1 /*- 2 * Copyright (c) 2004 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that 46 * combines a tri-speed ethernet MAC and PHY, with the following 47 * features: 48 * 49 * o Jumbo frame support up to 16K 50 * o Transmit and receive flow control 51 * o IPv4 checksum offload 52 * o VLAN tag insertion and stripping 53 * o TCP large send 54 * o 64-bit multicast hash table filter 55 * o 64 entry CAM filter 56 * o 16K RX FIFO and 48K TX FIFO memory 57 * o Interrupt moderation 58 * 59 * The VT6122 supports up to four transmit DMA queues. The descriptors 60 * in the transmit ring can address up to 7 data fragments; frames which 61 * span more than 7 data buffers must be coalesced, but in general the 62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 63 * long. The receive descriptors address only a single buffer. 64 * 65 * There are two peculiar design issues with the VT6122. One is that 66 * receive data buffers must be aligned on a 32-bit boundary. This is 67 * not a problem where the VT6122 is used as a LOM device in x86-based 68 * systems, but on architectures that generate unaligned access traps, we 69 * have to do some copying. 70 * 71 * The other issue has to do with the way 64-bit addresses are handled. 72 * The DMA descriptors only allow you to specify 48 bits of addressing 73 * information. The remaining 16 bits are specified using one of the 74 * I/O registers. If you only have a 32-bit system, then this isn't 75 * an issue, but if you have a 64-bit system and more than 4GB of 76 * memory, you must have to make sure your network data buffers reside 77 * in the same 48-bit 'segment.' 78 * 79 * Special thanks to Ryan Fu at VIA Networking for providing documentation 80 * and sample NICs for testing. 81 */ 82 83 #ifdef HAVE_KERNEL_OPTION_HEADERS 84 #include "opt_device_polling.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/endian.h> 89 #include <sys/systm.h> 90 #include <sys/sockio.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/module.h> 94 #include <sys/kernel.h> 95 #include <sys/socket.h> 96 #include <sys/taskqueue.h> 97 98 #include <net/if.h> 99 #include <net/if_arp.h> 100 #include <net/ethernet.h> 101 #include <net/if_dl.h> 102 #include <net/if_media.h> 103 #include <net/if_types.h> 104 #include <net/if_vlan_var.h> 105 106 #include <net/bpf.h> 107 108 #include <machine/bus.h> 109 #include <machine/resource.h> 110 #include <sys/bus.h> 111 #include <sys/rman.h> 112 113 #include <dev/mii/mii.h> 114 #include <dev/mii/miivar.h> 115 116 #include <dev/pci/pcireg.h> 117 #include <dev/pci/pcivar.h> 118 119 MODULE_DEPEND(vge, pci, 1, 1, 1); 120 MODULE_DEPEND(vge, ether, 1, 1, 1); 121 MODULE_DEPEND(vge, miibus, 1, 1, 1); 122 123 /* "device miibus" required. See GENERIC if you get errors here. */ 124 #include "miibus_if.h" 125 126 #include <dev/vge/if_vgereg.h> 127 #include <dev/vge/if_vgevar.h> 128 129 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 130 131 /* 132 * Various supported device vendors/types and their names. 133 */ 134 static struct vge_type vge_devs[] = { 135 { VIA_VENDORID, VIA_DEVICEID_61XX, 136 "VIA Networking Gigabit Ethernet" }, 137 { 0, 0, NULL } 138 }; 139 140 static int vge_probe (device_t); 141 static int vge_attach (device_t); 142 static int vge_detach (device_t); 143 144 static int vge_encap (struct vge_softc *, struct mbuf *, int); 145 146 static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 147 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int, 148 bus_size_t, int); 149 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 150 bus_size_t, int); 151 static int vge_allocmem (device_t, struct vge_softc *); 152 static int vge_newbuf (struct vge_softc *, int, struct mbuf *); 153 static int vge_rx_list_init (struct vge_softc *); 154 static int vge_tx_list_init (struct vge_softc *); 155 #ifdef VGE_FIXUP_RX 156 static __inline void vge_fixup_rx 157 (struct mbuf *); 158 #endif 159 static void vge_rxeof (struct vge_softc *); 160 static void vge_txeof (struct vge_softc *); 161 static void vge_intr (void *); 162 static void vge_tick (void *); 163 static void vge_tx_task (void *, int); 164 static void vge_start (struct ifnet *); 165 static int vge_ioctl (struct ifnet *, u_long, caddr_t); 166 static void vge_init (void *); 167 static void vge_stop (struct vge_softc *); 168 static void vge_watchdog (struct ifnet *); 169 static int vge_suspend (device_t); 170 static int vge_resume (device_t); 171 static void vge_shutdown (device_t); 172 static int vge_ifmedia_upd (struct ifnet *); 173 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 174 175 #ifdef VGE_EEPROM 176 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); 177 #endif 178 static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int); 179 180 static void vge_miipoll_start (struct vge_softc *); 181 static void vge_miipoll_stop (struct vge_softc *); 182 static int vge_miibus_readreg (device_t, int, int); 183 static int vge_miibus_writereg (device_t, int, int, int); 184 static void vge_miibus_statchg (device_t); 185 186 static void vge_cam_clear (struct vge_softc *); 187 static int vge_cam_set (struct vge_softc *, uint8_t *); 188 static void vge_setmulti (struct vge_softc *); 189 static void vge_reset (struct vge_softc *); 190 191 #define VGE_PCI_LOIO 0x10 192 #define VGE_PCI_LOMEM 0x14 193 194 static device_method_t vge_methods[] = { 195 /* Device interface */ 196 DEVMETHOD(device_probe, vge_probe), 197 DEVMETHOD(device_attach, vge_attach), 198 DEVMETHOD(device_detach, vge_detach), 199 DEVMETHOD(device_suspend, vge_suspend), 200 DEVMETHOD(device_resume, vge_resume), 201 DEVMETHOD(device_shutdown, vge_shutdown), 202 203 /* bus interface */ 204 DEVMETHOD(bus_print_child, bus_generic_print_child), 205 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 206 207 /* MII interface */ 208 DEVMETHOD(miibus_readreg, vge_miibus_readreg), 209 DEVMETHOD(miibus_writereg, vge_miibus_writereg), 210 DEVMETHOD(miibus_statchg, vge_miibus_statchg), 211 212 { 0, 0 } 213 }; 214 215 static driver_t vge_driver = { 216 "vge", 217 vge_methods, 218 sizeof(struct vge_softc) 219 }; 220 221 static devclass_t vge_devclass; 222 223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); 224 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0); 225 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); 226 227 #ifdef VGE_EEPROM 228 /* 229 * Read a word of data stored in the EEPROM at address 'addr.' 230 */ 231 static void 232 vge_eeprom_getword(sc, addr, dest) 233 struct vge_softc *sc; 234 int addr; 235 u_int16_t *dest; 236 { 237 register int i; 238 u_int16_t word = 0; 239 240 /* 241 * Enter EEPROM embedded programming mode. In order to 242 * access the EEPROM at all, we first have to set the 243 * EELOAD bit in the CHIPCFG2 register. 244 */ 245 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 246 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 247 248 /* Select the address of the word we want to read */ 249 CSR_WRITE_1(sc, VGE_EEADDR, addr); 250 251 /* Issue read command */ 252 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 253 254 /* Wait for the done bit to be set. */ 255 for (i = 0; i < VGE_TIMEOUT; i++) { 256 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 257 break; 258 } 259 260 if (i == VGE_TIMEOUT) { 261 device_printf(sc->vge_dev, "EEPROM read timed out\n"); 262 *dest = 0; 263 return; 264 } 265 266 /* Read the result */ 267 word = CSR_READ_2(sc, VGE_EERDDAT); 268 269 /* Turn off EEPROM access mode. */ 270 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 271 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 272 273 *dest = word; 274 275 return; 276 } 277 #endif 278 279 /* 280 * Read a sequence of words from the EEPROM. 281 */ 282 static void 283 vge_read_eeprom(sc, dest, off, cnt, swap) 284 struct vge_softc *sc; 285 caddr_t dest; 286 int off; 287 int cnt; 288 int swap; 289 { 290 int i; 291 #ifdef VGE_EEPROM 292 u_int16_t word = 0, *ptr; 293 294 for (i = 0; i < cnt; i++) { 295 vge_eeprom_getword(sc, off + i, &word); 296 ptr = (u_int16_t *)(dest + (i * 2)); 297 if (swap) 298 *ptr = ntohs(word); 299 else 300 *ptr = word; 301 } 302 #else 303 for (i = 0; i < ETHER_ADDR_LEN; i++) 304 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); 305 #endif 306 } 307 308 static void 309 vge_miipoll_stop(sc) 310 struct vge_softc *sc; 311 { 312 int i; 313 314 CSR_WRITE_1(sc, VGE_MIICMD, 0); 315 316 for (i = 0; i < VGE_TIMEOUT; i++) { 317 DELAY(1); 318 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 319 break; 320 } 321 322 if (i == VGE_TIMEOUT) 323 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 324 325 return; 326 } 327 328 static void 329 vge_miipoll_start(sc) 330 struct vge_softc *sc; 331 { 332 int i; 333 334 /* First, make sure we're idle. */ 335 336 CSR_WRITE_1(sc, VGE_MIICMD, 0); 337 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 338 339 for (i = 0; i < VGE_TIMEOUT; i++) { 340 DELAY(1); 341 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 342 break; 343 } 344 345 if (i == VGE_TIMEOUT) { 346 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 347 return; 348 } 349 350 /* Now enable auto poll mode. */ 351 352 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 353 354 /* And make sure it started. */ 355 356 for (i = 0; i < VGE_TIMEOUT; i++) { 357 DELAY(1); 358 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 359 break; 360 } 361 362 if (i == VGE_TIMEOUT) 363 device_printf(sc->vge_dev, "failed to start MII autopoll\n"); 364 365 return; 366 } 367 368 static int 369 vge_miibus_readreg(dev, phy, reg) 370 device_t dev; 371 int phy, reg; 372 { 373 struct vge_softc *sc; 374 int i; 375 u_int16_t rval = 0; 376 377 sc = device_get_softc(dev); 378 379 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 380 return(0); 381 382 VGE_LOCK(sc); 383 vge_miipoll_stop(sc); 384 385 /* Specify the register we want to read. */ 386 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 387 388 /* Issue read command. */ 389 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 390 391 /* Wait for the read command bit to self-clear. */ 392 for (i = 0; i < VGE_TIMEOUT; i++) { 393 DELAY(1); 394 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 395 break; 396 } 397 398 if (i == VGE_TIMEOUT) 399 device_printf(sc->vge_dev, "MII read timed out\n"); 400 else 401 rval = CSR_READ_2(sc, VGE_MIIDATA); 402 403 vge_miipoll_start(sc); 404 VGE_UNLOCK(sc); 405 406 return (rval); 407 } 408 409 static int 410 vge_miibus_writereg(dev, phy, reg, data) 411 device_t dev; 412 int phy, reg, data; 413 { 414 struct vge_softc *sc; 415 int i, rval = 0; 416 417 sc = device_get_softc(dev); 418 419 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 420 return(0); 421 422 VGE_LOCK(sc); 423 vge_miipoll_stop(sc); 424 425 /* Specify the register we want to write. */ 426 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 427 428 /* Specify the data we want to write. */ 429 CSR_WRITE_2(sc, VGE_MIIDATA, data); 430 431 /* Issue write command. */ 432 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 433 434 /* Wait for the write command bit to self-clear. */ 435 for (i = 0; i < VGE_TIMEOUT; i++) { 436 DELAY(1); 437 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 438 break; 439 } 440 441 if (i == VGE_TIMEOUT) { 442 device_printf(sc->vge_dev, "MII write timed out\n"); 443 rval = EIO; 444 } 445 446 vge_miipoll_start(sc); 447 VGE_UNLOCK(sc); 448 449 return (rval); 450 } 451 452 static void 453 vge_cam_clear(sc) 454 struct vge_softc *sc; 455 { 456 int i; 457 458 /* 459 * Turn off all the mask bits. This tells the chip 460 * that none of the entries in the CAM filter are valid. 461 * desired entries will be enabled as we fill the filter in. 462 */ 463 464 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 465 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 466 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 467 for (i = 0; i < 8; i++) 468 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 469 470 /* Clear the VLAN filter too. */ 471 472 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 473 for (i = 0; i < 8; i++) 474 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 475 476 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 477 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 478 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 479 480 sc->vge_camidx = 0; 481 482 return; 483 } 484 485 static int 486 vge_cam_set(sc, addr) 487 struct vge_softc *sc; 488 uint8_t *addr; 489 { 490 int i, error = 0; 491 492 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 493 return(ENOSPC); 494 495 /* Select the CAM data page. */ 496 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 497 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 498 499 /* Set the filter entry we want to update and enable writing. */ 500 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); 501 502 /* Write the address to the CAM registers */ 503 for (i = 0; i < ETHER_ADDR_LEN; i++) 504 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 505 506 /* Issue a write command. */ 507 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 508 509 /* Wake for it to clear. */ 510 for (i = 0; i < VGE_TIMEOUT; i++) { 511 DELAY(1); 512 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 513 break; 514 } 515 516 if (i == VGE_TIMEOUT) { 517 device_printf(sc->vge_dev, "setting CAM filter failed\n"); 518 error = EIO; 519 goto fail; 520 } 521 522 /* Select the CAM mask page. */ 523 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 524 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 525 526 /* Set the mask bit that enables this filter. */ 527 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 528 1<<(sc->vge_camidx & 7)); 529 530 sc->vge_camidx++; 531 532 fail: 533 /* Turn off access to CAM. */ 534 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 535 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 536 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 537 538 return (error); 539 } 540 541 /* 542 * Program the multicast filter. We use the 64-entry CAM filter 543 * for perfect filtering. If there's more than 64 multicast addresses, 544 * we use the hash filter insted. 545 */ 546 static void 547 vge_setmulti(sc) 548 struct vge_softc *sc; 549 { 550 struct ifnet *ifp; 551 int error = 0/*, h = 0*/; 552 struct ifmultiaddr *ifma; 553 u_int32_t h, hashes[2] = { 0, 0 }; 554 555 ifp = sc->vge_ifp; 556 557 /* First, zot all the multicast entries. */ 558 vge_cam_clear(sc); 559 CSR_WRITE_4(sc, VGE_MAR0, 0); 560 CSR_WRITE_4(sc, VGE_MAR1, 0); 561 562 /* 563 * If the user wants allmulti or promisc mode, enable reception 564 * of all multicast frames. 565 */ 566 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 567 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); 568 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); 569 return; 570 } 571 572 /* Now program new ones */ 573 IF_ADDR_LOCK(ifp); 574 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 575 if (ifma->ifma_addr->sa_family != AF_LINK) 576 continue; 577 error = vge_cam_set(sc, 578 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 579 if (error) 580 break; 581 } 582 583 /* If there were too many addresses, use the hash filter. */ 584 if (error) { 585 vge_cam_clear(sc); 586 587 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 588 if (ifma->ifma_addr->sa_family != AF_LINK) 589 continue; 590 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 591 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 592 if (h < 32) 593 hashes[0] |= (1 << h); 594 else 595 hashes[1] |= (1 << (h - 32)); 596 } 597 598 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 599 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 600 } 601 IF_ADDR_UNLOCK(ifp); 602 603 return; 604 } 605 606 static void 607 vge_reset(sc) 608 struct vge_softc *sc; 609 { 610 register int i; 611 612 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 613 614 for (i = 0; i < VGE_TIMEOUT; i++) { 615 DELAY(5); 616 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 617 break; 618 } 619 620 if (i == VGE_TIMEOUT) { 621 device_printf(sc->vge_dev, "soft reset timed out"); 622 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 623 DELAY(2000); 624 } 625 626 DELAY(5000); 627 628 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 629 630 for (i = 0; i < VGE_TIMEOUT; i++) { 631 DELAY(5); 632 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 633 break; 634 } 635 636 if (i == VGE_TIMEOUT) { 637 device_printf(sc->vge_dev, "EEPROM reload timed out\n"); 638 return; 639 } 640 641 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 642 643 return; 644 } 645 646 /* 647 * Probe for a VIA gigabit chip. Check the PCI vendor and device 648 * IDs against our list and return a device name if we find a match. 649 */ 650 static int 651 vge_probe(dev) 652 device_t dev; 653 { 654 struct vge_type *t; 655 struct vge_softc *sc; 656 657 t = vge_devs; 658 sc = device_get_softc(dev); 659 660 while (t->vge_name != NULL) { 661 if ((pci_get_vendor(dev) == t->vge_vid) && 662 (pci_get_device(dev) == t->vge_did)) { 663 device_set_desc(dev, t->vge_name); 664 return (BUS_PROBE_DEFAULT); 665 } 666 t++; 667 } 668 669 return (ENXIO); 670 } 671 672 static void 673 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error) 674 void *arg; 675 bus_dma_segment_t *segs; 676 int nseg; 677 bus_size_t mapsize; 678 int error; 679 { 680 681 struct vge_dmaload_arg *ctx; 682 struct vge_rx_desc *d = NULL; 683 684 if (error) 685 return; 686 687 ctx = arg; 688 689 /* Signal error to caller if there's too many segments */ 690 if (nseg > ctx->vge_maxsegs) { 691 ctx->vge_maxsegs = 0; 692 return; 693 } 694 695 /* 696 * Map the segment array into descriptors. 697 */ 698 699 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx]; 700 701 /* If this descriptor is still owned by the chip, bail. */ 702 703 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) { 704 device_printf(ctx->sc->vge_dev, 705 "tried to map busy descriptor\n"); 706 ctx->vge_maxsegs = 0; 707 return; 708 } 709 710 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I); 711 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 712 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 713 d->vge_sts = 0; 714 d->vge_ctl = 0; 715 716 ctx->vge_maxsegs = 1; 717 718 return; 719 } 720 721 static void 722 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 723 void *arg; 724 bus_dma_segment_t *segs; 725 int nseg; 726 bus_size_t mapsize; 727 int error; 728 { 729 struct vge_dmaload_arg *ctx; 730 struct vge_tx_desc *d = NULL; 731 struct vge_tx_frag *f; 732 int i = 0; 733 734 if (error) 735 return; 736 737 ctx = arg; 738 739 /* Signal error to caller if there's too many segments */ 740 if (nseg > ctx->vge_maxsegs) { 741 ctx->vge_maxsegs = 0; 742 return; 743 } 744 745 /* Map the segment array into descriptors. */ 746 747 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx]; 748 749 /* If this descriptor is still owned by the chip, bail. */ 750 751 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) { 752 ctx->vge_maxsegs = 0; 753 return; 754 } 755 756 for (i = 0; i < nseg; i++) { 757 f = &d->vge_frag[i]; 758 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len)); 759 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr)); 760 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF); 761 } 762 763 /* Argh. This chip does not autopad short frames */ 764 765 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) { 766 f = &d->vge_frag[i]; 767 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - 768 ctx->vge_m0->m_pkthdr.len)); 769 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 770 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 771 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN; 772 i++; 773 } 774 775 /* 776 * When telling the chip how many segments there are, we 777 * must use nsegs + 1 instead of just nsegs. Darned if I 778 * know why. 779 */ 780 i++; 781 782 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16; 783 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM; 784 785 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN) 786 d->vge_ctl |= VGE_TDCTL_JUMBO; 787 788 ctx->vge_maxsegs = nseg; 789 790 return; 791 } 792 793 /* 794 * Map a single buffer address. 795 */ 796 797 static void 798 vge_dma_map_addr(arg, segs, nseg, error) 799 void *arg; 800 bus_dma_segment_t *segs; 801 int nseg; 802 int error; 803 { 804 bus_addr_t *addr; 805 806 if (error) 807 return; 808 809 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 810 addr = arg; 811 *addr = segs->ds_addr; 812 813 return; 814 } 815 816 static int 817 vge_allocmem(dev, sc) 818 device_t dev; 819 struct vge_softc *sc; 820 { 821 int error; 822 int nseg; 823 int i; 824 825 /* 826 * Allocate map for RX mbufs. 827 */ 828 nseg = 32; 829 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0, 830 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 831 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, 832 NULL, NULL, &sc->vge_ldata.vge_mtag); 833 if (error) { 834 device_printf(dev, "could not allocate dma tag\n"); 835 return (ENOMEM); 836 } 837 838 /* 839 * Allocate map for TX descriptor list. 840 */ 841 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 842 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 843 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, 844 NULL, NULL, &sc->vge_ldata.vge_tx_list_tag); 845 if (error) { 846 device_printf(dev, "could not allocate dma tag\n"); 847 return (ENOMEM); 848 } 849 850 /* Allocate DMA'able memory for the TX ring */ 851 852 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag, 853 (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 854 &sc->vge_ldata.vge_tx_list_map); 855 if (error) 856 return (ENOMEM); 857 858 /* Load the map for the TX ring. */ 859 860 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag, 861 sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list, 862 VGE_TX_LIST_SZ, vge_dma_map_addr, 863 &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT); 864 865 /* Create DMA maps for TX buffers */ 866 867 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 868 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 869 &sc->vge_ldata.vge_tx_dmamap[i]); 870 if (error) { 871 device_printf(dev, "can't create DMA map for TX\n"); 872 return (ENOMEM); 873 } 874 } 875 876 /* 877 * Allocate map for RX descriptor list. 878 */ 879 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 880 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 881 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, 882 NULL, NULL, &sc->vge_ldata.vge_rx_list_tag); 883 if (error) { 884 device_printf(dev, "could not allocate dma tag\n"); 885 return (ENOMEM); 886 } 887 888 /* Allocate DMA'able memory for the RX ring */ 889 890 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag, 891 (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 892 &sc->vge_ldata.vge_rx_list_map); 893 if (error) 894 return (ENOMEM); 895 896 /* Load the map for the RX ring. */ 897 898 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag, 899 sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list, 900 VGE_TX_LIST_SZ, vge_dma_map_addr, 901 &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT); 902 903 /* Create DMA maps for RX buffers */ 904 905 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 906 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 907 &sc->vge_ldata.vge_rx_dmamap[i]); 908 if (error) { 909 device_printf(dev, "can't create DMA map for RX\n"); 910 return (ENOMEM); 911 } 912 } 913 914 return (0); 915 } 916 917 /* 918 * Attach the interface. Allocate softc structures, do ifmedia 919 * setup and ethernet/BPF attach. 920 */ 921 static int 922 vge_attach(dev) 923 device_t dev; 924 { 925 u_char eaddr[ETHER_ADDR_LEN]; 926 struct vge_softc *sc; 927 struct ifnet *ifp; 928 int unit, error = 0, rid; 929 930 sc = device_get_softc(dev); 931 unit = device_get_unit(dev); 932 sc->vge_dev = dev; 933 934 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 935 MTX_DEF | MTX_RECURSE); 936 /* 937 * Map control/status registers. 938 */ 939 pci_enable_busmaster(dev); 940 941 rid = VGE_PCI_LOMEM; 942 sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 943 0, ~0, 1, RF_ACTIVE); 944 945 if (sc->vge_res == NULL) { 946 printf ("vge%d: couldn't map ports/memory\n", unit); 947 error = ENXIO; 948 goto fail; 949 } 950 951 sc->vge_btag = rman_get_bustag(sc->vge_res); 952 sc->vge_bhandle = rman_get_bushandle(sc->vge_res); 953 954 /* Allocate interrupt */ 955 rid = 0; 956 sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 957 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); 958 959 if (sc->vge_irq == NULL) { 960 printf("vge%d: couldn't map interrupt\n", unit); 961 error = ENXIO; 962 goto fail; 963 } 964 965 /* Reset the adapter. */ 966 vge_reset(sc); 967 968 /* 969 * Get station address from the EEPROM. 970 */ 971 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); 972 973 sc->vge_unit = unit; 974 975 /* 976 * Allocate the parent bus DMA tag appropriate for PCI. 977 */ 978 #define VGE_NSEG_NEW 32 979 error = bus_dma_tag_create(NULL, /* parent */ 980 1, 0, /* alignment, boundary */ 981 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 982 BUS_SPACE_MAXADDR, /* highaddr */ 983 NULL, NULL, /* filter, filterarg */ 984 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */ 985 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 986 BUS_DMA_ALLOCNOW, /* flags */ 987 NULL, NULL, /* lockfunc, lockarg */ 988 &sc->vge_parent_tag); 989 if (error) 990 goto fail; 991 992 error = vge_allocmem(dev, sc); 993 994 if (error) 995 goto fail; 996 997 ifp = sc->vge_ifp = if_alloc(IFT_ETHER); 998 if (ifp == NULL) { 999 printf("vge%d: can not if_alloc()\n", sc->vge_unit); 1000 error = ENOSPC; 1001 goto fail; 1002 } 1003 1004 /* Do MII setup */ 1005 if (mii_phy_probe(dev, &sc->vge_miibus, 1006 vge_ifmedia_upd, vge_ifmedia_sts)) { 1007 printf("vge%d: MII without any phy!\n", sc->vge_unit); 1008 error = ENXIO; 1009 goto fail; 1010 } 1011 1012 ifp->if_softc = sc; 1013 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1014 ifp->if_mtu = ETHERMTU; 1015 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1016 ifp->if_ioctl = vge_ioctl; 1017 ifp->if_capabilities = IFCAP_VLAN_MTU; 1018 ifp->if_start = vge_start; 1019 ifp->if_hwassist = VGE_CSUM_FEATURES; 1020 ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; 1021 ifp->if_capenable = ifp->if_capabilities; 1022 #ifdef DEVICE_POLLING 1023 ifp->if_capabilities |= IFCAP_POLLING; 1024 #endif 1025 ifp->if_watchdog = vge_watchdog; 1026 ifp->if_init = vge_init; 1027 ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN; 1028 1029 TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp); 1030 1031 /* 1032 * Call MI attach routine. 1033 */ 1034 ether_ifattach(ifp, eaddr); 1035 1036 /* Hook interrupt last to avoid having to lock softc */ 1037 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, 1038 vge_intr, sc, &sc->vge_intrhand); 1039 1040 if (error) { 1041 printf("vge%d: couldn't set up irq\n", unit); 1042 ether_ifdetach(ifp); 1043 goto fail; 1044 } 1045 1046 fail: 1047 if (error) 1048 vge_detach(dev); 1049 1050 return (error); 1051 } 1052 1053 /* 1054 * Shutdown hardware and free up resources. This can be called any 1055 * time after the mutex has been initialized. It is called in both 1056 * the error case in attach and the normal detach case so it needs 1057 * to be careful about only freeing resources that have actually been 1058 * allocated. 1059 */ 1060 static int 1061 vge_detach(dev) 1062 device_t dev; 1063 { 1064 struct vge_softc *sc; 1065 struct ifnet *ifp; 1066 int i; 1067 1068 sc = device_get_softc(dev); 1069 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); 1070 ifp = sc->vge_ifp; 1071 1072 #ifdef DEVICE_POLLING 1073 if (ifp->if_capenable & IFCAP_POLLING) 1074 ether_poll_deregister(ifp); 1075 #endif 1076 1077 /* These should only be active if attach succeeded */ 1078 if (device_is_attached(dev)) { 1079 vge_stop(sc); 1080 /* 1081 * Force off the IFF_UP flag here, in case someone 1082 * still had a BPF descriptor attached to this 1083 * interface. If they do, ether_ifattach() will cause 1084 * the BPF code to try and clear the promisc mode 1085 * flag, which will bubble down to vge_ioctl(), 1086 * which will try to call vge_init() again. This will 1087 * turn the NIC back on and restart the MII ticker, 1088 * which will panic the system when the kernel tries 1089 * to invoke the vge_tick() function that isn't there 1090 * anymore. 1091 */ 1092 ifp->if_flags &= ~IFF_UP; 1093 ether_ifdetach(ifp); 1094 } 1095 if (sc->vge_miibus) 1096 device_delete_child(dev, sc->vge_miibus); 1097 bus_generic_detach(dev); 1098 1099 if (sc->vge_intrhand) 1100 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); 1101 if (sc->vge_irq) 1102 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq); 1103 if (sc->vge_res) 1104 bus_release_resource(dev, SYS_RES_MEMORY, 1105 VGE_PCI_LOMEM, sc->vge_res); 1106 if (ifp) 1107 if_free(ifp); 1108 1109 /* Unload and free the RX DMA ring memory and map */ 1110 1111 if (sc->vge_ldata.vge_rx_list_tag) { 1112 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag, 1113 sc->vge_ldata.vge_rx_list_map); 1114 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag, 1115 sc->vge_ldata.vge_rx_list, 1116 sc->vge_ldata.vge_rx_list_map); 1117 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag); 1118 } 1119 1120 /* Unload and free the TX DMA ring memory and map */ 1121 1122 if (sc->vge_ldata.vge_tx_list_tag) { 1123 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag, 1124 sc->vge_ldata.vge_tx_list_map); 1125 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, 1126 sc->vge_ldata.vge_tx_list, 1127 sc->vge_ldata.vge_tx_list_map); 1128 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag); 1129 } 1130 1131 /* Destroy all the RX and TX buffer maps */ 1132 1133 if (sc->vge_ldata.vge_mtag) { 1134 for (i = 0; i < VGE_TX_DESC_CNT; i++) 1135 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 1136 sc->vge_ldata.vge_tx_dmamap[i]); 1137 for (i = 0; i < VGE_RX_DESC_CNT; i++) 1138 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 1139 sc->vge_ldata.vge_rx_dmamap[i]); 1140 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag); 1141 } 1142 1143 if (sc->vge_parent_tag) 1144 bus_dma_tag_destroy(sc->vge_parent_tag); 1145 1146 mtx_destroy(&sc->vge_mtx); 1147 1148 return (0); 1149 } 1150 1151 static int 1152 vge_newbuf(sc, idx, m) 1153 struct vge_softc *sc; 1154 int idx; 1155 struct mbuf *m; 1156 { 1157 struct vge_dmaload_arg arg; 1158 struct mbuf *n = NULL; 1159 int i, error; 1160 1161 if (m == NULL) { 1162 n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1163 if (n == NULL) 1164 return (ENOBUFS); 1165 m = n; 1166 } else 1167 m->m_data = m->m_ext.ext_buf; 1168 1169 1170 #ifdef VGE_FIXUP_RX 1171 /* 1172 * This is part of an evil trick to deal with non-x86 platforms. 1173 * The VIA chip requires RX buffers to be aligned on 32-bit 1174 * boundaries, but that will hose non-x86 machines. To get around 1175 * this, we leave some empty space at the start of each buffer 1176 * and for non-x86 hosts, we copy the buffer back two bytes 1177 * to achieve word alignment. This is slightly more efficient 1178 * than allocating a new buffer, copying the contents, and 1179 * discarding the old buffer. 1180 */ 1181 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN; 1182 m_adj(m, VGE_ETHER_ALIGN); 1183 #else 1184 m->m_len = m->m_pkthdr.len = MCLBYTES; 1185 #endif 1186 1187 arg.sc = sc; 1188 arg.vge_idx = idx; 1189 arg.vge_maxsegs = 1; 1190 arg.vge_flags = 0; 1191 1192 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, 1193 sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc, 1194 &arg, BUS_DMA_NOWAIT); 1195 if (error || arg.vge_maxsegs != 1) { 1196 if (n != NULL) 1197 m_freem(n); 1198 return (ENOMEM); 1199 } 1200 1201 /* 1202 * Note: the manual fails to document the fact that for 1203 * proper opration, the driver needs to replentish the RX 1204 * DMA ring 4 descriptors at a time (rather than one at a 1205 * time, like most chips). We can allocate the new buffers 1206 * but we should not set the OWN bits until we're ready 1207 * to hand back 4 of them in one shot. 1208 */ 1209 1210 #define VGE_RXCHUNK 4 1211 sc->vge_rx_consumed++; 1212 if (sc->vge_rx_consumed == VGE_RXCHUNK) { 1213 for (i = idx; i != idx - sc->vge_rx_consumed; i--) 1214 sc->vge_ldata.vge_rx_list[i].vge_sts |= 1215 htole32(VGE_RDSTS_OWN); 1216 sc->vge_rx_consumed = 0; 1217 } 1218 1219 sc->vge_ldata.vge_rx_mbuf[idx] = m; 1220 1221 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1222 sc->vge_ldata.vge_rx_dmamap[idx], 1223 BUS_DMASYNC_PREREAD); 1224 1225 return (0); 1226 } 1227 1228 static int 1229 vge_tx_list_init(sc) 1230 struct vge_softc *sc; 1231 { 1232 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); 1233 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, 1234 (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); 1235 1236 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1237 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE); 1238 sc->vge_ldata.vge_tx_prodidx = 0; 1239 sc->vge_ldata.vge_tx_considx = 0; 1240 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; 1241 1242 return (0); 1243 } 1244 1245 static int 1246 vge_rx_list_init(sc) 1247 struct vge_softc *sc; 1248 { 1249 int i; 1250 1251 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); 1252 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf, 1253 (VGE_RX_DESC_CNT * sizeof(struct mbuf *))); 1254 1255 sc->vge_rx_consumed = 0; 1256 1257 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1258 if (vge_newbuf(sc, i, NULL) == ENOBUFS) 1259 return (ENOBUFS); 1260 } 1261 1262 /* Flush the RX descriptors */ 1263 1264 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1265 sc->vge_ldata.vge_rx_list_map, 1266 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1267 1268 sc->vge_ldata.vge_rx_prodidx = 0; 1269 sc->vge_rx_consumed = 0; 1270 sc->vge_head = sc->vge_tail = NULL; 1271 1272 return (0); 1273 } 1274 1275 #ifdef VGE_FIXUP_RX 1276 static __inline void 1277 vge_fixup_rx(m) 1278 struct mbuf *m; 1279 { 1280 int i; 1281 uint16_t *src, *dst; 1282 1283 src = mtod(m, uint16_t *); 1284 dst = src - 1; 1285 1286 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1287 *dst++ = *src++; 1288 1289 m->m_data -= ETHER_ALIGN; 1290 1291 return; 1292 } 1293 #endif 1294 1295 /* 1296 * RX handler. We support the reception of jumbo frames that have 1297 * been fragmented across multiple 2K mbuf cluster buffers. 1298 */ 1299 static void 1300 vge_rxeof(sc) 1301 struct vge_softc *sc; 1302 { 1303 struct mbuf *m; 1304 struct ifnet *ifp; 1305 int i, total_len; 1306 int lim = 0; 1307 struct vge_rx_desc *cur_rx; 1308 u_int32_t rxstat, rxctl; 1309 1310 VGE_LOCK_ASSERT(sc); 1311 ifp = sc->vge_ifp; 1312 i = sc->vge_ldata.vge_rx_prodidx; 1313 1314 /* Invalidate the descriptor memory */ 1315 1316 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1317 sc->vge_ldata.vge_rx_list_map, 1318 BUS_DMASYNC_POSTREAD); 1319 1320 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { 1321 1322 #ifdef DEVICE_POLLING 1323 if (ifp->if_capenable & IFCAP_POLLING) { 1324 if (sc->rxcycles <= 0) 1325 break; 1326 sc->rxcycles--; 1327 } 1328 #endif 1329 1330 cur_rx = &sc->vge_ldata.vge_rx_list[i]; 1331 m = sc->vge_ldata.vge_rx_mbuf[i]; 1332 total_len = VGE_RXBYTES(cur_rx); 1333 rxstat = le32toh(cur_rx->vge_sts); 1334 rxctl = le32toh(cur_rx->vge_ctl); 1335 1336 /* Invalidate the RX mbuf and unload its map */ 1337 1338 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1339 sc->vge_ldata.vge_rx_dmamap[i], 1340 BUS_DMASYNC_POSTWRITE); 1341 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1342 sc->vge_ldata.vge_rx_dmamap[i]); 1343 1344 /* 1345 * If the 'start of frame' bit is set, this indicates 1346 * either the first fragment in a multi-fragment receive, 1347 * or an intermediate fragment. Either way, we want to 1348 * accumulate the buffers. 1349 */ 1350 if (rxstat & VGE_RXPKT_SOF) { 1351 m->m_len = MCLBYTES - VGE_ETHER_ALIGN; 1352 if (sc->vge_head == NULL) 1353 sc->vge_head = sc->vge_tail = m; 1354 else { 1355 m->m_flags &= ~M_PKTHDR; 1356 sc->vge_tail->m_next = m; 1357 sc->vge_tail = m; 1358 } 1359 vge_newbuf(sc, i, NULL); 1360 VGE_RX_DESC_INC(i); 1361 continue; 1362 } 1363 1364 /* 1365 * Bad/error frames will have the RXOK bit cleared. 1366 * However, there's one error case we want to allow: 1367 * if a VLAN tagged frame arrives and the chip can't 1368 * match it against the CAM filter, it considers this 1369 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1370 * We don't want to drop the frame though: our VLAN 1371 * filtering is done in software. 1372 */ 1373 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) 1374 && !(rxstat & VGE_RDSTS_CSUMERR)) { 1375 ifp->if_ierrors++; 1376 /* 1377 * If this is part of a multi-fragment packet, 1378 * discard all the pieces. 1379 */ 1380 if (sc->vge_head != NULL) { 1381 m_freem(sc->vge_head); 1382 sc->vge_head = sc->vge_tail = NULL; 1383 } 1384 vge_newbuf(sc, i, m); 1385 VGE_RX_DESC_INC(i); 1386 continue; 1387 } 1388 1389 /* 1390 * If allocating a replacement mbuf fails, 1391 * reload the current one. 1392 */ 1393 1394 if (vge_newbuf(sc, i, NULL)) { 1395 ifp->if_ierrors++; 1396 if (sc->vge_head != NULL) { 1397 m_freem(sc->vge_head); 1398 sc->vge_head = sc->vge_tail = NULL; 1399 } 1400 vge_newbuf(sc, i, m); 1401 VGE_RX_DESC_INC(i); 1402 continue; 1403 } 1404 1405 VGE_RX_DESC_INC(i); 1406 1407 if (sc->vge_head != NULL) { 1408 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN); 1409 /* 1410 * Special case: if there's 4 bytes or less 1411 * in this buffer, the mbuf can be discarded: 1412 * the last 4 bytes is the CRC, which we don't 1413 * care about anyway. 1414 */ 1415 if (m->m_len <= ETHER_CRC_LEN) { 1416 sc->vge_tail->m_len -= 1417 (ETHER_CRC_LEN - m->m_len); 1418 m_freem(m); 1419 } else { 1420 m->m_len -= ETHER_CRC_LEN; 1421 m->m_flags &= ~M_PKTHDR; 1422 sc->vge_tail->m_next = m; 1423 } 1424 m = sc->vge_head; 1425 sc->vge_head = sc->vge_tail = NULL; 1426 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1427 } else 1428 m->m_pkthdr.len = m->m_len = 1429 (total_len - ETHER_CRC_LEN); 1430 1431 #ifdef VGE_FIXUP_RX 1432 vge_fixup_rx(m); 1433 #endif 1434 ifp->if_ipackets++; 1435 m->m_pkthdr.rcvif = ifp; 1436 1437 /* Do RX checksumming if enabled */ 1438 if (ifp->if_capenable & IFCAP_RXCSUM) { 1439 1440 /* Check IP header checksum */ 1441 if (rxctl & VGE_RDCTL_IPPKT) 1442 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1443 if (rxctl & VGE_RDCTL_IPCSUMOK) 1444 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1445 1446 /* Check TCP/UDP checksum */ 1447 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) && 1448 rxctl & VGE_RDCTL_PROTOCSUMOK) { 1449 m->m_pkthdr.csum_flags |= 1450 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1451 m->m_pkthdr.csum_data = 0xffff; 1452 } 1453 } 1454 1455 if (rxstat & VGE_RDSTS_VTAG) { 1456 /* 1457 * The 32-bit rxctl register is stored in little-endian. 1458 * However, the 16-bit vlan tag is stored in big-endian, 1459 * so we have to byte swap it. 1460 */ 1461 m->m_pkthdr.ether_vtag = 1462 bswap16(rxctl & VGE_RDCTL_VLANID); 1463 m->m_flags |= M_VLANTAG; 1464 } 1465 1466 VGE_UNLOCK(sc); 1467 (*ifp->if_input)(ifp, m); 1468 VGE_LOCK(sc); 1469 1470 lim++; 1471 if (lim == VGE_RX_DESC_CNT) 1472 break; 1473 1474 } 1475 1476 /* Flush the RX DMA ring */ 1477 1478 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1479 sc->vge_ldata.vge_rx_list_map, 1480 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1481 1482 sc->vge_ldata.vge_rx_prodidx = i; 1483 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); 1484 1485 1486 return; 1487 } 1488 1489 static void 1490 vge_txeof(sc) 1491 struct vge_softc *sc; 1492 { 1493 struct ifnet *ifp; 1494 u_int32_t txstat; 1495 int idx; 1496 1497 ifp = sc->vge_ifp; 1498 idx = sc->vge_ldata.vge_tx_considx; 1499 1500 /* Invalidate the TX descriptor list */ 1501 1502 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1503 sc->vge_ldata.vge_tx_list_map, 1504 BUS_DMASYNC_POSTREAD); 1505 1506 while (idx != sc->vge_ldata.vge_tx_prodidx) { 1507 1508 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts); 1509 if (txstat & VGE_TDSTS_OWN) 1510 break; 1511 1512 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); 1513 sc->vge_ldata.vge_tx_mbuf[idx] = NULL; 1514 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1515 sc->vge_ldata.vge_tx_dmamap[idx]); 1516 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) 1517 ifp->if_collisions++; 1518 if (txstat & VGE_TDSTS_TXERR) 1519 ifp->if_oerrors++; 1520 else 1521 ifp->if_opackets++; 1522 1523 sc->vge_ldata.vge_tx_free++; 1524 VGE_TX_DESC_INC(idx); 1525 } 1526 1527 /* No changes made to the TX ring, so no flush needed */ 1528 1529 if (idx != sc->vge_ldata.vge_tx_considx) { 1530 sc->vge_ldata.vge_tx_considx = idx; 1531 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1532 ifp->if_timer = 0; 1533 } 1534 1535 /* 1536 * If not all descriptors have been released reaped yet, 1537 * reload the timer so that we will eventually get another 1538 * interrupt that will cause us to re-enter this routine. 1539 * This is done in case the transmitter has gone idle. 1540 */ 1541 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) { 1542 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1543 } 1544 1545 return; 1546 } 1547 1548 static void 1549 vge_tick(xsc) 1550 void *xsc; 1551 { 1552 struct vge_softc *sc; 1553 struct ifnet *ifp; 1554 struct mii_data *mii; 1555 1556 sc = xsc; 1557 ifp = sc->vge_ifp; 1558 VGE_LOCK(sc); 1559 mii = device_get_softc(sc->vge_miibus); 1560 1561 mii_tick(mii); 1562 if (sc->vge_link) { 1563 if (!(mii->mii_media_status & IFM_ACTIVE)) { 1564 sc->vge_link = 0; 1565 if_link_state_change(sc->vge_ifp, 1566 LINK_STATE_DOWN); 1567 } 1568 } else { 1569 if (mii->mii_media_status & IFM_ACTIVE && 1570 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1571 sc->vge_link = 1; 1572 if_link_state_change(sc->vge_ifp, 1573 LINK_STATE_UP); 1574 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1575 taskqueue_enqueue(taskqueue_swi, 1576 &sc->vge_txtask); 1577 } 1578 } 1579 1580 VGE_UNLOCK(sc); 1581 1582 return; 1583 } 1584 1585 #ifdef DEVICE_POLLING 1586 static void 1587 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) 1588 { 1589 struct vge_softc *sc = ifp->if_softc; 1590 1591 VGE_LOCK(sc); 1592 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1593 goto done; 1594 1595 sc->rxcycles = count; 1596 vge_rxeof(sc); 1597 vge_txeof(sc); 1598 1599 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1600 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); 1601 1602 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1603 u_int32_t status; 1604 status = CSR_READ_4(sc, VGE_ISR); 1605 if (status == 0xFFFFFFFF) 1606 goto done; 1607 if (status) 1608 CSR_WRITE_4(sc, VGE_ISR, status); 1609 1610 /* 1611 * XXX check behaviour on receiver stalls. 1612 */ 1613 1614 if (status & VGE_ISR_TXDMA_STALL || 1615 status & VGE_ISR_RXDMA_STALL) 1616 vge_init(sc); 1617 1618 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1619 vge_rxeof(sc); 1620 ifp->if_ierrors++; 1621 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1622 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1623 } 1624 } 1625 done: 1626 VGE_UNLOCK(sc); 1627 } 1628 #endif /* DEVICE_POLLING */ 1629 1630 static void 1631 vge_intr(arg) 1632 void *arg; 1633 { 1634 struct vge_softc *sc; 1635 struct ifnet *ifp; 1636 u_int32_t status; 1637 1638 sc = arg; 1639 1640 if (sc->suspended) { 1641 return; 1642 } 1643 1644 VGE_LOCK(sc); 1645 ifp = sc->vge_ifp; 1646 1647 if (!(ifp->if_flags & IFF_UP)) { 1648 VGE_UNLOCK(sc); 1649 return; 1650 } 1651 1652 #ifdef DEVICE_POLLING 1653 if (ifp->if_capenable & IFCAP_POLLING) { 1654 VGE_UNLOCK(sc); 1655 return; 1656 } 1657 #endif 1658 1659 /* Disable interrupts */ 1660 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1661 1662 for (;;) { 1663 1664 status = CSR_READ_4(sc, VGE_ISR); 1665 /* If the card has gone away the read returns 0xffff. */ 1666 if (status == 0xFFFFFFFF) 1667 break; 1668 1669 if (status) 1670 CSR_WRITE_4(sc, VGE_ISR, status); 1671 1672 if ((status & VGE_INTRS) == 0) 1673 break; 1674 1675 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1676 vge_rxeof(sc); 1677 1678 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1679 vge_rxeof(sc); 1680 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1681 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1682 } 1683 1684 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) 1685 vge_txeof(sc); 1686 1687 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) 1688 vge_init(sc); 1689 1690 if (status & VGE_ISR_LINKSTS) 1691 vge_tick(sc); 1692 } 1693 1694 /* Re-enable interrupts */ 1695 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1696 1697 VGE_UNLOCK(sc); 1698 1699 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1700 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); 1701 1702 return; 1703 } 1704 1705 static int 1706 vge_encap(sc, m_head, idx) 1707 struct vge_softc *sc; 1708 struct mbuf *m_head; 1709 int idx; 1710 { 1711 struct mbuf *m_new = NULL; 1712 struct vge_dmaload_arg arg; 1713 bus_dmamap_t map; 1714 int error; 1715 1716 if (sc->vge_ldata.vge_tx_free <= 2) 1717 return (EFBIG); 1718 1719 arg.vge_flags = 0; 1720 1721 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1722 arg.vge_flags |= VGE_TDCTL_IPCSUM; 1723 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1724 arg.vge_flags |= VGE_TDCTL_TCPCSUM; 1725 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1726 arg.vge_flags |= VGE_TDCTL_UDPCSUM; 1727 1728 arg.sc = sc; 1729 arg.vge_idx = idx; 1730 arg.vge_m0 = m_head; 1731 arg.vge_maxsegs = VGE_TX_FRAGS; 1732 1733 map = sc->vge_ldata.vge_tx_dmamap[idx]; 1734 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, 1735 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); 1736 1737 if (error && error != EFBIG) { 1738 printf("vge%d: can't map mbuf (error %d)\n", 1739 sc->vge_unit, error); 1740 return (ENOBUFS); 1741 } 1742 1743 /* Too many segments to map, coalesce into a single mbuf */ 1744 1745 if (error || arg.vge_maxsegs == 0) { 1746 m_new = m_defrag(m_head, M_DONTWAIT); 1747 if (m_new == NULL) 1748 return (1); 1749 else 1750 m_head = m_new; 1751 1752 arg.sc = sc; 1753 arg.vge_m0 = m_head; 1754 arg.vge_idx = idx; 1755 arg.vge_maxsegs = 1; 1756 1757 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, 1758 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); 1759 if (error) { 1760 printf("vge%d: can't map mbuf (error %d)\n", 1761 sc->vge_unit, error); 1762 return (EFBIG); 1763 } 1764 } 1765 1766 sc->vge_ldata.vge_tx_mbuf[idx] = m_head; 1767 sc->vge_ldata.vge_tx_free--; 1768 1769 /* 1770 * Set up hardware VLAN tagging. 1771 */ 1772 1773 if (m_head->m_flags & M_VLANTAG) 1774 sc->vge_ldata.vge_tx_list[idx].vge_ctl |= 1775 htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG); 1776 1777 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); 1778 1779 return (0); 1780 } 1781 1782 static void 1783 vge_tx_task(arg, npending) 1784 void *arg; 1785 int npending; 1786 { 1787 struct ifnet *ifp; 1788 1789 ifp = arg; 1790 vge_start(ifp); 1791 1792 return; 1793 } 1794 1795 /* 1796 * Main transmit routine. 1797 */ 1798 1799 static void 1800 vge_start(ifp) 1801 struct ifnet *ifp; 1802 { 1803 struct vge_softc *sc; 1804 struct mbuf *m_head = NULL; 1805 int idx, pidx = 0; 1806 1807 sc = ifp->if_softc; 1808 VGE_LOCK(sc); 1809 1810 if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) { 1811 VGE_UNLOCK(sc); 1812 return; 1813 } 1814 1815 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1816 VGE_UNLOCK(sc); 1817 return; 1818 } 1819 1820 idx = sc->vge_ldata.vge_tx_prodidx; 1821 1822 pidx = idx - 1; 1823 if (pidx < 0) 1824 pidx = VGE_TX_DESC_CNT - 1; 1825 1826 1827 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) { 1828 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1829 if (m_head == NULL) 1830 break; 1831 1832 if (vge_encap(sc, m_head, idx)) { 1833 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1834 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1835 break; 1836 } 1837 1838 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= 1839 htole16(VGE_TXDESC_Q); 1840 1841 pidx = idx; 1842 VGE_TX_DESC_INC(idx); 1843 1844 /* 1845 * If there's a BPF listener, bounce a copy of this frame 1846 * to him. 1847 */ 1848 BPF_MTAP(ifp, m_head); 1849 } 1850 1851 if (idx == sc->vge_ldata.vge_tx_prodidx) { 1852 VGE_UNLOCK(sc); 1853 return; 1854 } 1855 1856 /* Flush the TX descriptors */ 1857 1858 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1859 sc->vge_ldata.vge_tx_list_map, 1860 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1861 1862 /* Issue a transmit command. */ 1863 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 1864 1865 sc->vge_ldata.vge_tx_prodidx = idx; 1866 1867 /* 1868 * Use the countdown timer for interrupt moderation. 1869 * 'TX done' interrupts are disabled. Instead, we reset the 1870 * countdown timer, which will begin counting until it hits 1871 * the value in the SSTIMER register, and then trigger an 1872 * interrupt. Each time we set the TIMER0_ENABLE bit, the 1873 * the timer count is reloaded. Only when the transmitter 1874 * is idle will the timer hit 0 and an interrupt fire. 1875 */ 1876 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1877 1878 VGE_UNLOCK(sc); 1879 1880 /* 1881 * Set a timeout in case the chip goes out to lunch. 1882 */ 1883 ifp->if_timer = 5; 1884 1885 return; 1886 } 1887 1888 static void 1889 vge_init(xsc) 1890 void *xsc; 1891 { 1892 struct vge_softc *sc = xsc; 1893 struct ifnet *ifp = sc->vge_ifp; 1894 struct mii_data *mii; 1895 int i; 1896 1897 VGE_LOCK(sc); 1898 mii = device_get_softc(sc->vge_miibus); 1899 1900 /* 1901 * Cancel pending I/O and free all RX/TX buffers. 1902 */ 1903 vge_stop(sc); 1904 vge_reset(sc); 1905 1906 /* 1907 * Initialize the RX and TX descriptors and mbufs. 1908 */ 1909 1910 vge_rx_list_init(sc); 1911 vge_tx_list_init(sc); 1912 1913 /* Set our station address */ 1914 for (i = 0; i < ETHER_ADDR_LEN; i++) 1915 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]); 1916 1917 /* 1918 * Set receive FIFO threshold. Also allow transmission and 1919 * reception of VLAN tagged frames. 1920 */ 1921 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 1922 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); 1923 1924 /* Set DMA burst length */ 1925 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 1926 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 1927 1928 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 1929 1930 /* Set collision backoff algorithm */ 1931 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 1932 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 1933 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 1934 1935 /* Disable LPSEL field in priority resolution */ 1936 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 1937 1938 /* 1939 * Load the addresses of the DMA queues into the chip. 1940 * Note that we only use one transmit queue. 1941 */ 1942 1943 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, 1944 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr)); 1945 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); 1946 1947 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 1948 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr)); 1949 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); 1950 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); 1951 1952 /* Enable and wake up the RX descriptor queue */ 1953 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1954 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1955 1956 /* Enable the TX descriptor queue */ 1957 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 1958 1959 /* Set up the receive filter -- allow large frames for VLANs. */ 1960 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); 1961 1962 /* If we want promiscuous mode, set the allframes bit. */ 1963 if (ifp->if_flags & IFF_PROMISC) { 1964 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); 1965 } 1966 1967 /* Set capture broadcast bit to capture broadcast frames. */ 1968 if (ifp->if_flags & IFF_BROADCAST) { 1969 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); 1970 } 1971 1972 /* Set multicast bit to capture multicast frames. */ 1973 if (ifp->if_flags & IFF_MULTICAST) { 1974 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); 1975 } 1976 1977 /* Init the cam filter. */ 1978 vge_cam_clear(sc); 1979 1980 /* Init the multicast filter. */ 1981 vge_setmulti(sc); 1982 1983 /* Enable flow control */ 1984 1985 CSR_WRITE_1(sc, VGE_CRS2, 0x8B); 1986 1987 /* Enable jumbo frame reception (if desired) */ 1988 1989 /* Start the MAC. */ 1990 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 1991 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 1992 CSR_WRITE_1(sc, VGE_CRS0, 1993 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 1994 1995 /* 1996 * Configure one-shot timer for microsecond 1997 * resulution and load it for 500 usecs. 1998 */ 1999 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); 2000 CSR_WRITE_2(sc, VGE_SSTIMER, 400); 2001 2002 /* 2003 * Configure interrupt moderation for receive. Enable 2004 * the holdoff counter and load it, and set the RX 2005 * suppression count to the number of descriptors we 2006 * want to allow before triggering an interrupt. 2007 * The holdoff timer is in units of 20 usecs. 2008 */ 2009 2010 #ifdef notyet 2011 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); 2012 /* Select the interrupt holdoff timer page. */ 2013 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2014 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 2015 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ 2016 2017 /* Enable use of the holdoff timer. */ 2018 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 2019 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); 2020 2021 /* Select the RX suppression threshold page. */ 2022 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2023 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 2024 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ 2025 2026 /* Restore the page select bits. */ 2027 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2028 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 2029 #endif 2030 2031 #ifdef DEVICE_POLLING 2032 /* 2033 * Disable interrupts if we are polling. 2034 */ 2035 if (ifp->if_capenable & IFCAP_POLLING) { 2036 CSR_WRITE_4(sc, VGE_IMR, 0); 2037 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2038 } else /* otherwise ... */ 2039 #endif 2040 { 2041 /* 2042 * Enable interrupts. 2043 */ 2044 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2045 CSR_WRITE_4(sc, VGE_ISR, 0); 2046 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2047 } 2048 2049 mii_mediachg(mii); 2050 2051 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2052 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2053 2054 sc->vge_if_flags = 0; 2055 sc->vge_link = 0; 2056 2057 VGE_UNLOCK(sc); 2058 2059 return; 2060 } 2061 2062 /* 2063 * Set media options. 2064 */ 2065 static int 2066 vge_ifmedia_upd(ifp) 2067 struct ifnet *ifp; 2068 { 2069 struct vge_softc *sc; 2070 struct mii_data *mii; 2071 2072 sc = ifp->if_softc; 2073 VGE_LOCK(sc); 2074 mii = device_get_softc(sc->vge_miibus); 2075 mii_mediachg(mii); 2076 VGE_UNLOCK(sc); 2077 2078 return (0); 2079 } 2080 2081 /* 2082 * Report current media status. 2083 */ 2084 static void 2085 vge_ifmedia_sts(ifp, ifmr) 2086 struct ifnet *ifp; 2087 struct ifmediareq *ifmr; 2088 { 2089 struct vge_softc *sc; 2090 struct mii_data *mii; 2091 2092 sc = ifp->if_softc; 2093 mii = device_get_softc(sc->vge_miibus); 2094 2095 mii_pollstat(mii); 2096 ifmr->ifm_active = mii->mii_media_active; 2097 ifmr->ifm_status = mii->mii_media_status; 2098 2099 return; 2100 } 2101 2102 static void 2103 vge_miibus_statchg(dev) 2104 device_t dev; 2105 { 2106 struct vge_softc *sc; 2107 struct mii_data *mii; 2108 struct ifmedia_entry *ife; 2109 2110 sc = device_get_softc(dev); 2111 mii = device_get_softc(sc->vge_miibus); 2112 ife = mii->mii_media.ifm_cur; 2113 2114 /* 2115 * If the user manually selects a media mode, we need to turn 2116 * on the forced MAC mode bit in the DIAGCTL register. If the 2117 * user happens to choose a full duplex mode, we also need to 2118 * set the 'force full duplex' bit. This applies only to 2119 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 2120 * mode is disabled, and in 1000baseT mode, full duplex is 2121 * always implied, so we turn on the forced mode bit but leave 2122 * the FDX bit cleared. 2123 */ 2124 2125 switch (IFM_SUBTYPE(ife->ifm_media)) { 2126 case IFM_AUTO: 2127 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2128 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2129 break; 2130 case IFM_1000_T: 2131 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2132 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2133 break; 2134 case IFM_100_TX: 2135 case IFM_10_T: 2136 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2137 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { 2138 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2139 } else { 2140 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2141 } 2142 break; 2143 default: 2144 device_printf(dev, "unknown media type: %x\n", 2145 IFM_SUBTYPE(ife->ifm_media)); 2146 break; 2147 } 2148 2149 return; 2150 } 2151 2152 static int 2153 vge_ioctl(ifp, command, data) 2154 struct ifnet *ifp; 2155 u_long command; 2156 caddr_t data; 2157 { 2158 struct vge_softc *sc = ifp->if_softc; 2159 struct ifreq *ifr = (struct ifreq *) data; 2160 struct mii_data *mii; 2161 int error = 0; 2162 2163 switch (command) { 2164 case SIOCSIFMTU: 2165 if (ifr->ifr_mtu > VGE_JUMBO_MTU) 2166 error = EINVAL; 2167 ifp->if_mtu = ifr->ifr_mtu; 2168 break; 2169 case SIOCSIFFLAGS: 2170 if (ifp->if_flags & IFF_UP) { 2171 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2172 ifp->if_flags & IFF_PROMISC && 2173 !(sc->vge_if_flags & IFF_PROMISC)) { 2174 CSR_SETBIT_1(sc, VGE_RXCTL, 2175 VGE_RXCTL_RX_PROMISC); 2176 vge_setmulti(sc); 2177 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2178 !(ifp->if_flags & IFF_PROMISC) && 2179 sc->vge_if_flags & IFF_PROMISC) { 2180 CSR_CLRBIT_1(sc, VGE_RXCTL, 2181 VGE_RXCTL_RX_PROMISC); 2182 vge_setmulti(sc); 2183 } else 2184 vge_init(sc); 2185 } else { 2186 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2187 vge_stop(sc); 2188 } 2189 sc->vge_if_flags = ifp->if_flags; 2190 break; 2191 case SIOCADDMULTI: 2192 case SIOCDELMULTI: 2193 vge_setmulti(sc); 2194 break; 2195 case SIOCGIFMEDIA: 2196 case SIOCSIFMEDIA: 2197 mii = device_get_softc(sc->vge_miibus); 2198 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2199 break; 2200 case SIOCSIFCAP: 2201 { 2202 int mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2203 #ifdef DEVICE_POLLING 2204 if (mask & IFCAP_POLLING) { 2205 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2206 error = ether_poll_register(vge_poll, ifp); 2207 if (error) 2208 return(error); 2209 VGE_LOCK(sc); 2210 /* Disable interrupts */ 2211 CSR_WRITE_4(sc, VGE_IMR, 0); 2212 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2213 ifp->if_capenable |= IFCAP_POLLING; 2214 VGE_UNLOCK(sc); 2215 } else { 2216 error = ether_poll_deregister(ifp); 2217 /* Enable interrupts. */ 2218 VGE_LOCK(sc); 2219 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2220 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2221 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2222 ifp->if_capenable &= ~IFCAP_POLLING; 2223 VGE_UNLOCK(sc); 2224 } 2225 } 2226 #endif /* DEVICE_POLLING */ 2227 if (mask & IFCAP_HWCSUM) { 2228 ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM); 2229 if (ifp->if_capenable & IFCAP_TXCSUM) 2230 ifp->if_hwassist = VGE_CSUM_FEATURES; 2231 else 2232 ifp->if_hwassist = 0; 2233 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2234 vge_init(sc); 2235 } 2236 } 2237 break; 2238 default: 2239 error = ether_ioctl(ifp, command, data); 2240 break; 2241 } 2242 2243 return (error); 2244 } 2245 2246 static void 2247 vge_watchdog(ifp) 2248 struct ifnet *ifp; 2249 { 2250 struct vge_softc *sc; 2251 2252 sc = ifp->if_softc; 2253 VGE_LOCK(sc); 2254 printf("vge%d: watchdog timeout\n", sc->vge_unit); 2255 ifp->if_oerrors++; 2256 2257 vge_txeof(sc); 2258 vge_rxeof(sc); 2259 2260 vge_init(sc); 2261 2262 VGE_UNLOCK(sc); 2263 2264 return; 2265 } 2266 2267 /* 2268 * Stop the adapter and free any mbufs allocated to the 2269 * RX and TX lists. 2270 */ 2271 static void 2272 vge_stop(sc) 2273 struct vge_softc *sc; 2274 { 2275 register int i; 2276 struct ifnet *ifp; 2277 2278 VGE_LOCK(sc); 2279 ifp = sc->vge_ifp; 2280 ifp->if_timer = 0; 2281 2282 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2283 2284 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2285 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2286 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2287 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2288 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2289 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2290 2291 if (sc->vge_head != NULL) { 2292 m_freem(sc->vge_head); 2293 sc->vge_head = sc->vge_tail = NULL; 2294 } 2295 2296 /* Free the TX list buffers. */ 2297 2298 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 2299 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { 2300 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2301 sc->vge_ldata.vge_tx_dmamap[i]); 2302 m_freem(sc->vge_ldata.vge_tx_mbuf[i]); 2303 sc->vge_ldata.vge_tx_mbuf[i] = NULL; 2304 } 2305 } 2306 2307 /* Free the RX list buffers. */ 2308 2309 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 2310 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { 2311 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2312 sc->vge_ldata.vge_rx_dmamap[i]); 2313 m_freem(sc->vge_ldata.vge_rx_mbuf[i]); 2314 sc->vge_ldata.vge_rx_mbuf[i] = NULL; 2315 } 2316 } 2317 2318 VGE_UNLOCK(sc); 2319 2320 return; 2321 } 2322 2323 /* 2324 * Device suspend routine. Stop the interface and save some PCI 2325 * settings in case the BIOS doesn't restore them properly on 2326 * resume. 2327 */ 2328 static int 2329 vge_suspend(dev) 2330 device_t dev; 2331 { 2332 struct vge_softc *sc; 2333 2334 sc = device_get_softc(dev); 2335 2336 vge_stop(sc); 2337 2338 sc->suspended = 1; 2339 2340 return (0); 2341 } 2342 2343 /* 2344 * Device resume routine. Restore some PCI settings in case the BIOS 2345 * doesn't, re-enable busmastering, and restart the interface if 2346 * appropriate. 2347 */ 2348 static int 2349 vge_resume(dev) 2350 device_t dev; 2351 { 2352 struct vge_softc *sc; 2353 struct ifnet *ifp; 2354 2355 sc = device_get_softc(dev); 2356 ifp = sc->vge_ifp; 2357 2358 /* reenable busmastering */ 2359 pci_enable_busmaster(dev); 2360 pci_enable_io(dev, SYS_RES_MEMORY); 2361 2362 /* reinitialize interface if necessary */ 2363 if (ifp->if_flags & IFF_UP) 2364 vge_init(sc); 2365 2366 sc->suspended = 0; 2367 2368 return (0); 2369 } 2370 2371 /* 2372 * Stop all chip I/O so that the kernel's probe routines don't 2373 * get confused by errant DMAs when rebooting. 2374 */ 2375 static void 2376 vge_shutdown(dev) 2377 device_t dev; 2378 { 2379 struct vge_softc *sc; 2380 2381 sc = device_get_softc(dev); 2382 2383 vge_stop(sc); 2384 } 2385