctx = device_get_sysctl_ctx(dev); 2659 tree = device_get_sysctl_tree(dev); 2660 child = SYSCTL_CHILDREN(tree); 2661 2662 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_failed", 2663 CTLFLAG_RD, &stats->mbuf_alloc_failed, 2664 "Mbuf cluster allocation failures"); 2665 2666 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_frame_too_large", 2667 CTLFLAG_RD, &stats->rx_frame_too_large, 2668 "Received frame larger than the mbuf chain"); 2669 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_enq_replacement_failed", 2670 CTLFLAG_RD, &stats->rx_enq_replacement_failed, 2671 "Enqueuing the replacement receive mbuf failed"); 2672 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_mergeable_failed", 2673 CTLFLAG_RD, &stats->rx_mergeable_failed, 2674 "Mergeable buffers receive failures"); 2675 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", 2676 CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 2677 "Received checksum offloaded buffer with unsupported " 2678 "Ethernet type"); 2679 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_start", 2680 CTLFLAG_RD, &stats->rx_csum_bad_start, 2681 "Received checksum offloaded buffer with incorrect start offset"); 2682 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", 2683 CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 2684 "Received checksum offloaded buffer with incorrect IP protocol"); 2685 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_offset", 2686 CTLFLAG_RD, &stats->rx_csum_bad_offset, 2687 "Received checksum offloaded buffer with incorrect offset"); 2688 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_failed", 2689 CTLFLAG_RD, &stats->rx_csum_failed, 2690 "Received buffer checksum offload failed"); 2691 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_offloaded", 2692 CTLFLAG_RD, &stats->rx_csum_offloaded, 2693 "Received buffer checksum offload succeeded"); 2694 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_task_rescheduled", 2695 CTLFLAG_RD, &stats->rx_task_rescheduled, 2696 "Times the receive interrupt task rescheduled itself"); 2697 2698 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_offloaded", 2699 CTLFLAG_RD, &stats->tx_csum_offloaded, 2700 "Offloaded checksum of transmitted buffer"); 2701 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_offloaded", 2702 CTLFLAG_RD, &stats->tx_tso_offloaded, 2703 "Segmentation offload of transmitted buffer"); 2704 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_bad_ethtype", 2705 CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 2706 "Aborted transmit of checksum offloaded buffer with unknown " 2707 "Ethernet type"); 2708 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_bad_ethtype", 2709 CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 2710 "Aborted transmit of TSO buffer with unknown Ethernet type"); 2711 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_task_rescheduled", 2712 CTLFLAG_RD, &stats->tx_task_rescheduled, 2713 "Times the transmit interrupt task rescheduled itself"); 2714 } 2715 2716 static int 2717 vtnet_enable_rx_intr(struct vtnet_softc *sc) 2718 { 2719 2720 return (virtqueue_enable_intr(sc->vtnet_rx_vq)); 2721 } 2722 2723 static void 2724 vtnet_disable_rx_intr(struct vtnet_softc *sc) 2725 { 2726 2727 virtqueue_disable_intr(sc->vtnet_rx_vq); 2728 } 2729 2730 static int 2731 vtnet_enable_tx_intr(struct vtnet_softc *sc) 2732 { 2733 2734 #ifdef VTNET_TX_INTR_MODERATION 2735 return (0); 2736 #else 2737 return (virtqueue_enable_intr(sc->vtnet_tx_vq)); 2738 #endif 2739 } 2740 2741 static void 2742 vtnet_disable_tx_intr(struct vtnet_softc *sc) 2743 { 2744 2745 virtqueue_disable_intr(sc->vtnet_tx_vq); 2746 } 2747