1 /* $NetBSD: vesagtf.c,v 1.2 2013/09/15 15:56:07 martin Exp $ */ 2 /* $FreeBSD$ */ 3 4 /*- 5 * Copyright (c) 2006 Itronix Inc. 6 * All rights reserved. 7 * 8 * Written by Garrett D'Amore for Itronix Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of Itronix Inc. may not be used to endorse 19 * or promote products derived from this software without specific 20 * prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS 23 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 26 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 28 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * This was derived from a userland GTF program supplied by NVIDIA. 37 * NVIDIA's original boilerplate follows. 38 * 39 * Note that I have heavily modified the program for use in the EDID 40 * kernel code for NetBSD, including removing the use of floating 41 * point operations and making significant adjustments to minimize 42 * error propagation while operating with integer only math. 43 * 44 * This has required the use of 64-bit integers in a few places, but 45 * the upshot is that for a calculation of 1920x1200x85 (as an 46 * example), the error deviates by only ~.004% relative to the 47 * floating point version. This error is *well* within VESA 48 * tolerances. 49 */ 50 51 /* 52 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com 53 * All rights reserved. 54 * 55 * Redistribution and use in source and binary forms, with or without 56 * modification, are permitted provided that the following conditions 57 * are met: 58 * 59 * o Redistributions of source code must retain the above copyright 60 * notice, this list of conditions and the following disclaimer. 61 * o Redistributions in binary form must reproduce the above copyright 62 * notice, this list of conditions and the following disclaimer 63 * in the documentation and/or other materials provided with the 64 * distribution. 65 * o Neither the name of NVIDIA nor the names of its contributors 66 * may be used to endorse or promote products derived from this 67 * software without specific prior written permission. 68 * 69 * 70 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 71 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 72 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 73 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 74 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 75 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 76 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 77 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 78 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 80 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 81 * POSSIBILITY OF SUCH DAMAGE. 82 * 83 * 84 * 85 * This program is based on the Generalized Timing Formula(GTF TM) 86 * Standard Version: 1.0, Revision: 1.0 87 * 88 * The GTF Document contains the following Copyright information: 89 * 90 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards 91 * Association. Duplication of this document within VESA member 92 * companies for review purposes is permitted. All other rights 93 * reserved. 94 * 95 * While every precaution has been taken in the preparation 96 * of this standard, the Video Electronics Standards Association and 97 * its contributors assume no responsibility for errors or omissions, 98 * and make no warranties, expressed or implied, of functionality 99 * of suitability for any purpose. The sample code contained within 100 * this standard may be used without restriction. 101 * 102 * 103 * 104 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive) 105 * implementation of the GTF Timing Standard, is available at: 106 * 107 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls 108 * 109 * 110 * 111 * This program takes a desired resolution and vertical refresh rate, 112 * and computes mode timings according to the GTF Timing Standard. 113 * These mode timings can then be formatted as an XFree86 modeline 114 * or a mode description for use by fbset(8). 115 * 116 * 117 * 118 * NOTES: 119 * 120 * The GTF allows for computation of "margins" (the visible border 121 * surrounding the addressable video); on most non-overscan type 122 * systems, the margin period is zero. I've implemented the margin 123 * computations but not enabled it because 1) I don't really have 124 * any experience with this, and 2) neither XFree86 modelines nor 125 * fbset fb.modes provide an obvious way for margin timings to be 126 * included in their mode descriptions (needs more investigation). 127 * 128 * The GTF provides for computation of interlaced mode timings; 129 * I've implemented the computations but not enabled them, yet. 130 * I should probably enable and test this at some point. 131 * 132 * 133 * 134 * TODO: 135 * 136 * o Add support for interlaced modes. 137 * 138 * o Implement the other portions of the GTF: compute mode timings 139 * given either the desired pixel clock or the desired horizontal 140 * frequency. 141 * 142 * o It would be nice if this were more general purpose to do things 143 * outside the scope of the GTF: like generate double scan mode 144 * timings, for example. 145 * 146 * o Printing digits to the right of the decimal point when the 147 * digits are 0 annoys me. 148 * 149 * o Error checking. 150 * 151 */ 152 153 154 #ifdef _KERNEL 155 #include <sys/cdefs.h> 156 157 __FBSDID("$FreeBSD$"); 158 #include <sys/types.h> 159 #include <sys/param.h> 160 #include <sys/systm.h> 161 #include <dev/videomode/videomode.h> 162 #include <dev/videomode/vesagtf.h> 163 #else 164 #include <stdio.h> 165 #include <stdlib.h> 166 #include <sys/types.h> 167 #include "videomode.h" 168 #include "vesagtf.h" 169 170 void print_xf86_mode(struct videomode *m); 171 #endif 172 173 #define CELL_GRAN 8 /* assumed character cell granularity */ 174 175 /* C' and M' are part of the Blanking Duty Cycle computation */ 176 /* 177 * #define C_PRIME (((C - J) * K/256.0) + J) 178 * #define M_PRIME (K/256.0 * M) 179 */ 180 181 /* 182 * C' and M' multiplied by 256 to give integer math. Make sure to 183 * scale results using these back down, appropriately. 184 */ 185 #define C_PRIME256(p) (((p->C - p->J) * p->K) + (p->J * 256)) 186 #define M_PRIME256(p) (p->K * p->M) 187 188 #define DIVIDE(x,y) (((x) + ((y) / 2)) / (y)) 189 190 /* 191 * print_value() - print the result of the named computation; this is 192 * useful when comparing against the GTF EXCEL spreadsheet. 193 */ 194 195 #ifdef GTFDEBUG 196 197 static void 198 print_value(int n, const char *name, unsigned val) 199 { 200 printf("%2d: %-27s: %u\n", n, name, val); 201 } 202 #else 203 #define print_value(n, name, val) 204 #endif 205 206 207 /* 208 * vert_refresh() - as defined by the GTF Timing Standard, compute the 209 * Stage 1 Parameters using the vertical refresh frequency. In other 210 * words: input a desired resolution and desired refresh rate, and 211 * output the GTF mode timings. 212 * 213 * XXX All the code is in place to compute interlaced modes, but I don't 214 * feel like testing it right now. 215 * 216 * XXX margin computations are implemented but not tested (nor used by 217 * XFree86 of fbset mode descriptions, from what I can tell). 218 */ 219 220 void 221 vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq, 222 struct vesagtf_params *params, int flags, struct videomode *vmp) 223 { 224 unsigned v_field_rqd; 225 unsigned top_margin; 226 unsigned bottom_margin; 227 unsigned interlace; 228 uint64_t h_period_est; 229 unsigned vsync_plus_bp; 230 unsigned v_back_porch __unused; 231 unsigned total_v_lines; 232 uint64_t v_field_est; 233 uint64_t h_period; 234 unsigned v_field_rate; 235 unsigned v_frame_rate __unused; 236 unsigned left_margin; 237 unsigned right_margin; 238 unsigned total_active_pixels; 239 uint64_t ideal_duty_cycle; 240 unsigned h_blank; 241 unsigned total_pixels; 242 unsigned pixel_freq; 243 244 unsigned h_sync; 245 unsigned h_front_porch; 246 unsigned v_odd_front_porch_lines; 247 248 #ifdef GTFDEBUG 249 unsigned h_freq; 250 #endif 251 252 /* 1. In order to give correct results, the number of horizontal 253 * pixels requested is first processed to ensure that it is divisible 254 * by the character size, by rounding it to the nearest character 255 * cell boundary: 256 * 257 * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) 258 */ 259 260 h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN; 261 262 print_value(1, "[H PIXELS RND]", h_pixels); 263 264 265 /* 2. If interlace is requested, the number of vertical lines assumed 266 * by the calculation must be halved, as the computation calculates 267 * the number of vertical lines per field. In either case, the 268 * number of lines is rounded to the nearest integer. 269 * 270 * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), 271 * ROUND([V LINES],0)) 272 */ 273 274 v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines; 275 276 print_value(2, "[V LINES RND]", v_lines); 277 278 279 /* 3. Find the frame rate required: 280 * 281 * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, 282 * [I/P FREQ RQD]) 283 */ 284 285 v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq); 286 287 print_value(3, "[V FIELD RATE RQD]", v_field_rqd); 288 289 290 /* 4. Find number of lines in Top margin: 291 * 5. Find number of lines in Bottom margin: 292 * 293 * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 294 * ROUND(([MARGIN%]/100*[V LINES RND]),0), 295 * 0) 296 * 297 * Ditto for bottom margin. Note that instead of %, we use PPT, which 298 * is parts per thousand. This helps us with integer math. 299 */ 300 301 top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ? 302 DIVIDE(v_lines * params->margin_ppt, 1000) : 0; 303 304 print_value(4, "[TOP MARGIN (LINES)]", top_margin); 305 print_value(5, "[BOT MARGIN (LINES)]", bottom_margin); 306 307 308 /* 6. If interlace is required, then set variable [INTERLACE]=0.5: 309 * 310 * [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) 311 * 312 * To make this integer friendly, we use some special hacks in step 313 * 7 below. Please read those comments to understand why I am using 314 * a whole number of 1.0 instead of 0.5 here. 315 */ 316 interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0; 317 318 print_value(6, "[2*INTERLACE]", interlace); 319 320 321 /* 7. Estimate the Horizontal period 322 * 323 * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / 324 * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 325 * [MIN PORCH RND]+[INTERLACE]) * 1000000 326 * 327 * To make it integer friendly, we pre-multiply the 1000000 to get to 328 * usec. This gives us: 329 * 330 * [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) / 331 * ([V LINES RND] + (2 * [TOP MARGIN (LINES)]) + 332 * [MIN PORCH RND]+[INTERLACE]) 333 * 334 * The other problem is that the interlace value is wrong. To get 335 * the interlace to a whole number, we multiply both the numerator and 336 * divisor by 2, so we can use a value of either 1 or 0 for the interlace 337 * factor. 338 * 339 * This gives us: 340 * 341 * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) / 342 * (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 343 * [MIN PORCH RND]) + [2*INTERLACE])) 344 * 345 * Finally we multiply by another 1000, to get value in picosec. 346 * Why picosec? To minimize rounding errors. Gotta love integer 347 * math and error propagation. 348 */ 349 350 h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) - 351 (2000000 * params->min_vsbp)), 352 ((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace)); 353 354 print_value(7, "[H PERIOD EST (ps)]", h_period_est); 355 356 357 /* 8. Find the number of lines in V sync + back porch: 358 * 359 * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) 360 * 361 * But recall that h_period_est is in psec. So multiply by 1000000. 362 */ 363 364 vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est); 365 366 print_value(8, "[V SYNC+BP]", vsync_plus_bp); 367 368 369 /* 9. Find the number of lines in V back porch alone: 370 * 371 * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] 372 * 373 * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? 374 */ 375 376 v_back_porch = vsync_plus_bp - params->vsync_rqd; 377 378 print_value(9, "[V BACK PORCH]", v_back_porch); 379 380 381 /* 10. Find the total number of lines in Vertical field period: 382 * 383 * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + 384 * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + 385 * [MIN PORCH RND] 386 */ 387 388 total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp + 389 interlace + params->min_porch; 390 391 print_value(10, "[TOTAL V LINES]", total_v_lines); 392 393 394 /* 11. Estimate the Vertical field frequency: 395 * 396 * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 397 * 398 * Again, we want to pre multiply by 10^9 to convert for nsec, thereby 399 * making it usable in integer math. 400 * 401 * So we get: 402 * 403 * [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES] 404 * 405 * This is all scaled to get the result in uHz. Again, we're trying to 406 * minimize error propagation. 407 */ 408 v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est), 409 total_v_lines); 410 411 print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est); 412 413 414 /* 12. Find the actual horizontal period: 415 * 416 * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) 417 */ 418 419 h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000); 420 421 print_value(12, "[H PERIOD(ps)]", h_period); 422 423 424 /* 13. Find the actual Vertical field frequency: 425 * 426 * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 427 * 428 * And again, we convert to nsec ahead of time, giving us: 429 * 430 * [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES] 431 * 432 * And another rescaling back to mHz. Gotta love it. 433 */ 434 435 v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines); 436 437 print_value(13, "[V FIELD RATE]", v_field_rate); 438 439 440 /* 14. Find the Vertical frame frequency: 441 * 442 * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) 443 * 444 * N.B. that the result here is in mHz. 445 */ 446 447 v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ? 448 v_field_rate / 2 : v_field_rate; 449 450 print_value(14, "[V FRAME RATE]", v_frame_rate); 451 452 453 /* 15. Find number of pixels in left margin: 454 * 16. Find number of pixels in right margin: 455 * 456 * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 457 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 458 * [CELL GRAN RND]),0)) * [CELL GRAN RND], 459 * 0)) 460 * 461 * Again, we deal with margin percentages as PPT (parts per thousand). 462 * And the calculations for left and right are the same. 463 */ 464 465 left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ? 466 DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000), 467 CELL_GRAN) * CELL_GRAN : 0; 468 469 print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin); 470 print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin); 471 472 473 /* 17. Find total number of active pixels in image and left and right 474 * margins: 475 * 476 * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + 477 * [RIGHT MARGIN (PIXELS)] 478 */ 479 480 total_active_pixels = h_pixels + left_margin + right_margin; 481 482 print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels); 483 484 485 /* 18. Find the ideal blanking duty cycle from the blanking duty cycle 486 * equation: 487 * 488 * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) 489 * 490 * However, we have modified values for [C'] as [256*C'] and 491 * [M'] as [256*M']. Again the idea here is to get good scaling. 492 * We use 256 as the factor to make the math fast. 493 * 494 * Note that this means that we have to scale it appropriately in 495 * later calculations. 496 * 497 * The ending result is that our ideal_duty_cycle is 256000x larger 498 * than the duty cycle used by VESA. But again, this reduces error 499 * propagation. 500 */ 501 502 ideal_duty_cycle = 503 ((C_PRIME256(params) * 1000) - 504 (M_PRIME256(params) * h_period / 1000000)); 505 506 print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle); 507 508 509 /* 19. Find the number of pixels in the blanking time to the nearest 510 * double character cell: 511 * 512 * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * 513 * [IDEAL DUTY CYCLE] / 514 * (100-[IDEAL DUTY CYCLE]) / 515 * (2*[CELL GRAN RND])), 0)) 516 * * (2*[CELL GRAN RND]) 517 * 518 * Of course, we adjust to make this rounding work in integer math. 519 */ 520 521 h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle, 522 (256000 * 100ULL) - ideal_duty_cycle), 523 2 * CELL_GRAN) * (2 * CELL_GRAN); 524 525 print_value(19, "[H BLANK (PIXELS)]", h_blank); 526 527 528 /* 20. Find total number of pixels: 529 * 530 * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] 531 */ 532 533 total_pixels = total_active_pixels + h_blank; 534 535 print_value(20, "[TOTAL PIXELS]", total_pixels); 536 537 538 /* 21. Find pixel clock frequency: 539 * 540 * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] 541 * 542 * We calculate this in Hz rather than MHz, to get a value that 543 * is usable with integer math. Recall that the [H PERIOD] is in 544 * nsec. 545 */ 546 547 pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000)); 548 549 print_value(21, "[PIXEL FREQ]", pixel_freq); 550 551 552 /* 22. Find horizontal frequency: 553 * 554 * [H FREQ] = 1000 / [H PERIOD] 555 * 556 * I've ifdef'd this out, because we don't need it for any of 557 * our calculations. 558 * We calculate this in Hz rather than kHz, to avoid rounding 559 * errors. Recall that the [H PERIOD] is in usec. 560 */ 561 562 #ifdef GTFDEBUG 563 h_freq = 1000000000 / h_period; 564 565 print_value(22, "[H FREQ]", h_freq); 566 #endif 567 568 569 570 /* Stage 1 computations are now complete; I should really pass 571 the results to another function and do the Stage 2 572 computations, but I only need a few more values so I'll just 573 append the computations here for now */ 574 575 576 577 /* 17. Find the number of pixels in the horizontal sync period: 578 * 579 * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / 580 * [CELL GRAN RND]),0))*[CELL GRAN RND] 581 * 582 * Rewriting for integer math: 583 * 584 * [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 / 585 * [CELL GRAN RND),0))*[CELL GRAN RND] 586 */ 587 588 h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) * 589 CELL_GRAN; 590 591 print_value(17, "[H SYNC (PIXELS)]", h_sync); 592 593 594 /* 18. Find the number of pixels in the horizontal front porch period: 595 * 596 * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] 597 * 598 * Note that h_blank is always an even number of characters (i.e. 599 * h_blank % (CELL_GRAN * 2) == 0) 600 */ 601 602 h_front_porch = (h_blank / 2) - h_sync; 603 604 print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch); 605 606 607 /* 36. Find the number of lines in the odd front porch period: 608 * 609 * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) 610 * 611 * Adjusting for the fact that the interlace is scaled: 612 * 613 * [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2 614 */ 615 616 v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2; 617 618 print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines); 619 620 621 /* finally, pack the results in the mode struct */ 622 623 vmp->hsync_start = h_pixels + h_front_porch; 624 vmp->hsync_end = vmp->hsync_start + h_sync; 625 vmp->htotal = total_pixels; 626 vmp->hdisplay = h_pixels; 627 628 vmp->vsync_start = v_lines + v_odd_front_porch_lines; 629 vmp->vsync_end = vmp->vsync_start + params->vsync_rqd; 630 vmp->vtotal = total_v_lines; 631 vmp->vdisplay = v_lines; 632 633 vmp->dot_clock = pixel_freq; 634 635 } 636 637 void 638 vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp) 639 { 640 struct vesagtf_params params; 641 642 params.margin_ppt = VESAGTF_MARGIN_PPT; 643 params.min_porch = VESAGTF_MIN_PORCH; 644 params.vsync_rqd = VESAGTF_VSYNC_RQD; 645 params.hsync_pct = VESAGTF_HSYNC_PCT; 646 params.min_vsbp = VESAGTF_MIN_VSBP; 647 params.M = VESAGTF_M; 648 params.C = VESAGTF_C; 649 params.K = VESAGTF_K; 650 params.J = VESAGTF_J; 651 652 vesagtf_mode_params(x, y, refresh, ¶ms, 0, vmp); 653 } 654 655 /* 656 * The tidbit here is so that you can compile this file as a 657 * standalone user program to generate X11 modelines using VESA GTF. 658 * This also allows for testing of the code itself, without 659 * necessitating a full kernel recompile. 660 */ 661 662 /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */ 663 664 #ifndef _KERNEL 665 void 666 print_xf86_mode (struct videomode *vmp) 667 { 668 float vf, hf; 669 670 hf = 1000.0 * vmp->dot_clock / vmp->htotal; 671 vf = 1.0 * hf / vmp->vtotal; 672 673 printf("\n"); 674 printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n", 675 vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0); 676 677 printf(" Modeline \"%dx%d_%.2f\" %.2f" 678 " %d %d %d %d" 679 " %d %d %d %d" 680 " -HSync +Vsync\n\n", 681 vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0), 682 vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal, 683 vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal); 684 } 685 686 int 687 main (int argc, char *argv[]) 688 { 689 struct videomode m; 690 691 if (argc != 4) { 692 printf("usage: %s x y refresh\n", argv[0]); 693 exit(1); 694 } 695 696 vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m); 697 698 print_xf86_mode(&m); 699 700 return 0; 701 702 } 703 #endif 704