xref: /freebsd/sys/dev/vge/if_vge.c (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *	o Jumbo frame support up to 16K
52  *	o Transmit and receive flow control
53  *	o IPv4 checksum offload
54  *	o VLAN tag insertion and stripping
55  *	o TCP large send
56  *	o 64-bit multicast hash table filter
57  *	o 64 entry CAM filter
58  *	o 16K RX FIFO and 48K TX FIFO memory
59  *	o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84 
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125 
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128 
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131 
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137 
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
150 		"VIA Networking Velocity Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static int	vge_attach(device_t);
155 static int	vge_detach(device_t);
156 static int	vge_probe(device_t);
157 static int	vge_resume(device_t);
158 static int	vge_shutdown(device_t);
159 static int	vge_suspend(device_t);
160 
161 static void	vge_cam_clear(struct vge_softc *);
162 static int	vge_cam_set(struct vge_softc *, uint8_t *);
163 static void	vge_clrwol(struct vge_softc *);
164 static void	vge_discard_rxbuf(struct vge_softc *, int);
165 static int	vge_dma_alloc(struct vge_softc *);
166 static void	vge_dma_free(struct vge_softc *);
167 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int	vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174 		vge_fixup_rx(struct mbuf *);
175 #endif
176 static void	vge_freebufs(struct vge_softc *);
177 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int	vge_ifmedia_upd(struct ifnet *);
179 static int	vge_ifmedia_upd_locked(struct vge_softc *);
180 static void	vge_init(void *);
181 static void	vge_init_locked(struct vge_softc *);
182 static void	vge_intr(void *);
183 static void	vge_intr_holdoff(struct vge_softc *);
184 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void	vge_link_statchg(void *);
186 static int	vge_miibus_readreg(device_t, int, int);
187 static int	vge_miibus_writereg(device_t, int, int, int);
188 static void	vge_miipoll_start(struct vge_softc *);
189 static void	vge_miipoll_stop(struct vge_softc *);
190 static int	vge_newbuf(struct vge_softc *, int);
191 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void	vge_reset(struct vge_softc *);
193 static int	vge_rx_list_init(struct vge_softc *);
194 static int	vge_rxeof(struct vge_softc *, int);
195 static void	vge_rxfilter(struct vge_softc *);
196 static void	vge_setmedia(struct vge_softc *);
197 static void	vge_setvlan(struct vge_softc *);
198 static void	vge_setwol(struct vge_softc *);
199 static void	vge_start(struct ifnet *);
200 static void	vge_start_locked(struct ifnet *);
201 static void	vge_stats_clear(struct vge_softc *);
202 static void	vge_stats_update(struct vge_softc *);
203 static void	vge_stop(struct vge_softc *);
204 static void	vge_sysctl_node(struct vge_softc *);
205 static int	vge_tx_list_init(struct vge_softc *);
206 static void	vge_txeof(struct vge_softc *);
207 static void	vge_watchdog(void *);
208 
209 static device_method_t vge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		vge_probe),
212 	DEVMETHOD(device_attach,	vge_attach),
213 	DEVMETHOD(device_detach,	vge_detach),
214 	DEVMETHOD(device_suspend,	vge_suspend),
215 	DEVMETHOD(device_resume,	vge_resume),
216 	DEVMETHOD(device_shutdown,	vge_shutdown),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t vge_driver = {
226 	"vge",
227 	vge_methods,
228 	sizeof(struct vge_softc)
229 };
230 
231 static devclass_t vge_devclass;
232 
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235 
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243 	int i;
244 	uint16_t word = 0;
245 
246 	/*
247 	 * Enter EEPROM embedded programming mode. In order to
248 	 * access the EEPROM at all, we first have to set the
249 	 * EELOAD bit in the CHIPCFG2 register.
250 	 */
251 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253 
254 	/* Select the address of the word we want to read */
255 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
256 
257 	/* Issue read command */
258 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259 
260 	/* Wait for the done bit to be set. */
261 	for (i = 0; i < VGE_TIMEOUT; i++) {
262 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263 			break;
264 	}
265 
266 	if (i == VGE_TIMEOUT) {
267 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
268 		*dest = 0;
269 		return;
270 	}
271 
272 	/* Read the result */
273 	word = CSR_READ_2(sc, VGE_EERDDAT);
274 
275 	/* Turn off EEPROM access mode. */
276 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278 
279 	*dest = word;
280 }
281 #endif
282 
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289 	int i;
290 #ifdef VGE_EEPROM
291 	uint16_t word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (uint16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310 	int i;
311 
312 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
313 
314 	for (i = 0; i < VGE_TIMEOUT; i++) {
315 		DELAY(1);
316 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317 			break;
318 	}
319 
320 	if (i == VGE_TIMEOUT)
321 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323 
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327 	int i;
328 
329 	/* First, make sure we're idle. */
330 
331 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
332 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333 
334 	for (i = 0; i < VGE_TIMEOUT; i++) {
335 		DELAY(1);
336 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337 			break;
338 	}
339 
340 	if (i == VGE_TIMEOUT) {
341 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342 		return;
343 	}
344 
345 	/* Now enable auto poll mode. */
346 
347 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348 
349 	/* And make sure it started. */
350 
351 	for (i = 0; i < VGE_TIMEOUT; i++) {
352 		DELAY(1);
353 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354 			break;
355 	}
356 
357 	if (i == VGE_TIMEOUT)
358 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360 
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct vge_softc *sc;
365 	int i;
366 	uint16_t rval = 0;
367 
368 	sc = device_get_softc(dev);
369 
370 	vge_miipoll_stop(sc);
371 
372 	/* Specify the register we want to read. */
373 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374 
375 	/* Issue read command. */
376 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377 
378 	/* Wait for the read command bit to self-clear. */
379 	for (i = 0; i < VGE_TIMEOUT; i++) {
380 		DELAY(1);
381 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382 			break;
383 	}
384 
385 	if (i == VGE_TIMEOUT)
386 		device_printf(sc->vge_dev, "MII read timed out\n");
387 	else
388 		rval = CSR_READ_2(sc, VGE_MIIDATA);
389 
390 	vge_miipoll_start(sc);
391 
392 	return (rval);
393 }
394 
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398 	struct vge_softc *sc;
399 	int i, rval = 0;
400 
401 	sc = device_get_softc(dev);
402 
403 	vge_miipoll_stop(sc);
404 
405 	/* Specify the register we want to write. */
406 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407 
408 	/* Specify the data we want to write. */
409 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
410 
411 	/* Issue write command. */
412 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413 
414 	/* Wait for the write command bit to self-clear. */
415 	for (i = 0; i < VGE_TIMEOUT; i++) {
416 		DELAY(1);
417 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418 			break;
419 	}
420 
421 	if (i == VGE_TIMEOUT) {
422 		device_printf(sc->vge_dev, "MII write timed out\n");
423 		rval = EIO;
424 	}
425 
426 	vge_miipoll_start(sc);
427 
428 	return (rval);
429 }
430 
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434 	int i;
435 
436 	/*
437 	 * Turn off all the mask bits. This tells the chip
438 	 * that none of the entries in the CAM filter are valid.
439 	 * desired entries will be enabled as we fill the filter in.
440 	 */
441 
442 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445 	for (i = 0; i < 8; i++)
446 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447 
448 	/* Clear the VLAN filter too. */
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451 	for (i = 0; i < 8; i++)
452 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453 
454 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457 
458 	sc->vge_camidx = 0;
459 }
460 
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464 	int i, error = 0;
465 
466 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467 		return (ENOSPC);
468 
469 	/* Select the CAM data page. */
470 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472 
473 	/* Set the filter entry we want to update and enable writing. */
474 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475 
476 	/* Write the address to the CAM registers */
477 	for (i = 0; i < ETHER_ADDR_LEN; i++)
478 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479 
480 	/* Issue a write command. */
481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482 
483 	/* Wake for it to clear. */
484 	for (i = 0; i < VGE_TIMEOUT; i++) {
485 		DELAY(1);
486 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487 			break;
488 	}
489 
490 	if (i == VGE_TIMEOUT) {
491 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
492 		error = EIO;
493 		goto fail;
494 	}
495 
496 	/* Select the CAM mask page. */
497 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499 
500 	/* Set the mask bit that enables this filter. */
501 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502 	    1<<(sc->vge_camidx & 7));
503 
504 	sc->vge_camidx++;
505 
506 fail:
507 	/* Turn off access to CAM. */
508 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511 
512 	return (error);
513 }
514 
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518 	struct ifnet *ifp;
519 	uint8_t cfg;
520 
521 	VGE_LOCK_ASSERT(sc);
522 
523 	ifp = sc->vge_ifp;
524 	cfg = CSR_READ_1(sc, VGE_RXCFG);
525 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526 		cfg |= VGE_VTAG_OPT2;
527 	else
528 		cfg &= ~VGE_VTAG_OPT2;
529 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531 
532 static u_int
533 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
534 {
535 	struct vge_softc *sc = arg;
536 
537         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
538 		return (0);
539 
540 	(void )vge_cam_set(sc, LLADDR(sdl));
541 
542 	return (1);
543 }
544 
545 static u_int
546 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
547 {
548 	uint32_t h, *hashes = arg;
549 
550 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
551 	if (h < 32)
552 		hashes[0] |= (1 << h);
553 	else
554 		hashes[1] |= (1 << (h - 32));
555 
556 	return (1);
557 }
558 
559 
560 /*
561  * Program the multicast filter. We use the 64-entry CAM filter
562  * for perfect filtering. If there's more than 64 multicast addresses,
563  * we use the hash filter instead.
564  */
565 static void
566 vge_rxfilter(struct vge_softc *sc)
567 {
568 	struct ifnet *ifp;
569 	uint32_t hashes[2];
570 	uint8_t rxcfg;
571 
572 	VGE_LOCK_ASSERT(sc);
573 
574 	/* First, zot all the multicast entries. */
575 	hashes[0] = 0;
576 	hashes[1] = 0;
577 
578 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
579 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
580 	    VGE_RXCTL_RX_PROMISC);
581 	/*
582 	 * Always allow VLAN oversized frames and frames for
583 	 * this host.
584 	 */
585 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
586 
587 	ifp = sc->vge_ifp;
588 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
589 		rxcfg |= VGE_RXCTL_RX_BCAST;
590 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
591 		if ((ifp->if_flags & IFF_PROMISC) != 0)
592 			rxcfg |= VGE_RXCTL_RX_PROMISC;
593 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
594 			hashes[0] = 0xFFFFFFFF;
595 			hashes[1] = 0xFFFFFFFF;
596 		}
597 		goto done;
598 	}
599 
600 	vge_cam_clear(sc);
601 
602 	/* Now program new ones */
603 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
604 
605 	/* If there were too many addresses, use the hash filter. */
606         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
607 		vge_cam_clear(sc);
608 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
609 	}
610 
611 done:
612 	if (hashes[0] != 0 || hashes[1] != 0)
613 		rxcfg |= VGE_RXCTL_RX_MCAST;
614 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
615 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
616 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
617 }
618 
619 static void
620 vge_reset(struct vge_softc *sc)
621 {
622 	int i;
623 
624 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
625 
626 	for (i = 0; i < VGE_TIMEOUT; i++) {
627 		DELAY(5);
628 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
629 			break;
630 	}
631 
632 	if (i == VGE_TIMEOUT) {
633 		device_printf(sc->vge_dev, "soft reset timed out\n");
634 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
635 		DELAY(2000);
636 	}
637 
638 	DELAY(5000);
639 }
640 
641 /*
642  * Probe for a VIA gigabit chip. Check the PCI vendor and device
643  * IDs against our list and return a device name if we find a match.
644  */
645 static int
646 vge_probe(device_t dev)
647 {
648 	struct vge_type	*t;
649 
650 	t = vge_devs;
651 
652 	while (t->vge_name != NULL) {
653 		if ((pci_get_vendor(dev) == t->vge_vid) &&
654 		    (pci_get_device(dev) == t->vge_did)) {
655 			device_set_desc(dev, t->vge_name);
656 			return (BUS_PROBE_DEFAULT);
657 		}
658 		t++;
659 	}
660 
661 	return (ENXIO);
662 }
663 
664 /*
665  * Map a single buffer address.
666  */
667 
668 struct vge_dmamap_arg {
669 	bus_addr_t	vge_busaddr;
670 };
671 
672 static void
673 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
674 {
675 	struct vge_dmamap_arg *ctx;
676 
677 	if (error != 0)
678 		return;
679 
680 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
681 
682 	ctx = (struct vge_dmamap_arg *)arg;
683 	ctx->vge_busaddr = segs[0].ds_addr;
684 }
685 
686 static int
687 vge_dma_alloc(struct vge_softc *sc)
688 {
689 	struct vge_dmamap_arg ctx;
690 	struct vge_txdesc *txd;
691 	struct vge_rxdesc *rxd;
692 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
693 	int error, i;
694 
695 	/*
696 	 * It seems old PCI controllers do not support DAC.  DAC
697 	 * configuration can be enabled by accessing VGE_CHIPCFG3
698 	 * register but honor EEPROM configuration instead of
699 	 * blindly overriding DAC configuration.  PCIe based
700 	 * controllers are supposed to support 64bit DMA so enable
701 	 * 64bit DMA on these controllers.
702 	 */
703 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
704 		lowaddr = BUS_SPACE_MAXADDR;
705 	else
706 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
707 
708 again:
709 	/* Create parent ring tag. */
710 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
711 	    1, 0,			/* algnmnt, boundary */
712 	    lowaddr,			/* lowaddr */
713 	    BUS_SPACE_MAXADDR,		/* highaddr */
714 	    NULL, NULL,			/* filter, filterarg */
715 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
716 	    0,				/* nsegments */
717 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
718 	    0,				/* flags */
719 	    NULL, NULL,			/* lockfunc, lockarg */
720 	    &sc->vge_cdata.vge_ring_tag);
721 	if (error != 0) {
722 		device_printf(sc->vge_dev,
723 		    "could not create parent DMA tag.\n");
724 		goto fail;
725 	}
726 
727 	/* Create tag for Tx ring. */
728 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
729 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
730 	    BUS_SPACE_MAXADDR,		/* lowaddr */
731 	    BUS_SPACE_MAXADDR,		/* highaddr */
732 	    NULL, NULL,			/* filter, filterarg */
733 	    VGE_TX_LIST_SZ,		/* maxsize */
734 	    1,				/* nsegments */
735 	    VGE_TX_LIST_SZ,		/* maxsegsize */
736 	    0,				/* flags */
737 	    NULL, NULL,			/* lockfunc, lockarg */
738 	    &sc->vge_cdata.vge_tx_ring_tag);
739 	if (error != 0) {
740 		device_printf(sc->vge_dev,
741 		    "could not allocate Tx ring DMA tag.\n");
742 		goto fail;
743 	}
744 
745 	/* Create tag for Rx ring. */
746 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
747 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
748 	    BUS_SPACE_MAXADDR,		/* lowaddr */
749 	    BUS_SPACE_MAXADDR,		/* highaddr */
750 	    NULL, NULL,			/* filter, filterarg */
751 	    VGE_RX_LIST_SZ,		/* maxsize */
752 	    1,				/* nsegments */
753 	    VGE_RX_LIST_SZ,		/* maxsegsize */
754 	    0,				/* flags */
755 	    NULL, NULL,			/* lockfunc, lockarg */
756 	    &sc->vge_cdata.vge_rx_ring_tag);
757 	if (error != 0) {
758 		device_printf(sc->vge_dev,
759 		    "could not allocate Rx ring DMA tag.\n");
760 		goto fail;
761 	}
762 
763 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
764 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
765 	    (void **)&sc->vge_rdata.vge_tx_ring,
766 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
767 	    &sc->vge_cdata.vge_tx_ring_map);
768 	if (error != 0) {
769 		device_printf(sc->vge_dev,
770 		    "could not allocate DMA'able memory for Tx ring.\n");
771 		goto fail;
772 	}
773 
774 	ctx.vge_busaddr = 0;
775 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
776 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
777 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
778 	if (error != 0 || ctx.vge_busaddr == 0) {
779 		device_printf(sc->vge_dev,
780 		    "could not load DMA'able memory for Tx ring.\n");
781 		goto fail;
782 	}
783 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
784 
785 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
786 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
787 	    (void **)&sc->vge_rdata.vge_rx_ring,
788 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
789 	    &sc->vge_cdata.vge_rx_ring_map);
790 	if (error != 0) {
791 		device_printf(sc->vge_dev,
792 		    "could not allocate DMA'able memory for Rx ring.\n");
793 		goto fail;
794 	}
795 
796 	ctx.vge_busaddr = 0;
797 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
798 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
799 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
800 	if (error != 0 || ctx.vge_busaddr == 0) {
801 		device_printf(sc->vge_dev,
802 		    "could not load DMA'able memory for Rx ring.\n");
803 		goto fail;
804 	}
805 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
806 
807 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
808 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
809 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
810 	if ((VGE_ADDR_HI(tx_ring_end) !=
811 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
812 	    (VGE_ADDR_HI(rx_ring_end) !=
813 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
814 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
815 		device_printf(sc->vge_dev, "4GB boundary crossed, "
816 		    "switching to 32bit DMA address mode.\n");
817 		vge_dma_free(sc);
818 		/* Limit DMA address space to 32bit and try again. */
819 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
820 		goto again;
821 	}
822 
823 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
824 		lowaddr = VGE_BUF_DMA_MAXADDR;
825 	else
826 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
827 	/* Create parent buffer tag. */
828 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
829 	    1, 0,			/* algnmnt, boundary */
830 	    lowaddr,			/* lowaddr */
831 	    BUS_SPACE_MAXADDR,		/* highaddr */
832 	    NULL, NULL,			/* filter, filterarg */
833 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
834 	    0,				/* nsegments */
835 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
836 	    0,				/* flags */
837 	    NULL, NULL,			/* lockfunc, lockarg */
838 	    &sc->vge_cdata.vge_buffer_tag);
839 	if (error != 0) {
840 		device_printf(sc->vge_dev,
841 		    "could not create parent buffer DMA tag.\n");
842 		goto fail;
843 	}
844 
845 	/* Create tag for Tx buffers. */
846 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
847 	    1, 0,			/* algnmnt, boundary */
848 	    BUS_SPACE_MAXADDR,		/* lowaddr */
849 	    BUS_SPACE_MAXADDR,		/* highaddr */
850 	    NULL, NULL,			/* filter, filterarg */
851 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
852 	    VGE_MAXTXSEGS,		/* nsegments */
853 	    MCLBYTES,			/* maxsegsize */
854 	    0,				/* flags */
855 	    NULL, NULL,			/* lockfunc, lockarg */
856 	    &sc->vge_cdata.vge_tx_tag);
857 	if (error != 0) {
858 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
859 		goto fail;
860 	}
861 
862 	/* Create tag for Rx buffers. */
863 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
864 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
865 	    BUS_SPACE_MAXADDR,		/* lowaddr */
866 	    BUS_SPACE_MAXADDR,		/* highaddr */
867 	    NULL, NULL,			/* filter, filterarg */
868 	    MCLBYTES,			/* maxsize */
869 	    1,				/* nsegments */
870 	    MCLBYTES,			/* maxsegsize */
871 	    0,				/* flags */
872 	    NULL, NULL,			/* lockfunc, lockarg */
873 	    &sc->vge_cdata.vge_rx_tag);
874 	if (error != 0) {
875 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
876 		goto fail;
877 	}
878 
879 	/* Create DMA maps for Tx buffers. */
880 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
881 		txd = &sc->vge_cdata.vge_txdesc[i];
882 		txd->tx_m = NULL;
883 		txd->tx_dmamap = NULL;
884 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
885 		    &txd->tx_dmamap);
886 		if (error != 0) {
887 			device_printf(sc->vge_dev,
888 			    "could not create Tx dmamap.\n");
889 			goto fail;
890 		}
891 	}
892 	/* Create DMA maps for Rx buffers. */
893 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
895 		device_printf(sc->vge_dev,
896 		    "could not create spare Rx dmamap.\n");
897 		goto fail;
898 	}
899 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
900 		rxd = &sc->vge_cdata.vge_rxdesc[i];
901 		rxd->rx_m = NULL;
902 		rxd->rx_dmamap = NULL;
903 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
904 		    &rxd->rx_dmamap);
905 		if (error != 0) {
906 			device_printf(sc->vge_dev,
907 			    "could not create Rx dmamap.\n");
908 			goto fail;
909 		}
910 	}
911 
912 fail:
913 	return (error);
914 }
915 
916 static void
917 vge_dma_free(struct vge_softc *sc)
918 {
919 	struct vge_txdesc *txd;
920 	struct vge_rxdesc *rxd;
921 	int i;
922 
923 	/* Tx ring. */
924 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
925 		if (sc->vge_rdata.vge_tx_ring_paddr)
926 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
927 			    sc->vge_cdata.vge_tx_ring_map);
928 		if (sc->vge_rdata.vge_tx_ring)
929 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
930 			    sc->vge_rdata.vge_tx_ring,
931 			    sc->vge_cdata.vge_tx_ring_map);
932 		sc->vge_rdata.vge_tx_ring = NULL;
933 		sc->vge_rdata.vge_tx_ring_paddr = 0;
934 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
935 		sc->vge_cdata.vge_tx_ring_tag = NULL;
936 	}
937 	/* Rx ring. */
938 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
939 		if (sc->vge_rdata.vge_rx_ring_paddr)
940 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
941 			    sc->vge_cdata.vge_rx_ring_map);
942 		if (sc->vge_rdata.vge_rx_ring)
943 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
944 			    sc->vge_rdata.vge_rx_ring,
945 			    sc->vge_cdata.vge_rx_ring_map);
946 		sc->vge_rdata.vge_rx_ring = NULL;
947 		sc->vge_rdata.vge_rx_ring_paddr = 0;
948 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
949 		sc->vge_cdata.vge_rx_ring_tag = NULL;
950 	}
951 	/* Tx buffers. */
952 	if (sc->vge_cdata.vge_tx_tag != NULL) {
953 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
954 			txd = &sc->vge_cdata.vge_txdesc[i];
955 			if (txd->tx_dmamap != NULL) {
956 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
957 				    txd->tx_dmamap);
958 				txd->tx_dmamap = NULL;
959 			}
960 		}
961 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
962 		sc->vge_cdata.vge_tx_tag = NULL;
963 	}
964 	/* Rx buffers. */
965 	if (sc->vge_cdata.vge_rx_tag != NULL) {
966 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
967 			rxd = &sc->vge_cdata.vge_rxdesc[i];
968 			if (rxd->rx_dmamap != NULL) {
969 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
970 				    rxd->rx_dmamap);
971 				rxd->rx_dmamap = NULL;
972 			}
973 		}
974 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
975 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
976 			    sc->vge_cdata.vge_rx_sparemap);
977 			sc->vge_cdata.vge_rx_sparemap = NULL;
978 		}
979 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
980 		sc->vge_cdata.vge_rx_tag = NULL;
981 	}
982 
983 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
984 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
985 		sc->vge_cdata.vge_buffer_tag = NULL;
986 	}
987 	if (sc->vge_cdata.vge_ring_tag != NULL) {
988 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
989 		sc->vge_cdata.vge_ring_tag = NULL;
990 	}
991 }
992 
993 /*
994  * Attach the interface. Allocate softc structures, do ifmedia
995  * setup and ethernet/BPF attach.
996  */
997 static int
998 vge_attach(device_t dev)
999 {
1000 	u_char eaddr[ETHER_ADDR_LEN];
1001 	struct vge_softc *sc;
1002 	struct ifnet *ifp;
1003 	int error = 0, cap, i, msic, rid;
1004 
1005 	sc = device_get_softc(dev);
1006 	sc->vge_dev = dev;
1007 
1008 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1009 	    MTX_DEF);
1010 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1011 
1012 	/*
1013 	 * Map control/status registers.
1014 	 */
1015 	pci_enable_busmaster(dev);
1016 
1017 	rid = PCIR_BAR(1);
1018 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1019 	    RF_ACTIVE);
1020 
1021 	if (sc->vge_res == NULL) {
1022 		device_printf(dev, "couldn't map ports/memory\n");
1023 		error = ENXIO;
1024 		goto fail;
1025 	}
1026 
1027 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1028 		sc->vge_flags |= VGE_FLAG_PCIE;
1029 		sc->vge_expcap = cap;
1030 	} else
1031 		sc->vge_flags |= VGE_FLAG_JUMBO;
1032 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1033 		sc->vge_flags |= VGE_FLAG_PMCAP;
1034 		sc->vge_pmcap = cap;
1035 	}
1036 	rid = 0;
1037 	msic = pci_msi_count(dev);
1038 	if (msi_disable == 0 && msic > 0) {
1039 		msic = 1;
1040 		if (pci_alloc_msi(dev, &msic) == 0) {
1041 			if (msic == 1) {
1042 				sc->vge_flags |= VGE_FLAG_MSI;
1043 				device_printf(dev, "Using %d MSI message\n",
1044 				    msic);
1045 				rid = 1;
1046 			} else
1047 				pci_release_msi(dev);
1048 		}
1049 	}
1050 
1051 	/* Allocate interrupt */
1052 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1053 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1054 	if (sc->vge_irq == NULL) {
1055 		device_printf(dev, "couldn't map interrupt\n");
1056 		error = ENXIO;
1057 		goto fail;
1058 	}
1059 
1060 	/* Reset the adapter. */
1061 	vge_reset(sc);
1062 	/* Reload EEPROM. */
1063 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1064 	for (i = 0; i < VGE_TIMEOUT; i++) {
1065 		DELAY(5);
1066 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1067 			break;
1068 	}
1069 	if (i == VGE_TIMEOUT)
1070 		device_printf(dev, "EEPROM reload timed out\n");
1071 	/*
1072 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1073 	 * MAC will receive magic packet which in turn confuses
1074 	 * controller.
1075 	 */
1076 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1077 
1078 	/*
1079 	 * Get station address from the EEPROM.
1080 	 */
1081 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1082 	/*
1083 	 * Save configured PHY address.
1084 	 * It seems the PHY address of PCIe controllers just
1085 	 * reflects media jump strapping status so we assume the
1086 	 * internal PHY address of PCIe controller is at 1.
1087 	 */
1088 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1089 		sc->vge_phyaddr = 1;
1090 	else
1091 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1092 		    VGE_MIICFG_PHYADDR;
1093 	/* Clear WOL and take hardware from powerdown. */
1094 	vge_clrwol(sc);
1095 	vge_sysctl_node(sc);
1096 	error = vge_dma_alloc(sc);
1097 	if (error)
1098 		goto fail;
1099 
1100 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1101 	if (ifp == NULL) {
1102 		device_printf(dev, "can not if_alloc()\n");
1103 		error = ENOSPC;
1104 		goto fail;
1105 	}
1106 
1107 	vge_miipoll_start(sc);
1108 	/* Do MII setup */
1109 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1110 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1111 	    MIIF_DOPAUSE);
1112 	if (error != 0) {
1113 		device_printf(dev, "attaching PHYs failed\n");
1114 		goto fail;
1115 	}
1116 
1117 	ifp->if_softc = sc;
1118 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1119 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1120 	ifp->if_ioctl = vge_ioctl;
1121 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1122 	ifp->if_start = vge_start;
1123 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1124 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1125 	    IFCAP_VLAN_HWTAGGING;
1126 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1127 		ifp->if_capabilities |= IFCAP_WOL;
1128 	ifp->if_capenable = ifp->if_capabilities;
1129 #ifdef DEVICE_POLLING
1130 	ifp->if_capabilities |= IFCAP_POLLING;
1131 #endif
1132 	ifp->if_init = vge_init;
1133 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1134 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1135 	IFQ_SET_READY(&ifp->if_snd);
1136 
1137 	/*
1138 	 * Call MI attach routine.
1139 	 */
1140 	ether_ifattach(ifp, eaddr);
1141 
1142 	/* Tell the upper layer(s) we support long frames. */
1143 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1144 
1145 	/* Hook interrupt last to avoid having to lock softc */
1146 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1147 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1148 
1149 	if (error) {
1150 		device_printf(dev, "couldn't set up irq\n");
1151 		ether_ifdetach(ifp);
1152 		goto fail;
1153 	}
1154 
1155 fail:
1156 	if (error)
1157 		vge_detach(dev);
1158 
1159 	return (error);
1160 }
1161 
1162 /*
1163  * Shutdown hardware and free up resources. This can be called any
1164  * time after the mutex has been initialized. It is called in both
1165  * the error case in attach and the normal detach case so it needs
1166  * to be careful about only freeing resources that have actually been
1167  * allocated.
1168  */
1169 static int
1170 vge_detach(device_t dev)
1171 {
1172 	struct vge_softc *sc;
1173 	struct ifnet *ifp;
1174 
1175 	sc = device_get_softc(dev);
1176 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1177 	ifp = sc->vge_ifp;
1178 
1179 #ifdef DEVICE_POLLING
1180 	if (ifp->if_capenable & IFCAP_POLLING)
1181 		ether_poll_deregister(ifp);
1182 #endif
1183 
1184 	/* These should only be active if attach succeeded */
1185 	if (device_is_attached(dev)) {
1186 		ether_ifdetach(ifp);
1187 		VGE_LOCK(sc);
1188 		vge_stop(sc);
1189 		VGE_UNLOCK(sc);
1190 		callout_drain(&sc->vge_watchdog);
1191 	}
1192 	if (sc->vge_miibus)
1193 		device_delete_child(dev, sc->vge_miibus);
1194 	bus_generic_detach(dev);
1195 
1196 	if (sc->vge_intrhand)
1197 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1198 	if (sc->vge_irq)
1199 		bus_release_resource(dev, SYS_RES_IRQ,
1200 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1201 	if (sc->vge_flags & VGE_FLAG_MSI)
1202 		pci_release_msi(dev);
1203 	if (sc->vge_res)
1204 		bus_release_resource(dev, SYS_RES_MEMORY,
1205 		    PCIR_BAR(1), sc->vge_res);
1206 	if (ifp)
1207 		if_free(ifp);
1208 
1209 	vge_dma_free(sc);
1210 	mtx_destroy(&sc->vge_mtx);
1211 
1212 	return (0);
1213 }
1214 
1215 static void
1216 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1217 {
1218 	struct vge_rxdesc *rxd;
1219 	int i;
1220 
1221 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1222 	rxd->rx_desc->vge_sts = 0;
1223 	rxd->rx_desc->vge_ctl = 0;
1224 
1225 	/*
1226 	 * Note: the manual fails to document the fact that for
1227 	 * proper opration, the driver needs to replentish the RX
1228 	 * DMA ring 4 descriptors at a time (rather than one at a
1229 	 * time, like most chips). We can allocate the new buffers
1230 	 * but we should not set the OWN bits until we're ready
1231 	 * to hand back 4 of them in one shot.
1232 	 */
1233 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1234 		for (i = VGE_RXCHUNK; i > 0; i--) {
1235 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1236 			rxd = rxd->rxd_prev;
1237 		}
1238 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1239 	}
1240 }
1241 
1242 static int
1243 vge_newbuf(struct vge_softc *sc, int prod)
1244 {
1245 	struct vge_rxdesc *rxd;
1246 	struct mbuf *m;
1247 	bus_dma_segment_t segs[1];
1248 	bus_dmamap_t map;
1249 	int i, nsegs;
1250 
1251 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1252 	if (m == NULL)
1253 		return (ENOBUFS);
1254 	/*
1255 	 * This is part of an evil trick to deal with strict-alignment
1256 	 * architectures. The VIA chip requires RX buffers to be aligned
1257 	 * on 32-bit boundaries, but that will hose strict-alignment
1258 	 * architectures. To get around this, we leave some empty space
1259 	 * at the start of each buffer and for non-strict-alignment hosts,
1260 	 * we copy the buffer back two bytes to achieve word alignment.
1261 	 * This is slightly more efficient than allocating a new buffer,
1262 	 * copying the contents, and discarding the old buffer.
1263 	 */
1264 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1265 	m_adj(m, VGE_RX_BUF_ALIGN);
1266 
1267 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1268 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1269 		m_freem(m);
1270 		return (ENOBUFS);
1271 	}
1272 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1273 
1274 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1275 	if (rxd->rx_m != NULL) {
1276 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1277 		    BUS_DMASYNC_POSTREAD);
1278 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1279 	}
1280 	map = rxd->rx_dmamap;
1281 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1282 	sc->vge_cdata.vge_rx_sparemap = map;
1283 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1284 	    BUS_DMASYNC_PREREAD);
1285 	rxd->rx_m = m;
1286 
1287 	rxd->rx_desc->vge_sts = 0;
1288 	rxd->rx_desc->vge_ctl = 0;
1289 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1290 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1291 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1292 
1293 	/*
1294 	 * Note: the manual fails to document the fact that for
1295 	 * proper operation, the driver needs to replenish the RX
1296 	 * DMA ring 4 descriptors at a time (rather than one at a
1297 	 * time, like most chips). We can allocate the new buffers
1298 	 * but we should not set the OWN bits until we're ready
1299 	 * to hand back 4 of them in one shot.
1300 	 */
1301 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1302 		for (i = VGE_RXCHUNK; i > 0; i--) {
1303 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1304 			rxd = rxd->rxd_prev;
1305 		}
1306 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1307 	}
1308 
1309 	return (0);
1310 }
1311 
1312 static int
1313 vge_tx_list_init(struct vge_softc *sc)
1314 {
1315 	struct vge_ring_data *rd;
1316 	struct vge_txdesc *txd;
1317 	int i;
1318 
1319 	VGE_LOCK_ASSERT(sc);
1320 
1321 	sc->vge_cdata.vge_tx_prodidx = 0;
1322 	sc->vge_cdata.vge_tx_considx = 0;
1323 	sc->vge_cdata.vge_tx_cnt = 0;
1324 
1325 	rd = &sc->vge_rdata;
1326 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1327 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1328 		txd = &sc->vge_cdata.vge_txdesc[i];
1329 		txd->tx_m = NULL;
1330 		txd->tx_desc = &rd->vge_tx_ring[i];
1331 	}
1332 
1333 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1334 	    sc->vge_cdata.vge_tx_ring_map,
1335 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1336 
1337 	return (0);
1338 }
1339 
1340 static int
1341 vge_rx_list_init(struct vge_softc *sc)
1342 {
1343 	struct vge_ring_data *rd;
1344 	struct vge_rxdesc *rxd;
1345 	int i;
1346 
1347 	VGE_LOCK_ASSERT(sc);
1348 
1349 	sc->vge_cdata.vge_rx_prodidx = 0;
1350 	sc->vge_cdata.vge_head = NULL;
1351 	sc->vge_cdata.vge_tail = NULL;
1352 	sc->vge_cdata.vge_rx_commit = 0;
1353 
1354 	rd = &sc->vge_rdata;
1355 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1356 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1357 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1358 		rxd->rx_m = NULL;
1359 		rxd->rx_desc = &rd->vge_rx_ring[i];
1360 		if (i == 0)
1361 			rxd->rxd_prev =
1362 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1363 		else
1364 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1365 		if (vge_newbuf(sc, i) != 0)
1366 			return (ENOBUFS);
1367 	}
1368 
1369 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1370 	    sc->vge_cdata.vge_rx_ring_map,
1371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1372 
1373 	sc->vge_cdata.vge_rx_commit = 0;
1374 
1375 	return (0);
1376 }
1377 
1378 static void
1379 vge_freebufs(struct vge_softc *sc)
1380 {
1381 	struct vge_txdesc *txd;
1382 	struct vge_rxdesc *rxd;
1383 	struct ifnet *ifp;
1384 	int i;
1385 
1386 	VGE_LOCK_ASSERT(sc);
1387 
1388 	ifp = sc->vge_ifp;
1389 	/*
1390 	 * Free RX and TX mbufs still in the queues.
1391 	 */
1392 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1393 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1394 		if (rxd->rx_m != NULL) {
1395 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1396 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1397 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1398 			    rxd->rx_dmamap);
1399 			m_freem(rxd->rx_m);
1400 			rxd->rx_m = NULL;
1401 		}
1402 	}
1403 
1404 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1405 		txd = &sc->vge_cdata.vge_txdesc[i];
1406 		if (txd->tx_m != NULL) {
1407 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1408 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1409 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1410 			    txd->tx_dmamap);
1411 			m_freem(txd->tx_m);
1412 			txd->tx_m = NULL;
1413 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1414 		}
1415 	}
1416 }
1417 
1418 #ifndef	__NO_STRICT_ALIGNMENT
1419 static __inline void
1420 vge_fixup_rx(struct mbuf *m)
1421 {
1422 	int i;
1423 	uint16_t *src, *dst;
1424 
1425 	src = mtod(m, uint16_t *);
1426 	dst = src - 1;
1427 
1428 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429 		*dst++ = *src++;
1430 
1431 	m->m_data -= ETHER_ALIGN;
1432 }
1433 #endif
1434 
1435 /*
1436  * RX handler. We support the reception of jumbo frames that have
1437  * been fragmented across multiple 2K mbuf cluster buffers.
1438  */
1439 static int
1440 vge_rxeof(struct vge_softc *sc, int count)
1441 {
1442 	struct mbuf *m;
1443 	struct ifnet *ifp;
1444 	int prod, prog, total_len;
1445 	struct vge_rxdesc *rxd;
1446 	struct vge_rx_desc *cur_rx;
1447 	uint32_t rxstat, rxctl;
1448 
1449 	VGE_LOCK_ASSERT(sc);
1450 
1451 	ifp = sc->vge_ifp;
1452 
1453 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1454 	    sc->vge_cdata.vge_rx_ring_map,
1455 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1456 
1457 	prod = sc->vge_cdata.vge_rx_prodidx;
1458 	for (prog = 0; count > 0 &&
1459 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1460 	    VGE_RX_DESC_INC(prod)) {
1461 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1462 		rxstat = le32toh(cur_rx->vge_sts);
1463 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1464 			break;
1465 		count--;
1466 		prog++;
1467 		rxctl = le32toh(cur_rx->vge_ctl);
1468 		total_len = VGE_RXBYTES(rxstat);
1469 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1470 		m = rxd->rx_m;
1471 
1472 		/*
1473 		 * If the 'start of frame' bit is set, this indicates
1474 		 * either the first fragment in a multi-fragment receive,
1475 		 * or an intermediate fragment. Either way, we want to
1476 		 * accumulate the buffers.
1477 		 */
1478 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1479 			if (vge_newbuf(sc, prod) != 0) {
1480 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1481 				VGE_CHAIN_RESET(sc);
1482 				vge_discard_rxbuf(sc, prod);
1483 				continue;
1484 			}
1485 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1486 			if (sc->vge_cdata.vge_head == NULL) {
1487 				sc->vge_cdata.vge_head = m;
1488 				sc->vge_cdata.vge_tail = m;
1489 			} else {
1490 				m->m_flags &= ~M_PKTHDR;
1491 				sc->vge_cdata.vge_tail->m_next = m;
1492 				sc->vge_cdata.vge_tail = m;
1493 			}
1494 			continue;
1495 		}
1496 
1497 		/*
1498 		 * Bad/error frames will have the RXOK bit cleared.
1499 		 * However, there's one error case we want to allow:
1500 		 * if a VLAN tagged frame arrives and the chip can't
1501 		 * match it against the CAM filter, it considers this
1502 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1503 		 * We don't want to drop the frame though: our VLAN
1504 		 * filtering is done in software.
1505 		 * We also want to receive bad-checksummed frames and
1506 		 * and frames with bad-length.
1507 		 */
1508 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1509 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1510 		    VGE_RDSTS_CSUMERR)) == 0) {
1511 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1512 			/*
1513 			 * If this is part of a multi-fragment packet,
1514 			 * discard all the pieces.
1515 			 */
1516 			VGE_CHAIN_RESET(sc);
1517 			vge_discard_rxbuf(sc, prod);
1518 			continue;
1519 		}
1520 
1521 		if (vge_newbuf(sc, prod) != 0) {
1522 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1523 			VGE_CHAIN_RESET(sc);
1524 			vge_discard_rxbuf(sc, prod);
1525 			continue;
1526 		}
1527 
1528 		/* Chain received mbufs. */
1529 		if (sc->vge_cdata.vge_head != NULL) {
1530 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1531 			/*
1532 			 * Special case: if there's 4 bytes or less
1533 			 * in this buffer, the mbuf can be discarded:
1534 			 * the last 4 bytes is the CRC, which we don't
1535 			 * care about anyway.
1536 			 */
1537 			if (m->m_len <= ETHER_CRC_LEN) {
1538 				sc->vge_cdata.vge_tail->m_len -=
1539 				    (ETHER_CRC_LEN - m->m_len);
1540 				m_freem(m);
1541 			} else {
1542 				m->m_len -= ETHER_CRC_LEN;
1543 				m->m_flags &= ~M_PKTHDR;
1544 				sc->vge_cdata.vge_tail->m_next = m;
1545 			}
1546 			m = sc->vge_cdata.vge_head;
1547 			m->m_flags |= M_PKTHDR;
1548 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1549 		} else {
1550 			m->m_flags |= M_PKTHDR;
1551 			m->m_pkthdr.len = m->m_len =
1552 			    (total_len - ETHER_CRC_LEN);
1553 		}
1554 
1555 #ifndef	__NO_STRICT_ALIGNMENT
1556 		vge_fixup_rx(m);
1557 #endif
1558 		m->m_pkthdr.rcvif = ifp;
1559 
1560 		/* Do RX checksumming if enabled */
1561 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1562 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1563 			/* Check IP header checksum */
1564 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1565 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1566 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1567 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1568 
1569 			/* Check TCP/UDP checksum */
1570 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1571 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1572 				m->m_pkthdr.csum_flags |=
1573 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1574 				m->m_pkthdr.csum_data = 0xffff;
1575 			}
1576 		}
1577 
1578 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1579 			/*
1580 			 * The 32-bit rxctl register is stored in little-endian.
1581 			 * However, the 16-bit vlan tag is stored in big-endian,
1582 			 * so we have to byte swap it.
1583 			 */
1584 			m->m_pkthdr.ether_vtag =
1585 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1586 			m->m_flags |= M_VLANTAG;
1587 		}
1588 
1589 		VGE_UNLOCK(sc);
1590 		(*ifp->if_input)(ifp, m);
1591 		VGE_LOCK(sc);
1592 		sc->vge_cdata.vge_head = NULL;
1593 		sc->vge_cdata.vge_tail = NULL;
1594 	}
1595 
1596 	if (prog > 0) {
1597 		sc->vge_cdata.vge_rx_prodidx = prod;
1598 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1599 		    sc->vge_cdata.vge_rx_ring_map,
1600 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1601 		/* Update residue counter. */
1602 		if (sc->vge_cdata.vge_rx_commit != 0) {
1603 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1604 			    sc->vge_cdata.vge_rx_commit);
1605 			sc->vge_cdata.vge_rx_commit = 0;
1606 		}
1607 	}
1608 	return (prog);
1609 }
1610 
1611 static void
1612 vge_txeof(struct vge_softc *sc)
1613 {
1614 	struct ifnet *ifp;
1615 	struct vge_tx_desc *cur_tx;
1616 	struct vge_txdesc *txd;
1617 	uint32_t txstat;
1618 	int cons, prod;
1619 
1620 	VGE_LOCK_ASSERT(sc);
1621 
1622 	ifp = sc->vge_ifp;
1623 
1624 	if (sc->vge_cdata.vge_tx_cnt == 0)
1625 		return;
1626 
1627 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1628 	    sc->vge_cdata.vge_tx_ring_map,
1629 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1630 
1631 	/*
1632 	 * Go through our tx list and free mbufs for those
1633 	 * frames that have been transmitted.
1634 	 */
1635 	cons = sc->vge_cdata.vge_tx_considx;
1636 	prod = sc->vge_cdata.vge_tx_prodidx;
1637 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1638 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1639 		txstat = le32toh(cur_tx->vge_sts);
1640 		if ((txstat & VGE_TDSTS_OWN) != 0)
1641 			break;
1642 		sc->vge_cdata.vge_tx_cnt--;
1643 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1644 
1645 		txd = &sc->vge_cdata.vge_txdesc[cons];
1646 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1647 		    BUS_DMASYNC_POSTWRITE);
1648 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1649 
1650 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1651 		    __func__));
1652 		m_freem(txd->tx_m);
1653 		txd->tx_m = NULL;
1654 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1655 	}
1656 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1657 	    sc->vge_cdata.vge_tx_ring_map,
1658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1659 	sc->vge_cdata.vge_tx_considx = cons;
1660 	if (sc->vge_cdata.vge_tx_cnt == 0)
1661 		sc->vge_timer = 0;
1662 }
1663 
1664 static void
1665 vge_link_statchg(void *xsc)
1666 {
1667 	struct vge_softc *sc;
1668 	struct ifnet *ifp;
1669 	uint8_t physts;
1670 
1671 	sc = xsc;
1672 	ifp = sc->vge_ifp;
1673 	VGE_LOCK_ASSERT(sc);
1674 
1675 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1676 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1677 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1678 			sc->vge_flags &= ~VGE_FLAG_LINK;
1679 			if_link_state_change(sc->vge_ifp,
1680 			    LINK_STATE_DOWN);
1681 		} else {
1682 			sc->vge_flags |= VGE_FLAG_LINK;
1683 			if_link_state_change(sc->vge_ifp,
1684 			    LINK_STATE_UP);
1685 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1686 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1687 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1688 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1689 					CSR_WRITE_1(sc, VGE_CRS2,
1690 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1691 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1692 					CSR_WRITE_1(sc, VGE_CRS2,
1693 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1694 			}
1695 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1696 				vge_start_locked(ifp);
1697 		}
1698 	}
1699 	/*
1700 	 * Restart MII auto-polling because link state change interrupt
1701 	 * will disable it.
1702 	 */
1703 	vge_miipoll_start(sc);
1704 }
1705 
1706 #ifdef DEVICE_POLLING
1707 static int
1708 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1709 {
1710 	struct vge_softc *sc = ifp->if_softc;
1711 	int rx_npkts = 0;
1712 
1713 	VGE_LOCK(sc);
1714 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1715 		goto done;
1716 
1717 	rx_npkts = vge_rxeof(sc, count);
1718 	vge_txeof(sc);
1719 
1720 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1721 		vge_start_locked(ifp);
1722 
1723 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1724 		uint32_t       status;
1725 		status = CSR_READ_4(sc, VGE_ISR);
1726 		if (status == 0xFFFFFFFF)
1727 			goto done;
1728 		if (status)
1729 			CSR_WRITE_4(sc, VGE_ISR, status);
1730 
1731 		/*
1732 		 * XXX check behaviour on receiver stalls.
1733 		 */
1734 
1735 		if (status & VGE_ISR_TXDMA_STALL ||
1736 		    status & VGE_ISR_RXDMA_STALL) {
1737 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1738 			vge_init_locked(sc);
1739 		}
1740 
1741 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1742 			vge_rxeof(sc, count);
1743 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1744 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1745 		}
1746 	}
1747 done:
1748 	VGE_UNLOCK(sc);
1749 	return (rx_npkts);
1750 }
1751 #endif /* DEVICE_POLLING */
1752 
1753 static void
1754 vge_intr(void *arg)
1755 {
1756 	struct vge_softc *sc;
1757 	struct ifnet *ifp;
1758 	uint32_t status;
1759 
1760 	sc = arg;
1761 	VGE_LOCK(sc);
1762 
1763 	ifp = sc->vge_ifp;
1764 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1765 	    (ifp->if_flags & IFF_UP) == 0) {
1766 		VGE_UNLOCK(sc);
1767 		return;
1768 	}
1769 
1770 #ifdef DEVICE_POLLING
1771 	if  (ifp->if_capenable & IFCAP_POLLING) {
1772 		status = CSR_READ_4(sc, VGE_ISR);
1773 		CSR_WRITE_4(sc, VGE_ISR, status);
1774 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1775 			vge_link_statchg(sc);
1776 		VGE_UNLOCK(sc);
1777 		return;
1778 	}
1779 #endif
1780 
1781 	/* Disable interrupts */
1782 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1783 	status = CSR_READ_4(sc, VGE_ISR);
1784 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1785 	/* If the card has gone away the read returns 0xffff. */
1786 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1787 		goto done;
1788 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1789 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1790 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1791 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1792 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1793 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1794 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1795 		}
1796 
1797 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1798 			vge_txeof(sc);
1799 
1800 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1801 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1802 			vge_init_locked(sc);
1803 		}
1804 
1805 		if (status & VGE_ISR_LINKSTS)
1806 			vge_link_statchg(sc);
1807 	}
1808 done:
1809 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1810 		/* Re-enable interrupts */
1811 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1812 
1813 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1814 			vge_start_locked(ifp);
1815 	}
1816 	VGE_UNLOCK(sc);
1817 }
1818 
1819 static int
1820 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1821 {
1822 	struct vge_txdesc *txd;
1823 	struct vge_tx_frag *frag;
1824 	struct mbuf *m;
1825 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1826 	int error, i, nsegs, padlen;
1827 	uint32_t cflags;
1828 
1829 	VGE_LOCK_ASSERT(sc);
1830 
1831 	M_ASSERTPKTHDR((*m_head));
1832 
1833 	/* Argh. This chip does not autopad short frames. */
1834 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1835 		m = *m_head;
1836 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1837 		if (M_WRITABLE(m) == 0) {
1838 			/* Get a writable copy. */
1839 			m = m_dup(*m_head, M_NOWAIT);
1840 			m_freem(*m_head);
1841 			if (m == NULL) {
1842 				*m_head = NULL;
1843 				return (ENOBUFS);
1844 			}
1845 			*m_head = m;
1846 		}
1847 		if (M_TRAILINGSPACE(m) < padlen) {
1848 			m = m_defrag(m, M_NOWAIT);
1849 			if (m == NULL) {
1850 				m_freem(*m_head);
1851 				*m_head = NULL;
1852 				return (ENOBUFS);
1853 			}
1854 		}
1855 		/*
1856 		 * Manually pad short frames, and zero the pad space
1857 		 * to avoid leaking data.
1858 		 */
1859 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1860 		m->m_pkthdr.len += padlen;
1861 		m->m_len = m->m_pkthdr.len;
1862 		*m_head = m;
1863 	}
1864 
1865 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1866 
1867 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1868 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1869 	if (error == EFBIG) {
1870 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1871 		if (m == NULL) {
1872 			m_freem(*m_head);
1873 			*m_head = NULL;
1874 			return (ENOMEM);
1875 		}
1876 		*m_head = m;
1877 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1878 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1879 		if (error != 0) {
1880 			m_freem(*m_head);
1881 			*m_head = NULL;
1882 			return (error);
1883 		}
1884 	} else if (error != 0)
1885 		return (error);
1886 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1887 	    BUS_DMASYNC_PREWRITE);
1888 
1889 	m = *m_head;
1890 	cflags = 0;
1891 
1892 	/* Configure checksum offload. */
1893 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1894 		cflags |= VGE_TDCTL_IPCSUM;
1895 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1896 		cflags |= VGE_TDCTL_TCPCSUM;
1897 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1898 		cflags |= VGE_TDCTL_UDPCSUM;
1899 
1900 	/* Configure VLAN. */
1901 	if ((m->m_flags & M_VLANTAG) != 0)
1902 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1903 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1904 	/*
1905 	 * XXX
1906 	 * Velocity family seems to support TSO but no information
1907 	 * for MSS configuration is available. Also the number of
1908 	 * fragments supported by a descriptor is too small to hold
1909 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1910 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1911 	 * longer chain of buffers but no additional information is
1912 	 * available.
1913 	 *
1914 	 * When telling the chip how many segments there are, we
1915 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1916 	 * know why. This also means we can't use the last fragment
1917 	 * field of Tx descriptor.
1918 	 */
1919 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1920 	    VGE_TD_LS_NORM);
1921 	for (i = 0; i < nsegs; i++) {
1922 		frag = &txd->tx_desc->vge_frag[i];
1923 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1924 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1925 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1926 	}
1927 
1928 	sc->vge_cdata.vge_tx_cnt++;
1929 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1930 
1931 	/*
1932 	 * Finally request interrupt and give the first descriptor
1933 	 * ownership to hardware.
1934 	 */
1935 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1936 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1937 	txd->tx_m = m;
1938 
1939 	return (0);
1940 }
1941 
1942 /*
1943  * Main transmit routine.
1944  */
1945 
1946 static void
1947 vge_start(struct ifnet *ifp)
1948 {
1949 	struct vge_softc *sc;
1950 
1951 	sc = ifp->if_softc;
1952 	VGE_LOCK(sc);
1953 	vge_start_locked(ifp);
1954 	VGE_UNLOCK(sc);
1955 }
1956 
1957 
1958 static void
1959 vge_start_locked(struct ifnet *ifp)
1960 {
1961 	struct vge_softc *sc;
1962 	struct vge_txdesc *txd;
1963 	struct mbuf *m_head;
1964 	int enq, idx;
1965 
1966 	sc = ifp->if_softc;
1967 
1968 	VGE_LOCK_ASSERT(sc);
1969 
1970 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1971 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1972 	    IFF_DRV_RUNNING)
1973 		return;
1974 
1975 	idx = sc->vge_cdata.vge_tx_prodidx;
1976 	VGE_TX_DESC_DEC(idx);
1977 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1978 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1979 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1980 		if (m_head == NULL)
1981 			break;
1982 		/*
1983 		 * Pack the data into the transmit ring. If we
1984 		 * don't have room, set the OACTIVE flag and wait
1985 		 * for the NIC to drain the ring.
1986 		 */
1987 		if (vge_encap(sc, &m_head)) {
1988 			if (m_head == NULL)
1989 				break;
1990 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1991 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1992 			break;
1993 		}
1994 
1995 		txd = &sc->vge_cdata.vge_txdesc[idx];
1996 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1997 		VGE_TX_DESC_INC(idx);
1998 
1999 		enq++;
2000 		/*
2001 		 * If there's a BPF listener, bounce a copy of this frame
2002 		 * to him.
2003 		 */
2004 		ETHER_BPF_MTAP(ifp, m_head);
2005 	}
2006 
2007 	if (enq > 0) {
2008 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2009 		    sc->vge_cdata.vge_tx_ring_map,
2010 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2011 		/* Issue a transmit command. */
2012 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2013 		/*
2014 		 * Set a timeout in case the chip goes out to lunch.
2015 		 */
2016 		sc->vge_timer = 5;
2017 	}
2018 }
2019 
2020 static void
2021 vge_init(void *xsc)
2022 {
2023 	struct vge_softc *sc = xsc;
2024 
2025 	VGE_LOCK(sc);
2026 	vge_init_locked(sc);
2027 	VGE_UNLOCK(sc);
2028 }
2029 
2030 static void
2031 vge_init_locked(struct vge_softc *sc)
2032 {
2033 	struct ifnet *ifp = sc->vge_ifp;
2034 	int error, i;
2035 
2036 	VGE_LOCK_ASSERT(sc);
2037 
2038 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2039 		return;
2040 
2041 	/*
2042 	 * Cancel pending I/O and free all RX/TX buffers.
2043 	 */
2044 	vge_stop(sc);
2045 	vge_reset(sc);
2046 	vge_miipoll_start(sc);
2047 
2048 	/*
2049 	 * Initialize the RX and TX descriptors and mbufs.
2050 	 */
2051 
2052 	error = vge_rx_list_init(sc);
2053 	if (error != 0) {
2054                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2055                 return;
2056 	}
2057 	vge_tx_list_init(sc);
2058 	/* Clear MAC statistics. */
2059 	vge_stats_clear(sc);
2060 	/* Set our station address */
2061 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2062 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2063 
2064 	/*
2065 	 * Set receive FIFO threshold. Also allow transmission and
2066 	 * reception of VLAN tagged frames.
2067 	 */
2068 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2069 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2070 
2071 	/* Set DMA burst length */
2072 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2073 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2074 
2075 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2076 
2077 	/* Set collision backoff algorithm */
2078 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2079 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2080 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2081 
2082 	/* Disable LPSEL field in priority resolution */
2083 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2084 
2085 	/*
2086 	 * Load the addresses of the DMA queues into the chip.
2087 	 * Note that we only use one transmit queue.
2088 	 */
2089 
2090 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2091 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2092 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2093 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2094 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2095 
2096 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2097 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2098 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2099 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2100 
2101 	/* Configure interrupt moderation. */
2102 	vge_intr_holdoff(sc);
2103 
2104 	/* Enable and wake up the RX descriptor queue */
2105 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2106 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2107 
2108 	/* Enable the TX descriptor queue */
2109 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2110 
2111 	/* Init the cam filter. */
2112 	vge_cam_clear(sc);
2113 
2114 	/* Set up receiver filter. */
2115 	vge_rxfilter(sc);
2116 	vge_setvlan(sc);
2117 
2118 	/* Initialize pause timer. */
2119 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2120 	/*
2121 	 * Initialize flow control parameters.
2122 	 *  TX XON high threshold : 48
2123 	 *  TX pause low threshold : 24
2124 	 *  Disable hald-duplex flow control
2125 	 */
2126 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2127 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2128 
2129 	/* Enable jumbo frame reception (if desired) */
2130 
2131 	/* Start the MAC. */
2132 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2133 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2134 	CSR_WRITE_1(sc, VGE_CRS0,
2135 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2136 
2137 #ifdef DEVICE_POLLING
2138 	/*
2139 	 * Disable interrupts except link state change if we are polling.
2140 	 */
2141 	if (ifp->if_capenable & IFCAP_POLLING) {
2142 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2143 	} else	/* otherwise ... */
2144 #endif
2145 	{
2146 	/*
2147 	 * Enable interrupts.
2148 	 */
2149 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2150 	}
2151 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2152 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2153 
2154 	sc->vge_flags &= ~VGE_FLAG_LINK;
2155 	vge_ifmedia_upd_locked(sc);
2156 
2157 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2159 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2160 }
2161 
2162 /*
2163  * Set media options.
2164  */
2165 static int
2166 vge_ifmedia_upd(struct ifnet *ifp)
2167 {
2168 	struct vge_softc *sc;
2169 	int error;
2170 
2171 	sc = ifp->if_softc;
2172 	VGE_LOCK(sc);
2173 	error = vge_ifmedia_upd_locked(sc);
2174 	VGE_UNLOCK(sc);
2175 
2176 	return (error);
2177 }
2178 
2179 static int
2180 vge_ifmedia_upd_locked(struct vge_softc *sc)
2181 {
2182 	struct mii_data *mii;
2183 	struct mii_softc *miisc;
2184 	int error;
2185 
2186 	mii = device_get_softc(sc->vge_miibus);
2187 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2188 		PHY_RESET(miisc);
2189 	vge_setmedia(sc);
2190 	error = mii_mediachg(mii);
2191 
2192 	return (error);
2193 }
2194 
2195 /*
2196  * Report current media status.
2197  */
2198 static void
2199 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2200 {
2201 	struct vge_softc *sc;
2202 	struct mii_data *mii;
2203 
2204 	sc = ifp->if_softc;
2205 	mii = device_get_softc(sc->vge_miibus);
2206 
2207 	VGE_LOCK(sc);
2208 	if ((ifp->if_flags & IFF_UP) == 0) {
2209 		VGE_UNLOCK(sc);
2210 		return;
2211 	}
2212 	mii_pollstat(mii);
2213 	ifmr->ifm_active = mii->mii_media_active;
2214 	ifmr->ifm_status = mii->mii_media_status;
2215 	VGE_UNLOCK(sc);
2216 }
2217 
2218 static void
2219 vge_setmedia(struct vge_softc *sc)
2220 {
2221 	struct mii_data *mii;
2222 	struct ifmedia_entry *ife;
2223 
2224 	mii = device_get_softc(sc->vge_miibus);
2225 	ife = mii->mii_media.ifm_cur;
2226 
2227 	/*
2228 	 * If the user manually selects a media mode, we need to turn
2229 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2230 	 * user happens to choose a full duplex mode, we also need to
2231 	 * set the 'force full duplex' bit. This applies only to
2232 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2233 	 * mode is disabled, and in 1000baseT mode, full duplex is
2234 	 * always implied, so we turn on the forced mode bit but leave
2235 	 * the FDX bit cleared.
2236 	 */
2237 
2238 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2239 	case IFM_AUTO:
2240 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242 		break;
2243 	case IFM_1000_T:
2244 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2245 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2246 		break;
2247 	case IFM_100_TX:
2248 	case IFM_10_T:
2249 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2250 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2251 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2252 		} else {
2253 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2254 		}
2255 		break;
2256 	default:
2257 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2258 		    IFM_SUBTYPE(ife->ifm_media));
2259 		break;
2260 	}
2261 }
2262 
2263 static int
2264 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2265 {
2266 	struct vge_softc *sc = ifp->if_softc;
2267 	struct ifreq *ifr = (struct ifreq *) data;
2268 	struct mii_data *mii;
2269 	int error = 0, mask;
2270 
2271 	switch (command) {
2272 	case SIOCSIFMTU:
2273 		VGE_LOCK(sc);
2274 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2275 			error = EINVAL;
2276 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2277 			if (ifr->ifr_mtu > ETHERMTU &&
2278 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2279 				error = EINVAL;
2280 			else
2281 				ifp->if_mtu = ifr->ifr_mtu;
2282 		}
2283 		VGE_UNLOCK(sc);
2284 		break;
2285 	case SIOCSIFFLAGS:
2286 		VGE_LOCK(sc);
2287 		if ((ifp->if_flags & IFF_UP) != 0) {
2288 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2289 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2290 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2291 				vge_rxfilter(sc);
2292 			else
2293 				vge_init_locked(sc);
2294 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2295 			vge_stop(sc);
2296 		sc->vge_if_flags = ifp->if_flags;
2297 		VGE_UNLOCK(sc);
2298 		break;
2299 	case SIOCADDMULTI:
2300 	case SIOCDELMULTI:
2301 		VGE_LOCK(sc);
2302 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2303 			vge_rxfilter(sc);
2304 		VGE_UNLOCK(sc);
2305 		break;
2306 	case SIOCGIFMEDIA:
2307 	case SIOCSIFMEDIA:
2308 		mii = device_get_softc(sc->vge_miibus);
2309 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2310 		break;
2311 	case SIOCSIFCAP:
2312 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2313 #ifdef DEVICE_POLLING
2314 		if (mask & IFCAP_POLLING) {
2315 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2316 				error = ether_poll_register(vge_poll, ifp);
2317 				if (error)
2318 					return (error);
2319 				VGE_LOCK(sc);
2320 					/* Disable interrupts */
2321 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2322 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2323 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2324 				ifp->if_capenable |= IFCAP_POLLING;
2325 				VGE_UNLOCK(sc);
2326 			} else {
2327 				error = ether_poll_deregister(ifp);
2328 				/* Enable interrupts. */
2329 				VGE_LOCK(sc);
2330 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2331 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2332 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2333 				ifp->if_capenable &= ~IFCAP_POLLING;
2334 				VGE_UNLOCK(sc);
2335 			}
2336 		}
2337 #endif /* DEVICE_POLLING */
2338 		VGE_LOCK(sc);
2339 		if ((mask & IFCAP_TXCSUM) != 0 &&
2340 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2341 			ifp->if_capenable ^= IFCAP_TXCSUM;
2342 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2343 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2344 			else
2345 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2346 		}
2347 		if ((mask & IFCAP_RXCSUM) != 0 &&
2348 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2349 			ifp->if_capenable ^= IFCAP_RXCSUM;
2350 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2351 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2352 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2353 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2354 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2355 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2356 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2357 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2358 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2359 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2360 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2361 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2362 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2363 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2364 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2365 			vge_setvlan(sc);
2366 		}
2367 		VGE_UNLOCK(sc);
2368 		VLAN_CAPABILITIES(ifp);
2369 		break;
2370 	default:
2371 		error = ether_ioctl(ifp, command, data);
2372 		break;
2373 	}
2374 
2375 	return (error);
2376 }
2377 
2378 static void
2379 vge_watchdog(void *arg)
2380 {
2381 	struct vge_softc *sc;
2382 	struct ifnet *ifp;
2383 
2384 	sc = arg;
2385 	VGE_LOCK_ASSERT(sc);
2386 	vge_stats_update(sc);
2387 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2388 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2389 		return;
2390 
2391 	ifp = sc->vge_ifp;
2392 	if_printf(ifp, "watchdog timeout\n");
2393 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2394 
2395 	vge_txeof(sc);
2396 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2397 
2398 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2399 	vge_init_locked(sc);
2400 }
2401 
2402 /*
2403  * Stop the adapter and free any mbufs allocated to the
2404  * RX and TX lists.
2405  */
2406 static void
2407 vge_stop(struct vge_softc *sc)
2408 {
2409 	struct ifnet *ifp;
2410 
2411 	VGE_LOCK_ASSERT(sc);
2412 	ifp = sc->vge_ifp;
2413 	sc->vge_timer = 0;
2414 	callout_stop(&sc->vge_watchdog);
2415 
2416 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2417 
2418 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2419 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2420 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2421 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2422 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2423 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2424 
2425 	vge_stats_update(sc);
2426 	VGE_CHAIN_RESET(sc);
2427 	vge_txeof(sc);
2428 	vge_freebufs(sc);
2429 }
2430 
2431 /*
2432  * Device suspend routine.  Stop the interface and save some PCI
2433  * settings in case the BIOS doesn't restore them properly on
2434  * resume.
2435  */
2436 static int
2437 vge_suspend(device_t dev)
2438 {
2439 	struct vge_softc *sc;
2440 
2441 	sc = device_get_softc(dev);
2442 
2443 	VGE_LOCK(sc);
2444 	vge_stop(sc);
2445 	vge_setwol(sc);
2446 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2447 	VGE_UNLOCK(sc);
2448 
2449 	return (0);
2450 }
2451 
2452 /*
2453  * Device resume routine.  Restore some PCI settings in case the BIOS
2454  * doesn't, re-enable busmastering, and restart the interface if
2455  * appropriate.
2456  */
2457 static int
2458 vge_resume(device_t dev)
2459 {
2460 	struct vge_softc *sc;
2461 	struct ifnet *ifp;
2462 	uint16_t pmstat;
2463 
2464 	sc = device_get_softc(dev);
2465 	VGE_LOCK(sc);
2466 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2467 		/* Disable PME and clear PME status. */
2468 		pmstat = pci_read_config(sc->vge_dev,
2469 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2470 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2471 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2472 			pci_write_config(sc->vge_dev,
2473 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2474 		}
2475 	}
2476 	vge_clrwol(sc);
2477 	/* Restart MII auto-polling. */
2478 	vge_miipoll_start(sc);
2479 	ifp = sc->vge_ifp;
2480 	/* Reinitialize interface if necessary. */
2481 	if ((ifp->if_flags & IFF_UP) != 0) {
2482 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2483 		vge_init_locked(sc);
2484 	}
2485 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2486 	VGE_UNLOCK(sc);
2487 
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Stop all chip I/O so that the kernel's probe routines don't
2493  * get confused by errant DMAs when rebooting.
2494  */
2495 static int
2496 vge_shutdown(device_t dev)
2497 {
2498 
2499 	return (vge_suspend(dev));
2500 }
2501 
2502 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2503 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2504 
2505 static void
2506 vge_sysctl_node(struct vge_softc *sc)
2507 {
2508 	struct sysctl_ctx_list *ctx;
2509 	struct sysctl_oid_list *child, *parent;
2510 	struct sysctl_oid *tree;
2511 	struct vge_hw_stats *stats;
2512 
2513 	stats = &sc->vge_stats;
2514 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2515 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2516 
2517 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2518 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2519 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2520 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2521 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2522 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2523 
2524 	/* Pull in device tunables. */
2525 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2526 	resource_int_value(device_get_name(sc->vge_dev),
2527 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2528 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2529 	resource_int_value(device_get_name(sc->vge_dev),
2530 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2531 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2532 	resource_int_value(device_get_name(sc->vge_dev),
2533 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2534 
2535 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2536 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2537 	parent = SYSCTL_CHILDREN(tree);
2538 
2539 	/* Rx statistics. */
2540 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2541 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2542 	child = SYSCTL_CHILDREN(tree);
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2544 	    &stats->rx_frames, "frames");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2546 	    &stats->rx_good_frames, "Good frames");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2548 	    &stats->rx_fifo_oflows, "FIFO overflows");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2550 	    &stats->rx_runts, "Too short frames");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2552 	    &stats->rx_runts_errs, "Too short frames with errors");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2554 	    &stats->rx_pkts_64, "64 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2556 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2558 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2560 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2562 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2564 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2566 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2568 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2570 	    &stats->rx_jumbos, "Jumbo frames");
2571 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2572 	    &stats->rx_crcerrs, "CRC errors");
2573 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2574 	    &stats->rx_pause_frames, "CRC errors");
2575 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2576 	    &stats->rx_alignerrs, "Alignment errors");
2577 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2578 	    &stats->rx_nobufs, "Frames with no buffer event");
2579 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2580 	    &stats->rx_symerrs, "Frames with symbol errors");
2581 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2582 	    &stats->rx_lenerrs, "Frames with length mismatched");
2583 
2584 	/* Tx statistics. */
2585 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2586 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2587 	child = SYSCTL_CHILDREN(tree);
2588 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2589 	    &stats->tx_good_frames, "Good frames");
2590 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2591 	    &stats->tx_pkts_64, "64 bytes frames");
2592 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2593 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2594 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2595 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2596 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2597 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2598 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2599 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2600 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2601 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2602 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2603 	    &stats->tx_jumbos, "Jumbo frames");
2604 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2605 	    &stats->tx_colls, "Collisions");
2606 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2607 	    &stats->tx_latecolls, "Late collisions");
2608 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2609 	    &stats->tx_pause, "Pause frames");
2610 #ifdef VGE_ENABLE_SQEERR
2611 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2612 	    &stats->tx_sqeerrs, "SQE errors");
2613 #endif
2614 	/* Clear MAC statistics. */
2615 	vge_stats_clear(sc);
2616 }
2617 
2618 #undef	VGE_SYSCTL_STAT_ADD32
2619 
2620 static void
2621 vge_stats_clear(struct vge_softc *sc)
2622 {
2623 	int i;
2624 
2625 	CSR_WRITE_1(sc, VGE_MIBCSR,
2626 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2627 	CSR_WRITE_1(sc, VGE_MIBCSR,
2628 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2629 	for (i = VGE_TIMEOUT; i > 0; i--) {
2630 		DELAY(1);
2631 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2632 			break;
2633 	}
2634 	if (i == 0)
2635 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2636 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2637 	    ~VGE_MIBCSR_FREEZE);
2638 }
2639 
2640 static void
2641 vge_stats_update(struct vge_softc *sc)
2642 {
2643 	struct vge_hw_stats *stats;
2644 	struct ifnet *ifp;
2645 	uint32_t mib[VGE_MIB_CNT], val;
2646 	int i;
2647 
2648 	VGE_LOCK_ASSERT(sc);
2649 
2650 	stats = &sc->vge_stats;
2651 	ifp = sc->vge_ifp;
2652 
2653 	CSR_WRITE_1(sc, VGE_MIBCSR,
2654 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2655 	for (i = VGE_TIMEOUT; i > 0; i--) {
2656 		DELAY(1);
2657 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2658 			break;
2659 	}
2660 	if (i == 0) {
2661 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2662 		vge_stats_clear(sc);
2663 		return;
2664 	}
2665 
2666 	bzero(mib, sizeof(mib));
2667 reset_idx:
2668 	/* Set MIB read index to 0. */
2669 	CSR_WRITE_1(sc, VGE_MIBCSR,
2670 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2671 	for (i = 0; i < VGE_MIB_CNT; i++) {
2672 		val = CSR_READ_4(sc, VGE_MIBDATA);
2673 		if (i != VGE_MIB_DATA_IDX(val)) {
2674 			/* Reading interrupted. */
2675 			goto reset_idx;
2676 		}
2677 		mib[i] = val & VGE_MIB_DATA_MASK;
2678 	}
2679 
2680 	/* Rx stats. */
2681 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2682 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2683 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2684 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2685 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2686 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2687 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2688 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2689 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2690 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2691 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2692 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2693 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2694 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2695 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2696 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2697 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2698 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2699 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2700 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2701 
2702 	/* Tx stats. */
2703 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2704 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2705 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2706 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2707 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2708 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2709 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2710 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2711 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2712 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2713 #ifdef VGE_ENABLE_SQEERR
2714 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2715 #endif
2716 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2717 
2718 	/* Update counters in ifnet. */
2719 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2720 
2721 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2722 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2723 
2724 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2725 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2726 
2727 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2728 
2729 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2730 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2731 	    mib[VGE_MIB_RX_RUNTS] +
2732 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2733 	    mib[VGE_MIB_RX_CRCERRS] +
2734 	    mib[VGE_MIB_RX_ALIGNERRS] +
2735 	    mib[VGE_MIB_RX_NOBUFS] +
2736 	    mib[VGE_MIB_RX_SYMERRS] +
2737 	    mib[VGE_MIB_RX_LENERRS]);
2738 }
2739 
2740 static void
2741 vge_intr_holdoff(struct vge_softc *sc)
2742 {
2743 	uint8_t intctl;
2744 
2745 	VGE_LOCK_ASSERT(sc);
2746 
2747 	/*
2748 	 * Set Tx interrupt supression threshold.
2749 	 * It's possible to use single-shot timer in VGE_CRS1 register
2750 	 * in Tx path such that driver can remove most of Tx completion
2751 	 * interrupts. However this requires additional access to
2752 	 * VGE_CRS1 register to reload the timer in addintion to
2753 	 * activating Tx kick command. Another downside is we don't know
2754 	 * what single-shot timer value should be used in advance so
2755 	 * reclaiming transmitted mbufs could be delayed a lot which in
2756 	 * turn slows down Tx operation.
2757 	 */
2758 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2759 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2760 
2761 	/* Set Rx interrupt suppresion threshold. */
2762 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2763 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2764 
2765 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2766 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2767 	intctl |= VGE_INTCTL_HC_RELOAD;
2768 	if (sc->vge_tx_coal_pkt <= 0)
2769 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2770 	else
2771 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2772 	if (sc->vge_rx_coal_pkt <= 0)
2773 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2774 	else
2775 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2776 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2777 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2778 	if (sc->vge_int_holdoff > 0) {
2779 		/* Set interrupt holdoff timer. */
2780 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2781 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2782 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2783 		/* Enable holdoff timer. */
2784 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2785 	}
2786 }
2787 
2788 static void
2789 vge_setlinkspeed(struct vge_softc *sc)
2790 {
2791 	struct mii_data *mii;
2792 	int aneg, i;
2793 
2794 	VGE_LOCK_ASSERT(sc);
2795 
2796 	mii = device_get_softc(sc->vge_miibus);
2797 	mii_pollstat(mii);
2798 	aneg = 0;
2799 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2800 	    (IFM_ACTIVE | IFM_AVALID)) {
2801 		switch IFM_SUBTYPE(mii->mii_media_active) {
2802 		case IFM_10_T:
2803 		case IFM_100_TX:
2804 			return;
2805 		case IFM_1000_T:
2806 			aneg++;
2807 		default:
2808 			break;
2809 		}
2810 	}
2811 	/* Clear forced MAC speed/duplex configuration. */
2812 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2813 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2814 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2815 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2816 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2817 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2818 	    BMCR_AUTOEN | BMCR_STARTNEG);
2819 	DELAY(1000);
2820 	if (aneg != 0) {
2821 		/* Poll link state until vge(4) get a 10/100 link. */
2822 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2823 			mii_pollstat(mii);
2824 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2825 			    == (IFM_ACTIVE | IFM_AVALID)) {
2826 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2827 				case IFM_10_T:
2828 				case IFM_100_TX:
2829 					return;
2830 				default:
2831 					break;
2832 				}
2833 			}
2834 			VGE_UNLOCK(sc);
2835 			pause("vgelnk", hz);
2836 			VGE_LOCK(sc);
2837 		}
2838 		if (i == MII_ANEGTICKS_GIGE)
2839 			device_printf(sc->vge_dev, "establishing link failed, "
2840 			    "WOL may not work!");
2841 	}
2842 	/*
2843 	 * No link, force MAC to have 100Mbps, full-duplex link.
2844 	 * This is the last resort and may/may not work.
2845 	 */
2846 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2847 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2848 }
2849 
2850 static void
2851 vge_setwol(struct vge_softc *sc)
2852 {
2853 	struct ifnet *ifp;
2854 	uint16_t pmstat;
2855 	uint8_t val;
2856 
2857 	VGE_LOCK_ASSERT(sc);
2858 
2859 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2860 		/* No PME capability, PHY power down. */
2861 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2862 		    BMCR_PDOWN);
2863 		vge_miipoll_stop(sc);
2864 		return;
2865 	}
2866 
2867 	ifp = sc->vge_ifp;
2868 
2869 	/* Clear WOL on pattern match. */
2870 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2871 	/* Disable WOL on magic/unicast packet. */
2872 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2873 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2874 	    VGE_WOLCFG_PMEOVR);
2875 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2876 		vge_setlinkspeed(sc);
2877 		val = 0;
2878 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2879 			val |= VGE_WOLCR1_UCAST;
2880 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2881 			val |= VGE_WOLCR1_MAGIC;
2882 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2883 		val = 0;
2884 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2885 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2886 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2887 		/* Disable MII auto-polling. */
2888 		vge_miipoll_stop(sc);
2889 	}
2890 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2891 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2892 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2893 
2894 	/* Clear WOL status on pattern match. */
2895 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2896 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2897 
2898 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2899 	val |= VGE_STICKHW_SWPTAG;
2900 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2901 	/* Put hardware into sleep. */
2902 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2903 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2904 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2905 	/* Request PME if WOL is requested. */
2906 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2907 	    PCIR_POWER_STATUS, 2);
2908 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2909 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2910 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2911 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2912 	    pmstat, 2);
2913 }
2914 
2915 static void
2916 vge_clrwol(struct vge_softc *sc)
2917 {
2918 	uint8_t val;
2919 
2920 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2921 	val &= ~VGE_STICKHW_SWPTAG;
2922 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2923 	/* Disable WOL and clear power state indicator. */
2924 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2925 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2926 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2927 
2928 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2929 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2930 
2931 	/* Clear WOL on pattern match. */
2932 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2933 	/* Disable WOL on magic/unicast packet. */
2934 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2935 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2936 	    VGE_WOLCFG_PMEOVR);
2937 	/* Clear WOL status on pattern match. */
2938 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2939 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2940 }
2941