xref: /freebsd/sys/dev/videomode/vesagtf.c (revision cc9e6590773dba57440750c124173ed531349a06)
1 /* $NetBSD: vesagtf.c,v 1.2 2013/09/15 15:56:07 martin Exp $ */
2 /* $FreeBSD$ */
3 
4 /*-
5  * Copyright (c) 2006 Itronix Inc.
6  * All rights reserved.
7  *
8  * Written by Garrett D'Amore for Itronix Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of Itronix Inc. may not be used to endorse
19  *    or promote products derived from this software without specific
20  *    prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
23  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
26  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
28  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * This was derived from a userland GTF program supplied by NVIDIA.
37  * NVIDIA's original boilerplate follows.
38  *
39  * Note that I have heavily modified the program for use in the EDID
40  * kernel code for NetBSD, including removing the use of floating
41  * point operations and making significant adjustments to minimize
42  * error propagation while operating with integer only math.
43  *
44  * This has required the use of 64-bit integers in a few places, but
45  * the upshot is that for a calculation of 1920x1200x85 (as an
46  * example), the error deviates by only ~.004% relative to the
47  * floating point version.  This error is *well* within VESA
48  * tolerances.
49  */
50 
51 /*
52  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
53  * All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  *
59  * o Redistributions of source code must retain the above copyright
60  *   notice, this list of conditions and the following disclaimer.
61  * o Redistributions in binary form must reproduce the above copyright
62  *   notice, this list of conditions and the following disclaimer
63  *   in the documentation and/or other materials provided with the
64  *   distribution.
65  * o Neither the name of NVIDIA nor the names of its contributors
66  *   may be used to endorse or promote products derived from this
67  *   software without specific prior written permission.
68  *
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
71  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
72  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
73  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
74  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
75  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
76  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
77  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
78  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
80  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
81  * POSSIBILITY OF SUCH DAMAGE.
82  *
83  *
84  *
85  * This program is based on the Generalized Timing Formula(GTF TM)
86  * Standard Version: 1.0, Revision: 1.0
87  *
88  * The GTF Document contains the following Copyright information:
89  *
90  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
91  * Association. Duplication of this document within VESA member
92  * companies for review purposes is permitted. All other rights
93  * reserved.
94  *
95  * While every precaution has been taken in the preparation
96  * of this standard, the Video Electronics Standards Association and
97  * its contributors assume no responsibility for errors or omissions,
98  * and make no warranties, expressed or implied, of functionality
99  * of suitability for any purpose. The sample code contained within
100  * this standard may be used without restriction.
101  *
102  *
103  *
104  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
105  * implementation of the GTF Timing Standard, is available at:
106  *
107  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
108  *
109  *
110  *
111  * This program takes a desired resolution and vertical refresh rate,
112  * and computes mode timings according to the GTF Timing Standard.
113  * These mode timings can then be formatted as an XFree86 modeline
114  * or a mode description for use by fbset(8).
115  *
116  *
117  *
118  * NOTES:
119  *
120  * The GTF allows for computation of "margins" (the visible border
121  * surrounding the addressable video); on most non-overscan type
122  * systems, the margin period is zero.  I've implemented the margin
123  * computations but not enabled it because 1) I don't really have
124  * any experience with this, and 2) neither XFree86 modelines nor
125  * fbset fb.modes provide an obvious way for margin timings to be
126  * included in their mode descriptions (needs more investigation).
127  *
128  * The GTF provides for computation of interlaced mode timings;
129  * I've implemented the computations but not enabled them, yet.
130  * I should probably enable and test this at some point.
131  *
132  *
133  *
134  * TODO:
135  *
136  * o Add support for interlaced modes.
137  *
138  * o Implement the other portions of the GTF: compute mode timings
139  *   given either the desired pixel clock or the desired horizontal
140  *   frequency.
141  *
142  * o It would be nice if this were more general purpose to do things
143  *   outside the scope of the GTF: like generate double scan mode
144  *   timings, for example.
145  *
146  * o Printing digits to the right of the decimal point when the
147  *   digits are 0 annoys me.
148  *
149  * o Error checking.
150  *
151  */
152 
153 #ifdef	_KERNEL
154 #include <sys/cdefs.h>
155 
156 __FBSDID("$FreeBSD$");
157 #include <sys/types.h>
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <dev/videomode/videomode.h>
161 #include <dev/videomode/vesagtf.h>
162 #else
163 #include <stdio.h>
164 #include <stdlib.h>
165 #include <sys/types.h>
166 #include "videomode.h"
167 #include "vesagtf.h"
168 
169 void print_xf86_mode(struct videomode *m);
170 #endif
171 
172 #define CELL_GRAN         8     /* assumed character cell granularity        */
173 
174 /* C' and M' are part of the Blanking Duty Cycle computation */
175 /*
176  * #define C_PRIME           (((C - J) * K/256.0) + J)
177  * #define M_PRIME           (K/256.0 * M)
178  */
179 
180 /*
181  * C' and M' multiplied by 256 to give integer math.  Make sure to
182  * scale results using these back down, appropriately.
183  */
184 #define	C_PRIME256(p)	  (((p->C - p->J) * p->K) + (p->J * 256))
185 #define	M_PRIME256(p)	  (p->K * p->M)
186 
187 #define	DIVIDE(x,y)	(((x) + ((y) / 2)) / (y))
188 
189 /*
190  * print_value() - print the result of the named computation; this is
191  * useful when comparing against the GTF EXCEL spreadsheet.
192  */
193 
194 #ifdef GTFDEBUG
195 
196 static void
197 print_value(int n, const char *name, unsigned val)
198 {
199         printf("%2d: %-27s: %u\n", n, name, val);
200 }
201 #else
202 #define	print_value(n, name, val)
203 #endif
204 
205 /*
206  * vert_refresh() - as defined by the GTF Timing Standard, compute the
207  * Stage 1 Parameters using the vertical refresh frequency.  In other
208  * words: input a desired resolution and desired refresh rate, and
209  * output the GTF mode timings.
210  *
211  * XXX All the code is in place to compute interlaced modes, but I don't
212  * feel like testing it right now.
213  *
214  * XXX margin computations are implemented but not tested (nor used by
215  * XFree86 of fbset mode descriptions, from what I can tell).
216  */
217 
218 void
219 vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
220     struct vesagtf_params *params, int flags, struct videomode *vmp)
221 {
222     unsigned v_field_rqd;
223     unsigned top_margin;
224     unsigned bottom_margin;
225     unsigned interlace;
226     uint64_t h_period_est;
227     unsigned vsync_plus_bp;
228     unsigned v_back_porch __unused;
229     unsigned total_v_lines;
230     uint64_t v_field_est;
231     uint64_t h_period;
232     unsigned v_field_rate;
233     unsigned v_frame_rate __unused;
234     unsigned left_margin;
235     unsigned right_margin;
236     unsigned total_active_pixels;
237     uint64_t ideal_duty_cycle;
238     unsigned h_blank;
239     unsigned total_pixels;
240     unsigned pixel_freq;
241 
242     unsigned h_sync;
243     unsigned h_front_porch;
244     unsigned v_odd_front_porch_lines;
245 
246 #ifdef	GTFDEBUG
247     unsigned h_freq;
248 #endif
249 
250     /*  1. In order to give correct results, the number of horizontal
251      *  pixels requested is first processed to ensure that it is divisible
252      *  by the character size, by rounding it to the nearest character
253      *  cell boundary:
254      *
255      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
256      */
257 
258     h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
259 
260     print_value(1, "[H PIXELS RND]", h_pixels);
261 
262 
263     /*  2. If interlace is requested, the number of vertical lines assumed
264      *  by the calculation must be halved, as the computation calculates
265      *  the number of vertical lines per field. In either case, the
266      *  number of lines is rounded to the nearest integer.
267      *
268      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
269      *                                     ROUND([V LINES],0))
270      */
271 
272     v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
273 
274     print_value(2, "[V LINES RND]", v_lines);
275 
276 
277     /*  3. Find the frame rate required:
278      *
279      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
280      *                                          [I/P FREQ RQD])
281      */
282 
283     v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
284 
285     print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
286 
287 
288     /*  4. Find number of lines in Top margin:
289      *  5. Find number of lines in Bottom margin:
290      *
291      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
292      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
293      *          0)
294      *
295      *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
296      *  is parts per thousand.  This helps us with integer math.
297      */
298 
299     top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
300 	DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
301 
302     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
303     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
304 
305 
306     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
307      *
308      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
309      *
310      *  To make this integer friendly, we use some special hacks in step
311      *  7 below.  Please read those comments to understand why I am using
312      *  a whole number of 1.0 instead of 0.5 here.
313      */
314     interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
315 
316     print_value(6, "[2*INTERLACE]", interlace);
317 
318 
319     /*  7. Estimate the Horizontal period
320      *
321      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
322      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
323      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
324      *
325      *  To make it integer friendly, we pre-multiply the 1000000 to get to
326      *  usec.  This gives us:
327      *
328      *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
329      *			([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
330      *			 [MIN PORCH RND]+[INTERLACE])
331      *
332      *  The other problem is that the interlace value is wrong.  To get
333      *  the interlace to a whole number, we multiply both the numerator and
334      *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
335      *  factor.
336      *
337      * This gives us:
338      *
339      * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
340      *			 (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
341      *			  [MIN PORCH RND]) + [2*INTERLACE]))
342      *
343      * Finally we multiply by another 1000, to get value in picosec.
344      * Why picosec?  To minimize rounding errors.  Gotta love integer
345      * math and error propagation.
346      */
347 
348     h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
349 			      (2000000 * params->min_vsbp)),
350 	((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
351 
352     print_value(7, "[H PERIOD EST (ps)]", h_period_est);
353 
354 
355     /*  8. Find the number of lines in V sync + back porch:
356      *
357      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
358      *
359      *  But recall that h_period_est is in psec. So multiply by 1000000.
360      */
361 
362     vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
363 
364     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
365 
366 
367     /*  9. Find the number of lines in V back porch alone:
368      *
369      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
370      *
371      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
372      */
373 
374     v_back_porch = vsync_plus_bp - params->vsync_rqd;
375 
376     print_value(9, "[V BACK PORCH]", v_back_porch);
377 
378 
379     /*  10. Find the total number of lines in Vertical field period:
380      *
381      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
382      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
383      *                    [MIN PORCH RND]
384      */
385 
386     total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
387         interlace + params->min_porch;
388 
389     print_value(10, "[TOTAL V LINES]", total_v_lines);
390 
391 
392     /*  11. Estimate the Vertical field frequency:
393      *
394      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
395      *
396      *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
397      *  making it usable in integer math.
398      *
399      *  So we get:
400      *
401      *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
402      *
403      *  This is all scaled to get the result in uHz.  Again, we're trying to
404      *  minimize error propagation.
405      */
406     v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
407 	total_v_lines);
408 
409     print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
410 
411 
412     /*  12. Find the actual horizontal period:
413      *
414      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
415      */
416 
417     h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
418 
419     print_value(12, "[H PERIOD(ps)]", h_period);
420 
421 
422     /*  13. Find the actual Vertical field frequency:
423      *
424      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
425      *
426      *  And again, we convert to nsec ahead of time, giving us:
427      *
428      *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
429      *
430      *  And another rescaling back to mHz.  Gotta love it.
431      */
432 
433     v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
434 
435     print_value(13, "[V FIELD RATE]", v_field_rate);
436 
437 
438     /*  14. Find the Vertical frame frequency:
439      *
440      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
441      *
442      *  N.B. that the result here is in mHz.
443      */
444 
445     v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
446 	v_field_rate / 2 : v_field_rate;
447 
448     print_value(14, "[V FRAME RATE]", v_frame_rate);
449 
450 
451     /*  15. Find number of pixels in left margin:
452      *  16. Find number of pixels in right margin:
453      *
454      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
455      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
456      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
457      *          0))
458      *
459      *  Again, we deal with margin percentages as PPT (parts per thousand).
460      *  And the calculations for left and right are the same.
461      */
462 
463     left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
464 	DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
465 	    CELL_GRAN) * CELL_GRAN : 0;
466 
467     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
468     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
469 
470 
471     /*  17. Find total number of active pixels in image and left and right
472      *  margins:
473      *
474      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
475      *                          [RIGHT MARGIN (PIXELS)]
476      */
477 
478     total_active_pixels = h_pixels + left_margin + right_margin;
479 
480     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
481 
482 
483     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
484      *  equation:
485      *
486      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
487      *
488      *  However, we have modified values for [C'] as [256*C'] and
489      *  [M'] as [256*M'].  Again the idea here is to get good scaling.
490      *  We use 256 as the factor to make the math fast.
491      *
492      *  Note that this means that we have to scale it appropriately in
493      *  later calculations.
494      *
495      *  The ending result is that our ideal_duty_cycle is 256000x larger
496      *  than the duty cycle used by VESA.  But again, this reduces error
497      *  propagation.
498      */
499 
500     ideal_duty_cycle =
501 	((C_PRIME256(params) * 1000) -
502 	    (M_PRIME256(params) * h_period / 1000000));
503 
504     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
505 
506 
507     /*  19. Find the number of pixels in the blanking time to the nearest
508      *  double character cell:
509      *
510      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
511      *                               [IDEAL DUTY CYCLE] /
512      *                               (100-[IDEAL DUTY CYCLE]) /
513      *                               (2*[CELL GRAN RND])), 0))
514      *                       * (2*[CELL GRAN RND])
515      *
516      *  Of course, we adjust to make this rounding work in integer math.
517      */
518 
519     h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
520 			 (256000 * 100ULL) - ideal_duty_cycle),
521 	2 * CELL_GRAN) * (2 * CELL_GRAN);
522 
523     print_value(19, "[H BLANK (PIXELS)]", h_blank);
524 
525 
526     /*  20. Find total number of pixels:
527      *
528      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
529      */
530 
531     total_pixels = total_active_pixels + h_blank;
532 
533     print_value(20, "[TOTAL PIXELS]", total_pixels);
534 
535 
536     /*  21. Find pixel clock frequency:
537      *
538      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
539      *
540      *  We calculate this in Hz rather than MHz, to get a value that
541      *  is usable with integer math.  Recall that the [H PERIOD] is in
542      *  nsec.
543      */
544 
545     pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
546 
547     print_value(21, "[PIXEL FREQ]", pixel_freq);
548 
549 
550     /*  22. Find horizontal frequency:
551      *
552      *  [H FREQ] = 1000 / [H PERIOD]
553      *
554      *  I've ifdef'd this out, because we don't need it for any of
555      *  our calculations.
556      *  We calculate this in Hz rather than kHz, to avoid rounding
557      *  errors.  Recall that the [H PERIOD] is in usec.
558      */
559 
560 #ifdef	GTFDEBUG
561     h_freq = 1000000000 / h_period;
562 
563     print_value(22, "[H FREQ]", h_freq);
564 #endif
565 
566 
567     /* Stage 1 computations are now complete; I should really pass
568        the results to another function and do the Stage 2
569        computations, but I only need a few more values so I'll just
570        append the computations here for now */
571 
572 
573 
574     /*  17. Find the number of pixels in the horizontal sync period:
575      *
576      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
577      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
578      *
579      *  Rewriting for integer math:
580      *
581      *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
582      *				   [CELL GRAN RND),0))*[CELL GRAN RND]
583      */
584 
585     h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
586 	CELL_GRAN;
587 
588     print_value(17, "[H SYNC (PIXELS)]", h_sync);
589 
590 
591     /*  18. Find the number of pixels in the horizontal front porch period:
592      *
593      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
594      *
595      *  Note that h_blank is always an even number of characters (i.e.
596      *  h_blank % (CELL_GRAN * 2) == 0)
597      */
598 
599     h_front_porch = (h_blank / 2) - h_sync;
600 
601     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
602 
603 
604     /*  36. Find the number of lines in the odd front porch period:
605      *
606      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
607      *
608      *  Adjusting for the fact that the interlace is scaled:
609      *
610      *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
611      */
612 
613     v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
614 
615     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
616 
617 
618     /* finally, pack the results in the mode struct */
619 
620     vmp->hsync_start = h_pixels + h_front_porch;
621     vmp->hsync_end = vmp->hsync_start + h_sync;
622     vmp->htotal = total_pixels;
623     vmp->hdisplay = h_pixels;
624 
625     vmp->vsync_start = v_lines + v_odd_front_porch_lines;
626     vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
627     vmp->vtotal = total_v_lines;
628     vmp->vdisplay = v_lines;
629 
630     vmp->dot_clock = pixel_freq;
631 
632 }
633 
634 void
635 vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
636 {
637 	struct vesagtf_params	params;
638 
639 	params.margin_ppt = VESAGTF_MARGIN_PPT;
640 	params.min_porch = VESAGTF_MIN_PORCH;
641 	params.vsync_rqd = VESAGTF_VSYNC_RQD;
642 	params.hsync_pct = VESAGTF_HSYNC_PCT;
643 	params.min_vsbp = VESAGTF_MIN_VSBP;
644 	params.M = VESAGTF_M;
645 	params.C = VESAGTF_C;
646 	params.K = VESAGTF_K;
647 	params.J = VESAGTF_J;
648 
649 	vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
650 }
651 
652 /*
653  * The tidbit here is so that you can compile this file as a
654  * standalone user program to generate X11 modelines using VESA GTF.
655  * This also allows for testing of the code itself, without
656  * necessitating a full kernel recompile.
657  */
658 
659 /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
660 
661 #ifndef _KERNEL
662 void
663 print_xf86_mode (struct videomode *vmp)
664 {
665 	float	vf, hf;
666 
667 	hf = 1000.0 * vmp->dot_clock / vmp->htotal;
668 	vf = 1.0 * hf / vmp->vtotal;
669 
670     printf("\n");
671     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
672 	vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
673 
674     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
675 	"  %d %d %d %d"
676 	"  %d %d %d %d"
677 	"  -HSync +Vsync\n\n",
678 	vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
679 	vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
680 	vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
681 }
682 
683 int
684 main (int argc, char *argv[])
685 {
686 	struct videomode m;
687 
688 	if (argc != 4) {
689 		printf("usage: %s x y refresh\n", argv[0]);
690 		exit(1);
691 	}
692 
693 	vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
694 
695         print_xf86_mode(&m);
696 
697 	return 0;
698 
699 }
700 #endif
701