1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2004 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 40 * 41 * Written by Bill Paul <wpaul@windriver.com> 42 * Senior Networking Software Engineer 43 * Wind River Systems 44 */ 45 46 /* 47 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that 48 * combines a tri-speed ethernet MAC and PHY, with the following 49 * features: 50 * 51 * o Jumbo frame support up to 16K 52 * o Transmit and receive flow control 53 * o IPv4 checksum offload 54 * o VLAN tag insertion and stripping 55 * o TCP large send 56 * o 64-bit multicast hash table filter 57 * o 64 entry CAM filter 58 * o 16K RX FIFO and 48K TX FIFO memory 59 * o Interrupt moderation 60 * 61 * The VT6122 supports up to four transmit DMA queues. The descriptors 62 * in the transmit ring can address up to 7 data fragments; frames which 63 * span more than 7 data buffers must be coalesced, but in general the 64 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 65 * long. The receive descriptors address only a single buffer. 66 * 67 * There are two peculiar design issues with the VT6122. One is that 68 * receive data buffers must be aligned on a 32-bit boundary. This is 69 * not a problem where the VT6122 is used as a LOM device in x86-based 70 * systems, but on architectures that generate unaligned access traps, we 71 * have to do some copying. 72 * 73 * The other issue has to do with the way 64-bit addresses are handled. 74 * The DMA descriptors only allow you to specify 48 bits of addressing 75 * information. The remaining 16 bits are specified using one of the 76 * I/O registers. If you only have a 32-bit system, then this isn't 77 * an issue, but if you have a 64-bit system and more than 4GB of 78 * memory, you must have to make sure your network data buffers reside 79 * in the same 48-bit 'segment.' 80 * 81 * Special thanks to Ryan Fu at VIA Networking for providing documentation 82 * and sample NICs for testing. 83 */ 84 85 #ifdef HAVE_KERNEL_OPTION_HEADERS 86 #include "opt_device_polling.h" 87 #endif 88 89 #include <sys/param.h> 90 #include <sys/endian.h> 91 #include <sys/systm.h> 92 #include <sys/sockio.h> 93 #include <sys/mbuf.h> 94 #include <sys/malloc.h> 95 #include <sys/module.h> 96 #include <sys/kernel.h> 97 #include <sys/socket.h> 98 #include <sys/sysctl.h> 99 100 #include <net/if.h> 101 #include <net/if_arp.h> 102 #include <net/ethernet.h> 103 #include <net/if_dl.h> 104 #include <net/if_var.h> 105 #include <net/if_media.h> 106 #include <net/if_types.h> 107 #include <net/if_vlan_var.h> 108 109 #include <net/bpf.h> 110 111 #include <machine/bus.h> 112 #include <machine/resource.h> 113 #include <sys/bus.h> 114 #include <sys/rman.h> 115 116 #include <dev/mii/mii.h> 117 #include <dev/mii/miivar.h> 118 119 #include <dev/pci/pcireg.h> 120 #include <dev/pci/pcivar.h> 121 122 MODULE_DEPEND(vge, pci, 1, 1, 1); 123 MODULE_DEPEND(vge, ether, 1, 1, 1); 124 MODULE_DEPEND(vge, miibus, 1, 1, 1); 125 126 /* "device miibus" required. See GENERIC if you get errors here. */ 127 #include "miibus_if.h" 128 129 #include <dev/vge/if_vgereg.h> 130 #include <dev/vge/if_vgevar.h> 131 132 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 133 134 /* Tunables */ 135 static int msi_disable = 0; 136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable); 137 138 /* 139 * The SQE error counter of MIB seems to report bogus value. 140 * Vendor's workaround does not seem to work on PCIe based 141 * controllers. Disable it until we find better workaround. 142 */ 143 #undef VGE_ENABLE_SQEERR 144 145 /* 146 * Various supported device vendors/types and their names. 147 */ 148 static struct vge_type vge_devs[] = { 149 { VIA_VENDORID, VIA_DEVICEID_61XX, 150 "VIA Networking Velocity Gigabit Ethernet" }, 151 { 0, 0, NULL } 152 }; 153 154 static int vge_attach(device_t); 155 static int vge_detach(device_t); 156 static int vge_probe(device_t); 157 static int vge_resume(device_t); 158 static int vge_shutdown(device_t); 159 static int vge_suspend(device_t); 160 161 static void vge_cam_clear(struct vge_softc *); 162 static int vge_cam_set(struct vge_softc *, uint8_t *); 163 static void vge_clrwol(struct vge_softc *); 164 static void vge_discard_rxbuf(struct vge_softc *, int); 165 static int vge_dma_alloc(struct vge_softc *); 166 static void vge_dma_free(struct vge_softc *); 167 static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int); 168 #ifdef VGE_EEPROM 169 static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *); 170 #endif 171 static int vge_encap(struct vge_softc *, struct mbuf **); 172 #ifndef __NO_STRICT_ALIGNMENT 173 static __inline void 174 vge_fixup_rx(struct mbuf *); 175 #endif 176 static void vge_freebufs(struct vge_softc *); 177 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 178 static int vge_ifmedia_upd(struct ifnet *); 179 static int vge_ifmedia_upd_locked(struct vge_softc *); 180 static void vge_init(void *); 181 static void vge_init_locked(struct vge_softc *); 182 static void vge_intr(void *); 183 static void vge_intr_holdoff(struct vge_softc *); 184 static int vge_ioctl(struct ifnet *, u_long, caddr_t); 185 static void vge_link_statchg(void *); 186 static int vge_miibus_readreg(device_t, int, int); 187 static int vge_miibus_writereg(device_t, int, int, int); 188 static void vge_miipoll_start(struct vge_softc *); 189 static void vge_miipoll_stop(struct vge_softc *); 190 static int vge_newbuf(struct vge_softc *, int); 191 static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int); 192 static void vge_reset(struct vge_softc *); 193 static int vge_rx_list_init(struct vge_softc *); 194 static int vge_rxeof(struct vge_softc *, int); 195 static void vge_rxfilter(struct vge_softc *); 196 static void vge_setmedia(struct vge_softc *); 197 static void vge_setvlan(struct vge_softc *); 198 static void vge_setwol(struct vge_softc *); 199 static void vge_start(struct ifnet *); 200 static void vge_start_locked(struct ifnet *); 201 static void vge_stats_clear(struct vge_softc *); 202 static void vge_stats_update(struct vge_softc *); 203 static void vge_stop(struct vge_softc *); 204 static void vge_sysctl_node(struct vge_softc *); 205 static int vge_tx_list_init(struct vge_softc *); 206 static void vge_txeof(struct vge_softc *); 207 static void vge_watchdog(void *); 208 209 static device_method_t vge_methods[] = { 210 /* Device interface */ 211 DEVMETHOD(device_probe, vge_probe), 212 DEVMETHOD(device_attach, vge_attach), 213 DEVMETHOD(device_detach, vge_detach), 214 DEVMETHOD(device_suspend, vge_suspend), 215 DEVMETHOD(device_resume, vge_resume), 216 DEVMETHOD(device_shutdown, vge_shutdown), 217 218 /* MII interface */ 219 DEVMETHOD(miibus_readreg, vge_miibus_readreg), 220 DEVMETHOD(miibus_writereg, vge_miibus_writereg), 221 222 DEVMETHOD_END 223 }; 224 225 static driver_t vge_driver = { 226 "vge", 227 vge_methods, 228 sizeof(struct vge_softc) 229 }; 230 231 static devclass_t vge_devclass; 232 233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); 234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); 235 236 #ifdef VGE_EEPROM 237 /* 238 * Read a word of data stored in the EEPROM at address 'addr.' 239 */ 240 static void 241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest) 242 { 243 int i; 244 uint16_t word = 0; 245 246 /* 247 * Enter EEPROM embedded programming mode. In order to 248 * access the EEPROM at all, we first have to set the 249 * EELOAD bit in the CHIPCFG2 register. 250 */ 251 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 252 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 253 254 /* Select the address of the word we want to read */ 255 CSR_WRITE_1(sc, VGE_EEADDR, addr); 256 257 /* Issue read command */ 258 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 259 260 /* Wait for the done bit to be set. */ 261 for (i = 0; i < VGE_TIMEOUT; i++) { 262 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 263 break; 264 } 265 266 if (i == VGE_TIMEOUT) { 267 device_printf(sc->vge_dev, "EEPROM read timed out\n"); 268 *dest = 0; 269 return; 270 } 271 272 /* Read the result */ 273 word = CSR_READ_2(sc, VGE_EERDDAT); 274 275 /* Turn off EEPROM access mode. */ 276 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 277 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 278 279 *dest = word; 280 } 281 #endif 282 283 /* 284 * Read a sequence of words from the EEPROM. 285 */ 286 static void 287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap) 288 { 289 int i; 290 #ifdef VGE_EEPROM 291 uint16_t word = 0, *ptr; 292 293 for (i = 0; i < cnt; i++) { 294 vge_eeprom_getword(sc, off + i, &word); 295 ptr = (uint16_t *)(dest + (i * 2)); 296 if (swap) 297 *ptr = ntohs(word); 298 else 299 *ptr = word; 300 } 301 #else 302 for (i = 0; i < ETHER_ADDR_LEN; i++) 303 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); 304 #endif 305 } 306 307 static void 308 vge_miipoll_stop(struct vge_softc *sc) 309 { 310 int i; 311 312 CSR_WRITE_1(sc, VGE_MIICMD, 0); 313 314 for (i = 0; i < VGE_TIMEOUT; i++) { 315 DELAY(1); 316 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 317 break; 318 } 319 320 if (i == VGE_TIMEOUT) 321 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 322 } 323 324 static void 325 vge_miipoll_start(struct vge_softc *sc) 326 { 327 int i; 328 329 /* First, make sure we're idle. */ 330 331 CSR_WRITE_1(sc, VGE_MIICMD, 0); 332 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 333 334 for (i = 0; i < VGE_TIMEOUT; i++) { 335 DELAY(1); 336 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 337 break; 338 } 339 340 if (i == VGE_TIMEOUT) { 341 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 342 return; 343 } 344 345 /* Now enable auto poll mode. */ 346 347 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 348 349 /* And make sure it started. */ 350 351 for (i = 0; i < VGE_TIMEOUT; i++) { 352 DELAY(1); 353 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 354 break; 355 } 356 357 if (i == VGE_TIMEOUT) 358 device_printf(sc->vge_dev, "failed to start MII autopoll\n"); 359 } 360 361 static int 362 vge_miibus_readreg(device_t dev, int phy, int reg) 363 { 364 struct vge_softc *sc; 365 int i; 366 uint16_t rval = 0; 367 368 sc = device_get_softc(dev); 369 370 vge_miipoll_stop(sc); 371 372 /* Specify the register we want to read. */ 373 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 374 375 /* Issue read command. */ 376 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 377 378 /* Wait for the read command bit to self-clear. */ 379 for (i = 0; i < VGE_TIMEOUT; i++) { 380 DELAY(1); 381 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 382 break; 383 } 384 385 if (i == VGE_TIMEOUT) 386 device_printf(sc->vge_dev, "MII read timed out\n"); 387 else 388 rval = CSR_READ_2(sc, VGE_MIIDATA); 389 390 vge_miipoll_start(sc); 391 392 return (rval); 393 } 394 395 static int 396 vge_miibus_writereg(device_t dev, int phy, int reg, int data) 397 { 398 struct vge_softc *sc; 399 int i, rval = 0; 400 401 sc = device_get_softc(dev); 402 403 vge_miipoll_stop(sc); 404 405 /* Specify the register we want to write. */ 406 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 407 408 /* Specify the data we want to write. */ 409 CSR_WRITE_2(sc, VGE_MIIDATA, data); 410 411 /* Issue write command. */ 412 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 413 414 /* Wait for the write command bit to self-clear. */ 415 for (i = 0; i < VGE_TIMEOUT; i++) { 416 DELAY(1); 417 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 418 break; 419 } 420 421 if (i == VGE_TIMEOUT) { 422 device_printf(sc->vge_dev, "MII write timed out\n"); 423 rval = EIO; 424 } 425 426 vge_miipoll_start(sc); 427 428 return (rval); 429 } 430 431 static void 432 vge_cam_clear(struct vge_softc *sc) 433 { 434 int i; 435 436 /* 437 * Turn off all the mask bits. This tells the chip 438 * that none of the entries in the CAM filter are valid. 439 * desired entries will be enabled as we fill the filter in. 440 */ 441 442 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 443 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 444 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 445 for (i = 0; i < 8; i++) 446 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 447 448 /* Clear the VLAN filter too. */ 449 450 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 451 for (i = 0; i < 8; i++) 452 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 453 454 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 455 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 456 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 457 458 sc->vge_camidx = 0; 459 } 460 461 static int 462 vge_cam_set(struct vge_softc *sc, uint8_t *addr) 463 { 464 int i, error = 0; 465 466 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 467 return (ENOSPC); 468 469 /* Select the CAM data page. */ 470 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 471 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 472 473 /* Set the filter entry we want to update and enable writing. */ 474 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); 475 476 /* Write the address to the CAM registers */ 477 for (i = 0; i < ETHER_ADDR_LEN; i++) 478 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 479 480 /* Issue a write command. */ 481 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 482 483 /* Wake for it to clear. */ 484 for (i = 0; i < VGE_TIMEOUT; i++) { 485 DELAY(1); 486 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 487 break; 488 } 489 490 if (i == VGE_TIMEOUT) { 491 device_printf(sc->vge_dev, "setting CAM filter failed\n"); 492 error = EIO; 493 goto fail; 494 } 495 496 /* Select the CAM mask page. */ 497 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 498 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 499 500 /* Set the mask bit that enables this filter. */ 501 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 502 1<<(sc->vge_camidx & 7)); 503 504 sc->vge_camidx++; 505 506 fail: 507 /* Turn off access to CAM. */ 508 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 509 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 510 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 511 512 return (error); 513 } 514 515 static void 516 vge_setvlan(struct vge_softc *sc) 517 { 518 struct ifnet *ifp; 519 uint8_t cfg; 520 521 VGE_LOCK_ASSERT(sc); 522 523 ifp = sc->vge_ifp; 524 cfg = CSR_READ_1(sc, VGE_RXCFG); 525 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 526 cfg |= VGE_VTAG_OPT2; 527 else 528 cfg &= ~VGE_VTAG_OPT2; 529 CSR_WRITE_1(sc, VGE_RXCFG, cfg); 530 } 531 532 static u_int 533 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 534 { 535 struct vge_softc *sc = arg; 536 537 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 538 return (0); 539 540 (void )vge_cam_set(sc, LLADDR(sdl)); 541 542 return (1); 543 } 544 545 static u_int 546 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 547 { 548 uint32_t h, *hashes = arg; 549 550 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; 551 if (h < 32) 552 hashes[0] |= (1 << h); 553 else 554 hashes[1] |= (1 << (h - 32)); 555 556 return (1); 557 } 558 559 /* 560 * Program the multicast filter. We use the 64-entry CAM filter 561 * for perfect filtering. If there's more than 64 multicast addresses, 562 * we use the hash filter instead. 563 */ 564 static void 565 vge_rxfilter(struct vge_softc *sc) 566 { 567 struct ifnet *ifp; 568 uint32_t hashes[2]; 569 uint8_t rxcfg; 570 571 VGE_LOCK_ASSERT(sc); 572 573 /* First, zot all the multicast entries. */ 574 hashes[0] = 0; 575 hashes[1] = 0; 576 577 rxcfg = CSR_READ_1(sc, VGE_RXCTL); 578 rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST | 579 VGE_RXCTL_RX_PROMISC); 580 /* 581 * Always allow VLAN oversized frames and frames for 582 * this host. 583 */ 584 rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST; 585 586 ifp = sc->vge_ifp; 587 if ((ifp->if_flags & IFF_BROADCAST) != 0) 588 rxcfg |= VGE_RXCTL_RX_BCAST; 589 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 590 if ((ifp->if_flags & IFF_PROMISC) != 0) 591 rxcfg |= VGE_RXCTL_RX_PROMISC; 592 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 593 hashes[0] = 0xFFFFFFFF; 594 hashes[1] = 0xFFFFFFFF; 595 } 596 goto done; 597 } 598 599 vge_cam_clear(sc); 600 601 /* Now program new ones */ 602 if_foreach_llmaddr(ifp, vge_set_maddr, sc); 603 604 /* If there were too many addresses, use the hash filter. */ 605 if (sc->vge_camidx == VGE_CAM_MAXADDRS) { 606 vge_cam_clear(sc); 607 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes); 608 } 609 610 done: 611 if (hashes[0] != 0 || hashes[1] != 0) 612 rxcfg |= VGE_RXCTL_RX_MCAST; 613 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 614 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 615 CSR_WRITE_1(sc, VGE_RXCTL, rxcfg); 616 } 617 618 static void 619 vge_reset(struct vge_softc *sc) 620 { 621 int i; 622 623 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 624 625 for (i = 0; i < VGE_TIMEOUT; i++) { 626 DELAY(5); 627 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 628 break; 629 } 630 631 if (i == VGE_TIMEOUT) { 632 device_printf(sc->vge_dev, "soft reset timed out\n"); 633 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 634 DELAY(2000); 635 } 636 637 DELAY(5000); 638 } 639 640 /* 641 * Probe for a VIA gigabit chip. Check the PCI vendor and device 642 * IDs against our list and return a device name if we find a match. 643 */ 644 static int 645 vge_probe(device_t dev) 646 { 647 struct vge_type *t; 648 649 t = vge_devs; 650 651 while (t->vge_name != NULL) { 652 if ((pci_get_vendor(dev) == t->vge_vid) && 653 (pci_get_device(dev) == t->vge_did)) { 654 device_set_desc(dev, t->vge_name); 655 return (BUS_PROBE_DEFAULT); 656 } 657 t++; 658 } 659 660 return (ENXIO); 661 } 662 663 /* 664 * Map a single buffer address. 665 */ 666 667 struct vge_dmamap_arg { 668 bus_addr_t vge_busaddr; 669 }; 670 671 static void 672 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 673 { 674 struct vge_dmamap_arg *ctx; 675 676 if (error != 0) 677 return; 678 679 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 680 681 ctx = (struct vge_dmamap_arg *)arg; 682 ctx->vge_busaddr = segs[0].ds_addr; 683 } 684 685 static int 686 vge_dma_alloc(struct vge_softc *sc) 687 { 688 struct vge_dmamap_arg ctx; 689 struct vge_txdesc *txd; 690 struct vge_rxdesc *rxd; 691 bus_addr_t lowaddr, tx_ring_end, rx_ring_end; 692 int error, i; 693 694 /* 695 * It seems old PCI controllers do not support DAC. DAC 696 * configuration can be enabled by accessing VGE_CHIPCFG3 697 * register but honor EEPROM configuration instead of 698 * blindly overriding DAC configuration. PCIe based 699 * controllers are supposed to support 64bit DMA so enable 700 * 64bit DMA on these controllers. 701 */ 702 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 703 lowaddr = BUS_SPACE_MAXADDR; 704 else 705 lowaddr = BUS_SPACE_MAXADDR_32BIT; 706 707 again: 708 /* Create parent ring tag. */ 709 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 710 1, 0, /* algnmnt, boundary */ 711 lowaddr, /* lowaddr */ 712 BUS_SPACE_MAXADDR, /* highaddr */ 713 NULL, NULL, /* filter, filterarg */ 714 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 715 0, /* nsegments */ 716 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 717 0, /* flags */ 718 NULL, NULL, /* lockfunc, lockarg */ 719 &sc->vge_cdata.vge_ring_tag); 720 if (error != 0) { 721 device_printf(sc->vge_dev, 722 "could not create parent DMA tag.\n"); 723 goto fail; 724 } 725 726 /* Create tag for Tx ring. */ 727 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ 728 VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 729 BUS_SPACE_MAXADDR, /* lowaddr */ 730 BUS_SPACE_MAXADDR, /* highaddr */ 731 NULL, NULL, /* filter, filterarg */ 732 VGE_TX_LIST_SZ, /* maxsize */ 733 1, /* nsegments */ 734 VGE_TX_LIST_SZ, /* maxsegsize */ 735 0, /* flags */ 736 NULL, NULL, /* lockfunc, lockarg */ 737 &sc->vge_cdata.vge_tx_ring_tag); 738 if (error != 0) { 739 device_printf(sc->vge_dev, 740 "could not allocate Tx ring DMA tag.\n"); 741 goto fail; 742 } 743 744 /* Create tag for Rx ring. */ 745 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ 746 VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 747 BUS_SPACE_MAXADDR, /* lowaddr */ 748 BUS_SPACE_MAXADDR, /* highaddr */ 749 NULL, NULL, /* filter, filterarg */ 750 VGE_RX_LIST_SZ, /* maxsize */ 751 1, /* nsegments */ 752 VGE_RX_LIST_SZ, /* maxsegsize */ 753 0, /* flags */ 754 NULL, NULL, /* lockfunc, lockarg */ 755 &sc->vge_cdata.vge_rx_ring_tag); 756 if (error != 0) { 757 device_printf(sc->vge_dev, 758 "could not allocate Rx ring DMA tag.\n"); 759 goto fail; 760 } 761 762 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 763 error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag, 764 (void **)&sc->vge_rdata.vge_tx_ring, 765 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 766 &sc->vge_cdata.vge_tx_ring_map); 767 if (error != 0) { 768 device_printf(sc->vge_dev, 769 "could not allocate DMA'able memory for Tx ring.\n"); 770 goto fail; 771 } 772 773 ctx.vge_busaddr = 0; 774 error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag, 775 sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring, 776 VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 777 if (error != 0 || ctx.vge_busaddr == 0) { 778 device_printf(sc->vge_dev, 779 "could not load DMA'able memory for Tx ring.\n"); 780 goto fail; 781 } 782 sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr; 783 784 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 785 error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag, 786 (void **)&sc->vge_rdata.vge_rx_ring, 787 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 788 &sc->vge_cdata.vge_rx_ring_map); 789 if (error != 0) { 790 device_printf(sc->vge_dev, 791 "could not allocate DMA'able memory for Rx ring.\n"); 792 goto fail; 793 } 794 795 ctx.vge_busaddr = 0; 796 error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag, 797 sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring, 798 VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 799 if (error != 0 || ctx.vge_busaddr == 0) { 800 device_printf(sc->vge_dev, 801 "could not load DMA'able memory for Rx ring.\n"); 802 goto fail; 803 } 804 sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr; 805 806 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 807 tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ; 808 rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ; 809 if ((VGE_ADDR_HI(tx_ring_end) != 810 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) || 811 (VGE_ADDR_HI(rx_ring_end) != 812 VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) || 813 VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) { 814 device_printf(sc->vge_dev, "4GB boundary crossed, " 815 "switching to 32bit DMA address mode.\n"); 816 vge_dma_free(sc); 817 /* Limit DMA address space to 32bit and try again. */ 818 lowaddr = BUS_SPACE_MAXADDR_32BIT; 819 goto again; 820 } 821 822 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 823 lowaddr = VGE_BUF_DMA_MAXADDR; 824 else 825 lowaddr = BUS_SPACE_MAXADDR_32BIT; 826 /* Create parent buffer tag. */ 827 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 828 1, 0, /* algnmnt, boundary */ 829 lowaddr, /* lowaddr */ 830 BUS_SPACE_MAXADDR, /* highaddr */ 831 NULL, NULL, /* filter, filterarg */ 832 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 833 0, /* nsegments */ 834 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 835 0, /* flags */ 836 NULL, NULL, /* lockfunc, lockarg */ 837 &sc->vge_cdata.vge_buffer_tag); 838 if (error != 0) { 839 device_printf(sc->vge_dev, 840 "could not create parent buffer DMA tag.\n"); 841 goto fail; 842 } 843 844 /* Create tag for Tx buffers. */ 845 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ 846 1, 0, /* algnmnt, boundary */ 847 BUS_SPACE_MAXADDR, /* lowaddr */ 848 BUS_SPACE_MAXADDR, /* highaddr */ 849 NULL, NULL, /* filter, filterarg */ 850 MCLBYTES * VGE_MAXTXSEGS, /* maxsize */ 851 VGE_MAXTXSEGS, /* nsegments */ 852 MCLBYTES, /* maxsegsize */ 853 0, /* flags */ 854 NULL, NULL, /* lockfunc, lockarg */ 855 &sc->vge_cdata.vge_tx_tag); 856 if (error != 0) { 857 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n"); 858 goto fail; 859 } 860 861 /* Create tag for Rx buffers. */ 862 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ 863 VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 864 BUS_SPACE_MAXADDR, /* lowaddr */ 865 BUS_SPACE_MAXADDR, /* highaddr */ 866 NULL, NULL, /* filter, filterarg */ 867 MCLBYTES, /* maxsize */ 868 1, /* nsegments */ 869 MCLBYTES, /* maxsegsize */ 870 0, /* flags */ 871 NULL, NULL, /* lockfunc, lockarg */ 872 &sc->vge_cdata.vge_rx_tag); 873 if (error != 0) { 874 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n"); 875 goto fail; 876 } 877 878 /* Create DMA maps for Tx buffers. */ 879 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 880 txd = &sc->vge_cdata.vge_txdesc[i]; 881 txd->tx_m = NULL; 882 txd->tx_dmamap = NULL; 883 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0, 884 &txd->tx_dmamap); 885 if (error != 0) { 886 device_printf(sc->vge_dev, 887 "could not create Tx dmamap.\n"); 888 goto fail; 889 } 890 } 891 /* Create DMA maps for Rx buffers. */ 892 if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, 893 &sc->vge_cdata.vge_rx_sparemap)) != 0) { 894 device_printf(sc->vge_dev, 895 "could not create spare Rx dmamap.\n"); 896 goto fail; 897 } 898 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 899 rxd = &sc->vge_cdata.vge_rxdesc[i]; 900 rxd->rx_m = NULL; 901 rxd->rx_dmamap = NULL; 902 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, 903 &rxd->rx_dmamap); 904 if (error != 0) { 905 device_printf(sc->vge_dev, 906 "could not create Rx dmamap.\n"); 907 goto fail; 908 } 909 } 910 911 fail: 912 return (error); 913 } 914 915 static void 916 vge_dma_free(struct vge_softc *sc) 917 { 918 struct vge_txdesc *txd; 919 struct vge_rxdesc *rxd; 920 int i; 921 922 /* Tx ring. */ 923 if (sc->vge_cdata.vge_tx_ring_tag != NULL) { 924 if (sc->vge_rdata.vge_tx_ring_paddr) 925 bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag, 926 sc->vge_cdata.vge_tx_ring_map); 927 if (sc->vge_rdata.vge_tx_ring) 928 bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag, 929 sc->vge_rdata.vge_tx_ring, 930 sc->vge_cdata.vge_tx_ring_map); 931 sc->vge_rdata.vge_tx_ring = NULL; 932 sc->vge_rdata.vge_tx_ring_paddr = 0; 933 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag); 934 sc->vge_cdata.vge_tx_ring_tag = NULL; 935 } 936 /* Rx ring. */ 937 if (sc->vge_cdata.vge_rx_ring_tag != NULL) { 938 if (sc->vge_rdata.vge_rx_ring_paddr) 939 bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag, 940 sc->vge_cdata.vge_rx_ring_map); 941 if (sc->vge_rdata.vge_rx_ring) 942 bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag, 943 sc->vge_rdata.vge_rx_ring, 944 sc->vge_cdata.vge_rx_ring_map); 945 sc->vge_rdata.vge_rx_ring = NULL; 946 sc->vge_rdata.vge_rx_ring_paddr = 0; 947 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag); 948 sc->vge_cdata.vge_rx_ring_tag = NULL; 949 } 950 /* Tx buffers. */ 951 if (sc->vge_cdata.vge_tx_tag != NULL) { 952 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 953 txd = &sc->vge_cdata.vge_txdesc[i]; 954 if (txd->tx_dmamap != NULL) { 955 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag, 956 txd->tx_dmamap); 957 txd->tx_dmamap = NULL; 958 } 959 } 960 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag); 961 sc->vge_cdata.vge_tx_tag = NULL; 962 } 963 /* Rx buffers. */ 964 if (sc->vge_cdata.vge_rx_tag != NULL) { 965 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 966 rxd = &sc->vge_cdata.vge_rxdesc[i]; 967 if (rxd->rx_dmamap != NULL) { 968 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, 969 rxd->rx_dmamap); 970 rxd->rx_dmamap = NULL; 971 } 972 } 973 if (sc->vge_cdata.vge_rx_sparemap != NULL) { 974 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, 975 sc->vge_cdata.vge_rx_sparemap); 976 sc->vge_cdata.vge_rx_sparemap = NULL; 977 } 978 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag); 979 sc->vge_cdata.vge_rx_tag = NULL; 980 } 981 982 if (sc->vge_cdata.vge_buffer_tag != NULL) { 983 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag); 984 sc->vge_cdata.vge_buffer_tag = NULL; 985 } 986 if (sc->vge_cdata.vge_ring_tag != NULL) { 987 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag); 988 sc->vge_cdata.vge_ring_tag = NULL; 989 } 990 } 991 992 /* 993 * Attach the interface. Allocate softc structures, do ifmedia 994 * setup and ethernet/BPF attach. 995 */ 996 static int 997 vge_attach(device_t dev) 998 { 999 u_char eaddr[ETHER_ADDR_LEN]; 1000 struct vge_softc *sc; 1001 struct ifnet *ifp; 1002 int error = 0, cap, i, msic, rid; 1003 1004 sc = device_get_softc(dev); 1005 sc->vge_dev = dev; 1006 1007 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1008 MTX_DEF); 1009 callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0); 1010 1011 /* 1012 * Map control/status registers. 1013 */ 1014 pci_enable_busmaster(dev); 1015 1016 rid = PCIR_BAR(1); 1017 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1018 RF_ACTIVE); 1019 1020 if (sc->vge_res == NULL) { 1021 device_printf(dev, "couldn't map ports/memory\n"); 1022 error = ENXIO; 1023 goto fail; 1024 } 1025 1026 if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) { 1027 sc->vge_flags |= VGE_FLAG_PCIE; 1028 sc->vge_expcap = cap; 1029 } else 1030 sc->vge_flags |= VGE_FLAG_JUMBO; 1031 if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) { 1032 sc->vge_flags |= VGE_FLAG_PMCAP; 1033 sc->vge_pmcap = cap; 1034 } 1035 rid = 0; 1036 msic = pci_msi_count(dev); 1037 if (msi_disable == 0 && msic > 0) { 1038 msic = 1; 1039 if (pci_alloc_msi(dev, &msic) == 0) { 1040 if (msic == 1) { 1041 sc->vge_flags |= VGE_FLAG_MSI; 1042 device_printf(dev, "Using %d MSI message\n", 1043 msic); 1044 rid = 1; 1045 } else 1046 pci_release_msi(dev); 1047 } 1048 } 1049 1050 /* Allocate interrupt */ 1051 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1052 ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE); 1053 if (sc->vge_irq == NULL) { 1054 device_printf(dev, "couldn't map interrupt\n"); 1055 error = ENXIO; 1056 goto fail; 1057 } 1058 1059 /* Reset the adapter. */ 1060 vge_reset(sc); 1061 /* Reload EEPROM. */ 1062 CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 1063 for (i = 0; i < VGE_TIMEOUT; i++) { 1064 DELAY(5); 1065 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 1066 break; 1067 } 1068 if (i == VGE_TIMEOUT) 1069 device_printf(dev, "EEPROM reload timed out\n"); 1070 /* 1071 * Clear PACPI as EEPROM reload will set the bit. Otherwise 1072 * MAC will receive magic packet which in turn confuses 1073 * controller. 1074 */ 1075 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 1076 1077 /* 1078 * Get station address from the EEPROM. 1079 */ 1080 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); 1081 /* 1082 * Save configured PHY address. 1083 * It seems the PHY address of PCIe controllers just 1084 * reflects media jump strapping status so we assume the 1085 * internal PHY address of PCIe controller is at 1. 1086 */ 1087 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 1088 sc->vge_phyaddr = 1; 1089 else 1090 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) & 1091 VGE_MIICFG_PHYADDR; 1092 /* Clear WOL and take hardware from powerdown. */ 1093 vge_clrwol(sc); 1094 vge_sysctl_node(sc); 1095 error = vge_dma_alloc(sc); 1096 if (error) 1097 goto fail; 1098 1099 ifp = sc->vge_ifp = if_alloc(IFT_ETHER); 1100 if (ifp == NULL) { 1101 device_printf(dev, "can not if_alloc()\n"); 1102 error = ENOSPC; 1103 goto fail; 1104 } 1105 1106 vge_miipoll_start(sc); 1107 /* Do MII setup */ 1108 error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd, 1109 vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY, 1110 MIIF_DOPAUSE); 1111 if (error != 0) { 1112 device_printf(dev, "attaching PHYs failed\n"); 1113 goto fail; 1114 } 1115 1116 ifp->if_softc = sc; 1117 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1118 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1119 ifp->if_ioctl = vge_ioctl; 1120 ifp->if_capabilities = IFCAP_VLAN_MTU; 1121 ifp->if_start = vge_start; 1122 ifp->if_hwassist = VGE_CSUM_FEATURES; 1123 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 1124 IFCAP_VLAN_HWTAGGING; 1125 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) 1126 ifp->if_capabilities |= IFCAP_WOL; 1127 ifp->if_capenable = ifp->if_capabilities; 1128 #ifdef DEVICE_POLLING 1129 ifp->if_capabilities |= IFCAP_POLLING; 1130 #endif 1131 ifp->if_init = vge_init; 1132 IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1); 1133 ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1; 1134 IFQ_SET_READY(&ifp->if_snd); 1135 1136 /* 1137 * Call MI attach routine. 1138 */ 1139 ether_ifattach(ifp, eaddr); 1140 1141 /* Tell the upper layer(s) we support long frames. */ 1142 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1143 1144 /* Hook interrupt last to avoid having to lock softc */ 1145 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, 1146 NULL, vge_intr, sc, &sc->vge_intrhand); 1147 1148 if (error) { 1149 device_printf(dev, "couldn't set up irq\n"); 1150 ether_ifdetach(ifp); 1151 goto fail; 1152 } 1153 1154 fail: 1155 if (error) 1156 vge_detach(dev); 1157 1158 return (error); 1159 } 1160 1161 /* 1162 * Shutdown hardware and free up resources. This can be called any 1163 * time after the mutex has been initialized. It is called in both 1164 * the error case in attach and the normal detach case so it needs 1165 * to be careful about only freeing resources that have actually been 1166 * allocated. 1167 */ 1168 static int 1169 vge_detach(device_t dev) 1170 { 1171 struct vge_softc *sc; 1172 struct ifnet *ifp; 1173 1174 sc = device_get_softc(dev); 1175 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); 1176 ifp = sc->vge_ifp; 1177 1178 #ifdef DEVICE_POLLING 1179 if (ifp->if_capenable & IFCAP_POLLING) 1180 ether_poll_deregister(ifp); 1181 #endif 1182 1183 /* These should only be active if attach succeeded */ 1184 if (device_is_attached(dev)) { 1185 ether_ifdetach(ifp); 1186 VGE_LOCK(sc); 1187 vge_stop(sc); 1188 VGE_UNLOCK(sc); 1189 callout_drain(&sc->vge_watchdog); 1190 } 1191 if (sc->vge_miibus) 1192 device_delete_child(dev, sc->vge_miibus); 1193 bus_generic_detach(dev); 1194 1195 if (sc->vge_intrhand) 1196 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); 1197 if (sc->vge_irq) 1198 bus_release_resource(dev, SYS_RES_IRQ, 1199 sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq); 1200 if (sc->vge_flags & VGE_FLAG_MSI) 1201 pci_release_msi(dev); 1202 if (sc->vge_res) 1203 bus_release_resource(dev, SYS_RES_MEMORY, 1204 PCIR_BAR(1), sc->vge_res); 1205 if (ifp) 1206 if_free(ifp); 1207 1208 vge_dma_free(sc); 1209 mtx_destroy(&sc->vge_mtx); 1210 1211 return (0); 1212 } 1213 1214 static void 1215 vge_discard_rxbuf(struct vge_softc *sc, int prod) 1216 { 1217 struct vge_rxdesc *rxd; 1218 int i; 1219 1220 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1221 rxd->rx_desc->vge_sts = 0; 1222 rxd->rx_desc->vge_ctl = 0; 1223 1224 /* 1225 * Note: the manual fails to document the fact that for 1226 * proper opration, the driver needs to replentish the RX 1227 * DMA ring 4 descriptors at a time (rather than one at a 1228 * time, like most chips). We can allocate the new buffers 1229 * but we should not set the OWN bits until we're ready 1230 * to hand back 4 of them in one shot. 1231 */ 1232 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { 1233 for (i = VGE_RXCHUNK; i > 0; i--) { 1234 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); 1235 rxd = rxd->rxd_prev; 1236 } 1237 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; 1238 } 1239 } 1240 1241 static int 1242 vge_newbuf(struct vge_softc *sc, int prod) 1243 { 1244 struct vge_rxdesc *rxd; 1245 struct mbuf *m; 1246 bus_dma_segment_t segs[1]; 1247 bus_dmamap_t map; 1248 int i, nsegs; 1249 1250 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1251 if (m == NULL) 1252 return (ENOBUFS); 1253 /* 1254 * This is part of an evil trick to deal with strict-alignment 1255 * architectures. The VIA chip requires RX buffers to be aligned 1256 * on 32-bit boundaries, but that will hose strict-alignment 1257 * architectures. To get around this, we leave some empty space 1258 * at the start of each buffer and for non-strict-alignment hosts, 1259 * we copy the buffer back two bytes to achieve word alignment. 1260 * This is slightly more efficient than allocating a new buffer, 1261 * copying the contents, and discarding the old buffer. 1262 */ 1263 m->m_len = m->m_pkthdr.len = MCLBYTES; 1264 m_adj(m, VGE_RX_BUF_ALIGN); 1265 1266 if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag, 1267 sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1268 m_freem(m); 1269 return (ENOBUFS); 1270 } 1271 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1272 1273 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1274 if (rxd->rx_m != NULL) { 1275 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, 1276 BUS_DMASYNC_POSTREAD); 1277 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap); 1278 } 1279 map = rxd->rx_dmamap; 1280 rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap; 1281 sc->vge_cdata.vge_rx_sparemap = map; 1282 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, 1283 BUS_DMASYNC_PREREAD); 1284 rxd->rx_m = m; 1285 1286 rxd->rx_desc->vge_sts = 0; 1287 rxd->rx_desc->vge_ctl = 0; 1288 rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 1289 rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) | 1290 (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I); 1291 1292 /* 1293 * Note: the manual fails to document the fact that for 1294 * proper operation, the driver needs to replenish the RX 1295 * DMA ring 4 descriptors at a time (rather than one at a 1296 * time, like most chips). We can allocate the new buffers 1297 * but we should not set the OWN bits until we're ready 1298 * to hand back 4 of them in one shot. 1299 */ 1300 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { 1301 for (i = VGE_RXCHUNK; i > 0; i--) { 1302 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); 1303 rxd = rxd->rxd_prev; 1304 } 1305 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; 1306 } 1307 1308 return (0); 1309 } 1310 1311 static int 1312 vge_tx_list_init(struct vge_softc *sc) 1313 { 1314 struct vge_ring_data *rd; 1315 struct vge_txdesc *txd; 1316 int i; 1317 1318 VGE_LOCK_ASSERT(sc); 1319 1320 sc->vge_cdata.vge_tx_prodidx = 0; 1321 sc->vge_cdata.vge_tx_considx = 0; 1322 sc->vge_cdata.vge_tx_cnt = 0; 1323 1324 rd = &sc->vge_rdata; 1325 bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ); 1326 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 1327 txd = &sc->vge_cdata.vge_txdesc[i]; 1328 txd->tx_m = NULL; 1329 txd->tx_desc = &rd->vge_tx_ring[i]; 1330 } 1331 1332 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1333 sc->vge_cdata.vge_tx_ring_map, 1334 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1335 1336 return (0); 1337 } 1338 1339 static int 1340 vge_rx_list_init(struct vge_softc *sc) 1341 { 1342 struct vge_ring_data *rd; 1343 struct vge_rxdesc *rxd; 1344 int i; 1345 1346 VGE_LOCK_ASSERT(sc); 1347 1348 sc->vge_cdata.vge_rx_prodidx = 0; 1349 sc->vge_cdata.vge_head = NULL; 1350 sc->vge_cdata.vge_tail = NULL; 1351 sc->vge_cdata.vge_rx_commit = 0; 1352 1353 rd = &sc->vge_rdata; 1354 bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ); 1355 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1356 rxd = &sc->vge_cdata.vge_rxdesc[i]; 1357 rxd->rx_m = NULL; 1358 rxd->rx_desc = &rd->vge_rx_ring[i]; 1359 if (i == 0) 1360 rxd->rxd_prev = 1361 &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1]; 1362 else 1363 rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1]; 1364 if (vge_newbuf(sc, i) != 0) 1365 return (ENOBUFS); 1366 } 1367 1368 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1369 sc->vge_cdata.vge_rx_ring_map, 1370 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1371 1372 sc->vge_cdata.vge_rx_commit = 0; 1373 1374 return (0); 1375 } 1376 1377 static void 1378 vge_freebufs(struct vge_softc *sc) 1379 { 1380 struct vge_txdesc *txd; 1381 struct vge_rxdesc *rxd; 1382 struct ifnet *ifp; 1383 int i; 1384 1385 VGE_LOCK_ASSERT(sc); 1386 1387 ifp = sc->vge_ifp; 1388 /* 1389 * Free RX and TX mbufs still in the queues. 1390 */ 1391 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1392 rxd = &sc->vge_cdata.vge_rxdesc[i]; 1393 if (rxd->rx_m != NULL) { 1394 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, 1395 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 1396 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, 1397 rxd->rx_dmamap); 1398 m_freem(rxd->rx_m); 1399 rxd->rx_m = NULL; 1400 } 1401 } 1402 1403 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 1404 txd = &sc->vge_cdata.vge_txdesc[i]; 1405 if (txd->tx_m != NULL) { 1406 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, 1407 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 1408 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, 1409 txd->tx_dmamap); 1410 m_freem(txd->tx_m); 1411 txd->tx_m = NULL; 1412 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1413 } 1414 } 1415 } 1416 1417 #ifndef __NO_STRICT_ALIGNMENT 1418 static __inline void 1419 vge_fixup_rx(struct mbuf *m) 1420 { 1421 int i; 1422 uint16_t *src, *dst; 1423 1424 src = mtod(m, uint16_t *); 1425 dst = src - 1; 1426 1427 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1428 *dst++ = *src++; 1429 1430 m->m_data -= ETHER_ALIGN; 1431 } 1432 #endif 1433 1434 /* 1435 * RX handler. We support the reception of jumbo frames that have 1436 * been fragmented across multiple 2K mbuf cluster buffers. 1437 */ 1438 static int 1439 vge_rxeof(struct vge_softc *sc, int count) 1440 { 1441 struct mbuf *m; 1442 struct ifnet *ifp; 1443 int prod, prog, total_len; 1444 struct vge_rxdesc *rxd; 1445 struct vge_rx_desc *cur_rx; 1446 uint32_t rxstat, rxctl; 1447 1448 VGE_LOCK_ASSERT(sc); 1449 1450 ifp = sc->vge_ifp; 1451 1452 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1453 sc->vge_cdata.vge_rx_ring_map, 1454 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1455 1456 prod = sc->vge_cdata.vge_rx_prodidx; 1457 for (prog = 0; count > 0 && 1458 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1459 VGE_RX_DESC_INC(prod)) { 1460 cur_rx = &sc->vge_rdata.vge_rx_ring[prod]; 1461 rxstat = le32toh(cur_rx->vge_sts); 1462 if ((rxstat & VGE_RDSTS_OWN) != 0) 1463 break; 1464 count--; 1465 prog++; 1466 rxctl = le32toh(cur_rx->vge_ctl); 1467 total_len = VGE_RXBYTES(rxstat); 1468 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1469 m = rxd->rx_m; 1470 1471 /* 1472 * If the 'start of frame' bit is set, this indicates 1473 * either the first fragment in a multi-fragment receive, 1474 * or an intermediate fragment. Either way, we want to 1475 * accumulate the buffers. 1476 */ 1477 if ((rxstat & VGE_RXPKT_SOF) != 0) { 1478 if (vge_newbuf(sc, prod) != 0) { 1479 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1480 VGE_CHAIN_RESET(sc); 1481 vge_discard_rxbuf(sc, prod); 1482 continue; 1483 } 1484 m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN; 1485 if (sc->vge_cdata.vge_head == NULL) { 1486 sc->vge_cdata.vge_head = m; 1487 sc->vge_cdata.vge_tail = m; 1488 } else { 1489 m->m_flags &= ~M_PKTHDR; 1490 sc->vge_cdata.vge_tail->m_next = m; 1491 sc->vge_cdata.vge_tail = m; 1492 } 1493 continue; 1494 } 1495 1496 /* 1497 * Bad/error frames will have the RXOK bit cleared. 1498 * However, there's one error case we want to allow: 1499 * if a VLAN tagged frame arrives and the chip can't 1500 * match it against the CAM filter, it considers this 1501 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1502 * We don't want to drop the frame though: our VLAN 1503 * filtering is done in software. 1504 * We also want to receive bad-checksummed frames and 1505 * and frames with bad-length. 1506 */ 1507 if ((rxstat & VGE_RDSTS_RXOK) == 0 && 1508 (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR | 1509 VGE_RDSTS_CSUMERR)) == 0) { 1510 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1511 /* 1512 * If this is part of a multi-fragment packet, 1513 * discard all the pieces. 1514 */ 1515 VGE_CHAIN_RESET(sc); 1516 vge_discard_rxbuf(sc, prod); 1517 continue; 1518 } 1519 1520 if (vge_newbuf(sc, prod) != 0) { 1521 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1522 VGE_CHAIN_RESET(sc); 1523 vge_discard_rxbuf(sc, prod); 1524 continue; 1525 } 1526 1527 /* Chain received mbufs. */ 1528 if (sc->vge_cdata.vge_head != NULL) { 1529 m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN); 1530 /* 1531 * Special case: if there's 4 bytes or less 1532 * in this buffer, the mbuf can be discarded: 1533 * the last 4 bytes is the CRC, which we don't 1534 * care about anyway. 1535 */ 1536 if (m->m_len <= ETHER_CRC_LEN) { 1537 sc->vge_cdata.vge_tail->m_len -= 1538 (ETHER_CRC_LEN - m->m_len); 1539 m_freem(m); 1540 } else { 1541 m->m_len -= ETHER_CRC_LEN; 1542 m->m_flags &= ~M_PKTHDR; 1543 sc->vge_cdata.vge_tail->m_next = m; 1544 } 1545 m = sc->vge_cdata.vge_head; 1546 m->m_flags |= M_PKTHDR; 1547 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1548 } else { 1549 m->m_flags |= M_PKTHDR; 1550 m->m_pkthdr.len = m->m_len = 1551 (total_len - ETHER_CRC_LEN); 1552 } 1553 1554 #ifndef __NO_STRICT_ALIGNMENT 1555 vge_fixup_rx(m); 1556 #endif 1557 m->m_pkthdr.rcvif = ifp; 1558 1559 /* Do RX checksumming if enabled */ 1560 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 1561 (rxctl & VGE_RDCTL_FRAG) == 0) { 1562 /* Check IP header checksum */ 1563 if ((rxctl & VGE_RDCTL_IPPKT) != 0) 1564 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1565 if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0) 1566 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1567 1568 /* Check TCP/UDP checksum */ 1569 if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) && 1570 rxctl & VGE_RDCTL_PROTOCSUMOK) { 1571 m->m_pkthdr.csum_flags |= 1572 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1573 m->m_pkthdr.csum_data = 0xffff; 1574 } 1575 } 1576 1577 if ((rxstat & VGE_RDSTS_VTAG) != 0) { 1578 /* 1579 * The 32-bit rxctl register is stored in little-endian. 1580 * However, the 16-bit vlan tag is stored in big-endian, 1581 * so we have to byte swap it. 1582 */ 1583 m->m_pkthdr.ether_vtag = 1584 bswap16(rxctl & VGE_RDCTL_VLANID); 1585 m->m_flags |= M_VLANTAG; 1586 } 1587 1588 VGE_UNLOCK(sc); 1589 (*ifp->if_input)(ifp, m); 1590 VGE_LOCK(sc); 1591 sc->vge_cdata.vge_head = NULL; 1592 sc->vge_cdata.vge_tail = NULL; 1593 } 1594 1595 if (prog > 0) { 1596 sc->vge_cdata.vge_rx_prodidx = prod; 1597 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1598 sc->vge_cdata.vge_rx_ring_map, 1599 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1600 /* Update residue counter. */ 1601 if (sc->vge_cdata.vge_rx_commit != 0) { 1602 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, 1603 sc->vge_cdata.vge_rx_commit); 1604 sc->vge_cdata.vge_rx_commit = 0; 1605 } 1606 } 1607 return (prog); 1608 } 1609 1610 static void 1611 vge_txeof(struct vge_softc *sc) 1612 { 1613 struct ifnet *ifp; 1614 struct vge_tx_desc *cur_tx; 1615 struct vge_txdesc *txd; 1616 uint32_t txstat; 1617 int cons, prod; 1618 1619 VGE_LOCK_ASSERT(sc); 1620 1621 ifp = sc->vge_ifp; 1622 1623 if (sc->vge_cdata.vge_tx_cnt == 0) 1624 return; 1625 1626 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1627 sc->vge_cdata.vge_tx_ring_map, 1628 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1629 1630 /* 1631 * Go through our tx list and free mbufs for those 1632 * frames that have been transmitted. 1633 */ 1634 cons = sc->vge_cdata.vge_tx_considx; 1635 prod = sc->vge_cdata.vge_tx_prodidx; 1636 for (; cons != prod; VGE_TX_DESC_INC(cons)) { 1637 cur_tx = &sc->vge_rdata.vge_tx_ring[cons]; 1638 txstat = le32toh(cur_tx->vge_sts); 1639 if ((txstat & VGE_TDSTS_OWN) != 0) 1640 break; 1641 sc->vge_cdata.vge_tx_cnt--; 1642 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1643 1644 txd = &sc->vge_cdata.vge_txdesc[cons]; 1645 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, 1646 BUS_DMASYNC_POSTWRITE); 1647 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap); 1648 1649 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n", 1650 __func__)); 1651 m_freem(txd->tx_m); 1652 txd->tx_m = NULL; 1653 txd->tx_desc->vge_frag[0].vge_addrhi = 0; 1654 } 1655 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1656 sc->vge_cdata.vge_tx_ring_map, 1657 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1658 sc->vge_cdata.vge_tx_considx = cons; 1659 if (sc->vge_cdata.vge_tx_cnt == 0) 1660 sc->vge_timer = 0; 1661 } 1662 1663 static void 1664 vge_link_statchg(void *xsc) 1665 { 1666 struct vge_softc *sc; 1667 struct ifnet *ifp; 1668 uint8_t physts; 1669 1670 sc = xsc; 1671 ifp = sc->vge_ifp; 1672 VGE_LOCK_ASSERT(sc); 1673 1674 physts = CSR_READ_1(sc, VGE_PHYSTS0); 1675 if ((physts & VGE_PHYSTS_RESETSTS) == 0) { 1676 if ((physts & VGE_PHYSTS_LINK) == 0) { 1677 sc->vge_flags &= ~VGE_FLAG_LINK; 1678 if_link_state_change(sc->vge_ifp, 1679 LINK_STATE_DOWN); 1680 } else { 1681 sc->vge_flags |= VGE_FLAG_LINK; 1682 if_link_state_change(sc->vge_ifp, 1683 LINK_STATE_UP); 1684 CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE | 1685 VGE_CR2_FDX_RXFLOWCTL_ENABLE); 1686 if ((physts & VGE_PHYSTS_FDX) != 0) { 1687 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0) 1688 CSR_WRITE_1(sc, VGE_CRS2, 1689 VGE_CR2_FDX_TXFLOWCTL_ENABLE); 1690 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0) 1691 CSR_WRITE_1(sc, VGE_CRS2, 1692 VGE_CR2_FDX_RXFLOWCTL_ENABLE); 1693 } 1694 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1695 vge_start_locked(ifp); 1696 } 1697 } 1698 /* 1699 * Restart MII auto-polling because link state change interrupt 1700 * will disable it. 1701 */ 1702 vge_miipoll_start(sc); 1703 } 1704 1705 #ifdef DEVICE_POLLING 1706 static int 1707 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) 1708 { 1709 struct vge_softc *sc = ifp->if_softc; 1710 int rx_npkts = 0; 1711 1712 VGE_LOCK(sc); 1713 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1714 goto done; 1715 1716 rx_npkts = vge_rxeof(sc, count); 1717 vge_txeof(sc); 1718 1719 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1720 vge_start_locked(ifp); 1721 1722 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1723 uint32_t status; 1724 status = CSR_READ_4(sc, VGE_ISR); 1725 if (status == 0xFFFFFFFF) 1726 goto done; 1727 if (status) 1728 CSR_WRITE_4(sc, VGE_ISR, status); 1729 1730 /* 1731 * XXX check behaviour on receiver stalls. 1732 */ 1733 1734 if (status & VGE_ISR_TXDMA_STALL || 1735 status & VGE_ISR_RXDMA_STALL) { 1736 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1737 vge_init_locked(sc); 1738 } 1739 1740 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1741 vge_rxeof(sc, count); 1742 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1743 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1744 } 1745 } 1746 done: 1747 VGE_UNLOCK(sc); 1748 return (rx_npkts); 1749 } 1750 #endif /* DEVICE_POLLING */ 1751 1752 static void 1753 vge_intr(void *arg) 1754 { 1755 struct vge_softc *sc; 1756 struct ifnet *ifp; 1757 uint32_t status; 1758 1759 sc = arg; 1760 VGE_LOCK(sc); 1761 1762 ifp = sc->vge_ifp; 1763 if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 || 1764 (ifp->if_flags & IFF_UP) == 0) { 1765 VGE_UNLOCK(sc); 1766 return; 1767 } 1768 1769 #ifdef DEVICE_POLLING 1770 if (ifp->if_capenable & IFCAP_POLLING) { 1771 status = CSR_READ_4(sc, VGE_ISR); 1772 CSR_WRITE_4(sc, VGE_ISR, status); 1773 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0) 1774 vge_link_statchg(sc); 1775 VGE_UNLOCK(sc); 1776 return; 1777 } 1778 #endif 1779 1780 /* Disable interrupts */ 1781 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1782 status = CSR_READ_4(sc, VGE_ISR); 1783 CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD); 1784 /* If the card has gone away the read returns 0xffff. */ 1785 if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0) 1786 goto done; 1787 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1788 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1789 vge_rxeof(sc, VGE_RX_DESC_CNT); 1790 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1791 vge_rxeof(sc, VGE_RX_DESC_CNT); 1792 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1793 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1794 } 1795 1796 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO)) 1797 vge_txeof(sc); 1798 1799 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) { 1800 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1801 vge_init_locked(sc); 1802 } 1803 1804 if (status & VGE_ISR_LINKSTS) 1805 vge_link_statchg(sc); 1806 } 1807 done: 1808 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1809 /* Re-enable interrupts */ 1810 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1811 1812 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1813 vge_start_locked(ifp); 1814 } 1815 VGE_UNLOCK(sc); 1816 } 1817 1818 static int 1819 vge_encap(struct vge_softc *sc, struct mbuf **m_head) 1820 { 1821 struct vge_txdesc *txd; 1822 struct vge_tx_frag *frag; 1823 struct mbuf *m; 1824 bus_dma_segment_t txsegs[VGE_MAXTXSEGS]; 1825 int error, i, nsegs, padlen; 1826 uint32_t cflags; 1827 1828 VGE_LOCK_ASSERT(sc); 1829 1830 M_ASSERTPKTHDR((*m_head)); 1831 1832 /* Argh. This chip does not autopad short frames. */ 1833 if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) { 1834 m = *m_head; 1835 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len; 1836 if (M_WRITABLE(m) == 0) { 1837 /* Get a writable copy. */ 1838 m = m_dup(*m_head, M_NOWAIT); 1839 m_freem(*m_head); 1840 if (m == NULL) { 1841 *m_head = NULL; 1842 return (ENOBUFS); 1843 } 1844 *m_head = m; 1845 } 1846 if (M_TRAILINGSPACE(m) < padlen) { 1847 m = m_defrag(m, M_NOWAIT); 1848 if (m == NULL) { 1849 m_freem(*m_head); 1850 *m_head = NULL; 1851 return (ENOBUFS); 1852 } 1853 } 1854 /* 1855 * Manually pad short frames, and zero the pad space 1856 * to avoid leaking data. 1857 */ 1858 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1859 m->m_pkthdr.len += padlen; 1860 m->m_len = m->m_pkthdr.len; 1861 *m_head = m; 1862 } 1863 1864 txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx]; 1865 1866 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, 1867 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1868 if (error == EFBIG) { 1869 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS); 1870 if (m == NULL) { 1871 m_freem(*m_head); 1872 *m_head = NULL; 1873 return (ENOMEM); 1874 } 1875 *m_head = m; 1876 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, 1877 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1878 if (error != 0) { 1879 m_freem(*m_head); 1880 *m_head = NULL; 1881 return (error); 1882 } 1883 } else if (error != 0) 1884 return (error); 1885 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, 1886 BUS_DMASYNC_PREWRITE); 1887 1888 m = *m_head; 1889 cflags = 0; 1890 1891 /* Configure checksum offload. */ 1892 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1893 cflags |= VGE_TDCTL_IPCSUM; 1894 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1895 cflags |= VGE_TDCTL_TCPCSUM; 1896 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1897 cflags |= VGE_TDCTL_UDPCSUM; 1898 1899 /* Configure VLAN. */ 1900 if ((m->m_flags & M_VLANTAG) != 0) 1901 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG; 1902 txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16); 1903 /* 1904 * XXX 1905 * Velocity family seems to support TSO but no information 1906 * for MSS configuration is available. Also the number of 1907 * fragments supported by a descriptor is too small to hold 1908 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF, 1909 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build 1910 * longer chain of buffers but no additional information is 1911 * available. 1912 * 1913 * When telling the chip how many segments there are, we 1914 * must use nsegs + 1 instead of just nsegs. Darned if I 1915 * know why. This also means we can't use the last fragment 1916 * field of Tx descriptor. 1917 */ 1918 txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) | 1919 VGE_TD_LS_NORM); 1920 for (i = 0; i < nsegs; i++) { 1921 frag = &txd->tx_desc->vge_frag[i]; 1922 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr)); 1923 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) | 1924 (VGE_BUFLEN(txsegs[i].ds_len) << 16)); 1925 } 1926 1927 sc->vge_cdata.vge_tx_cnt++; 1928 VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx); 1929 1930 /* 1931 * Finally request interrupt and give the first descriptor 1932 * ownership to hardware. 1933 */ 1934 txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC); 1935 txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN); 1936 txd->tx_m = m; 1937 1938 return (0); 1939 } 1940 1941 /* 1942 * Main transmit routine. 1943 */ 1944 1945 static void 1946 vge_start(struct ifnet *ifp) 1947 { 1948 struct vge_softc *sc; 1949 1950 sc = ifp->if_softc; 1951 VGE_LOCK(sc); 1952 vge_start_locked(ifp); 1953 VGE_UNLOCK(sc); 1954 } 1955 1956 static void 1957 vge_start_locked(struct ifnet *ifp) 1958 { 1959 struct vge_softc *sc; 1960 struct vge_txdesc *txd; 1961 struct mbuf *m_head; 1962 int enq, idx; 1963 1964 sc = ifp->if_softc; 1965 1966 VGE_LOCK_ASSERT(sc); 1967 1968 if ((sc->vge_flags & VGE_FLAG_LINK) == 0 || 1969 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1970 IFF_DRV_RUNNING) 1971 return; 1972 1973 idx = sc->vge_cdata.vge_tx_prodidx; 1974 VGE_TX_DESC_DEC(idx); 1975 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1976 sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) { 1977 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1978 if (m_head == NULL) 1979 break; 1980 /* 1981 * Pack the data into the transmit ring. If we 1982 * don't have room, set the OACTIVE flag and wait 1983 * for the NIC to drain the ring. 1984 */ 1985 if (vge_encap(sc, &m_head)) { 1986 if (m_head == NULL) 1987 break; 1988 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1989 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1990 break; 1991 } 1992 1993 txd = &sc->vge_cdata.vge_txdesc[idx]; 1994 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q); 1995 VGE_TX_DESC_INC(idx); 1996 1997 enq++; 1998 /* 1999 * If there's a BPF listener, bounce a copy of this frame 2000 * to him. 2001 */ 2002 ETHER_BPF_MTAP(ifp, m_head); 2003 } 2004 2005 if (enq > 0) { 2006 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 2007 sc->vge_cdata.vge_tx_ring_map, 2008 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2009 /* Issue a transmit command. */ 2010 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 2011 /* 2012 * Set a timeout in case the chip goes out to lunch. 2013 */ 2014 sc->vge_timer = 5; 2015 } 2016 } 2017 2018 static void 2019 vge_init(void *xsc) 2020 { 2021 struct vge_softc *sc = xsc; 2022 2023 VGE_LOCK(sc); 2024 vge_init_locked(sc); 2025 VGE_UNLOCK(sc); 2026 } 2027 2028 static void 2029 vge_init_locked(struct vge_softc *sc) 2030 { 2031 struct ifnet *ifp = sc->vge_ifp; 2032 int error, i; 2033 2034 VGE_LOCK_ASSERT(sc); 2035 2036 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2037 return; 2038 2039 /* 2040 * Cancel pending I/O and free all RX/TX buffers. 2041 */ 2042 vge_stop(sc); 2043 vge_reset(sc); 2044 vge_miipoll_start(sc); 2045 2046 /* 2047 * Initialize the RX and TX descriptors and mbufs. 2048 */ 2049 2050 error = vge_rx_list_init(sc); 2051 if (error != 0) { 2052 device_printf(sc->vge_dev, "no memory for Rx buffers.\n"); 2053 return; 2054 } 2055 vge_tx_list_init(sc); 2056 /* Clear MAC statistics. */ 2057 vge_stats_clear(sc); 2058 /* Set our station address */ 2059 for (i = 0; i < ETHER_ADDR_LEN; i++) 2060 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]); 2061 2062 /* 2063 * Set receive FIFO threshold. Also allow transmission and 2064 * reception of VLAN tagged frames. 2065 */ 2066 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 2067 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES); 2068 2069 /* Set DMA burst length */ 2070 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 2071 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 2072 2073 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 2074 2075 /* Set collision backoff algorithm */ 2076 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 2077 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 2078 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 2079 2080 /* Disable LPSEL field in priority resolution */ 2081 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 2082 2083 /* 2084 * Load the addresses of the DMA queues into the chip. 2085 * Note that we only use one transmit queue. 2086 */ 2087 2088 CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, 2089 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)); 2090 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, 2091 VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr)); 2092 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); 2093 2094 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 2095 VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr)); 2096 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); 2097 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); 2098 2099 /* Configure interrupt moderation. */ 2100 vge_intr_holdoff(sc); 2101 2102 /* Enable and wake up the RX descriptor queue */ 2103 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 2104 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 2105 2106 /* Enable the TX descriptor queue */ 2107 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 2108 2109 /* Init the cam filter. */ 2110 vge_cam_clear(sc); 2111 2112 /* Set up receiver filter. */ 2113 vge_rxfilter(sc); 2114 vge_setvlan(sc); 2115 2116 /* Initialize pause timer. */ 2117 CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF); 2118 /* 2119 * Initialize flow control parameters. 2120 * TX XON high threshold : 48 2121 * TX pause low threshold : 24 2122 * Disable hald-duplex flow control 2123 */ 2124 CSR_WRITE_1(sc, VGE_CRC2, 0xFF); 2125 CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B); 2126 2127 /* Enable jumbo frame reception (if desired) */ 2128 2129 /* Start the MAC. */ 2130 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 2131 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 2132 CSR_WRITE_1(sc, VGE_CRS0, 2133 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 2134 2135 #ifdef DEVICE_POLLING 2136 /* 2137 * Disable interrupts except link state change if we are polling. 2138 */ 2139 if (ifp->if_capenable & IFCAP_POLLING) { 2140 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); 2141 } else /* otherwise ... */ 2142 #endif 2143 { 2144 /* 2145 * Enable interrupts. 2146 */ 2147 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2148 } 2149 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2150 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2151 2152 sc->vge_flags &= ~VGE_FLAG_LINK; 2153 vge_ifmedia_upd_locked(sc); 2154 2155 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2156 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2157 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); 2158 } 2159 2160 /* 2161 * Set media options. 2162 */ 2163 static int 2164 vge_ifmedia_upd(struct ifnet *ifp) 2165 { 2166 struct vge_softc *sc; 2167 int error; 2168 2169 sc = ifp->if_softc; 2170 VGE_LOCK(sc); 2171 error = vge_ifmedia_upd_locked(sc); 2172 VGE_UNLOCK(sc); 2173 2174 return (error); 2175 } 2176 2177 static int 2178 vge_ifmedia_upd_locked(struct vge_softc *sc) 2179 { 2180 struct mii_data *mii; 2181 struct mii_softc *miisc; 2182 int error; 2183 2184 mii = device_get_softc(sc->vge_miibus); 2185 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2186 PHY_RESET(miisc); 2187 vge_setmedia(sc); 2188 error = mii_mediachg(mii); 2189 2190 return (error); 2191 } 2192 2193 /* 2194 * Report current media status. 2195 */ 2196 static void 2197 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2198 { 2199 struct vge_softc *sc; 2200 struct mii_data *mii; 2201 2202 sc = ifp->if_softc; 2203 mii = device_get_softc(sc->vge_miibus); 2204 2205 VGE_LOCK(sc); 2206 if ((ifp->if_flags & IFF_UP) == 0) { 2207 VGE_UNLOCK(sc); 2208 return; 2209 } 2210 mii_pollstat(mii); 2211 ifmr->ifm_active = mii->mii_media_active; 2212 ifmr->ifm_status = mii->mii_media_status; 2213 VGE_UNLOCK(sc); 2214 } 2215 2216 static void 2217 vge_setmedia(struct vge_softc *sc) 2218 { 2219 struct mii_data *mii; 2220 struct ifmedia_entry *ife; 2221 2222 mii = device_get_softc(sc->vge_miibus); 2223 ife = mii->mii_media.ifm_cur; 2224 2225 /* 2226 * If the user manually selects a media mode, we need to turn 2227 * on the forced MAC mode bit in the DIAGCTL register. If the 2228 * user happens to choose a full duplex mode, we also need to 2229 * set the 'force full duplex' bit. This applies only to 2230 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 2231 * mode is disabled, and in 1000baseT mode, full duplex is 2232 * always implied, so we turn on the forced mode bit but leave 2233 * the FDX bit cleared. 2234 */ 2235 2236 switch (IFM_SUBTYPE(ife->ifm_media)) { 2237 case IFM_AUTO: 2238 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2239 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2240 break; 2241 case IFM_1000_T: 2242 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2243 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2244 break; 2245 case IFM_100_TX: 2246 case IFM_10_T: 2247 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2248 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { 2249 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2250 } else { 2251 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2252 } 2253 break; 2254 default: 2255 device_printf(sc->vge_dev, "unknown media type: %x\n", 2256 IFM_SUBTYPE(ife->ifm_media)); 2257 break; 2258 } 2259 } 2260 2261 static int 2262 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2263 { 2264 struct vge_softc *sc = ifp->if_softc; 2265 struct ifreq *ifr = (struct ifreq *) data; 2266 struct mii_data *mii; 2267 int error = 0, mask; 2268 2269 switch (command) { 2270 case SIOCSIFMTU: 2271 VGE_LOCK(sc); 2272 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU) 2273 error = EINVAL; 2274 else if (ifp->if_mtu != ifr->ifr_mtu) { 2275 if (ifr->ifr_mtu > ETHERMTU && 2276 (sc->vge_flags & VGE_FLAG_JUMBO) == 0) 2277 error = EINVAL; 2278 else 2279 ifp->if_mtu = ifr->ifr_mtu; 2280 } 2281 VGE_UNLOCK(sc); 2282 break; 2283 case SIOCSIFFLAGS: 2284 VGE_LOCK(sc); 2285 if ((ifp->if_flags & IFF_UP) != 0) { 2286 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2287 ((ifp->if_flags ^ sc->vge_if_flags) & 2288 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2289 vge_rxfilter(sc); 2290 else 2291 vge_init_locked(sc); 2292 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2293 vge_stop(sc); 2294 sc->vge_if_flags = ifp->if_flags; 2295 VGE_UNLOCK(sc); 2296 break; 2297 case SIOCADDMULTI: 2298 case SIOCDELMULTI: 2299 VGE_LOCK(sc); 2300 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2301 vge_rxfilter(sc); 2302 VGE_UNLOCK(sc); 2303 break; 2304 case SIOCGIFMEDIA: 2305 case SIOCSIFMEDIA: 2306 mii = device_get_softc(sc->vge_miibus); 2307 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2308 break; 2309 case SIOCSIFCAP: 2310 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2311 #ifdef DEVICE_POLLING 2312 if (mask & IFCAP_POLLING) { 2313 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2314 error = ether_poll_register(vge_poll, ifp); 2315 if (error) 2316 return (error); 2317 VGE_LOCK(sc); 2318 /* Disable interrupts */ 2319 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); 2320 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2321 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2322 ifp->if_capenable |= IFCAP_POLLING; 2323 VGE_UNLOCK(sc); 2324 } else { 2325 error = ether_poll_deregister(ifp); 2326 /* Enable interrupts. */ 2327 VGE_LOCK(sc); 2328 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2329 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2330 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2331 ifp->if_capenable &= ~IFCAP_POLLING; 2332 VGE_UNLOCK(sc); 2333 } 2334 } 2335 #endif /* DEVICE_POLLING */ 2336 VGE_LOCK(sc); 2337 if ((mask & IFCAP_TXCSUM) != 0 && 2338 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2339 ifp->if_capenable ^= IFCAP_TXCSUM; 2340 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2341 ifp->if_hwassist |= VGE_CSUM_FEATURES; 2342 else 2343 ifp->if_hwassist &= ~VGE_CSUM_FEATURES; 2344 } 2345 if ((mask & IFCAP_RXCSUM) != 0 && 2346 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2347 ifp->if_capenable ^= IFCAP_RXCSUM; 2348 if ((mask & IFCAP_WOL_UCAST) != 0 && 2349 (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0) 2350 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2351 if ((mask & IFCAP_WOL_MCAST) != 0 && 2352 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2353 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2354 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2355 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2356 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2357 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2358 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2359 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2360 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2361 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 2362 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2363 vge_setvlan(sc); 2364 } 2365 VGE_UNLOCK(sc); 2366 VLAN_CAPABILITIES(ifp); 2367 break; 2368 default: 2369 error = ether_ioctl(ifp, command, data); 2370 break; 2371 } 2372 2373 return (error); 2374 } 2375 2376 static void 2377 vge_watchdog(void *arg) 2378 { 2379 struct vge_softc *sc; 2380 struct ifnet *ifp; 2381 2382 sc = arg; 2383 VGE_LOCK_ASSERT(sc); 2384 vge_stats_update(sc); 2385 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); 2386 if (sc->vge_timer == 0 || --sc->vge_timer > 0) 2387 return; 2388 2389 ifp = sc->vge_ifp; 2390 if_printf(ifp, "watchdog timeout\n"); 2391 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2392 2393 vge_txeof(sc); 2394 vge_rxeof(sc, VGE_RX_DESC_CNT); 2395 2396 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2397 vge_init_locked(sc); 2398 } 2399 2400 /* 2401 * Stop the adapter and free any mbufs allocated to the 2402 * RX and TX lists. 2403 */ 2404 static void 2405 vge_stop(struct vge_softc *sc) 2406 { 2407 struct ifnet *ifp; 2408 2409 VGE_LOCK_ASSERT(sc); 2410 ifp = sc->vge_ifp; 2411 sc->vge_timer = 0; 2412 callout_stop(&sc->vge_watchdog); 2413 2414 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2415 2416 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2417 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2418 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2419 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2420 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2421 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2422 2423 vge_stats_update(sc); 2424 VGE_CHAIN_RESET(sc); 2425 vge_txeof(sc); 2426 vge_freebufs(sc); 2427 } 2428 2429 /* 2430 * Device suspend routine. Stop the interface and save some PCI 2431 * settings in case the BIOS doesn't restore them properly on 2432 * resume. 2433 */ 2434 static int 2435 vge_suspend(device_t dev) 2436 { 2437 struct vge_softc *sc; 2438 2439 sc = device_get_softc(dev); 2440 2441 VGE_LOCK(sc); 2442 vge_stop(sc); 2443 vge_setwol(sc); 2444 sc->vge_flags |= VGE_FLAG_SUSPENDED; 2445 VGE_UNLOCK(sc); 2446 2447 return (0); 2448 } 2449 2450 /* 2451 * Device resume routine. Restore some PCI settings in case the BIOS 2452 * doesn't, re-enable busmastering, and restart the interface if 2453 * appropriate. 2454 */ 2455 static int 2456 vge_resume(device_t dev) 2457 { 2458 struct vge_softc *sc; 2459 struct ifnet *ifp; 2460 uint16_t pmstat; 2461 2462 sc = device_get_softc(dev); 2463 VGE_LOCK(sc); 2464 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) { 2465 /* Disable PME and clear PME status. */ 2466 pmstat = pci_read_config(sc->vge_dev, 2467 sc->vge_pmcap + PCIR_POWER_STATUS, 2); 2468 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 2469 pmstat &= ~PCIM_PSTAT_PMEENABLE; 2470 pci_write_config(sc->vge_dev, 2471 sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2); 2472 } 2473 } 2474 vge_clrwol(sc); 2475 /* Restart MII auto-polling. */ 2476 vge_miipoll_start(sc); 2477 ifp = sc->vge_ifp; 2478 /* Reinitialize interface if necessary. */ 2479 if ((ifp->if_flags & IFF_UP) != 0) { 2480 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2481 vge_init_locked(sc); 2482 } 2483 sc->vge_flags &= ~VGE_FLAG_SUSPENDED; 2484 VGE_UNLOCK(sc); 2485 2486 return (0); 2487 } 2488 2489 /* 2490 * Stop all chip I/O so that the kernel's probe routines don't 2491 * get confused by errant DMAs when rebooting. 2492 */ 2493 static int 2494 vge_shutdown(device_t dev) 2495 { 2496 2497 return (vge_suspend(dev)); 2498 } 2499 2500 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2501 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2502 2503 static void 2504 vge_sysctl_node(struct vge_softc *sc) 2505 { 2506 struct sysctl_ctx_list *ctx; 2507 struct sysctl_oid_list *child, *parent; 2508 struct sysctl_oid *tree; 2509 struct vge_hw_stats *stats; 2510 2511 stats = &sc->vge_stats; 2512 ctx = device_get_sysctl_ctx(sc->vge_dev); 2513 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev)); 2514 2515 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff", 2516 CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff"); 2517 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt", 2518 CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet"); 2519 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt", 2520 CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet"); 2521 2522 /* Pull in device tunables. */ 2523 sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT; 2524 resource_int_value(device_get_name(sc->vge_dev), 2525 device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff); 2526 sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT; 2527 resource_int_value(device_get_name(sc->vge_dev), 2528 device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt); 2529 sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT; 2530 resource_int_value(device_get_name(sc->vge_dev), 2531 device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt); 2532 2533 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 2534 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics"); 2535 parent = SYSCTL_CHILDREN(tree); 2536 2537 /* Rx statistics. */ 2538 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 2539 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics"); 2540 child = SYSCTL_CHILDREN(tree); 2541 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames", 2542 &stats->rx_frames, "frames"); 2543 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 2544 &stats->rx_good_frames, "Good frames"); 2545 VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 2546 &stats->rx_fifo_oflows, "FIFO overflows"); 2547 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts", 2548 &stats->rx_runts, "Too short frames"); 2549 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs", 2550 &stats->rx_runts_errs, "Too short frames with errors"); 2551 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 2552 &stats->rx_pkts_64, "64 bytes frames"); 2553 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 2554 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 2555 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 2556 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 2557 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 2558 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 2559 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 2560 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 2561 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 2562 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 2563 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 2564 &stats->rx_pkts_1519_max, "1519 to max frames"); 2565 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs", 2566 &stats->rx_pkts_1519_max_errs, "1519 to max frames with error"); 2567 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", 2568 &stats->rx_jumbos, "Jumbo frames"); 2569 VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", 2570 &stats->rx_crcerrs, "CRC errors"); 2571 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 2572 &stats->rx_pause_frames, "CRC errors"); 2573 VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 2574 &stats->rx_alignerrs, "Alignment errors"); 2575 VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs", 2576 &stats->rx_nobufs, "Frames with no buffer event"); 2577 VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs", 2578 &stats->rx_symerrs, "Frames with symbol errors"); 2579 VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 2580 &stats->rx_lenerrs, "Frames with length mismatched"); 2581 2582 /* Tx statistics. */ 2583 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 2584 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics"); 2585 child = SYSCTL_CHILDREN(tree); 2586 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 2587 &stats->tx_good_frames, "Good frames"); 2588 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 2589 &stats->tx_pkts_64, "64 bytes frames"); 2590 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 2591 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 2592 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 2593 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 2594 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 2595 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 2596 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 2597 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 2598 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 2599 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 2600 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", 2601 &stats->tx_jumbos, "Jumbo frames"); 2602 VGE_SYSCTL_STAT_ADD32(ctx, child, "colls", 2603 &stats->tx_colls, "Collisions"); 2604 VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 2605 &stats->tx_latecolls, "Late collisions"); 2606 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 2607 &stats->tx_pause, "Pause frames"); 2608 #ifdef VGE_ENABLE_SQEERR 2609 VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs", 2610 &stats->tx_sqeerrs, "SQE errors"); 2611 #endif 2612 /* Clear MAC statistics. */ 2613 vge_stats_clear(sc); 2614 } 2615 2616 #undef VGE_SYSCTL_STAT_ADD32 2617 2618 static void 2619 vge_stats_clear(struct vge_softc *sc) 2620 { 2621 int i; 2622 2623 CSR_WRITE_1(sc, VGE_MIBCSR, 2624 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE); 2625 CSR_WRITE_1(sc, VGE_MIBCSR, 2626 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR); 2627 for (i = VGE_TIMEOUT; i > 0; i--) { 2628 DELAY(1); 2629 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0) 2630 break; 2631 } 2632 if (i == 0) 2633 device_printf(sc->vge_dev, "MIB clear timed out!\n"); 2634 CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) & 2635 ~VGE_MIBCSR_FREEZE); 2636 } 2637 2638 static void 2639 vge_stats_update(struct vge_softc *sc) 2640 { 2641 struct vge_hw_stats *stats; 2642 struct ifnet *ifp; 2643 uint32_t mib[VGE_MIB_CNT], val; 2644 int i; 2645 2646 VGE_LOCK_ASSERT(sc); 2647 2648 stats = &sc->vge_stats; 2649 ifp = sc->vge_ifp; 2650 2651 CSR_WRITE_1(sc, VGE_MIBCSR, 2652 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH); 2653 for (i = VGE_TIMEOUT; i > 0; i--) { 2654 DELAY(1); 2655 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0) 2656 break; 2657 } 2658 if (i == 0) { 2659 device_printf(sc->vge_dev, "MIB counter dump timed out!\n"); 2660 vge_stats_clear(sc); 2661 return; 2662 } 2663 2664 bzero(mib, sizeof(mib)); 2665 reset_idx: 2666 /* Set MIB read index to 0. */ 2667 CSR_WRITE_1(sc, VGE_MIBCSR, 2668 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI); 2669 for (i = 0; i < VGE_MIB_CNT; i++) { 2670 val = CSR_READ_4(sc, VGE_MIBDATA); 2671 if (i != VGE_MIB_DATA_IDX(val)) { 2672 /* Reading interrupted. */ 2673 goto reset_idx; 2674 } 2675 mib[i] = val & VGE_MIB_DATA_MASK; 2676 } 2677 2678 /* Rx stats. */ 2679 stats->rx_frames += mib[VGE_MIB_RX_FRAMES]; 2680 stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES]; 2681 stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS]; 2682 stats->rx_runts += mib[VGE_MIB_RX_RUNTS]; 2683 stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS]; 2684 stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64]; 2685 stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127]; 2686 stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255]; 2687 stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511]; 2688 stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023]; 2689 stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518]; 2690 stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX]; 2691 stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS]; 2692 stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS]; 2693 stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS]; 2694 stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE]; 2695 stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS]; 2696 stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS]; 2697 stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS]; 2698 stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS]; 2699 2700 /* Tx stats. */ 2701 stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES]; 2702 stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64]; 2703 stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127]; 2704 stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255]; 2705 stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511]; 2706 stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023]; 2707 stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518]; 2708 stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS]; 2709 stats->tx_colls += mib[VGE_MIB_TX_COLLS]; 2710 stats->tx_pause += mib[VGE_MIB_TX_PAUSE]; 2711 #ifdef VGE_ENABLE_SQEERR 2712 stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS]; 2713 #endif 2714 stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS]; 2715 2716 /* Update counters in ifnet. */ 2717 if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]); 2718 2719 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 2720 mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]); 2721 2722 if_inc_counter(ifp, IFCOUNTER_OERRORS, 2723 mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]); 2724 2725 if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]); 2726 2727 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2728 mib[VGE_MIB_RX_FIFO_OVERRUNS] + 2729 mib[VGE_MIB_RX_RUNTS] + 2730 mib[VGE_MIB_RX_RUNTS_ERRS] + 2731 mib[VGE_MIB_RX_CRCERRS] + 2732 mib[VGE_MIB_RX_ALIGNERRS] + 2733 mib[VGE_MIB_RX_NOBUFS] + 2734 mib[VGE_MIB_RX_SYMERRS] + 2735 mib[VGE_MIB_RX_LENERRS]); 2736 } 2737 2738 static void 2739 vge_intr_holdoff(struct vge_softc *sc) 2740 { 2741 uint8_t intctl; 2742 2743 VGE_LOCK_ASSERT(sc); 2744 2745 /* 2746 * Set Tx interrupt supression threshold. 2747 * It's possible to use single-shot timer in VGE_CRS1 register 2748 * in Tx path such that driver can remove most of Tx completion 2749 * interrupts. However this requires additional access to 2750 * VGE_CRS1 register to reload the timer in addintion to 2751 * activating Tx kick command. Another downside is we don't know 2752 * what single-shot timer value should be used in advance so 2753 * reclaiming transmitted mbufs could be delayed a lot which in 2754 * turn slows down Tx operation. 2755 */ 2756 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR); 2757 CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt); 2758 2759 /* Set Rx interrupt suppresion threshold. */ 2760 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 2761 CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt); 2762 2763 intctl = CSR_READ_1(sc, VGE_INTCTL1); 2764 intctl &= ~VGE_INTCTL_SC_RELOAD; 2765 intctl |= VGE_INTCTL_HC_RELOAD; 2766 if (sc->vge_tx_coal_pkt <= 0) 2767 intctl |= VGE_INTCTL_TXINTSUP_DISABLE; 2768 else 2769 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE; 2770 if (sc->vge_rx_coal_pkt <= 0) 2771 intctl |= VGE_INTCTL_RXINTSUP_DISABLE; 2772 else 2773 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE; 2774 CSR_WRITE_1(sc, VGE_INTCTL1, intctl); 2775 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF); 2776 if (sc->vge_int_holdoff > 0) { 2777 /* Set interrupt holdoff timer. */ 2778 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 2779 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 2780 VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff)); 2781 /* Enable holdoff timer. */ 2782 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 2783 } 2784 } 2785 2786 static void 2787 vge_setlinkspeed(struct vge_softc *sc) 2788 { 2789 struct mii_data *mii; 2790 int aneg, i; 2791 2792 VGE_LOCK_ASSERT(sc); 2793 2794 mii = device_get_softc(sc->vge_miibus); 2795 mii_pollstat(mii); 2796 aneg = 0; 2797 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 2798 (IFM_ACTIVE | IFM_AVALID)) { 2799 switch IFM_SUBTYPE(mii->mii_media_active) { 2800 case IFM_10_T: 2801 case IFM_100_TX: 2802 return; 2803 case IFM_1000_T: 2804 aneg++; 2805 default: 2806 break; 2807 } 2808 } 2809 /* Clear forced MAC speed/duplex configuration. */ 2810 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2811 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2812 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0); 2813 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR, 2814 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 2815 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, 2816 BMCR_AUTOEN | BMCR_STARTNEG); 2817 DELAY(1000); 2818 if (aneg != 0) { 2819 /* Poll link state until vge(4) get a 10/100 link. */ 2820 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 2821 mii_pollstat(mii); 2822 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 2823 == (IFM_ACTIVE | IFM_AVALID)) { 2824 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2825 case IFM_10_T: 2826 case IFM_100_TX: 2827 return; 2828 default: 2829 break; 2830 } 2831 } 2832 VGE_UNLOCK(sc); 2833 pause("vgelnk", hz); 2834 VGE_LOCK(sc); 2835 } 2836 if (i == MII_ANEGTICKS_GIGE) 2837 device_printf(sc->vge_dev, "establishing link failed, " 2838 "WOL may not work!"); 2839 } 2840 /* 2841 * No link, force MAC to have 100Mbps, full-duplex link. 2842 * This is the last resort and may/may not work. 2843 */ 2844 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 2845 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 2846 } 2847 2848 static void 2849 vge_setwol(struct vge_softc *sc) 2850 { 2851 struct ifnet *ifp; 2852 uint16_t pmstat; 2853 uint8_t val; 2854 2855 VGE_LOCK_ASSERT(sc); 2856 2857 if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) { 2858 /* No PME capability, PHY power down. */ 2859 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, 2860 BMCR_PDOWN); 2861 vge_miipoll_stop(sc); 2862 return; 2863 } 2864 2865 ifp = sc->vge_ifp; 2866 2867 /* Clear WOL on pattern match. */ 2868 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); 2869 /* Disable WOL on magic/unicast packet. */ 2870 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); 2871 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | 2872 VGE_WOLCFG_PMEOVR); 2873 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 2874 vge_setlinkspeed(sc); 2875 val = 0; 2876 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2877 val |= VGE_WOLCR1_UCAST; 2878 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2879 val |= VGE_WOLCR1_MAGIC; 2880 CSR_WRITE_1(sc, VGE_WOLCR1S, val); 2881 val = 0; 2882 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2883 val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB; 2884 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR); 2885 /* Disable MII auto-polling. */ 2886 vge_miipoll_stop(sc); 2887 } 2888 CSR_SETBIT_1(sc, VGE_DIAGCTL, 2889 VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE); 2890 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); 2891 2892 /* Clear WOL status on pattern match. */ 2893 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); 2894 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); 2895 2896 val = CSR_READ_1(sc, VGE_PWRSTAT); 2897 val |= VGE_STICKHW_SWPTAG; 2898 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2899 /* Put hardware into sleep. */ 2900 val = CSR_READ_1(sc, VGE_PWRSTAT); 2901 val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1; 2902 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2903 /* Request PME if WOL is requested. */ 2904 pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap + 2905 PCIR_POWER_STATUS, 2); 2906 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2907 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2908 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2909 pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, 2910 pmstat, 2); 2911 } 2912 2913 static void 2914 vge_clrwol(struct vge_softc *sc) 2915 { 2916 uint8_t val; 2917 2918 val = CSR_READ_1(sc, VGE_PWRSTAT); 2919 val &= ~VGE_STICKHW_SWPTAG; 2920 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2921 /* Disable WOL and clear power state indicator. */ 2922 val = CSR_READ_1(sc, VGE_PWRSTAT); 2923 val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1); 2924 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2925 2926 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); 2927 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2928 2929 /* Clear WOL on pattern match. */ 2930 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); 2931 /* Disable WOL on magic/unicast packet. */ 2932 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); 2933 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | 2934 VGE_WOLCFG_PMEOVR); 2935 /* Clear WOL status on pattern match. */ 2936 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); 2937 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); 2938 } 2939