xref: /freebsd/sys/dev/vge/if_vge.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/taskqueue.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct vge_type vge_devs[] = {
135 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136 		"VIA Networking Gigabit Ethernet" },
137 	{ 0, 0, NULL }
138 };
139 
140 static int vge_probe		(device_t);
141 static int vge_attach		(device_t);
142 static int vge_detach		(device_t);
143 
144 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145 
146 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148 				    bus_size_t, int);
149 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150 				    bus_size_t, int);
151 static int vge_allocmem		(device_t, struct vge_softc *);
152 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153 static int vge_rx_list_init	(struct vge_softc *);
154 static int vge_tx_list_init	(struct vge_softc *);
155 #ifdef VGE_FIXUP_RX
156 static __inline void vge_fixup_rx
157 				(struct mbuf *);
158 #endif
159 static void vge_rxeof		(struct vge_softc *);
160 static void vge_txeof		(struct vge_softc *);
161 static void vge_intr		(void *);
162 static void vge_tick		(void *);
163 static void vge_tx_task		(void *, int);
164 static void vge_start		(struct ifnet *);
165 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166 static void vge_init		(void *);
167 static void vge_stop		(struct vge_softc *);
168 static void vge_watchdog	(struct ifnet *);
169 static int vge_suspend		(device_t);
170 static int vge_resume		(device_t);
171 static void vge_shutdown	(device_t);
172 static int vge_ifmedia_upd	(struct ifnet *);
173 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179 
180 static void vge_miipoll_start	(struct vge_softc *);
181 static void vge_miipoll_stop	(struct vge_softc *);
182 static int vge_miibus_readreg	(device_t, int, int);
183 static int vge_miibus_writereg	(device_t, int, int, int);
184 static void vge_miibus_statchg	(device_t);
185 
186 static void vge_cam_clear	(struct vge_softc *);
187 static int vge_cam_set		(struct vge_softc *, uint8_t *);
188 #if __FreeBSD_version < 502113
189 static uint32_t vge_mchash	(uint8_t *);
190 #endif
191 static void vge_setmulti	(struct vge_softc *);
192 static void vge_reset		(struct vge_softc *);
193 
194 #define VGE_PCI_LOIO             0x10
195 #define VGE_PCI_LOMEM            0x14
196 
197 static device_method_t vge_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		vge_probe),
200 	DEVMETHOD(device_attach,	vge_attach),
201 	DEVMETHOD(device_detach,	vge_detach),
202 	DEVMETHOD(device_suspend,	vge_suspend),
203 	DEVMETHOD(device_resume,	vge_resume),
204 	DEVMETHOD(device_shutdown,	vge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t vge_driver = {
219 	"vge",
220 	vge_methods,
221 	sizeof(struct vge_softc)
222 };
223 
224 static devclass_t vge_devclass;
225 
226 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
227 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #ifdef VGE_EEPROM
231 /*
232  * Read a word of data stored in the EEPROM at address 'addr.'
233  */
234 static void
235 vge_eeprom_getword(sc, addr, dest)
236 	struct vge_softc	*sc;
237 	int			addr;
238 	u_int16_t		*dest;
239 {
240 	register int		i;
241 	u_int16_t		word = 0;
242 
243 	/*
244 	 * Enter EEPROM embedded programming mode. In order to
245 	 * access the EEPROM at all, we first have to set the
246 	 * EELOAD bit in the CHIPCFG2 register.
247 	 */
248 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250 
251 	/* Select the address of the word we want to read */
252 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253 
254 	/* Issue read command */
255 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256 
257 	/* Wait for the done bit to be set. */
258 	for (i = 0; i < VGE_TIMEOUT; i++) {
259 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260 			break;
261 	}
262 
263 	if (i == VGE_TIMEOUT) {
264 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265 		*dest = 0;
266 		return;
267 	}
268 
269 	/* Read the result */
270 	word = CSR_READ_2(sc, VGE_EERDDAT);
271 
272 	/* Turn off EEPROM access mode. */
273 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275 
276 	*dest = word;
277 
278 	return;
279 }
280 #endif
281 
282 /*
283  * Read a sequence of words from the EEPROM.
284  */
285 static void
286 vge_read_eeprom(sc, dest, off, cnt, swap)
287 	struct vge_softc	*sc;
288 	caddr_t			dest;
289 	int			off;
290 	int			cnt;
291 	int			swap;
292 {
293 	int			i;
294 #ifdef VGE_EEPROM
295 	u_int16_t		word = 0, *ptr;
296 
297 	for (i = 0; i < cnt; i++) {
298 		vge_eeprom_getword(sc, off + i, &word);
299 		ptr = (u_int16_t *)(dest + (i * 2));
300 		if (swap)
301 			*ptr = ntohs(word);
302 		else
303 			*ptr = word;
304 	}
305 #else
306 	for (i = 0; i < ETHER_ADDR_LEN; i++)
307 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
308 #endif
309 }
310 
311 static void
312 vge_miipoll_stop(sc)
313 	struct vge_softc	*sc;
314 {
315 	int			i;
316 
317 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
318 
319 	for (i = 0; i < VGE_TIMEOUT; i++) {
320 		DELAY(1);
321 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
322 			break;
323 	}
324 
325 	if (i == VGE_TIMEOUT)
326 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
327 
328 	return;
329 }
330 
331 static void
332 vge_miipoll_start(sc)
333 	struct vge_softc	*sc;
334 {
335 	int			i;
336 
337 	/* First, make sure we're idle. */
338 
339 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
340 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
341 
342 	for (i = 0; i < VGE_TIMEOUT; i++) {
343 		DELAY(1);
344 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
345 			break;
346 	}
347 
348 	if (i == VGE_TIMEOUT) {
349 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
350 		return;
351 	}
352 
353 	/* Now enable auto poll mode. */
354 
355 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
356 
357 	/* And make sure it started. */
358 
359 	for (i = 0; i < VGE_TIMEOUT; i++) {
360 		DELAY(1);
361 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
362 			break;
363 	}
364 
365 	if (i == VGE_TIMEOUT)
366 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
367 
368 	return;
369 }
370 
371 static int
372 vge_miibus_readreg(dev, phy, reg)
373 	device_t		dev;
374 	int			phy, reg;
375 {
376 	struct vge_softc	*sc;
377 	int			i;
378 	u_int16_t		rval = 0;
379 
380 	sc = device_get_softc(dev);
381 
382 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
383 		return(0);
384 
385 	VGE_LOCK(sc);
386 	vge_miipoll_stop(sc);
387 
388 	/* Specify the register we want to read. */
389 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
390 
391 	/* Issue read command. */
392 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
393 
394 	/* Wait for the read command bit to self-clear. */
395 	for (i = 0; i < VGE_TIMEOUT; i++) {
396 		DELAY(1);
397 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
398 			break;
399 	}
400 
401 	if (i == VGE_TIMEOUT)
402 		device_printf(sc->vge_dev, "MII read timed out\n");
403 	else
404 		rval = CSR_READ_2(sc, VGE_MIIDATA);
405 
406 	vge_miipoll_start(sc);
407 	VGE_UNLOCK(sc);
408 
409 	return (rval);
410 }
411 
412 static int
413 vge_miibus_writereg(dev, phy, reg, data)
414 	device_t		dev;
415 	int			phy, reg, data;
416 {
417 	struct vge_softc	*sc;
418 	int			i, rval = 0;
419 
420 	sc = device_get_softc(dev);
421 
422 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
423 		return(0);
424 
425 	VGE_LOCK(sc);
426 	vge_miipoll_stop(sc);
427 
428 	/* Specify the register we want to write. */
429 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
430 
431 	/* Specify the data we want to write. */
432 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
433 
434 	/* Issue write command. */
435 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
436 
437 	/* Wait for the write command bit to self-clear. */
438 	for (i = 0; i < VGE_TIMEOUT; i++) {
439 		DELAY(1);
440 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
441 			break;
442 	}
443 
444 	if (i == VGE_TIMEOUT) {
445 		device_printf(sc->vge_dev, "MII write timed out\n");
446 		rval = EIO;
447 	}
448 
449 	vge_miipoll_start(sc);
450 	VGE_UNLOCK(sc);
451 
452 	return (rval);
453 }
454 
455 static void
456 vge_cam_clear(sc)
457 	struct vge_softc	*sc;
458 {
459 	int			i;
460 
461 	/*
462 	 * Turn off all the mask bits. This tells the chip
463 	 * that none of the entries in the CAM filter are valid.
464 	 * desired entries will be enabled as we fill the filter in.
465 	 */
466 
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
469 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
470 	for (i = 0; i < 8; i++)
471 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472 
473 	/* Clear the VLAN filter too. */
474 
475 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
476 	for (i = 0; i < 8; i++)
477 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
478 
479 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
480 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
482 
483 	sc->vge_camidx = 0;
484 
485 	return;
486 }
487 
488 static int
489 vge_cam_set(sc, addr)
490 	struct vge_softc	*sc;
491 	uint8_t			*addr;
492 {
493 	int			i, error = 0;
494 
495 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
496 		return(ENOSPC);
497 
498 	/* Select the CAM data page. */
499 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
501 
502 	/* Set the filter entry we want to update and enable writing. */
503 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
504 
505 	/* Write the address to the CAM registers */
506 	for (i = 0; i < ETHER_ADDR_LEN; i++)
507 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
508 
509 	/* Issue a write command. */
510 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
511 
512 	/* Wake for it to clear. */
513 	for (i = 0; i < VGE_TIMEOUT; i++) {
514 		DELAY(1);
515 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
516 			break;
517 	}
518 
519 	if (i == VGE_TIMEOUT) {
520 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
521 		error = EIO;
522 		goto fail;
523 	}
524 
525 	/* Select the CAM mask page. */
526 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
527 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
528 
529 	/* Set the mask bit that enables this filter. */
530 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
531 	    1<<(sc->vge_camidx & 7));
532 
533 	sc->vge_camidx++;
534 
535 fail:
536 	/* Turn off access to CAM. */
537 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
538 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
539 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
540 
541 	return (error);
542 }
543 
544 #if __FreeBSD_version < 502113
545 static uint32_t
546 vge_mchash(addr)
547         uint8_t			*addr;
548 {
549 	uint32_t		crc, carry;
550 	int			idx, bit;
551 	uint8_t			data;
552 
553 	/* Compute CRC for the address value. */
554 	crc = 0xFFFFFFFF; /* initial value */
555 
556 	for (idx = 0; idx < 6; idx++) {
557 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
558 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
559 			crc <<= 1;
560 			if (carry)
561 				crc = (crc ^ 0x04c11db6) | carry;
562 		}
563 	}
564 
565 	return(crc);
566 }
567 #endif
568 
569 /*
570  * Program the multicast filter. We use the 64-entry CAM filter
571  * for perfect filtering. If there's more than 64 multicast addresses,
572  * we use the hash filter insted.
573  */
574 static void
575 vge_setmulti(sc)
576 	struct vge_softc	*sc;
577 {
578 	struct ifnet		*ifp;
579 	int			error = 0/*, h = 0*/;
580 	struct ifmultiaddr	*ifma;
581 	u_int32_t		h, hashes[2] = { 0, 0 };
582 
583 	ifp = sc->vge_ifp;
584 
585 	/* First, zot all the multicast entries. */
586 	vge_cam_clear(sc);
587 	CSR_WRITE_4(sc, VGE_MAR0, 0);
588 	CSR_WRITE_4(sc, VGE_MAR1, 0);
589 
590 	/*
591 	 * If the user wants allmulti or promisc mode, enable reception
592 	 * of all multicast frames.
593 	 */
594 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
595 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
596 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
597 		return;
598 	}
599 
600 	/* Now program new ones */
601 	IF_ADDR_LOCK(ifp);
602 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603 		if (ifma->ifma_addr->sa_family != AF_LINK)
604 			continue;
605 		error = vge_cam_set(sc,
606 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
607 		if (error)
608 			break;
609 	}
610 
611 	/* If there were too many addresses, use the hash filter. */
612 	if (error) {
613 		vge_cam_clear(sc);
614 
615 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
616 			if (ifma->ifma_addr->sa_family != AF_LINK)
617 				continue;
618 #if __FreeBSD_version < 502113
619 			h = vge_mchash(LLADDR((struct sockaddr_dl *)
620 			    ifma->ifma_addr)) >> 26;
621 #else
622 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624 #endif
625 			if (h < 32)
626 				hashes[0] |= (1 << h);
627 			else
628 				hashes[1] |= (1 << (h - 32));
629 		}
630 
631 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
632 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
633 	}
634 	IF_ADDR_UNLOCK(ifp);
635 
636 	return;
637 }
638 
639 static void
640 vge_reset(sc)
641 	struct vge_softc		*sc;
642 {
643 	register int		i;
644 
645 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
646 
647 	for (i = 0; i < VGE_TIMEOUT; i++) {
648 		DELAY(5);
649 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
650 			break;
651 	}
652 
653 	if (i == VGE_TIMEOUT) {
654 		device_printf(sc->vge_dev, "soft reset timed out");
655 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
656 		DELAY(2000);
657 	}
658 
659 	DELAY(5000);
660 
661 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
662 
663 	for (i = 0; i < VGE_TIMEOUT; i++) {
664 		DELAY(5);
665 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
666 			break;
667 	}
668 
669 	if (i == VGE_TIMEOUT) {
670 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
671 		return;
672 	}
673 
674 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
675 
676 	return;
677 }
678 
679 /*
680  * Probe for a VIA gigabit chip. Check the PCI vendor and device
681  * IDs against our list and return a device name if we find a match.
682  */
683 static int
684 vge_probe(dev)
685 	device_t		dev;
686 {
687 	struct vge_type		*t;
688 	struct vge_softc	*sc;
689 
690 	t = vge_devs;
691 	sc = device_get_softc(dev);
692 
693 	while (t->vge_name != NULL) {
694 		if ((pci_get_vendor(dev) == t->vge_vid) &&
695 		    (pci_get_device(dev) == t->vge_did)) {
696 			device_set_desc(dev, t->vge_name);
697 			return (BUS_PROBE_DEFAULT);
698 		}
699 		t++;
700 	}
701 
702 	return (ENXIO);
703 }
704 
705 static void
706 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
707 	void			*arg;
708 	bus_dma_segment_t	*segs;
709 	int			nseg;
710 	bus_size_t		mapsize;
711 	int			error;
712 {
713 
714 	struct vge_dmaload_arg	*ctx;
715 	struct vge_rx_desc	*d = NULL;
716 
717 	if (error)
718 		return;
719 
720 	ctx = arg;
721 
722 	/* Signal error to caller if there's too many segments */
723 	if (nseg > ctx->vge_maxsegs) {
724 		ctx->vge_maxsegs = 0;
725 		return;
726 	}
727 
728 	/*
729 	 * Map the segment array into descriptors.
730 	 */
731 
732 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
733 
734 	/* If this descriptor is still owned by the chip, bail. */
735 
736 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
737 		device_printf(ctx->sc->vge_dev,
738 		    "tried to map busy descriptor\n");
739 		ctx->vge_maxsegs = 0;
740 		return;
741 	}
742 
743 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
744 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
745 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
746 	d->vge_sts = 0;
747 	d->vge_ctl = 0;
748 
749 	ctx->vge_maxsegs = 1;
750 
751 	return;
752 }
753 
754 static void
755 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
756 	void			*arg;
757 	bus_dma_segment_t	*segs;
758 	int			nseg;
759 	bus_size_t		mapsize;
760 	int			error;
761 {
762 	struct vge_dmaload_arg	*ctx;
763 	struct vge_tx_desc	*d = NULL;
764 	struct vge_tx_frag	*f;
765 	int			i = 0;
766 
767 	if (error)
768 		return;
769 
770 	ctx = arg;
771 
772 	/* Signal error to caller if there's too many segments */
773 	if (nseg > ctx->vge_maxsegs) {
774 		ctx->vge_maxsegs = 0;
775 		return;
776 	}
777 
778 	/* Map the segment array into descriptors. */
779 
780 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
781 
782 	/* If this descriptor is still owned by the chip, bail. */
783 
784 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
785 		ctx->vge_maxsegs = 0;
786 		return;
787 	}
788 
789 	for (i = 0; i < nseg; i++) {
790 		f = &d->vge_frag[i];
791 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
792 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
793 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
794 	}
795 
796 	/* Argh. This chip does not autopad short frames */
797 
798 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
799 		f = &d->vge_frag[i];
800 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
801 		    ctx->vge_m0->m_pkthdr.len));
802 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
803 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
804 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
805 		i++;
806 	}
807 
808 	/*
809 	 * When telling the chip how many segments there are, we
810 	 * must use nsegs + 1 instead of just nsegs. Darned if I
811 	 * know why.
812 	 */
813 	i++;
814 
815 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
816 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
817 
818 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
819 		d->vge_ctl |= VGE_TDCTL_JUMBO;
820 
821 	ctx->vge_maxsegs = nseg;
822 
823 	return;
824 }
825 
826 /*
827  * Map a single buffer address.
828  */
829 
830 static void
831 vge_dma_map_addr(arg, segs, nseg, error)
832 	void			*arg;
833 	bus_dma_segment_t	*segs;
834 	int			nseg;
835 	int			error;
836 {
837 	bus_addr_t		*addr;
838 
839 	if (error)
840 		return;
841 
842 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
843 	addr = arg;
844 	*addr = segs->ds_addr;
845 
846 	return;
847 }
848 
849 static int
850 vge_allocmem(dev, sc)
851 	device_t		dev;
852 	struct vge_softc		*sc;
853 {
854 	int			error;
855 	int			nseg;
856 	int			i;
857 
858 	/*
859 	 * Allocate map for RX mbufs.
860 	 */
861 	nseg = 32;
862 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
863 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
864 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
865 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
866 	if (error) {
867 		device_printf(dev, "could not allocate dma tag\n");
868 		return (ENOMEM);
869 	}
870 
871 	/*
872 	 * Allocate map for TX descriptor list.
873 	 */
874 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
878 	if (error) {
879 		device_printf(dev, "could not allocate dma tag\n");
880 		return (ENOMEM);
881 	}
882 
883 	/* Allocate DMA'able memory for the TX ring */
884 
885 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
886 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887 	    &sc->vge_ldata.vge_tx_list_map);
888 	if (error)
889 		return (ENOMEM);
890 
891 	/* Load the map for the TX ring. */
892 
893 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
894 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
895 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
897 
898 	/* Create DMA maps for TX buffers */
899 
900 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
901 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902 			    &sc->vge_ldata.vge_tx_dmamap[i]);
903 		if (error) {
904 			device_printf(dev, "can't create DMA map for TX\n");
905 			return (ENOMEM);
906 		}
907 	}
908 
909 	/*
910 	 * Allocate map for RX descriptor list.
911 	 */
912 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
913 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
914 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
915 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
916 	if (error) {
917 		device_printf(dev, "could not allocate dma tag\n");
918 		return (ENOMEM);
919 	}
920 
921 	/* Allocate DMA'able memory for the RX ring */
922 
923 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
924 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
925 	    &sc->vge_ldata.vge_rx_list_map);
926 	if (error)
927 		return (ENOMEM);
928 
929 	/* Load the map for the RX ring. */
930 
931 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
932 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
933 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
934 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
935 
936 	/* Create DMA maps for RX buffers */
937 
938 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
939 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
940 			    &sc->vge_ldata.vge_rx_dmamap[i]);
941 		if (error) {
942 			device_printf(dev, "can't create DMA map for RX\n");
943 			return (ENOMEM);
944 		}
945 	}
946 
947 	return (0);
948 }
949 
950 /*
951  * Attach the interface. Allocate softc structures, do ifmedia
952  * setup and ethernet/BPF attach.
953  */
954 static int
955 vge_attach(dev)
956 	device_t		dev;
957 {
958 	u_char			eaddr[ETHER_ADDR_LEN];
959 	struct vge_softc	*sc;
960 	struct ifnet		*ifp;
961 	int			unit, error = 0, rid;
962 
963 	sc = device_get_softc(dev);
964 	unit = device_get_unit(dev);
965 	sc->vge_dev = dev;
966 
967 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
968 	    MTX_DEF | MTX_RECURSE);
969 	/*
970 	 * Map control/status registers.
971 	 */
972 	pci_enable_busmaster(dev);
973 
974 	rid = VGE_PCI_LOMEM;
975 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
976 	    0, ~0, 1, RF_ACTIVE);
977 
978 	if (sc->vge_res == NULL) {
979 		printf ("vge%d: couldn't map ports/memory\n", unit);
980 		error = ENXIO;
981 		goto fail;
982 	}
983 
984 	sc->vge_btag = rman_get_bustag(sc->vge_res);
985 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
986 
987 	/* Allocate interrupt */
988 	rid = 0;
989 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
990 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
991 
992 	if (sc->vge_irq == NULL) {
993 		printf("vge%d: couldn't map interrupt\n", unit);
994 		error = ENXIO;
995 		goto fail;
996 	}
997 
998 	/* Reset the adapter. */
999 	vge_reset(sc);
1000 
1001 	/*
1002 	 * Get station address from the EEPROM.
1003 	 */
1004 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1005 
1006 	sc->vge_unit = unit;
1007 
1008 #if __FreeBSD_version < 502113
1009 	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1010 #endif
1011 
1012 	/*
1013 	 * Allocate the parent bus DMA tag appropriate for PCI.
1014 	 */
1015 #define VGE_NSEG_NEW 32
1016 	error = bus_dma_tag_create(NULL,	/* parent */
1017 			1, 0,			/* alignment, boundary */
1018 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1019 			BUS_SPACE_MAXADDR,	/* highaddr */
1020 			NULL, NULL,		/* filter, filterarg */
1021 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1022 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1023 			BUS_DMA_ALLOCNOW,	/* flags */
1024 			NULL, NULL,		/* lockfunc, lockarg */
1025 			&sc->vge_parent_tag);
1026 	if (error)
1027 		goto fail;
1028 
1029 	error = vge_allocmem(dev, sc);
1030 
1031 	if (error)
1032 		goto fail;
1033 
1034 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1035 	if (ifp == NULL) {
1036 		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1037 		error = ENOSPC;
1038 		goto fail;
1039 	}
1040 
1041 	/* Do MII setup */
1042 	if (mii_phy_probe(dev, &sc->vge_miibus,
1043 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1044 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1045 		error = ENXIO;
1046 		goto fail;
1047 	}
1048 
1049 	ifp->if_softc = sc;
1050 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051 	ifp->if_mtu = ETHERMTU;
1052 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053 	ifp->if_ioctl = vge_ioctl;
1054 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1055 	ifp->if_start = vge_start;
1056 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1057 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1058 	ifp->if_capenable = ifp->if_capabilities;
1059 #ifdef DEVICE_POLLING
1060 	ifp->if_capabilities |= IFCAP_POLLING;
1061 #endif
1062 	ifp->if_watchdog = vge_watchdog;
1063 	ifp->if_init = vge_init;
1064 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1065 
1066 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1067 
1068 	/*
1069 	 * Call MI attach routine.
1070 	 */
1071 	ether_ifattach(ifp, eaddr);
1072 
1073 	/* Hook interrupt last to avoid having to lock softc */
1074 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1075 	    vge_intr, sc, &sc->vge_intrhand);
1076 
1077 	if (error) {
1078 		printf("vge%d: couldn't set up irq\n", unit);
1079 		ether_ifdetach(ifp);
1080 		goto fail;
1081 	}
1082 
1083 fail:
1084 	if (error)
1085 		vge_detach(dev);
1086 
1087 	return (error);
1088 }
1089 
1090 /*
1091  * Shutdown hardware and free up resources. This can be called any
1092  * time after the mutex has been initialized. It is called in both
1093  * the error case in attach and the normal detach case so it needs
1094  * to be careful about only freeing resources that have actually been
1095  * allocated.
1096  */
1097 static int
1098 vge_detach(dev)
1099 	device_t		dev;
1100 {
1101 	struct vge_softc		*sc;
1102 	struct ifnet		*ifp;
1103 	int			i;
1104 
1105 	sc = device_get_softc(dev);
1106 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1107 	ifp = sc->vge_ifp;
1108 
1109 #ifdef DEVICE_POLLING
1110 	if (ifp->if_capenable & IFCAP_POLLING)
1111 		ether_poll_deregister(ifp);
1112 #endif
1113 
1114 	/* These should only be active if attach succeeded */
1115 	if (device_is_attached(dev)) {
1116 		vge_stop(sc);
1117 		/*
1118 		 * Force off the IFF_UP flag here, in case someone
1119 		 * still had a BPF descriptor attached to this
1120 		 * interface. If they do, ether_ifattach() will cause
1121 		 * the BPF code to try and clear the promisc mode
1122 		 * flag, which will bubble down to vge_ioctl(),
1123 		 * which will try to call vge_init() again. This will
1124 		 * turn the NIC back on and restart the MII ticker,
1125 		 * which will panic the system when the kernel tries
1126 		 * to invoke the vge_tick() function that isn't there
1127 		 * anymore.
1128 		 */
1129 		ifp->if_flags &= ~IFF_UP;
1130 		ether_ifdetach(ifp);
1131 	}
1132 	if (sc->vge_miibus)
1133 		device_delete_child(dev, sc->vge_miibus);
1134 	bus_generic_detach(dev);
1135 
1136 	if (sc->vge_intrhand)
1137 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1138 	if (sc->vge_irq)
1139 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1140 	if (sc->vge_res)
1141 		bus_release_resource(dev, SYS_RES_MEMORY,
1142 		    VGE_PCI_LOMEM, sc->vge_res);
1143 	if (ifp)
1144 		if_free(ifp);
1145 
1146 	/* Unload and free the RX DMA ring memory and map */
1147 
1148 	if (sc->vge_ldata.vge_rx_list_tag) {
1149 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1150 		    sc->vge_ldata.vge_rx_list_map);
1151 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1152 		    sc->vge_ldata.vge_rx_list,
1153 		    sc->vge_ldata.vge_rx_list_map);
1154 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1155 	}
1156 
1157 	/* Unload and free the TX DMA ring memory and map */
1158 
1159 	if (sc->vge_ldata.vge_tx_list_tag) {
1160 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1161 		    sc->vge_ldata.vge_tx_list_map);
1162 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1163 		    sc->vge_ldata.vge_tx_list,
1164 		    sc->vge_ldata.vge_tx_list_map);
1165 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1166 	}
1167 
1168 	/* Destroy all the RX and TX buffer maps */
1169 
1170 	if (sc->vge_ldata.vge_mtag) {
1171 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1172 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1173 			    sc->vge_ldata.vge_tx_dmamap[i]);
1174 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1175 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1176 			    sc->vge_ldata.vge_rx_dmamap[i]);
1177 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1178 	}
1179 
1180 	if (sc->vge_parent_tag)
1181 		bus_dma_tag_destroy(sc->vge_parent_tag);
1182 
1183 	mtx_destroy(&sc->vge_mtx);
1184 
1185 	return (0);
1186 }
1187 
1188 static int
1189 vge_newbuf(sc, idx, m)
1190 	struct vge_softc	*sc;
1191 	int			idx;
1192 	struct mbuf		*m;
1193 {
1194 	struct vge_dmaload_arg	arg;
1195 	struct mbuf		*n = NULL;
1196 	int			i, error;
1197 
1198 	if (m == NULL) {
1199 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1200 		if (n == NULL)
1201 			return (ENOBUFS);
1202 		m = n;
1203 	} else
1204 		m->m_data = m->m_ext.ext_buf;
1205 
1206 
1207 #ifdef VGE_FIXUP_RX
1208 	/*
1209 	 * This is part of an evil trick to deal with non-x86 platforms.
1210 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1211 	 * boundaries, but that will hose non-x86 machines. To get around
1212 	 * this, we leave some empty space at the start of each buffer
1213 	 * and for non-x86 hosts, we copy the buffer back two bytes
1214 	 * to achieve word alignment. This is slightly more efficient
1215 	 * than allocating a new buffer, copying the contents, and
1216 	 * discarding the old buffer.
1217 	 */
1218 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1219 	m_adj(m, VGE_ETHER_ALIGN);
1220 #else
1221 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1222 #endif
1223 
1224 	arg.sc = sc;
1225 	arg.vge_idx = idx;
1226 	arg.vge_maxsegs = 1;
1227 	arg.vge_flags = 0;
1228 
1229 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1230 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1231 	    &arg, BUS_DMA_NOWAIT);
1232 	if (error || arg.vge_maxsegs != 1) {
1233 		if (n != NULL)
1234 			m_freem(n);
1235 		return (ENOMEM);
1236 	}
1237 
1238 	/*
1239 	 * Note: the manual fails to document the fact that for
1240 	 * proper opration, the driver needs to replentish the RX
1241 	 * DMA ring 4 descriptors at a time (rather than one at a
1242 	 * time, like most chips). We can allocate the new buffers
1243 	 * but we should not set the OWN bits until we're ready
1244 	 * to hand back 4 of them in one shot.
1245 	 */
1246 
1247 #define VGE_RXCHUNK 4
1248 	sc->vge_rx_consumed++;
1249 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1250 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1251 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1252 			    htole32(VGE_RDSTS_OWN);
1253 		sc->vge_rx_consumed = 0;
1254 	}
1255 
1256 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1257 
1258 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1259 	    sc->vge_ldata.vge_rx_dmamap[idx],
1260 	    BUS_DMASYNC_PREREAD);
1261 
1262 	return (0);
1263 }
1264 
1265 static int
1266 vge_tx_list_init(sc)
1267 	struct vge_softc		*sc;
1268 {
1269 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1270 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1271 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1272 
1273 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1274 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1275 	sc->vge_ldata.vge_tx_prodidx = 0;
1276 	sc->vge_ldata.vge_tx_considx = 0;
1277 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1278 
1279 	return (0);
1280 }
1281 
1282 static int
1283 vge_rx_list_init(sc)
1284 	struct vge_softc		*sc;
1285 {
1286 	int			i;
1287 
1288 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1289 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1290 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1291 
1292 	sc->vge_rx_consumed = 0;
1293 
1294 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1295 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1296 			return (ENOBUFS);
1297 	}
1298 
1299 	/* Flush the RX descriptors */
1300 
1301 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1302 	    sc->vge_ldata.vge_rx_list_map,
1303 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1304 
1305 	sc->vge_ldata.vge_rx_prodidx = 0;
1306 	sc->vge_rx_consumed = 0;
1307 	sc->vge_head = sc->vge_tail = NULL;
1308 
1309 	return (0);
1310 }
1311 
1312 #ifdef VGE_FIXUP_RX
1313 static __inline void
1314 vge_fixup_rx(m)
1315 	struct mbuf		*m;
1316 {
1317 	int			i;
1318 	uint16_t		*src, *dst;
1319 
1320 	src = mtod(m, uint16_t *);
1321 	dst = src - 1;
1322 
1323 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1324 		*dst++ = *src++;
1325 
1326 	m->m_data -= ETHER_ALIGN;
1327 
1328 	return;
1329 }
1330 #endif
1331 
1332 /*
1333  * RX handler. We support the reception of jumbo frames that have
1334  * been fragmented across multiple 2K mbuf cluster buffers.
1335  */
1336 static void
1337 vge_rxeof(sc)
1338 	struct vge_softc	*sc;
1339 {
1340 	struct mbuf		*m;
1341 	struct ifnet		*ifp;
1342 	int			i, total_len;
1343 	int			lim = 0;
1344 	struct vge_rx_desc	*cur_rx;
1345 	u_int32_t		rxstat, rxctl;
1346 
1347 	VGE_LOCK_ASSERT(sc);
1348 	ifp = sc->vge_ifp;
1349 	i = sc->vge_ldata.vge_rx_prodidx;
1350 
1351 	/* Invalidate the descriptor memory */
1352 
1353 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1354 	    sc->vge_ldata.vge_rx_list_map,
1355 	    BUS_DMASYNC_POSTREAD);
1356 
1357 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1358 
1359 #ifdef DEVICE_POLLING
1360 		if (ifp->if_capenable & IFCAP_POLLING) {
1361 			if (sc->rxcycles <= 0)
1362 				break;
1363 			sc->rxcycles--;
1364 		}
1365 #endif
1366 
1367 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1368 		m = sc->vge_ldata.vge_rx_mbuf[i];
1369 		total_len = VGE_RXBYTES(cur_rx);
1370 		rxstat = le32toh(cur_rx->vge_sts);
1371 		rxctl = le32toh(cur_rx->vge_ctl);
1372 
1373 		/* Invalidate the RX mbuf and unload its map */
1374 
1375 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1376 		    sc->vge_ldata.vge_rx_dmamap[i],
1377 		    BUS_DMASYNC_POSTWRITE);
1378 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1379 		    sc->vge_ldata.vge_rx_dmamap[i]);
1380 
1381 		/*
1382 		 * If the 'start of frame' bit is set, this indicates
1383 		 * either the first fragment in a multi-fragment receive,
1384 		 * or an intermediate fragment. Either way, we want to
1385 		 * accumulate the buffers.
1386 		 */
1387 		if (rxstat & VGE_RXPKT_SOF) {
1388 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1389 			if (sc->vge_head == NULL)
1390 				sc->vge_head = sc->vge_tail = m;
1391 			else {
1392 				m->m_flags &= ~M_PKTHDR;
1393 				sc->vge_tail->m_next = m;
1394 				sc->vge_tail = m;
1395 			}
1396 			vge_newbuf(sc, i, NULL);
1397 			VGE_RX_DESC_INC(i);
1398 			continue;
1399 		}
1400 
1401 		/*
1402 		 * Bad/error frames will have the RXOK bit cleared.
1403 		 * However, there's one error case we want to allow:
1404 		 * if a VLAN tagged frame arrives and the chip can't
1405 		 * match it against the CAM filter, it considers this
1406 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1407 		 * We don't want to drop the frame though: our VLAN
1408 		 * filtering is done in software.
1409 		 */
1410 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1411 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1412 			ifp->if_ierrors++;
1413 			/*
1414 			 * If this is part of a multi-fragment packet,
1415 			 * discard all the pieces.
1416 			 */
1417 			if (sc->vge_head != NULL) {
1418 				m_freem(sc->vge_head);
1419 				sc->vge_head = sc->vge_tail = NULL;
1420 			}
1421 			vge_newbuf(sc, i, m);
1422 			VGE_RX_DESC_INC(i);
1423 			continue;
1424 		}
1425 
1426 		/*
1427 		 * If allocating a replacement mbuf fails,
1428 		 * reload the current one.
1429 		 */
1430 
1431 		if (vge_newbuf(sc, i, NULL)) {
1432 			ifp->if_ierrors++;
1433 			if (sc->vge_head != NULL) {
1434 				m_freem(sc->vge_head);
1435 				sc->vge_head = sc->vge_tail = NULL;
1436 			}
1437 			vge_newbuf(sc, i, m);
1438 			VGE_RX_DESC_INC(i);
1439 			continue;
1440 		}
1441 
1442 		VGE_RX_DESC_INC(i);
1443 
1444 		if (sc->vge_head != NULL) {
1445 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1446 			/*
1447 			 * Special case: if there's 4 bytes or less
1448 			 * in this buffer, the mbuf can be discarded:
1449 			 * the last 4 bytes is the CRC, which we don't
1450 			 * care about anyway.
1451 			 */
1452 			if (m->m_len <= ETHER_CRC_LEN) {
1453 				sc->vge_tail->m_len -=
1454 				    (ETHER_CRC_LEN - m->m_len);
1455 				m_freem(m);
1456 			} else {
1457 				m->m_len -= ETHER_CRC_LEN;
1458 				m->m_flags &= ~M_PKTHDR;
1459 				sc->vge_tail->m_next = m;
1460 			}
1461 			m = sc->vge_head;
1462 			sc->vge_head = sc->vge_tail = NULL;
1463 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1464 		} else
1465 			m->m_pkthdr.len = m->m_len =
1466 			    (total_len - ETHER_CRC_LEN);
1467 
1468 #ifdef VGE_FIXUP_RX
1469 		vge_fixup_rx(m);
1470 #endif
1471 		ifp->if_ipackets++;
1472 		m->m_pkthdr.rcvif = ifp;
1473 
1474 		/* Do RX checksumming if enabled */
1475 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1476 
1477 			/* Check IP header checksum */
1478 			if (rxctl & VGE_RDCTL_IPPKT)
1479 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1480 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1481 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1482 
1483 			/* Check TCP/UDP checksum */
1484 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1485 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1486 				m->m_pkthdr.csum_flags |=
1487 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1488 				m->m_pkthdr.csum_data = 0xffff;
1489 			}
1490 		}
1491 
1492 		if (rxstat & VGE_RDSTS_VTAG) {
1493 			VLAN_INPUT_TAG(ifp, m,
1494 			    ntohs((rxctl & VGE_RDCTL_VLANID)));
1495 			if (m == NULL)
1496 				continue;
1497 		}
1498 
1499 		VGE_UNLOCK(sc);
1500 		(*ifp->if_input)(ifp, m);
1501 		VGE_LOCK(sc);
1502 
1503 		lim++;
1504 		if (lim == VGE_RX_DESC_CNT)
1505 			break;
1506 
1507 	}
1508 
1509 	/* Flush the RX DMA ring */
1510 
1511 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1512 	    sc->vge_ldata.vge_rx_list_map,
1513 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1514 
1515 	sc->vge_ldata.vge_rx_prodidx = i;
1516 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1517 
1518 
1519 	return;
1520 }
1521 
1522 static void
1523 vge_txeof(sc)
1524 	struct vge_softc		*sc;
1525 {
1526 	struct ifnet		*ifp;
1527 	u_int32_t		txstat;
1528 	int			idx;
1529 
1530 	ifp = sc->vge_ifp;
1531 	idx = sc->vge_ldata.vge_tx_considx;
1532 
1533 	/* Invalidate the TX descriptor list */
1534 
1535 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1536 	    sc->vge_ldata.vge_tx_list_map,
1537 	    BUS_DMASYNC_POSTREAD);
1538 
1539 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1540 
1541 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1542 		if (txstat & VGE_TDSTS_OWN)
1543 			break;
1544 
1545 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1546 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1547 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1548 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1549 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1550 			ifp->if_collisions++;
1551 		if (txstat & VGE_TDSTS_TXERR)
1552 			ifp->if_oerrors++;
1553 		else
1554 			ifp->if_opackets++;
1555 
1556 		sc->vge_ldata.vge_tx_free++;
1557 		VGE_TX_DESC_INC(idx);
1558 	}
1559 
1560 	/* No changes made to the TX ring, so no flush needed */
1561 
1562 	if (idx != sc->vge_ldata.vge_tx_considx) {
1563 		sc->vge_ldata.vge_tx_considx = idx;
1564 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1565 		ifp->if_timer = 0;
1566 	}
1567 
1568 	/*
1569 	 * If not all descriptors have been released reaped yet,
1570 	 * reload the timer so that we will eventually get another
1571 	 * interrupt that will cause us to re-enter this routine.
1572 	 * This is done in case the transmitter has gone idle.
1573 	 */
1574 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1575 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1576 	}
1577 
1578 	return;
1579 }
1580 
1581 static void
1582 vge_tick(xsc)
1583 	void			*xsc;
1584 {
1585 	struct vge_softc	*sc;
1586 	struct ifnet		*ifp;
1587 	struct mii_data		*mii;
1588 
1589 	sc = xsc;
1590 	ifp = sc->vge_ifp;
1591 	VGE_LOCK(sc);
1592 	mii = device_get_softc(sc->vge_miibus);
1593 
1594 	mii_tick(mii);
1595 	if (sc->vge_link) {
1596 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1597 			sc->vge_link = 0;
1598 			if_link_state_change(sc->vge_ifp,
1599 			    LINK_STATE_DOWN);
1600 		}
1601 	} else {
1602 		if (mii->mii_media_status & IFM_ACTIVE &&
1603 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1604 			sc->vge_link = 1;
1605 			if_link_state_change(sc->vge_ifp,
1606 			    LINK_STATE_UP);
1607 #if __FreeBSD_version < 502114
1608 			if (ifp->if_snd.ifq_head != NULL)
1609 #else
1610 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1611 #endif
1612 				taskqueue_enqueue(taskqueue_swi,
1613 				    &sc->vge_txtask);
1614 		}
1615 	}
1616 
1617 	VGE_UNLOCK(sc);
1618 
1619 	return;
1620 }
1621 
1622 #ifdef DEVICE_POLLING
1623 static void
1624 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1625 {
1626 	struct vge_softc *sc = ifp->if_softc;
1627 
1628 	VGE_LOCK(sc);
1629 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1630 		goto done;
1631 
1632 	sc->rxcycles = count;
1633 	vge_rxeof(sc);
1634 	vge_txeof(sc);
1635 
1636 #if __FreeBSD_version < 502114
1637 	if (ifp->if_snd.ifq_head != NULL)
1638 #else
1639 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1640 #endif
1641 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1642 
1643 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1644 		u_int32_t       status;
1645 		status = CSR_READ_4(sc, VGE_ISR);
1646 		if (status == 0xFFFFFFFF)
1647 			goto done;
1648 		if (status)
1649 			CSR_WRITE_4(sc, VGE_ISR, status);
1650 
1651 		/*
1652 		 * XXX check behaviour on receiver stalls.
1653 		 */
1654 
1655 		if (status & VGE_ISR_TXDMA_STALL ||
1656 		    status & VGE_ISR_RXDMA_STALL)
1657 			vge_init(sc);
1658 
1659 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1660 			vge_rxeof(sc);
1661 			ifp->if_ierrors++;
1662 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1663 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1664 		}
1665 	}
1666 done:
1667 	VGE_UNLOCK(sc);
1668 }
1669 #endif /* DEVICE_POLLING */
1670 
1671 static void
1672 vge_intr(arg)
1673 	void			*arg;
1674 {
1675 	struct vge_softc	*sc;
1676 	struct ifnet		*ifp;
1677 	u_int32_t		status;
1678 
1679 	sc = arg;
1680 
1681 	if (sc->suspended) {
1682 		return;
1683 	}
1684 
1685 	VGE_LOCK(sc);
1686 	ifp = sc->vge_ifp;
1687 
1688 	if (!(ifp->if_flags & IFF_UP)) {
1689 		VGE_UNLOCK(sc);
1690 		return;
1691 	}
1692 
1693 #ifdef DEVICE_POLLING
1694 	if  (ifp->if_capenable & IFCAP_POLLING) {
1695 		VGE_UNLOCK(sc);
1696 		return;
1697 	}
1698 #endif
1699 
1700 	/* Disable interrupts */
1701 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1702 
1703 	for (;;) {
1704 
1705 		status = CSR_READ_4(sc, VGE_ISR);
1706 		/* If the card has gone away the read returns 0xffff. */
1707 		if (status == 0xFFFFFFFF)
1708 			break;
1709 
1710 		if (status)
1711 			CSR_WRITE_4(sc, VGE_ISR, status);
1712 
1713 		if ((status & VGE_INTRS) == 0)
1714 			break;
1715 
1716 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1717 			vge_rxeof(sc);
1718 
1719 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1720 			vge_rxeof(sc);
1721 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1722 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1723 		}
1724 
1725 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1726 			vge_txeof(sc);
1727 
1728 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1729 			vge_init(sc);
1730 
1731 		if (status & VGE_ISR_LINKSTS)
1732 			vge_tick(sc);
1733 	}
1734 
1735 	/* Re-enable interrupts */
1736 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1737 
1738 	VGE_UNLOCK(sc);
1739 
1740 #if __FreeBSD_version < 502114
1741 	if (ifp->if_snd.ifq_head != NULL)
1742 #else
1743 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1744 #endif
1745 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1746 
1747 	return;
1748 }
1749 
1750 static int
1751 vge_encap(sc, m_head, idx)
1752 	struct vge_softc	*sc;
1753 	struct mbuf		*m_head;
1754 	int			idx;
1755 {
1756 	struct mbuf		*m_new = NULL;
1757 	struct vge_dmaload_arg	arg;
1758 	bus_dmamap_t		map;
1759 	int			error;
1760 	struct m_tag		*mtag;
1761 
1762 	if (sc->vge_ldata.vge_tx_free <= 2)
1763 		return (EFBIG);
1764 
1765 	arg.vge_flags = 0;
1766 
1767 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1768 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1769 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1770 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1771 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1772 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1773 
1774 	arg.sc = sc;
1775 	arg.vge_idx = idx;
1776 	arg.vge_m0 = m_head;
1777 	arg.vge_maxsegs = VGE_TX_FRAGS;
1778 
1779 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1780 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1781 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1782 
1783 	if (error && error != EFBIG) {
1784 		printf("vge%d: can't map mbuf (error %d)\n",
1785 		    sc->vge_unit, error);
1786 		return (ENOBUFS);
1787 	}
1788 
1789 	/* Too many segments to map, coalesce into a single mbuf */
1790 
1791 	if (error || arg.vge_maxsegs == 0) {
1792 		m_new = m_defrag(m_head, M_DONTWAIT);
1793 		if (m_new == NULL)
1794 			return (1);
1795 		else
1796 			m_head = m_new;
1797 
1798 		arg.sc = sc;
1799 		arg.vge_m0 = m_head;
1800 		arg.vge_idx = idx;
1801 		arg.vge_maxsegs = 1;
1802 
1803 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1804 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1805 		if (error) {
1806 			printf("vge%d: can't map mbuf (error %d)\n",
1807 			    sc->vge_unit, error);
1808 			return (EFBIG);
1809 		}
1810 	}
1811 
1812 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1813 	sc->vge_ldata.vge_tx_free--;
1814 
1815 	/*
1816 	 * Set up hardware VLAN tagging.
1817 	 */
1818 
1819 	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1820 	if (mtag != NULL)
1821 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1822 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1823 
1824 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1825 
1826 	return (0);
1827 }
1828 
1829 static void
1830 vge_tx_task(arg, npending)
1831 	void			*arg;
1832 	int			npending;
1833 {
1834 	struct ifnet		*ifp;
1835 
1836 	ifp = arg;
1837 	vge_start(ifp);
1838 
1839 	return;
1840 }
1841 
1842 /*
1843  * Main transmit routine.
1844  */
1845 
1846 static void
1847 vge_start(ifp)
1848 	struct ifnet		*ifp;
1849 {
1850 	struct vge_softc	*sc;
1851 	struct mbuf		*m_head = NULL;
1852 	int			idx, pidx = 0;
1853 
1854 	sc = ifp->if_softc;
1855 	VGE_LOCK(sc);
1856 
1857 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1858 		VGE_UNLOCK(sc);
1859 		return;
1860 	}
1861 
1862 #if __FreeBSD_version < 502114
1863 	if (ifp->if_snd.ifq_head == NULL) {
1864 #else
1865 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1866 #endif
1867 		VGE_UNLOCK(sc);
1868 		return;
1869 	}
1870 
1871 	idx = sc->vge_ldata.vge_tx_prodidx;
1872 
1873 	pidx = idx - 1;
1874 	if (pidx < 0)
1875 		pidx = VGE_TX_DESC_CNT - 1;
1876 
1877 
1878 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1879 #if __FreeBSD_version < 502114
1880 		IF_DEQUEUE(&ifp->if_snd, m_head);
1881 #else
1882 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1883 #endif
1884 		if (m_head == NULL)
1885 			break;
1886 
1887 		if (vge_encap(sc, m_head, idx)) {
1888 #if __FreeBSD_version >= 502114
1889 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1890 #else
1891 			IF_PREPEND(&ifp->if_snd, m_head);
1892 #endif
1893 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1894 			break;
1895 		}
1896 
1897 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1898 		    htole16(VGE_TXDESC_Q);
1899 
1900 		pidx = idx;
1901 		VGE_TX_DESC_INC(idx);
1902 
1903 		/*
1904 		 * If there's a BPF listener, bounce a copy of this frame
1905 		 * to him.
1906 		 */
1907 		BPF_MTAP(ifp, m_head);
1908 	}
1909 
1910 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1911 		VGE_UNLOCK(sc);
1912 		return;
1913 	}
1914 
1915 	/* Flush the TX descriptors */
1916 
1917 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1918 	    sc->vge_ldata.vge_tx_list_map,
1919 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1920 
1921 	/* Issue a transmit command. */
1922 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1923 
1924 	sc->vge_ldata.vge_tx_prodidx = idx;
1925 
1926 	/*
1927 	 * Use the countdown timer for interrupt moderation.
1928 	 * 'TX done' interrupts are disabled. Instead, we reset the
1929 	 * countdown timer, which will begin counting until it hits
1930 	 * the value in the SSTIMER register, and then trigger an
1931 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1932 	 * the timer count is reloaded. Only when the transmitter
1933 	 * is idle will the timer hit 0 and an interrupt fire.
1934 	 */
1935 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1936 
1937 	VGE_UNLOCK(sc);
1938 
1939 	/*
1940 	 * Set a timeout in case the chip goes out to lunch.
1941 	 */
1942 	ifp->if_timer = 5;
1943 
1944 	return;
1945 }
1946 
1947 static void
1948 vge_init(xsc)
1949 	void			*xsc;
1950 {
1951 	struct vge_softc	*sc = xsc;
1952 	struct ifnet		*ifp = sc->vge_ifp;
1953 	struct mii_data		*mii;
1954 	int			i;
1955 
1956 	VGE_LOCK(sc);
1957 	mii = device_get_softc(sc->vge_miibus);
1958 
1959 	/*
1960 	 * Cancel pending I/O and free all RX/TX buffers.
1961 	 */
1962 	vge_stop(sc);
1963 	vge_reset(sc);
1964 
1965 	/*
1966 	 * Initialize the RX and TX descriptors and mbufs.
1967 	 */
1968 
1969 	vge_rx_list_init(sc);
1970 	vge_tx_list_init(sc);
1971 
1972 	/* Set our station address */
1973 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1974 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1975 
1976 	/*
1977 	 * Set receive FIFO threshold. Also allow transmission and
1978 	 * reception of VLAN tagged frames.
1979 	 */
1980 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1981 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1982 
1983 	/* Set DMA burst length */
1984 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1985 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1986 
1987 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1988 
1989 	/* Set collision backoff algorithm */
1990 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1991 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1992 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1993 
1994 	/* Disable LPSEL field in priority resolution */
1995 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1996 
1997 	/*
1998 	 * Load the addresses of the DMA queues into the chip.
1999 	 * Note that we only use one transmit queue.
2000 	 */
2001 
2002 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2003 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2004 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2005 
2006 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2007 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2008 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2009 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2010 
2011 	/* Enable and wake up the RX descriptor queue */
2012 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2013 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2014 
2015 	/* Enable the TX descriptor queue */
2016 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2017 
2018 	/* Set up the receive filter -- allow large frames for VLANs. */
2019 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2020 
2021 	/* If we want promiscuous mode, set the allframes bit. */
2022 	if (ifp->if_flags & IFF_PROMISC) {
2023 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2024 	}
2025 
2026 	/* Set capture broadcast bit to capture broadcast frames. */
2027 	if (ifp->if_flags & IFF_BROADCAST) {
2028 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2029 	}
2030 
2031 	/* Set multicast bit to capture multicast frames. */
2032 	if (ifp->if_flags & IFF_MULTICAST) {
2033 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2034 	}
2035 
2036 	/* Init the cam filter. */
2037 	vge_cam_clear(sc);
2038 
2039 	/* Init the multicast filter. */
2040 	vge_setmulti(sc);
2041 
2042 	/* Enable flow control */
2043 
2044 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2045 
2046 	/* Enable jumbo frame reception (if desired) */
2047 
2048 	/* Start the MAC. */
2049 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2050 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2051 	CSR_WRITE_1(sc, VGE_CRS0,
2052 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2053 
2054 	/*
2055 	 * Configure one-shot timer for microsecond
2056 	 * resulution and load it for 500 usecs.
2057 	 */
2058 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2059 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2060 
2061 	/*
2062 	 * Configure interrupt moderation for receive. Enable
2063 	 * the holdoff counter and load it, and set the RX
2064 	 * suppression count to the number of descriptors we
2065 	 * want to allow before triggering an interrupt.
2066 	 * The holdoff timer is in units of 20 usecs.
2067 	 */
2068 
2069 #ifdef notyet
2070 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2071 	/* Select the interrupt holdoff timer page. */
2072 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2073 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2074 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2075 
2076 	/* Enable use of the holdoff timer. */
2077 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2078 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2079 
2080 	/* Select the RX suppression threshold page. */
2081 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2082 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2083 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2084 
2085 	/* Restore the page select bits. */
2086 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2087 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2088 #endif
2089 
2090 #ifdef DEVICE_POLLING
2091 	/*
2092 	 * Disable interrupts if we are polling.
2093 	 */
2094 	if (ifp->if_capenable & IFCAP_POLLING) {
2095 		CSR_WRITE_4(sc, VGE_IMR, 0);
2096 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2097 	} else	/* otherwise ... */
2098 #endif
2099 	{
2100 	/*
2101 	 * Enable interrupts.
2102 	 */
2103 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2104 		CSR_WRITE_4(sc, VGE_ISR, 0);
2105 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2106 	}
2107 
2108 	mii_mediachg(mii);
2109 
2110 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2111 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2112 
2113 	sc->vge_if_flags = 0;
2114 	sc->vge_link = 0;
2115 
2116 	VGE_UNLOCK(sc);
2117 
2118 	return;
2119 }
2120 
2121 /*
2122  * Set media options.
2123  */
2124 static int
2125 vge_ifmedia_upd(ifp)
2126 	struct ifnet		*ifp;
2127 {
2128 	struct vge_softc	*sc;
2129 	struct mii_data		*mii;
2130 
2131 	sc = ifp->if_softc;
2132 	mii = device_get_softc(sc->vge_miibus);
2133 	mii_mediachg(mii);
2134 
2135 	return (0);
2136 }
2137 
2138 /*
2139  * Report current media status.
2140  */
2141 static void
2142 vge_ifmedia_sts(ifp, ifmr)
2143 	struct ifnet		*ifp;
2144 	struct ifmediareq	*ifmr;
2145 {
2146 	struct vge_softc	*sc;
2147 	struct mii_data		*mii;
2148 
2149 	sc = ifp->if_softc;
2150 	mii = device_get_softc(sc->vge_miibus);
2151 
2152 	mii_pollstat(mii);
2153 	ifmr->ifm_active = mii->mii_media_active;
2154 	ifmr->ifm_status = mii->mii_media_status;
2155 
2156 	return;
2157 }
2158 
2159 static void
2160 vge_miibus_statchg(dev)
2161 	device_t		dev;
2162 {
2163 	struct vge_softc	*sc;
2164 	struct mii_data		*mii;
2165 	struct ifmedia_entry	*ife;
2166 
2167 	sc = device_get_softc(dev);
2168 	mii = device_get_softc(sc->vge_miibus);
2169 	ife = mii->mii_media.ifm_cur;
2170 
2171 	/*
2172 	 * If the user manually selects a media mode, we need to turn
2173 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2174 	 * user happens to choose a full duplex mode, we also need to
2175 	 * set the 'force full duplex' bit. This applies only to
2176 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2177 	 * mode is disabled, and in 1000baseT mode, full duplex is
2178 	 * always implied, so we turn on the forced mode bit but leave
2179 	 * the FDX bit cleared.
2180 	 */
2181 
2182 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2183 	case IFM_AUTO:
2184 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2185 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2186 		break;
2187 	case IFM_1000_T:
2188 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2189 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2190 		break;
2191 	case IFM_100_TX:
2192 	case IFM_10_T:
2193 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2194 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2195 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2196 		} else {
2197 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2198 		}
2199 		break;
2200 	default:
2201 		device_printf(dev, "unknown media type: %x\n",
2202 		    IFM_SUBTYPE(ife->ifm_media));
2203 		break;
2204 	}
2205 
2206 	return;
2207 }
2208 
2209 static int
2210 vge_ioctl(ifp, command, data)
2211 	struct ifnet		*ifp;
2212 	u_long			command;
2213 	caddr_t			data;
2214 {
2215 	struct vge_softc	*sc = ifp->if_softc;
2216 	struct ifreq		*ifr = (struct ifreq *) data;
2217 	struct mii_data		*mii;
2218 	int			error = 0;
2219 
2220 	switch (command) {
2221 	case SIOCSIFMTU:
2222 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2223 			error = EINVAL;
2224 		ifp->if_mtu = ifr->ifr_mtu;
2225 		break;
2226 	case SIOCSIFFLAGS:
2227 		if (ifp->if_flags & IFF_UP) {
2228 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2229 			    ifp->if_flags & IFF_PROMISC &&
2230 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2231 				CSR_SETBIT_1(sc, VGE_RXCTL,
2232 				    VGE_RXCTL_RX_PROMISC);
2233 				vge_setmulti(sc);
2234 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2235 			    !(ifp->if_flags & IFF_PROMISC) &&
2236 			    sc->vge_if_flags & IFF_PROMISC) {
2237 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2238 				    VGE_RXCTL_RX_PROMISC);
2239 				vge_setmulti(sc);
2240                         } else
2241 				vge_init(sc);
2242 		} else {
2243 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2244 				vge_stop(sc);
2245 		}
2246 		sc->vge_if_flags = ifp->if_flags;
2247 		break;
2248 	case SIOCADDMULTI:
2249 	case SIOCDELMULTI:
2250 		vge_setmulti(sc);
2251 		break;
2252 	case SIOCGIFMEDIA:
2253 	case SIOCSIFMEDIA:
2254 		mii = device_get_softc(sc->vge_miibus);
2255 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2256 		break;
2257 	case SIOCSIFCAP:
2258 	    {
2259 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2260 #ifdef DEVICE_POLLING
2261 		if (mask & IFCAP_POLLING) {
2262 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2263 				error = ether_poll_register(vge_poll, ifp);
2264 				if (error)
2265 					return(error);
2266 				VGE_LOCK(sc);
2267 					/* Disable interrupts */
2268 				CSR_WRITE_4(sc, VGE_IMR, 0);
2269 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2270 				ifp->if_capenable |= IFCAP_POLLING;
2271 				VGE_UNLOCK(sc);
2272 			} else {
2273 				error = ether_poll_deregister(ifp);
2274 				/* Enable interrupts. */
2275 				VGE_LOCK(sc);
2276 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2277 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2278 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2279 				ifp->if_capenable &= ~IFCAP_POLLING;
2280 				VGE_UNLOCK(sc);
2281 			}
2282 		}
2283 #endif /* DEVICE_POLLING */
2284 		if (mask & IFCAP_HWCSUM) {
2285 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2286 			if (ifp->if_capenable & IFCAP_TXCSUM)
2287 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2288 			else
2289 				ifp->if_hwassist = 0;
2290 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2291 				vge_init(sc);
2292 		}
2293 	    }
2294 		break;
2295 	default:
2296 		error = ether_ioctl(ifp, command, data);
2297 		break;
2298 	}
2299 
2300 	return (error);
2301 }
2302 
2303 static void
2304 vge_watchdog(ifp)
2305 	struct ifnet		*ifp;
2306 {
2307 	struct vge_softc		*sc;
2308 
2309 	sc = ifp->if_softc;
2310 	VGE_LOCK(sc);
2311 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2312 	ifp->if_oerrors++;
2313 
2314 	vge_txeof(sc);
2315 	vge_rxeof(sc);
2316 
2317 	vge_init(sc);
2318 
2319 	VGE_UNLOCK(sc);
2320 
2321 	return;
2322 }
2323 
2324 /*
2325  * Stop the adapter and free any mbufs allocated to the
2326  * RX and TX lists.
2327  */
2328 static void
2329 vge_stop(sc)
2330 	struct vge_softc		*sc;
2331 {
2332 	register int		i;
2333 	struct ifnet		*ifp;
2334 
2335 	VGE_LOCK(sc);
2336 	ifp = sc->vge_ifp;
2337 	ifp->if_timer = 0;
2338 
2339 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2340 
2341 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2342 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2343 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2344 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2345 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2346 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2347 
2348 	if (sc->vge_head != NULL) {
2349 		m_freem(sc->vge_head);
2350 		sc->vge_head = sc->vge_tail = NULL;
2351 	}
2352 
2353 	/* Free the TX list buffers. */
2354 
2355 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2356 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2357 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2358 			    sc->vge_ldata.vge_tx_dmamap[i]);
2359 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2360 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2361 		}
2362 	}
2363 
2364 	/* Free the RX list buffers. */
2365 
2366 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2367 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2368 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2369 			    sc->vge_ldata.vge_rx_dmamap[i]);
2370 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2371 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2372 		}
2373 	}
2374 
2375 	VGE_UNLOCK(sc);
2376 
2377 	return;
2378 }
2379 
2380 /*
2381  * Device suspend routine.  Stop the interface and save some PCI
2382  * settings in case the BIOS doesn't restore them properly on
2383  * resume.
2384  */
2385 static int
2386 vge_suspend(dev)
2387 	device_t		dev;
2388 {
2389 	struct vge_softc	*sc;
2390 
2391 	sc = device_get_softc(dev);
2392 
2393 	vge_stop(sc);
2394 
2395 	sc->suspended = 1;
2396 
2397 	return (0);
2398 }
2399 
2400 /*
2401  * Device resume routine.  Restore some PCI settings in case the BIOS
2402  * doesn't, re-enable busmastering, and restart the interface if
2403  * appropriate.
2404  */
2405 static int
2406 vge_resume(dev)
2407 	device_t		dev;
2408 {
2409 	struct vge_softc	*sc;
2410 	struct ifnet		*ifp;
2411 
2412 	sc = device_get_softc(dev);
2413 	ifp = sc->vge_ifp;
2414 
2415 	/* reenable busmastering */
2416 	pci_enable_busmaster(dev);
2417 	pci_enable_io(dev, SYS_RES_MEMORY);
2418 
2419 	/* reinitialize interface if necessary */
2420 	if (ifp->if_flags & IFF_UP)
2421 		vge_init(sc);
2422 
2423 	sc->suspended = 0;
2424 
2425 	return (0);
2426 }
2427 
2428 /*
2429  * Stop all chip I/O so that the kernel's probe routines don't
2430  * get confused by errant DMAs when rebooting.
2431  */
2432 static void
2433 vge_shutdown(dev)
2434 	device_t		dev;
2435 {
2436 	struct vge_softc		*sc;
2437 
2438 	sc = device_get_softc(dev);
2439 
2440 	vge_stop(sc);
2441 }
2442