xref: /freebsd/sys/dev/vge/if_vge.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/taskqueue.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct vge_type vge_devs[] = {
135 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136 		"VIA Networking Gigabit Ethernet" },
137 	{ 0, 0, NULL }
138 };
139 
140 static int vge_probe		(device_t);
141 static int vge_attach		(device_t);
142 static int vge_detach		(device_t);
143 
144 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145 
146 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148 				    bus_size_t, int);
149 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150 				    bus_size_t, int);
151 static int vge_allocmem		(device_t, struct vge_softc *);
152 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153 static int vge_rx_list_init	(struct vge_softc *);
154 static int vge_tx_list_init	(struct vge_softc *);
155 #ifdef VGE_FIXUP_RX
156 static __inline void vge_fixup_rx
157 				(struct mbuf *);
158 #endif
159 static void vge_rxeof		(struct vge_softc *);
160 static void vge_txeof		(struct vge_softc *);
161 static void vge_intr		(void *);
162 static void vge_tick		(void *);
163 static void vge_tx_task		(void *, int);
164 static void vge_start		(struct ifnet *);
165 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166 static void vge_init		(void *);
167 static void vge_stop		(struct vge_softc *);
168 static void vge_watchdog	(struct ifnet *);
169 static int vge_suspend		(device_t);
170 static int vge_resume		(device_t);
171 static void vge_shutdown	(device_t);
172 static int vge_ifmedia_upd	(struct ifnet *);
173 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179 
180 static void vge_miipoll_start	(struct vge_softc *);
181 static void vge_miipoll_stop	(struct vge_softc *);
182 static int vge_miibus_readreg	(device_t, int, int);
183 static int vge_miibus_writereg	(device_t, int, int, int);
184 static void vge_miibus_statchg	(device_t);
185 
186 static void vge_cam_clear	(struct vge_softc *);
187 static int vge_cam_set		(struct vge_softc *, uint8_t *);
188 static void vge_setmulti	(struct vge_softc *);
189 static void vge_reset		(struct vge_softc *);
190 
191 #define VGE_PCI_LOIO             0x10
192 #define VGE_PCI_LOMEM            0x14
193 
194 static device_method_t vge_methods[] = {
195 	/* Device interface */
196 	DEVMETHOD(device_probe,		vge_probe),
197 	DEVMETHOD(device_attach,	vge_attach),
198 	DEVMETHOD(device_detach,	vge_detach),
199 	DEVMETHOD(device_suspend,	vge_suspend),
200 	DEVMETHOD(device_resume,	vge_resume),
201 	DEVMETHOD(device_shutdown,	vge_shutdown),
202 
203 	/* bus interface */
204 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206 
207 	/* MII interface */
208 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211 
212 	{ 0, 0 }
213 };
214 
215 static driver_t vge_driver = {
216 	"vge",
217 	vge_methods,
218 	sizeof(struct vge_softc)
219 };
220 
221 static devclass_t vge_devclass;
222 
223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226 
227 #ifdef VGE_EEPROM
228 /*
229  * Read a word of data stored in the EEPROM at address 'addr.'
230  */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233 	struct vge_softc	*sc;
234 	int			addr;
235 	u_int16_t		*dest;
236 {
237 	register int		i;
238 	u_int16_t		word = 0;
239 
240 	/*
241 	 * Enter EEPROM embedded programming mode. In order to
242 	 * access the EEPROM at all, we first have to set the
243 	 * EELOAD bit in the CHIPCFG2 register.
244 	 */
245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 
248 	/* Select the address of the word we want to read */
249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 
251 	/* Issue read command */
252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 
254 	/* Wait for the done bit to be set. */
255 	for (i = 0; i < VGE_TIMEOUT; i++) {
256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 			break;
258 	}
259 
260 	if (i == VGE_TIMEOUT) {
261 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262 		*dest = 0;
263 		return;
264 	}
265 
266 	/* Read the result */
267 	word = CSR_READ_2(sc, VGE_EERDDAT);
268 
269 	/* Turn off EEPROM access mode. */
270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 
273 	*dest = word;
274 
275 	return;
276 }
277 #endif
278 
279 /*
280  * Read a sequence of words from the EEPROM.
281  */
282 static void
283 vge_read_eeprom(sc, dest, off, cnt, swap)
284 	struct vge_softc	*sc;
285 	caddr_t			dest;
286 	int			off;
287 	int			cnt;
288 	int			swap;
289 {
290 	int			i;
291 #ifdef VGE_EEPROM
292 	u_int16_t		word = 0, *ptr;
293 
294 	for (i = 0; i < cnt; i++) {
295 		vge_eeprom_getword(sc, off + i, &word);
296 		ptr = (u_int16_t *)(dest + (i * 2));
297 		if (swap)
298 			*ptr = ntohs(word);
299 		else
300 			*ptr = word;
301 	}
302 #else
303 	for (i = 0; i < ETHER_ADDR_LEN; i++)
304 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305 #endif
306 }
307 
308 static void
309 vge_miipoll_stop(sc)
310 	struct vge_softc	*sc;
311 {
312 	int			i;
313 
314 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
315 
316 	for (i = 0; i < VGE_TIMEOUT; i++) {
317 		DELAY(1);
318 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
319 			break;
320 	}
321 
322 	if (i == VGE_TIMEOUT)
323 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
324 
325 	return;
326 }
327 
328 static void
329 vge_miipoll_start(sc)
330 	struct vge_softc	*sc;
331 {
332 	int			i;
333 
334 	/* First, make sure we're idle. */
335 
336 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
337 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
338 
339 	for (i = 0; i < VGE_TIMEOUT; i++) {
340 		DELAY(1);
341 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
342 			break;
343 	}
344 
345 	if (i == VGE_TIMEOUT) {
346 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
347 		return;
348 	}
349 
350 	/* Now enable auto poll mode. */
351 
352 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
353 
354 	/* And make sure it started. */
355 
356 	for (i = 0; i < VGE_TIMEOUT; i++) {
357 		DELAY(1);
358 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
359 			break;
360 	}
361 
362 	if (i == VGE_TIMEOUT)
363 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
364 
365 	return;
366 }
367 
368 static int
369 vge_miibus_readreg(dev, phy, reg)
370 	device_t		dev;
371 	int			phy, reg;
372 {
373 	struct vge_softc	*sc;
374 	int			i;
375 	u_int16_t		rval = 0;
376 
377 	sc = device_get_softc(dev);
378 
379 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
380 		return(0);
381 
382 	VGE_LOCK(sc);
383 	vge_miipoll_stop(sc);
384 
385 	/* Specify the register we want to read. */
386 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
387 
388 	/* Issue read command. */
389 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
390 
391 	/* Wait for the read command bit to self-clear. */
392 	for (i = 0; i < VGE_TIMEOUT; i++) {
393 		DELAY(1);
394 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
395 			break;
396 	}
397 
398 	if (i == VGE_TIMEOUT)
399 		device_printf(sc->vge_dev, "MII read timed out\n");
400 	else
401 		rval = CSR_READ_2(sc, VGE_MIIDATA);
402 
403 	vge_miipoll_start(sc);
404 	VGE_UNLOCK(sc);
405 
406 	return (rval);
407 }
408 
409 static int
410 vge_miibus_writereg(dev, phy, reg, data)
411 	device_t		dev;
412 	int			phy, reg, data;
413 {
414 	struct vge_softc	*sc;
415 	int			i, rval = 0;
416 
417 	sc = device_get_softc(dev);
418 
419 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
420 		return(0);
421 
422 	VGE_LOCK(sc);
423 	vge_miipoll_stop(sc);
424 
425 	/* Specify the register we want to write. */
426 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
427 
428 	/* Specify the data we want to write. */
429 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
430 
431 	/* Issue write command. */
432 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
433 
434 	/* Wait for the write command bit to self-clear. */
435 	for (i = 0; i < VGE_TIMEOUT; i++) {
436 		DELAY(1);
437 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
438 			break;
439 	}
440 
441 	if (i == VGE_TIMEOUT) {
442 		device_printf(sc->vge_dev, "MII write timed out\n");
443 		rval = EIO;
444 	}
445 
446 	vge_miipoll_start(sc);
447 	VGE_UNLOCK(sc);
448 
449 	return (rval);
450 }
451 
452 static void
453 vge_cam_clear(sc)
454 	struct vge_softc	*sc;
455 {
456 	int			i;
457 
458 	/*
459 	 * Turn off all the mask bits. This tells the chip
460 	 * that none of the entries in the CAM filter are valid.
461 	 * desired entries will be enabled as we fill the filter in.
462 	 */
463 
464 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
466 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
467 	for (i = 0; i < 8; i++)
468 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
469 
470 	/* Clear the VLAN filter too. */
471 
472 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
473 	for (i = 0; i < 8; i++)
474 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
475 
476 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
477 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
479 
480 	sc->vge_camidx = 0;
481 
482 	return;
483 }
484 
485 static int
486 vge_cam_set(sc, addr)
487 	struct vge_softc	*sc;
488 	uint8_t			*addr;
489 {
490 	int			i, error = 0;
491 
492 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
493 		return(ENOSPC);
494 
495 	/* Select the CAM data page. */
496 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
498 
499 	/* Set the filter entry we want to update and enable writing. */
500 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
501 
502 	/* Write the address to the CAM registers */
503 	for (i = 0; i < ETHER_ADDR_LEN; i++)
504 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
505 
506 	/* Issue a write command. */
507 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
508 
509 	/* Wake for it to clear. */
510 	for (i = 0; i < VGE_TIMEOUT; i++) {
511 		DELAY(1);
512 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
513 			break;
514 	}
515 
516 	if (i == VGE_TIMEOUT) {
517 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
518 		error = EIO;
519 		goto fail;
520 	}
521 
522 	/* Select the CAM mask page. */
523 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
524 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
525 
526 	/* Set the mask bit that enables this filter. */
527 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
528 	    1<<(sc->vge_camidx & 7));
529 
530 	sc->vge_camidx++;
531 
532 fail:
533 	/* Turn off access to CAM. */
534 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
535 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
536 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
537 
538 	return (error);
539 }
540 
541 /*
542  * Program the multicast filter. We use the 64-entry CAM filter
543  * for perfect filtering. If there's more than 64 multicast addresses,
544  * we use the hash filter insted.
545  */
546 static void
547 vge_setmulti(sc)
548 	struct vge_softc	*sc;
549 {
550 	struct ifnet		*ifp;
551 	int			error = 0/*, h = 0*/;
552 	struct ifmultiaddr	*ifma;
553 	u_int32_t		h, hashes[2] = { 0, 0 };
554 
555 	ifp = sc->vge_ifp;
556 
557 	/* First, zot all the multicast entries. */
558 	vge_cam_clear(sc);
559 	CSR_WRITE_4(sc, VGE_MAR0, 0);
560 	CSR_WRITE_4(sc, VGE_MAR1, 0);
561 
562 	/*
563 	 * If the user wants allmulti or promisc mode, enable reception
564 	 * of all multicast frames.
565 	 */
566 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
567 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
568 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
569 		return;
570 	}
571 
572 	/* Now program new ones */
573 	IF_ADDR_LOCK(ifp);
574 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575 		if (ifma->ifma_addr->sa_family != AF_LINK)
576 			continue;
577 		error = vge_cam_set(sc,
578 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579 		if (error)
580 			break;
581 	}
582 
583 	/* If there were too many addresses, use the hash filter. */
584 	if (error) {
585 		vge_cam_clear(sc);
586 
587 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588 			if (ifma->ifma_addr->sa_family != AF_LINK)
589 				continue;
590 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592 			if (h < 32)
593 				hashes[0] |= (1 << h);
594 			else
595 				hashes[1] |= (1 << (h - 32));
596 		}
597 
598 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
599 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
600 	}
601 	IF_ADDR_UNLOCK(ifp);
602 
603 	return;
604 }
605 
606 static void
607 vge_reset(sc)
608 	struct vge_softc		*sc;
609 {
610 	register int		i;
611 
612 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
613 
614 	for (i = 0; i < VGE_TIMEOUT; i++) {
615 		DELAY(5);
616 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
617 			break;
618 	}
619 
620 	if (i == VGE_TIMEOUT) {
621 		device_printf(sc->vge_dev, "soft reset timed out");
622 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
623 		DELAY(2000);
624 	}
625 
626 	DELAY(5000);
627 
628 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
629 
630 	for (i = 0; i < VGE_TIMEOUT; i++) {
631 		DELAY(5);
632 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
633 			break;
634 	}
635 
636 	if (i == VGE_TIMEOUT) {
637 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
638 		return;
639 	}
640 
641 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
642 
643 	return;
644 }
645 
646 /*
647  * Probe for a VIA gigabit chip. Check the PCI vendor and device
648  * IDs against our list and return a device name if we find a match.
649  */
650 static int
651 vge_probe(dev)
652 	device_t		dev;
653 {
654 	struct vge_type		*t;
655 	struct vge_softc	*sc;
656 
657 	t = vge_devs;
658 	sc = device_get_softc(dev);
659 
660 	while (t->vge_name != NULL) {
661 		if ((pci_get_vendor(dev) == t->vge_vid) &&
662 		    (pci_get_device(dev) == t->vge_did)) {
663 			device_set_desc(dev, t->vge_name);
664 			return (BUS_PROBE_DEFAULT);
665 		}
666 		t++;
667 	}
668 
669 	return (ENXIO);
670 }
671 
672 static void
673 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
674 	void			*arg;
675 	bus_dma_segment_t	*segs;
676 	int			nseg;
677 	bus_size_t		mapsize;
678 	int			error;
679 {
680 
681 	struct vge_dmaload_arg	*ctx;
682 	struct vge_rx_desc	*d = NULL;
683 
684 	if (error)
685 		return;
686 
687 	ctx = arg;
688 
689 	/* Signal error to caller if there's too many segments */
690 	if (nseg > ctx->vge_maxsegs) {
691 		ctx->vge_maxsegs = 0;
692 		return;
693 	}
694 
695 	/*
696 	 * Map the segment array into descriptors.
697 	 */
698 
699 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
700 
701 	/* If this descriptor is still owned by the chip, bail. */
702 
703 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
704 		device_printf(ctx->sc->vge_dev,
705 		    "tried to map busy descriptor\n");
706 		ctx->vge_maxsegs = 0;
707 		return;
708 	}
709 
710 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
711 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
712 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
713 	d->vge_sts = 0;
714 	d->vge_ctl = 0;
715 
716 	ctx->vge_maxsegs = 1;
717 
718 	return;
719 }
720 
721 static void
722 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
723 	void			*arg;
724 	bus_dma_segment_t	*segs;
725 	int			nseg;
726 	bus_size_t		mapsize;
727 	int			error;
728 {
729 	struct vge_dmaload_arg	*ctx;
730 	struct vge_tx_desc	*d = NULL;
731 	struct vge_tx_frag	*f;
732 	int			i = 0;
733 
734 	if (error)
735 		return;
736 
737 	ctx = arg;
738 
739 	/* Signal error to caller if there's too many segments */
740 	if (nseg > ctx->vge_maxsegs) {
741 		ctx->vge_maxsegs = 0;
742 		return;
743 	}
744 
745 	/* Map the segment array into descriptors. */
746 
747 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
748 
749 	/* If this descriptor is still owned by the chip, bail. */
750 
751 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
752 		ctx->vge_maxsegs = 0;
753 		return;
754 	}
755 
756 	for (i = 0; i < nseg; i++) {
757 		f = &d->vge_frag[i];
758 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
759 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
760 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
761 	}
762 
763 	/* Argh. This chip does not autopad short frames */
764 
765 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
766 		f = &d->vge_frag[i];
767 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
768 		    ctx->vge_m0->m_pkthdr.len));
769 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
770 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
771 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
772 		i++;
773 	}
774 
775 	/*
776 	 * When telling the chip how many segments there are, we
777 	 * must use nsegs + 1 instead of just nsegs. Darned if I
778 	 * know why.
779 	 */
780 	i++;
781 
782 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
783 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
784 
785 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
786 		d->vge_ctl |= VGE_TDCTL_JUMBO;
787 
788 	ctx->vge_maxsegs = nseg;
789 
790 	return;
791 }
792 
793 /*
794  * Map a single buffer address.
795  */
796 
797 static void
798 vge_dma_map_addr(arg, segs, nseg, error)
799 	void			*arg;
800 	bus_dma_segment_t	*segs;
801 	int			nseg;
802 	int			error;
803 {
804 	bus_addr_t		*addr;
805 
806 	if (error)
807 		return;
808 
809 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
810 	addr = arg;
811 	*addr = segs->ds_addr;
812 
813 	return;
814 }
815 
816 static int
817 vge_allocmem(dev, sc)
818 	device_t		dev;
819 	struct vge_softc		*sc;
820 {
821 	int			error;
822 	int			nseg;
823 	int			i;
824 
825 	/*
826 	 * Allocate map for RX mbufs.
827 	 */
828 	nseg = 32;
829 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
830 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
831 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
832 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
833 	if (error) {
834 		device_printf(dev, "could not allocate dma tag\n");
835 		return (ENOMEM);
836 	}
837 
838 	/*
839 	 * Allocate map for TX descriptor list.
840 	 */
841 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
842 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
843 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
844 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
845 	if (error) {
846 		device_printf(dev, "could not allocate dma tag\n");
847 		return (ENOMEM);
848 	}
849 
850 	/* Allocate DMA'able memory for the TX ring */
851 
852 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
853 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
854 	    &sc->vge_ldata.vge_tx_list_map);
855 	if (error)
856 		return (ENOMEM);
857 
858 	/* Load the map for the TX ring. */
859 
860 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
861 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
862 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
863 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
864 
865 	/* Create DMA maps for TX buffers */
866 
867 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
868 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
869 			    &sc->vge_ldata.vge_tx_dmamap[i]);
870 		if (error) {
871 			device_printf(dev, "can't create DMA map for TX\n");
872 			return (ENOMEM);
873 		}
874 	}
875 
876 	/*
877 	 * Allocate map for RX descriptor list.
878 	 */
879 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
880 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
881 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
882 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
883 	if (error) {
884 		device_printf(dev, "could not allocate dma tag\n");
885 		return (ENOMEM);
886 	}
887 
888 	/* Allocate DMA'able memory for the RX ring */
889 
890 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
891 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
892 	    &sc->vge_ldata.vge_rx_list_map);
893 	if (error)
894 		return (ENOMEM);
895 
896 	/* Load the map for the RX ring. */
897 
898 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
899 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
900 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
901 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
902 
903 	/* Create DMA maps for RX buffers */
904 
905 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
906 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
907 			    &sc->vge_ldata.vge_rx_dmamap[i]);
908 		if (error) {
909 			device_printf(dev, "can't create DMA map for RX\n");
910 			return (ENOMEM);
911 		}
912 	}
913 
914 	return (0);
915 }
916 
917 /*
918  * Attach the interface. Allocate softc structures, do ifmedia
919  * setup and ethernet/BPF attach.
920  */
921 static int
922 vge_attach(dev)
923 	device_t		dev;
924 {
925 	u_char			eaddr[ETHER_ADDR_LEN];
926 	struct vge_softc	*sc;
927 	struct ifnet		*ifp;
928 	int			unit, error = 0, rid;
929 
930 	sc = device_get_softc(dev);
931 	unit = device_get_unit(dev);
932 	sc->vge_dev = dev;
933 
934 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
935 	    MTX_DEF | MTX_RECURSE);
936 	/*
937 	 * Map control/status registers.
938 	 */
939 	pci_enable_busmaster(dev);
940 
941 	rid = VGE_PCI_LOMEM;
942 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
943 	    0, ~0, 1, RF_ACTIVE);
944 
945 	if (sc->vge_res == NULL) {
946 		printf ("vge%d: couldn't map ports/memory\n", unit);
947 		error = ENXIO;
948 		goto fail;
949 	}
950 
951 	sc->vge_btag = rman_get_bustag(sc->vge_res);
952 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
953 
954 	/* Allocate interrupt */
955 	rid = 0;
956 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
957 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
958 
959 	if (sc->vge_irq == NULL) {
960 		printf("vge%d: couldn't map interrupt\n", unit);
961 		error = ENXIO;
962 		goto fail;
963 	}
964 
965 	/* Reset the adapter. */
966 	vge_reset(sc);
967 
968 	/*
969 	 * Get station address from the EEPROM.
970 	 */
971 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
972 
973 	sc->vge_unit = unit;
974 
975 	/*
976 	 * Allocate the parent bus DMA tag appropriate for PCI.
977 	 */
978 #define VGE_NSEG_NEW 32
979 	error = bus_dma_tag_create(NULL,	/* parent */
980 			1, 0,			/* alignment, boundary */
981 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
982 			BUS_SPACE_MAXADDR,	/* highaddr */
983 			NULL, NULL,		/* filter, filterarg */
984 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
985 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
986 			BUS_DMA_ALLOCNOW,	/* flags */
987 			NULL, NULL,		/* lockfunc, lockarg */
988 			&sc->vge_parent_tag);
989 	if (error)
990 		goto fail;
991 
992 	error = vge_allocmem(dev, sc);
993 
994 	if (error)
995 		goto fail;
996 
997 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
998 	if (ifp == NULL) {
999 		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1000 		error = ENOSPC;
1001 		goto fail;
1002 	}
1003 
1004 	/* Do MII setup */
1005 	if (mii_phy_probe(dev, &sc->vge_miibus,
1006 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1007 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1008 		error = ENXIO;
1009 		goto fail;
1010 	}
1011 
1012 	ifp->if_softc = sc;
1013 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1014 	ifp->if_mtu = ETHERMTU;
1015 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016 	ifp->if_ioctl = vge_ioctl;
1017 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1018 	ifp->if_start = vge_start;
1019 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1020 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1021 	ifp->if_capenable = ifp->if_capabilities;
1022 #ifdef DEVICE_POLLING
1023 	ifp->if_capabilities |= IFCAP_POLLING;
1024 #endif
1025 	ifp->if_watchdog = vge_watchdog;
1026 	ifp->if_init = vge_init;
1027 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1028 
1029 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1030 
1031 	/*
1032 	 * Call MI attach routine.
1033 	 */
1034 	ether_ifattach(ifp, eaddr);
1035 
1036 	/* Hook interrupt last to avoid having to lock softc */
1037 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1038 	    vge_intr, sc, &sc->vge_intrhand);
1039 
1040 	if (error) {
1041 		printf("vge%d: couldn't set up irq\n", unit);
1042 		ether_ifdetach(ifp);
1043 		goto fail;
1044 	}
1045 
1046 fail:
1047 	if (error)
1048 		vge_detach(dev);
1049 
1050 	return (error);
1051 }
1052 
1053 /*
1054  * Shutdown hardware and free up resources. This can be called any
1055  * time after the mutex has been initialized. It is called in both
1056  * the error case in attach and the normal detach case so it needs
1057  * to be careful about only freeing resources that have actually been
1058  * allocated.
1059  */
1060 static int
1061 vge_detach(dev)
1062 	device_t		dev;
1063 {
1064 	struct vge_softc		*sc;
1065 	struct ifnet		*ifp;
1066 	int			i;
1067 
1068 	sc = device_get_softc(dev);
1069 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1070 	ifp = sc->vge_ifp;
1071 
1072 #ifdef DEVICE_POLLING
1073 	if (ifp->if_capenable & IFCAP_POLLING)
1074 		ether_poll_deregister(ifp);
1075 #endif
1076 
1077 	/* These should only be active if attach succeeded */
1078 	if (device_is_attached(dev)) {
1079 		vge_stop(sc);
1080 		/*
1081 		 * Force off the IFF_UP flag here, in case someone
1082 		 * still had a BPF descriptor attached to this
1083 		 * interface. If they do, ether_ifattach() will cause
1084 		 * the BPF code to try and clear the promisc mode
1085 		 * flag, which will bubble down to vge_ioctl(),
1086 		 * which will try to call vge_init() again. This will
1087 		 * turn the NIC back on and restart the MII ticker,
1088 		 * which will panic the system when the kernel tries
1089 		 * to invoke the vge_tick() function that isn't there
1090 		 * anymore.
1091 		 */
1092 		ifp->if_flags &= ~IFF_UP;
1093 		ether_ifdetach(ifp);
1094 	}
1095 	if (sc->vge_miibus)
1096 		device_delete_child(dev, sc->vge_miibus);
1097 	bus_generic_detach(dev);
1098 
1099 	if (sc->vge_intrhand)
1100 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1101 	if (sc->vge_irq)
1102 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1103 	if (sc->vge_res)
1104 		bus_release_resource(dev, SYS_RES_MEMORY,
1105 		    VGE_PCI_LOMEM, sc->vge_res);
1106 	if (ifp)
1107 		if_free(ifp);
1108 
1109 	/* Unload and free the RX DMA ring memory and map */
1110 
1111 	if (sc->vge_ldata.vge_rx_list_tag) {
1112 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1113 		    sc->vge_ldata.vge_rx_list_map);
1114 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1115 		    sc->vge_ldata.vge_rx_list,
1116 		    sc->vge_ldata.vge_rx_list_map);
1117 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1118 	}
1119 
1120 	/* Unload and free the TX DMA ring memory and map */
1121 
1122 	if (sc->vge_ldata.vge_tx_list_tag) {
1123 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1124 		    sc->vge_ldata.vge_tx_list_map);
1125 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1126 		    sc->vge_ldata.vge_tx_list,
1127 		    sc->vge_ldata.vge_tx_list_map);
1128 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1129 	}
1130 
1131 	/* Destroy all the RX and TX buffer maps */
1132 
1133 	if (sc->vge_ldata.vge_mtag) {
1134 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1135 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1136 			    sc->vge_ldata.vge_tx_dmamap[i]);
1137 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1138 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1139 			    sc->vge_ldata.vge_rx_dmamap[i]);
1140 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1141 	}
1142 
1143 	if (sc->vge_parent_tag)
1144 		bus_dma_tag_destroy(sc->vge_parent_tag);
1145 
1146 	mtx_destroy(&sc->vge_mtx);
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 vge_newbuf(sc, idx, m)
1153 	struct vge_softc	*sc;
1154 	int			idx;
1155 	struct mbuf		*m;
1156 {
1157 	struct vge_dmaload_arg	arg;
1158 	struct mbuf		*n = NULL;
1159 	int			i, error;
1160 
1161 	if (m == NULL) {
1162 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1163 		if (n == NULL)
1164 			return (ENOBUFS);
1165 		m = n;
1166 	} else
1167 		m->m_data = m->m_ext.ext_buf;
1168 
1169 
1170 #ifdef VGE_FIXUP_RX
1171 	/*
1172 	 * This is part of an evil trick to deal with non-x86 platforms.
1173 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1174 	 * boundaries, but that will hose non-x86 machines. To get around
1175 	 * this, we leave some empty space at the start of each buffer
1176 	 * and for non-x86 hosts, we copy the buffer back two bytes
1177 	 * to achieve word alignment. This is slightly more efficient
1178 	 * than allocating a new buffer, copying the contents, and
1179 	 * discarding the old buffer.
1180 	 */
1181 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1182 	m_adj(m, VGE_ETHER_ALIGN);
1183 #else
1184 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1185 #endif
1186 
1187 	arg.sc = sc;
1188 	arg.vge_idx = idx;
1189 	arg.vge_maxsegs = 1;
1190 	arg.vge_flags = 0;
1191 
1192 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1193 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1194 	    &arg, BUS_DMA_NOWAIT);
1195 	if (error || arg.vge_maxsegs != 1) {
1196 		if (n != NULL)
1197 			m_freem(n);
1198 		return (ENOMEM);
1199 	}
1200 
1201 	/*
1202 	 * Note: the manual fails to document the fact that for
1203 	 * proper opration, the driver needs to replentish the RX
1204 	 * DMA ring 4 descriptors at a time (rather than one at a
1205 	 * time, like most chips). We can allocate the new buffers
1206 	 * but we should not set the OWN bits until we're ready
1207 	 * to hand back 4 of them in one shot.
1208 	 */
1209 
1210 #define VGE_RXCHUNK 4
1211 	sc->vge_rx_consumed++;
1212 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1213 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1214 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1215 			    htole32(VGE_RDSTS_OWN);
1216 		sc->vge_rx_consumed = 0;
1217 	}
1218 
1219 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1220 
1221 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1222 	    sc->vge_ldata.vge_rx_dmamap[idx],
1223 	    BUS_DMASYNC_PREREAD);
1224 
1225 	return (0);
1226 }
1227 
1228 static int
1229 vge_tx_list_init(sc)
1230 	struct vge_softc		*sc;
1231 {
1232 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1233 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1234 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1235 
1236 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1237 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1238 	sc->vge_ldata.vge_tx_prodidx = 0;
1239 	sc->vge_ldata.vge_tx_considx = 0;
1240 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1241 
1242 	return (0);
1243 }
1244 
1245 static int
1246 vge_rx_list_init(sc)
1247 	struct vge_softc		*sc;
1248 {
1249 	int			i;
1250 
1251 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1252 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1253 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1254 
1255 	sc->vge_rx_consumed = 0;
1256 
1257 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1258 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1259 			return (ENOBUFS);
1260 	}
1261 
1262 	/* Flush the RX descriptors */
1263 
1264 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1265 	    sc->vge_ldata.vge_rx_list_map,
1266 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1267 
1268 	sc->vge_ldata.vge_rx_prodidx = 0;
1269 	sc->vge_rx_consumed = 0;
1270 	sc->vge_head = sc->vge_tail = NULL;
1271 
1272 	return (0);
1273 }
1274 
1275 #ifdef VGE_FIXUP_RX
1276 static __inline void
1277 vge_fixup_rx(m)
1278 	struct mbuf		*m;
1279 {
1280 	int			i;
1281 	uint16_t		*src, *dst;
1282 
1283 	src = mtod(m, uint16_t *);
1284 	dst = src - 1;
1285 
1286 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1287 		*dst++ = *src++;
1288 
1289 	m->m_data -= ETHER_ALIGN;
1290 
1291 	return;
1292 }
1293 #endif
1294 
1295 /*
1296  * RX handler. We support the reception of jumbo frames that have
1297  * been fragmented across multiple 2K mbuf cluster buffers.
1298  */
1299 static void
1300 vge_rxeof(sc)
1301 	struct vge_softc	*sc;
1302 {
1303 	struct mbuf		*m;
1304 	struct ifnet		*ifp;
1305 	int			i, total_len;
1306 	int			lim = 0;
1307 	struct vge_rx_desc	*cur_rx;
1308 	u_int32_t		rxstat, rxctl;
1309 
1310 	VGE_LOCK_ASSERT(sc);
1311 	ifp = sc->vge_ifp;
1312 	i = sc->vge_ldata.vge_rx_prodidx;
1313 
1314 	/* Invalidate the descriptor memory */
1315 
1316 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1317 	    sc->vge_ldata.vge_rx_list_map,
1318 	    BUS_DMASYNC_POSTREAD);
1319 
1320 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1321 
1322 #ifdef DEVICE_POLLING
1323 		if (ifp->if_capenable & IFCAP_POLLING) {
1324 			if (sc->rxcycles <= 0)
1325 				break;
1326 			sc->rxcycles--;
1327 		}
1328 #endif
1329 
1330 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1331 		m = sc->vge_ldata.vge_rx_mbuf[i];
1332 		total_len = VGE_RXBYTES(cur_rx);
1333 		rxstat = le32toh(cur_rx->vge_sts);
1334 		rxctl = le32toh(cur_rx->vge_ctl);
1335 
1336 		/* Invalidate the RX mbuf and unload its map */
1337 
1338 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1339 		    sc->vge_ldata.vge_rx_dmamap[i],
1340 		    BUS_DMASYNC_POSTWRITE);
1341 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1342 		    sc->vge_ldata.vge_rx_dmamap[i]);
1343 
1344 		/*
1345 		 * If the 'start of frame' bit is set, this indicates
1346 		 * either the first fragment in a multi-fragment receive,
1347 		 * or an intermediate fragment. Either way, we want to
1348 		 * accumulate the buffers.
1349 		 */
1350 		if (rxstat & VGE_RXPKT_SOF) {
1351 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1352 			if (sc->vge_head == NULL)
1353 				sc->vge_head = sc->vge_tail = m;
1354 			else {
1355 				m->m_flags &= ~M_PKTHDR;
1356 				sc->vge_tail->m_next = m;
1357 				sc->vge_tail = m;
1358 			}
1359 			vge_newbuf(sc, i, NULL);
1360 			VGE_RX_DESC_INC(i);
1361 			continue;
1362 		}
1363 
1364 		/*
1365 		 * Bad/error frames will have the RXOK bit cleared.
1366 		 * However, there's one error case we want to allow:
1367 		 * if a VLAN tagged frame arrives and the chip can't
1368 		 * match it against the CAM filter, it considers this
1369 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1370 		 * We don't want to drop the frame though: our VLAN
1371 		 * filtering is done in software.
1372 		 */
1373 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1374 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1375 			ifp->if_ierrors++;
1376 			/*
1377 			 * If this is part of a multi-fragment packet,
1378 			 * discard all the pieces.
1379 			 */
1380 			if (sc->vge_head != NULL) {
1381 				m_freem(sc->vge_head);
1382 				sc->vge_head = sc->vge_tail = NULL;
1383 			}
1384 			vge_newbuf(sc, i, m);
1385 			VGE_RX_DESC_INC(i);
1386 			continue;
1387 		}
1388 
1389 		/*
1390 		 * If allocating a replacement mbuf fails,
1391 		 * reload the current one.
1392 		 */
1393 
1394 		if (vge_newbuf(sc, i, NULL)) {
1395 			ifp->if_ierrors++;
1396 			if (sc->vge_head != NULL) {
1397 				m_freem(sc->vge_head);
1398 				sc->vge_head = sc->vge_tail = NULL;
1399 			}
1400 			vge_newbuf(sc, i, m);
1401 			VGE_RX_DESC_INC(i);
1402 			continue;
1403 		}
1404 
1405 		VGE_RX_DESC_INC(i);
1406 
1407 		if (sc->vge_head != NULL) {
1408 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1409 			/*
1410 			 * Special case: if there's 4 bytes or less
1411 			 * in this buffer, the mbuf can be discarded:
1412 			 * the last 4 bytes is the CRC, which we don't
1413 			 * care about anyway.
1414 			 */
1415 			if (m->m_len <= ETHER_CRC_LEN) {
1416 				sc->vge_tail->m_len -=
1417 				    (ETHER_CRC_LEN - m->m_len);
1418 				m_freem(m);
1419 			} else {
1420 				m->m_len -= ETHER_CRC_LEN;
1421 				m->m_flags &= ~M_PKTHDR;
1422 				sc->vge_tail->m_next = m;
1423 			}
1424 			m = sc->vge_head;
1425 			sc->vge_head = sc->vge_tail = NULL;
1426 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1427 		} else
1428 			m->m_pkthdr.len = m->m_len =
1429 			    (total_len - ETHER_CRC_LEN);
1430 
1431 #ifdef VGE_FIXUP_RX
1432 		vge_fixup_rx(m);
1433 #endif
1434 		ifp->if_ipackets++;
1435 		m->m_pkthdr.rcvif = ifp;
1436 
1437 		/* Do RX checksumming if enabled */
1438 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1439 
1440 			/* Check IP header checksum */
1441 			if (rxctl & VGE_RDCTL_IPPKT)
1442 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1443 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1444 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1445 
1446 			/* Check TCP/UDP checksum */
1447 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1448 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1449 				m->m_pkthdr.csum_flags |=
1450 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1451 				m->m_pkthdr.csum_data = 0xffff;
1452 			}
1453 		}
1454 
1455 		if (rxstat & VGE_RDSTS_VTAG) {
1456 			/*
1457 			 * The 32-bit rxctl register is stored in little-endian.
1458 			 * However, the 16-bit vlan tag is stored in big-endian,
1459 			 * so we have to byte swap it.
1460 			 */
1461 			m->m_pkthdr.ether_vtag =
1462 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1463 			m->m_flags |= M_VLANTAG;
1464 		}
1465 
1466 		VGE_UNLOCK(sc);
1467 		(*ifp->if_input)(ifp, m);
1468 		VGE_LOCK(sc);
1469 
1470 		lim++;
1471 		if (lim == VGE_RX_DESC_CNT)
1472 			break;
1473 
1474 	}
1475 
1476 	/* Flush the RX DMA ring */
1477 
1478 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1479 	    sc->vge_ldata.vge_rx_list_map,
1480 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1481 
1482 	sc->vge_ldata.vge_rx_prodidx = i;
1483 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1484 
1485 
1486 	return;
1487 }
1488 
1489 static void
1490 vge_txeof(sc)
1491 	struct vge_softc		*sc;
1492 {
1493 	struct ifnet		*ifp;
1494 	u_int32_t		txstat;
1495 	int			idx;
1496 
1497 	ifp = sc->vge_ifp;
1498 	idx = sc->vge_ldata.vge_tx_considx;
1499 
1500 	/* Invalidate the TX descriptor list */
1501 
1502 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1503 	    sc->vge_ldata.vge_tx_list_map,
1504 	    BUS_DMASYNC_POSTREAD);
1505 
1506 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1507 
1508 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1509 		if (txstat & VGE_TDSTS_OWN)
1510 			break;
1511 
1512 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1513 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1514 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1515 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1516 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1517 			ifp->if_collisions++;
1518 		if (txstat & VGE_TDSTS_TXERR)
1519 			ifp->if_oerrors++;
1520 		else
1521 			ifp->if_opackets++;
1522 
1523 		sc->vge_ldata.vge_tx_free++;
1524 		VGE_TX_DESC_INC(idx);
1525 	}
1526 
1527 	/* No changes made to the TX ring, so no flush needed */
1528 
1529 	if (idx != sc->vge_ldata.vge_tx_considx) {
1530 		sc->vge_ldata.vge_tx_considx = idx;
1531 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1532 		ifp->if_timer = 0;
1533 	}
1534 
1535 	/*
1536 	 * If not all descriptors have been released reaped yet,
1537 	 * reload the timer so that we will eventually get another
1538 	 * interrupt that will cause us to re-enter this routine.
1539 	 * This is done in case the transmitter has gone idle.
1540 	 */
1541 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1542 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1543 	}
1544 
1545 	return;
1546 }
1547 
1548 static void
1549 vge_tick(xsc)
1550 	void			*xsc;
1551 {
1552 	struct vge_softc	*sc;
1553 	struct ifnet		*ifp;
1554 	struct mii_data		*mii;
1555 
1556 	sc = xsc;
1557 	ifp = sc->vge_ifp;
1558 	VGE_LOCK(sc);
1559 	mii = device_get_softc(sc->vge_miibus);
1560 
1561 	mii_tick(mii);
1562 	if (sc->vge_link) {
1563 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1564 			sc->vge_link = 0;
1565 			if_link_state_change(sc->vge_ifp,
1566 			    LINK_STATE_DOWN);
1567 		}
1568 	} else {
1569 		if (mii->mii_media_status & IFM_ACTIVE &&
1570 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1571 			sc->vge_link = 1;
1572 			if_link_state_change(sc->vge_ifp,
1573 			    LINK_STATE_UP);
1574 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1575 				taskqueue_enqueue(taskqueue_swi,
1576 				    &sc->vge_txtask);
1577 		}
1578 	}
1579 
1580 	VGE_UNLOCK(sc);
1581 
1582 	return;
1583 }
1584 
1585 #ifdef DEVICE_POLLING
1586 static void
1587 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1588 {
1589 	struct vge_softc *sc = ifp->if_softc;
1590 
1591 	VGE_LOCK(sc);
1592 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1593 		goto done;
1594 
1595 	sc->rxcycles = count;
1596 	vge_rxeof(sc);
1597 	vge_txeof(sc);
1598 
1599 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1601 
1602 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1603 		u_int32_t       status;
1604 		status = CSR_READ_4(sc, VGE_ISR);
1605 		if (status == 0xFFFFFFFF)
1606 			goto done;
1607 		if (status)
1608 			CSR_WRITE_4(sc, VGE_ISR, status);
1609 
1610 		/*
1611 		 * XXX check behaviour on receiver stalls.
1612 		 */
1613 
1614 		if (status & VGE_ISR_TXDMA_STALL ||
1615 		    status & VGE_ISR_RXDMA_STALL)
1616 			vge_init(sc);
1617 
1618 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1619 			vge_rxeof(sc);
1620 			ifp->if_ierrors++;
1621 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1622 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1623 		}
1624 	}
1625 done:
1626 	VGE_UNLOCK(sc);
1627 }
1628 #endif /* DEVICE_POLLING */
1629 
1630 static void
1631 vge_intr(arg)
1632 	void			*arg;
1633 {
1634 	struct vge_softc	*sc;
1635 	struct ifnet		*ifp;
1636 	u_int32_t		status;
1637 
1638 	sc = arg;
1639 
1640 	if (sc->suspended) {
1641 		return;
1642 	}
1643 
1644 	VGE_LOCK(sc);
1645 	ifp = sc->vge_ifp;
1646 
1647 	if (!(ifp->if_flags & IFF_UP)) {
1648 		VGE_UNLOCK(sc);
1649 		return;
1650 	}
1651 
1652 #ifdef DEVICE_POLLING
1653 	if  (ifp->if_capenable & IFCAP_POLLING) {
1654 		VGE_UNLOCK(sc);
1655 		return;
1656 	}
1657 #endif
1658 
1659 	/* Disable interrupts */
1660 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1661 
1662 	for (;;) {
1663 
1664 		status = CSR_READ_4(sc, VGE_ISR);
1665 		/* If the card has gone away the read returns 0xffff. */
1666 		if (status == 0xFFFFFFFF)
1667 			break;
1668 
1669 		if (status)
1670 			CSR_WRITE_4(sc, VGE_ISR, status);
1671 
1672 		if ((status & VGE_INTRS) == 0)
1673 			break;
1674 
1675 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1676 			vge_rxeof(sc);
1677 
1678 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1679 			vge_rxeof(sc);
1680 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1681 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1682 		}
1683 
1684 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1685 			vge_txeof(sc);
1686 
1687 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1688 			vge_init(sc);
1689 
1690 		if (status & VGE_ISR_LINKSTS)
1691 			vge_tick(sc);
1692 	}
1693 
1694 	/* Re-enable interrupts */
1695 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1696 
1697 	VGE_UNLOCK(sc);
1698 
1699 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1700 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1701 
1702 	return;
1703 }
1704 
1705 static int
1706 vge_encap(sc, m_head, idx)
1707 	struct vge_softc	*sc;
1708 	struct mbuf		*m_head;
1709 	int			idx;
1710 {
1711 	struct mbuf		*m_new = NULL;
1712 	struct vge_dmaload_arg	arg;
1713 	bus_dmamap_t		map;
1714 	int			error;
1715 
1716 	if (sc->vge_ldata.vge_tx_free <= 2)
1717 		return (EFBIG);
1718 
1719 	arg.vge_flags = 0;
1720 
1721 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1722 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1723 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1724 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1725 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1726 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1727 
1728 	arg.sc = sc;
1729 	arg.vge_idx = idx;
1730 	arg.vge_m0 = m_head;
1731 	arg.vge_maxsegs = VGE_TX_FRAGS;
1732 
1733 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1734 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1735 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1736 
1737 	if (error && error != EFBIG) {
1738 		printf("vge%d: can't map mbuf (error %d)\n",
1739 		    sc->vge_unit, error);
1740 		return (ENOBUFS);
1741 	}
1742 
1743 	/* Too many segments to map, coalesce into a single mbuf */
1744 
1745 	if (error || arg.vge_maxsegs == 0) {
1746 		m_new = m_defrag(m_head, M_DONTWAIT);
1747 		if (m_new == NULL)
1748 			return (1);
1749 		else
1750 			m_head = m_new;
1751 
1752 		arg.sc = sc;
1753 		arg.vge_m0 = m_head;
1754 		arg.vge_idx = idx;
1755 		arg.vge_maxsegs = 1;
1756 
1757 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1758 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1759 		if (error) {
1760 			printf("vge%d: can't map mbuf (error %d)\n",
1761 			    sc->vge_unit, error);
1762 			return (EFBIG);
1763 		}
1764 	}
1765 
1766 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1767 	sc->vge_ldata.vge_tx_free--;
1768 
1769 	/*
1770 	 * Set up hardware VLAN tagging.
1771 	 */
1772 
1773 	if (m_head->m_flags & M_VLANTAG)
1774 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1775 		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1776 
1777 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1778 
1779 	return (0);
1780 }
1781 
1782 static void
1783 vge_tx_task(arg, npending)
1784 	void			*arg;
1785 	int			npending;
1786 {
1787 	struct ifnet		*ifp;
1788 
1789 	ifp = arg;
1790 	vge_start(ifp);
1791 
1792 	return;
1793 }
1794 
1795 /*
1796  * Main transmit routine.
1797  */
1798 
1799 static void
1800 vge_start(ifp)
1801 	struct ifnet		*ifp;
1802 {
1803 	struct vge_softc	*sc;
1804 	struct mbuf		*m_head = NULL;
1805 	int			idx, pidx = 0;
1806 
1807 	sc = ifp->if_softc;
1808 	VGE_LOCK(sc);
1809 
1810 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1811 		VGE_UNLOCK(sc);
1812 		return;
1813 	}
1814 
1815 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1816 		VGE_UNLOCK(sc);
1817 		return;
1818 	}
1819 
1820 	idx = sc->vge_ldata.vge_tx_prodidx;
1821 
1822 	pidx = idx - 1;
1823 	if (pidx < 0)
1824 		pidx = VGE_TX_DESC_CNT - 1;
1825 
1826 
1827 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1828 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1829 		if (m_head == NULL)
1830 			break;
1831 
1832 		if (vge_encap(sc, m_head, idx)) {
1833 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1834 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1835 			break;
1836 		}
1837 
1838 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1839 		    htole16(VGE_TXDESC_Q);
1840 
1841 		pidx = idx;
1842 		VGE_TX_DESC_INC(idx);
1843 
1844 		/*
1845 		 * If there's a BPF listener, bounce a copy of this frame
1846 		 * to him.
1847 		 */
1848 		BPF_MTAP(ifp, m_head);
1849 	}
1850 
1851 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1852 		VGE_UNLOCK(sc);
1853 		return;
1854 	}
1855 
1856 	/* Flush the TX descriptors */
1857 
1858 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1859 	    sc->vge_ldata.vge_tx_list_map,
1860 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1861 
1862 	/* Issue a transmit command. */
1863 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1864 
1865 	sc->vge_ldata.vge_tx_prodidx = idx;
1866 
1867 	/*
1868 	 * Use the countdown timer for interrupt moderation.
1869 	 * 'TX done' interrupts are disabled. Instead, we reset the
1870 	 * countdown timer, which will begin counting until it hits
1871 	 * the value in the SSTIMER register, and then trigger an
1872 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1873 	 * the timer count is reloaded. Only when the transmitter
1874 	 * is idle will the timer hit 0 and an interrupt fire.
1875 	 */
1876 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1877 
1878 	VGE_UNLOCK(sc);
1879 
1880 	/*
1881 	 * Set a timeout in case the chip goes out to lunch.
1882 	 */
1883 	ifp->if_timer = 5;
1884 
1885 	return;
1886 }
1887 
1888 static void
1889 vge_init(xsc)
1890 	void			*xsc;
1891 {
1892 	struct vge_softc	*sc = xsc;
1893 	struct ifnet		*ifp = sc->vge_ifp;
1894 	struct mii_data		*mii;
1895 	int			i;
1896 
1897 	VGE_LOCK(sc);
1898 	mii = device_get_softc(sc->vge_miibus);
1899 
1900 	/*
1901 	 * Cancel pending I/O and free all RX/TX buffers.
1902 	 */
1903 	vge_stop(sc);
1904 	vge_reset(sc);
1905 
1906 	/*
1907 	 * Initialize the RX and TX descriptors and mbufs.
1908 	 */
1909 
1910 	vge_rx_list_init(sc);
1911 	vge_tx_list_init(sc);
1912 
1913 	/* Set our station address */
1914 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1915 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1916 
1917 	/*
1918 	 * Set receive FIFO threshold. Also allow transmission and
1919 	 * reception of VLAN tagged frames.
1920 	 */
1921 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1922 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1923 
1924 	/* Set DMA burst length */
1925 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1926 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1927 
1928 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1929 
1930 	/* Set collision backoff algorithm */
1931 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1932 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1933 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1934 
1935 	/* Disable LPSEL field in priority resolution */
1936 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1937 
1938 	/*
1939 	 * Load the addresses of the DMA queues into the chip.
1940 	 * Note that we only use one transmit queue.
1941 	 */
1942 
1943 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1944 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1945 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1946 
1947 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1948 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1949 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1950 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1951 
1952 	/* Enable and wake up the RX descriptor queue */
1953 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1954 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1955 
1956 	/* Enable the TX descriptor queue */
1957 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1958 
1959 	/* Set up the receive filter -- allow large frames for VLANs. */
1960 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1961 
1962 	/* If we want promiscuous mode, set the allframes bit. */
1963 	if (ifp->if_flags & IFF_PROMISC) {
1964 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1965 	}
1966 
1967 	/* Set capture broadcast bit to capture broadcast frames. */
1968 	if (ifp->if_flags & IFF_BROADCAST) {
1969 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1970 	}
1971 
1972 	/* Set multicast bit to capture multicast frames. */
1973 	if (ifp->if_flags & IFF_MULTICAST) {
1974 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1975 	}
1976 
1977 	/* Init the cam filter. */
1978 	vge_cam_clear(sc);
1979 
1980 	/* Init the multicast filter. */
1981 	vge_setmulti(sc);
1982 
1983 	/* Enable flow control */
1984 
1985 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1986 
1987 	/* Enable jumbo frame reception (if desired) */
1988 
1989 	/* Start the MAC. */
1990 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1991 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1992 	CSR_WRITE_1(sc, VGE_CRS0,
1993 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1994 
1995 	/*
1996 	 * Configure one-shot timer for microsecond
1997 	 * resulution and load it for 500 usecs.
1998 	 */
1999 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2000 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2001 
2002 	/*
2003 	 * Configure interrupt moderation for receive. Enable
2004 	 * the holdoff counter and load it, and set the RX
2005 	 * suppression count to the number of descriptors we
2006 	 * want to allow before triggering an interrupt.
2007 	 * The holdoff timer is in units of 20 usecs.
2008 	 */
2009 
2010 #ifdef notyet
2011 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2012 	/* Select the interrupt holdoff timer page. */
2013 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2014 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2015 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2016 
2017 	/* Enable use of the holdoff timer. */
2018 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2019 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2020 
2021 	/* Select the RX suppression threshold page. */
2022 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2023 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2024 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2025 
2026 	/* Restore the page select bits. */
2027 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2028 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2029 #endif
2030 
2031 #ifdef DEVICE_POLLING
2032 	/*
2033 	 * Disable interrupts if we are polling.
2034 	 */
2035 	if (ifp->if_capenable & IFCAP_POLLING) {
2036 		CSR_WRITE_4(sc, VGE_IMR, 0);
2037 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2038 	} else	/* otherwise ... */
2039 #endif
2040 	{
2041 	/*
2042 	 * Enable interrupts.
2043 	 */
2044 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2045 		CSR_WRITE_4(sc, VGE_ISR, 0);
2046 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2047 	}
2048 
2049 	mii_mediachg(mii);
2050 
2051 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2052 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2053 
2054 	sc->vge_if_flags = 0;
2055 	sc->vge_link = 0;
2056 
2057 	VGE_UNLOCK(sc);
2058 
2059 	return;
2060 }
2061 
2062 /*
2063  * Set media options.
2064  */
2065 static int
2066 vge_ifmedia_upd(ifp)
2067 	struct ifnet		*ifp;
2068 {
2069 	struct vge_softc	*sc;
2070 	struct mii_data		*mii;
2071 
2072 	sc = ifp->if_softc;
2073 	VGE_LOCK(sc);
2074 	mii = device_get_softc(sc->vge_miibus);
2075 	mii_mediachg(mii);
2076 	VGE_UNLOCK(sc);
2077 
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Report current media status.
2083  */
2084 static void
2085 vge_ifmedia_sts(ifp, ifmr)
2086 	struct ifnet		*ifp;
2087 	struct ifmediareq	*ifmr;
2088 {
2089 	struct vge_softc	*sc;
2090 	struct mii_data		*mii;
2091 
2092 	sc = ifp->if_softc;
2093 	mii = device_get_softc(sc->vge_miibus);
2094 
2095 	mii_pollstat(mii);
2096 	ifmr->ifm_active = mii->mii_media_active;
2097 	ifmr->ifm_status = mii->mii_media_status;
2098 
2099 	return;
2100 }
2101 
2102 static void
2103 vge_miibus_statchg(dev)
2104 	device_t		dev;
2105 {
2106 	struct vge_softc	*sc;
2107 	struct mii_data		*mii;
2108 	struct ifmedia_entry	*ife;
2109 
2110 	sc = device_get_softc(dev);
2111 	mii = device_get_softc(sc->vge_miibus);
2112 	ife = mii->mii_media.ifm_cur;
2113 
2114 	/*
2115 	 * If the user manually selects a media mode, we need to turn
2116 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2117 	 * user happens to choose a full duplex mode, we also need to
2118 	 * set the 'force full duplex' bit. This applies only to
2119 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2120 	 * mode is disabled, and in 1000baseT mode, full duplex is
2121 	 * always implied, so we turn on the forced mode bit but leave
2122 	 * the FDX bit cleared.
2123 	 */
2124 
2125 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2126 	case IFM_AUTO:
2127 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2128 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2129 		break;
2130 	case IFM_1000_T:
2131 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2132 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2133 		break;
2134 	case IFM_100_TX:
2135 	case IFM_10_T:
2136 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2137 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2138 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2139 		} else {
2140 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2141 		}
2142 		break;
2143 	default:
2144 		device_printf(dev, "unknown media type: %x\n",
2145 		    IFM_SUBTYPE(ife->ifm_media));
2146 		break;
2147 	}
2148 
2149 	return;
2150 }
2151 
2152 static int
2153 vge_ioctl(ifp, command, data)
2154 	struct ifnet		*ifp;
2155 	u_long			command;
2156 	caddr_t			data;
2157 {
2158 	struct vge_softc	*sc = ifp->if_softc;
2159 	struct ifreq		*ifr = (struct ifreq *) data;
2160 	struct mii_data		*mii;
2161 	int			error = 0;
2162 
2163 	switch (command) {
2164 	case SIOCSIFMTU:
2165 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2166 			error = EINVAL;
2167 		ifp->if_mtu = ifr->ifr_mtu;
2168 		break;
2169 	case SIOCSIFFLAGS:
2170 		if (ifp->if_flags & IFF_UP) {
2171 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2172 			    ifp->if_flags & IFF_PROMISC &&
2173 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2174 				CSR_SETBIT_1(sc, VGE_RXCTL,
2175 				    VGE_RXCTL_RX_PROMISC);
2176 				vge_setmulti(sc);
2177 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2178 			    !(ifp->if_flags & IFF_PROMISC) &&
2179 			    sc->vge_if_flags & IFF_PROMISC) {
2180 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2181 				    VGE_RXCTL_RX_PROMISC);
2182 				vge_setmulti(sc);
2183                         } else
2184 				vge_init(sc);
2185 		} else {
2186 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2187 				vge_stop(sc);
2188 		}
2189 		sc->vge_if_flags = ifp->if_flags;
2190 		break;
2191 	case SIOCADDMULTI:
2192 	case SIOCDELMULTI:
2193 		vge_setmulti(sc);
2194 		break;
2195 	case SIOCGIFMEDIA:
2196 	case SIOCSIFMEDIA:
2197 		mii = device_get_softc(sc->vge_miibus);
2198 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2199 		break;
2200 	case SIOCSIFCAP:
2201 	    {
2202 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2203 #ifdef DEVICE_POLLING
2204 		if (mask & IFCAP_POLLING) {
2205 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2206 				error = ether_poll_register(vge_poll, ifp);
2207 				if (error)
2208 					return(error);
2209 				VGE_LOCK(sc);
2210 					/* Disable interrupts */
2211 				CSR_WRITE_4(sc, VGE_IMR, 0);
2212 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2213 				ifp->if_capenable |= IFCAP_POLLING;
2214 				VGE_UNLOCK(sc);
2215 			} else {
2216 				error = ether_poll_deregister(ifp);
2217 				/* Enable interrupts. */
2218 				VGE_LOCK(sc);
2219 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2220 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2221 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2222 				ifp->if_capenable &= ~IFCAP_POLLING;
2223 				VGE_UNLOCK(sc);
2224 			}
2225 		}
2226 #endif /* DEVICE_POLLING */
2227 		if (mask & IFCAP_HWCSUM) {
2228 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2229 			if (ifp->if_capenable & IFCAP_TXCSUM)
2230 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2231 			else
2232 				ifp->if_hwassist = 0;
2233 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2234 				vge_init(sc);
2235 		}
2236 	    }
2237 		break;
2238 	default:
2239 		error = ether_ioctl(ifp, command, data);
2240 		break;
2241 	}
2242 
2243 	return (error);
2244 }
2245 
2246 static void
2247 vge_watchdog(ifp)
2248 	struct ifnet		*ifp;
2249 {
2250 	struct vge_softc		*sc;
2251 
2252 	sc = ifp->if_softc;
2253 	VGE_LOCK(sc);
2254 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2255 	ifp->if_oerrors++;
2256 
2257 	vge_txeof(sc);
2258 	vge_rxeof(sc);
2259 
2260 	vge_init(sc);
2261 
2262 	VGE_UNLOCK(sc);
2263 
2264 	return;
2265 }
2266 
2267 /*
2268  * Stop the adapter and free any mbufs allocated to the
2269  * RX and TX lists.
2270  */
2271 static void
2272 vge_stop(sc)
2273 	struct vge_softc		*sc;
2274 {
2275 	register int		i;
2276 	struct ifnet		*ifp;
2277 
2278 	VGE_LOCK(sc);
2279 	ifp = sc->vge_ifp;
2280 	ifp->if_timer = 0;
2281 
2282 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2283 
2284 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2285 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2286 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2287 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2288 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2289 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2290 
2291 	if (sc->vge_head != NULL) {
2292 		m_freem(sc->vge_head);
2293 		sc->vge_head = sc->vge_tail = NULL;
2294 	}
2295 
2296 	/* Free the TX list buffers. */
2297 
2298 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2299 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2300 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2301 			    sc->vge_ldata.vge_tx_dmamap[i]);
2302 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2303 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2304 		}
2305 	}
2306 
2307 	/* Free the RX list buffers. */
2308 
2309 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2310 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2311 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2312 			    sc->vge_ldata.vge_rx_dmamap[i]);
2313 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2314 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2315 		}
2316 	}
2317 
2318 	VGE_UNLOCK(sc);
2319 
2320 	return;
2321 }
2322 
2323 /*
2324  * Device suspend routine.  Stop the interface and save some PCI
2325  * settings in case the BIOS doesn't restore them properly on
2326  * resume.
2327  */
2328 static int
2329 vge_suspend(dev)
2330 	device_t		dev;
2331 {
2332 	struct vge_softc	*sc;
2333 
2334 	sc = device_get_softc(dev);
2335 
2336 	vge_stop(sc);
2337 
2338 	sc->suspended = 1;
2339 
2340 	return (0);
2341 }
2342 
2343 /*
2344  * Device resume routine.  Restore some PCI settings in case the BIOS
2345  * doesn't, re-enable busmastering, and restart the interface if
2346  * appropriate.
2347  */
2348 static int
2349 vge_resume(dev)
2350 	device_t		dev;
2351 {
2352 	struct vge_softc	*sc;
2353 	struct ifnet		*ifp;
2354 
2355 	sc = device_get_softc(dev);
2356 	ifp = sc->vge_ifp;
2357 
2358 	/* reenable busmastering */
2359 	pci_enable_busmaster(dev);
2360 	pci_enable_io(dev, SYS_RES_MEMORY);
2361 
2362 	/* reinitialize interface if necessary */
2363 	if (ifp->if_flags & IFF_UP)
2364 		vge_init(sc);
2365 
2366 	sc->suspended = 0;
2367 
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Stop all chip I/O so that the kernel's probe routines don't
2373  * get confused by errant DMAs when rebooting.
2374  */
2375 static void
2376 vge_shutdown(dev)
2377 	device_t		dev;
2378 {
2379 	struct vge_softc		*sc;
2380 
2381 	sc = device_get_softc(dev);
2382 
2383 	vge_stop(sc);
2384 }
2385