xref: /freebsd/sys/dev/vge/if_vge.c (revision c0b9f4fe659b6839541970eb5675e57f4d814969)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/taskqueue.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct vge_type vge_devs[] = {
135 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136 		"VIA Networking Gigabit Ethernet" },
137 	{ 0, 0, NULL }
138 };
139 
140 static int vge_probe		(device_t);
141 static int vge_attach		(device_t);
142 static int vge_detach		(device_t);
143 
144 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145 
146 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148 				    bus_size_t, int);
149 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150 				    bus_size_t, int);
151 static int vge_allocmem		(device_t, struct vge_softc *);
152 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153 static int vge_rx_list_init	(struct vge_softc *);
154 static int vge_tx_list_init	(struct vge_softc *);
155 #ifdef VGE_FIXUP_RX
156 static __inline void vge_fixup_rx
157 				(struct mbuf *);
158 #endif
159 static void vge_rxeof		(struct vge_softc *);
160 static void vge_txeof		(struct vge_softc *);
161 static void vge_intr		(void *);
162 static void vge_tick		(void *);
163 static void vge_tx_task		(void *, int);
164 static void vge_start		(struct ifnet *);
165 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166 static void vge_init		(void *);
167 static void vge_stop		(struct vge_softc *);
168 static void vge_watchdog	(struct ifnet *);
169 static int vge_suspend		(device_t);
170 static int vge_resume		(device_t);
171 static void vge_shutdown	(device_t);
172 static int vge_ifmedia_upd	(struct ifnet *);
173 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179 
180 static void vge_miipoll_start	(struct vge_softc *);
181 static void vge_miipoll_stop	(struct vge_softc *);
182 static int vge_miibus_readreg	(device_t, int, int);
183 static int vge_miibus_writereg	(device_t, int, int, int);
184 static void vge_miibus_statchg	(device_t);
185 
186 static void vge_cam_clear	(struct vge_softc *);
187 static int vge_cam_set		(struct vge_softc *, uint8_t *);
188 #if __FreeBSD_version < 502113
189 static uint32_t vge_mchash	(uint8_t *);
190 #endif
191 static void vge_setmulti	(struct vge_softc *);
192 static void vge_reset		(struct vge_softc *);
193 
194 #define VGE_PCI_LOIO             0x10
195 #define VGE_PCI_LOMEM            0x14
196 
197 static device_method_t vge_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		vge_probe),
200 	DEVMETHOD(device_attach,	vge_attach),
201 	DEVMETHOD(device_detach,	vge_detach),
202 	DEVMETHOD(device_suspend,	vge_suspend),
203 	DEVMETHOD(device_resume,	vge_resume),
204 	DEVMETHOD(device_shutdown,	vge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t vge_driver = {
219 	"vge",
220 	vge_methods,
221 	sizeof(struct vge_softc)
222 };
223 
224 static devclass_t vge_devclass;
225 
226 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
227 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #ifdef VGE_EEPROM
231 /*
232  * Read a word of data stored in the EEPROM at address 'addr.'
233  */
234 static void
235 vge_eeprom_getword(sc, addr, dest)
236 	struct vge_softc	*sc;
237 	int			addr;
238 	u_int16_t		*dest;
239 {
240 	register int		i;
241 	u_int16_t		word = 0;
242 
243 	/*
244 	 * Enter EEPROM embedded programming mode. In order to
245 	 * access the EEPROM at all, we first have to set the
246 	 * EELOAD bit in the CHIPCFG2 register.
247 	 */
248 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250 
251 	/* Select the address of the word we want to read */
252 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253 
254 	/* Issue read command */
255 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256 
257 	/* Wait for the done bit to be set. */
258 	for (i = 0; i < VGE_TIMEOUT; i++) {
259 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260 			break;
261 	}
262 
263 	if (i == VGE_TIMEOUT) {
264 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265 		*dest = 0;
266 		return;
267 	}
268 
269 	/* Read the result */
270 	word = CSR_READ_2(sc, VGE_EERDDAT);
271 
272 	/* Turn off EEPROM access mode. */
273 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275 
276 	*dest = word;
277 
278 	return;
279 }
280 #endif
281 
282 /*
283  * Read a sequence of words from the EEPROM.
284  */
285 static void
286 vge_read_eeprom(sc, dest, off, cnt, swap)
287 	struct vge_softc	*sc;
288 	caddr_t			dest;
289 	int			off;
290 	int			cnt;
291 	int			swap;
292 {
293 	int			i;
294 #ifdef VGE_EEPROM
295 	u_int16_t		word = 0, *ptr;
296 
297 	for (i = 0; i < cnt; i++) {
298 		vge_eeprom_getword(sc, off + i, &word);
299 		ptr = (u_int16_t *)(dest + (i * 2));
300 		if (swap)
301 			*ptr = ntohs(word);
302 		else
303 			*ptr = word;
304 	}
305 #else
306 	for (i = 0; i < ETHER_ADDR_LEN; i++)
307 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
308 #endif
309 }
310 
311 static void
312 vge_miipoll_stop(sc)
313 	struct vge_softc	*sc;
314 {
315 	int			i;
316 
317 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
318 
319 	for (i = 0; i < VGE_TIMEOUT; i++) {
320 		DELAY(1);
321 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
322 			break;
323 	}
324 
325 	if (i == VGE_TIMEOUT)
326 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
327 
328 	return;
329 }
330 
331 static void
332 vge_miipoll_start(sc)
333 	struct vge_softc	*sc;
334 {
335 	int			i;
336 
337 	/* First, make sure we're idle. */
338 
339 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
340 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
341 
342 	for (i = 0; i < VGE_TIMEOUT; i++) {
343 		DELAY(1);
344 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
345 			break;
346 	}
347 
348 	if (i == VGE_TIMEOUT) {
349 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
350 		return;
351 	}
352 
353 	/* Now enable auto poll mode. */
354 
355 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
356 
357 	/* And make sure it started. */
358 
359 	for (i = 0; i < VGE_TIMEOUT; i++) {
360 		DELAY(1);
361 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
362 			break;
363 	}
364 
365 	if (i == VGE_TIMEOUT)
366 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
367 
368 	return;
369 }
370 
371 static int
372 vge_miibus_readreg(dev, phy, reg)
373 	device_t		dev;
374 	int			phy, reg;
375 {
376 	struct vge_softc	*sc;
377 	int			i;
378 	u_int16_t		rval = 0;
379 
380 	sc = device_get_softc(dev);
381 
382 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
383 		return(0);
384 
385 	VGE_LOCK(sc);
386 	vge_miipoll_stop(sc);
387 
388 	/* Specify the register we want to read. */
389 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
390 
391 	/* Issue read command. */
392 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
393 
394 	/* Wait for the read command bit to self-clear. */
395 	for (i = 0; i < VGE_TIMEOUT; i++) {
396 		DELAY(1);
397 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
398 			break;
399 	}
400 
401 	if (i == VGE_TIMEOUT)
402 		device_printf(sc->vge_dev, "MII read timed out\n");
403 	else
404 		rval = CSR_READ_2(sc, VGE_MIIDATA);
405 
406 	vge_miipoll_start(sc);
407 	VGE_UNLOCK(sc);
408 
409 	return (rval);
410 }
411 
412 static int
413 vge_miibus_writereg(dev, phy, reg, data)
414 	device_t		dev;
415 	int			phy, reg, data;
416 {
417 	struct vge_softc	*sc;
418 	int			i, rval = 0;
419 
420 	sc = device_get_softc(dev);
421 
422 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
423 		return(0);
424 
425 	VGE_LOCK(sc);
426 	vge_miipoll_stop(sc);
427 
428 	/* Specify the register we want to write. */
429 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
430 
431 	/* Specify the data we want to write. */
432 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
433 
434 	/* Issue write command. */
435 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
436 
437 	/* Wait for the write command bit to self-clear. */
438 	for (i = 0; i < VGE_TIMEOUT; i++) {
439 		DELAY(1);
440 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
441 			break;
442 	}
443 
444 	if (i == VGE_TIMEOUT) {
445 		device_printf(sc->vge_dev, "MII write timed out\n");
446 		rval = EIO;
447 	}
448 
449 	vge_miipoll_start(sc);
450 	VGE_UNLOCK(sc);
451 
452 	return (rval);
453 }
454 
455 static void
456 vge_cam_clear(sc)
457 	struct vge_softc	*sc;
458 {
459 	int			i;
460 
461 	/*
462 	 * Turn off all the mask bits. This tells the chip
463 	 * that none of the entries in the CAM filter are valid.
464 	 * desired entries will be enabled as we fill the filter in.
465 	 */
466 
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
469 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
470 	for (i = 0; i < 8; i++)
471 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472 
473 	/* Clear the VLAN filter too. */
474 
475 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
476 	for (i = 0; i < 8; i++)
477 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
478 
479 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
480 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
482 
483 	sc->vge_camidx = 0;
484 
485 	return;
486 }
487 
488 static int
489 vge_cam_set(sc, addr)
490 	struct vge_softc	*sc;
491 	uint8_t			*addr;
492 {
493 	int			i, error = 0;
494 
495 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
496 		return(ENOSPC);
497 
498 	/* Select the CAM data page. */
499 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
501 
502 	/* Set the filter entry we want to update and enable writing. */
503 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
504 
505 	/* Write the address to the CAM registers */
506 	for (i = 0; i < ETHER_ADDR_LEN; i++)
507 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
508 
509 	/* Issue a write command. */
510 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
511 
512 	/* Wake for it to clear. */
513 	for (i = 0; i < VGE_TIMEOUT; i++) {
514 		DELAY(1);
515 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
516 			break;
517 	}
518 
519 	if (i == VGE_TIMEOUT) {
520 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
521 		error = EIO;
522 		goto fail;
523 	}
524 
525 	/* Select the CAM mask page. */
526 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
527 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
528 
529 	/* Set the mask bit that enables this filter. */
530 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
531 	    1<<(sc->vge_camidx & 7));
532 
533 	sc->vge_camidx++;
534 
535 fail:
536 	/* Turn off access to CAM. */
537 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
538 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
539 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
540 
541 	return (error);
542 }
543 
544 #if __FreeBSD_version < 502113
545 static uint32_t
546 vge_mchash(addr)
547         uint8_t			*addr;
548 {
549 	uint32_t		crc, carry;
550 	int			idx, bit;
551 	uint8_t			data;
552 
553 	/* Compute CRC for the address value. */
554 	crc = 0xFFFFFFFF; /* initial value */
555 
556 	for (idx = 0; idx < 6; idx++) {
557 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
558 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
559 			crc <<= 1;
560 			if (carry)
561 				crc = (crc ^ 0x04c11db6) | carry;
562 		}
563 	}
564 
565 	return(crc);
566 }
567 #endif
568 
569 /*
570  * Program the multicast filter. We use the 64-entry CAM filter
571  * for perfect filtering. If there's more than 64 multicast addresses,
572  * we use the hash filter insted.
573  */
574 static void
575 vge_setmulti(sc)
576 	struct vge_softc	*sc;
577 {
578 	struct ifnet		*ifp;
579 	int			error = 0/*, h = 0*/;
580 	struct ifmultiaddr	*ifma;
581 	u_int32_t		h, hashes[2] = { 0, 0 };
582 
583 	ifp = sc->vge_ifp;
584 
585 	/* First, zot all the multicast entries. */
586 	vge_cam_clear(sc);
587 	CSR_WRITE_4(sc, VGE_MAR0, 0);
588 	CSR_WRITE_4(sc, VGE_MAR1, 0);
589 
590 	/*
591 	 * If the user wants allmulti or promisc mode, enable reception
592 	 * of all multicast frames.
593 	 */
594 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
595 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
596 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
597 		return;
598 	}
599 
600 	/* Now program new ones */
601 	IF_ADDR_LOCK(ifp);
602 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603 		if (ifma->ifma_addr->sa_family != AF_LINK)
604 			continue;
605 		error = vge_cam_set(sc,
606 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
607 		if (error)
608 			break;
609 	}
610 
611 	/* If there were too many addresses, use the hash filter. */
612 	if (error) {
613 		vge_cam_clear(sc);
614 
615 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
616 			if (ifma->ifma_addr->sa_family != AF_LINK)
617 				continue;
618 #if __FreeBSD_version < 502113
619 			h = vge_mchash(LLADDR((struct sockaddr_dl *)
620 			    ifma->ifma_addr)) >> 26;
621 #else
622 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624 #endif
625 			if (h < 32)
626 				hashes[0] |= (1 << h);
627 			else
628 				hashes[1] |= (1 << (h - 32));
629 		}
630 
631 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
632 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
633 	}
634 	IF_ADDR_UNLOCK(ifp);
635 
636 	return;
637 }
638 
639 static void
640 vge_reset(sc)
641 	struct vge_softc		*sc;
642 {
643 	register int		i;
644 
645 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
646 
647 	for (i = 0; i < VGE_TIMEOUT; i++) {
648 		DELAY(5);
649 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
650 			break;
651 	}
652 
653 	if (i == VGE_TIMEOUT) {
654 		device_printf(sc->vge_dev, "soft reset timed out");
655 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
656 		DELAY(2000);
657 	}
658 
659 	DELAY(5000);
660 
661 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
662 
663 	for (i = 0; i < VGE_TIMEOUT; i++) {
664 		DELAY(5);
665 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
666 			break;
667 	}
668 
669 	if (i == VGE_TIMEOUT) {
670 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
671 		return;
672 	}
673 
674 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
675 
676 	return;
677 }
678 
679 /*
680  * Probe for a VIA gigabit chip. Check the PCI vendor and device
681  * IDs against our list and return a device name if we find a match.
682  */
683 static int
684 vge_probe(dev)
685 	device_t		dev;
686 {
687 	struct vge_type		*t;
688 	struct vge_softc	*sc;
689 
690 	t = vge_devs;
691 	sc = device_get_softc(dev);
692 
693 	while (t->vge_name != NULL) {
694 		if ((pci_get_vendor(dev) == t->vge_vid) &&
695 		    (pci_get_device(dev) == t->vge_did)) {
696 			device_set_desc(dev, t->vge_name);
697 			return (BUS_PROBE_DEFAULT);
698 		}
699 		t++;
700 	}
701 
702 	return (ENXIO);
703 }
704 
705 static void
706 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
707 	void			*arg;
708 	bus_dma_segment_t	*segs;
709 	int			nseg;
710 	bus_size_t		mapsize;
711 	int			error;
712 {
713 
714 	struct vge_dmaload_arg	*ctx;
715 	struct vge_rx_desc	*d = NULL;
716 
717 	if (error)
718 		return;
719 
720 	ctx = arg;
721 
722 	/* Signal error to caller if there's too many segments */
723 	if (nseg > ctx->vge_maxsegs) {
724 		ctx->vge_maxsegs = 0;
725 		return;
726 	}
727 
728 	/*
729 	 * Map the segment array into descriptors.
730 	 */
731 
732 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
733 
734 	/* If this descriptor is still owned by the chip, bail. */
735 
736 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
737 		device_printf(ctx->sc->vge_dev,
738 		    "tried to map busy descriptor\n");
739 		ctx->vge_maxsegs = 0;
740 		return;
741 	}
742 
743 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
744 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
745 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
746 	d->vge_sts = 0;
747 	d->vge_ctl = 0;
748 
749 	ctx->vge_maxsegs = 1;
750 
751 	return;
752 }
753 
754 static void
755 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
756 	void			*arg;
757 	bus_dma_segment_t	*segs;
758 	int			nseg;
759 	bus_size_t		mapsize;
760 	int			error;
761 {
762 	struct vge_dmaload_arg	*ctx;
763 	struct vge_tx_desc	*d = NULL;
764 	struct vge_tx_frag	*f;
765 	int			i = 0;
766 
767 	if (error)
768 		return;
769 
770 	ctx = arg;
771 
772 	/* Signal error to caller if there's too many segments */
773 	if (nseg > ctx->vge_maxsegs) {
774 		ctx->vge_maxsegs = 0;
775 		return;
776 	}
777 
778 	/* Map the segment array into descriptors. */
779 
780 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
781 
782 	/* If this descriptor is still owned by the chip, bail. */
783 
784 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
785 		ctx->vge_maxsegs = 0;
786 		return;
787 	}
788 
789 	for (i = 0; i < nseg; i++) {
790 		f = &d->vge_frag[i];
791 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
792 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
793 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
794 	}
795 
796 	/* Argh. This chip does not autopad short frames */
797 
798 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
799 		f = &d->vge_frag[i];
800 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
801 		    ctx->vge_m0->m_pkthdr.len));
802 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
803 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
804 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
805 		i++;
806 	}
807 
808 	/*
809 	 * When telling the chip how many segments there are, we
810 	 * must use nsegs + 1 instead of just nsegs. Darned if I
811 	 * know why.
812 	 */
813 	i++;
814 
815 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
816 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
817 
818 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
819 		d->vge_ctl |= VGE_TDCTL_JUMBO;
820 
821 	ctx->vge_maxsegs = nseg;
822 
823 	return;
824 }
825 
826 /*
827  * Map a single buffer address.
828  */
829 
830 static void
831 vge_dma_map_addr(arg, segs, nseg, error)
832 	void			*arg;
833 	bus_dma_segment_t	*segs;
834 	int			nseg;
835 	int			error;
836 {
837 	bus_addr_t		*addr;
838 
839 	if (error)
840 		return;
841 
842 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
843 	addr = arg;
844 	*addr = segs->ds_addr;
845 
846 	return;
847 }
848 
849 static int
850 vge_allocmem(dev, sc)
851 	device_t		dev;
852 	struct vge_softc		*sc;
853 {
854 	int			error;
855 	int			nseg;
856 	int			i;
857 
858 	/*
859 	 * Allocate map for RX mbufs.
860 	 */
861 	nseg = 32;
862 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
863 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
864 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
865 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
866 	if (error) {
867 		device_printf(dev, "could not allocate dma tag\n");
868 		return (ENOMEM);
869 	}
870 
871 	/*
872 	 * Allocate map for TX descriptor list.
873 	 */
874 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
878 	if (error) {
879 		device_printf(dev, "could not allocate dma tag\n");
880 		return (ENOMEM);
881 	}
882 
883 	/* Allocate DMA'able memory for the TX ring */
884 
885 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
886 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887 	    &sc->vge_ldata.vge_tx_list_map);
888 	if (error)
889 		return (ENOMEM);
890 
891 	/* Load the map for the TX ring. */
892 
893 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
894 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
895 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
897 
898 	/* Create DMA maps for TX buffers */
899 
900 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
901 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902 			    &sc->vge_ldata.vge_tx_dmamap[i]);
903 		if (error) {
904 			device_printf(dev, "can't create DMA map for TX\n");
905 			return (ENOMEM);
906 		}
907 	}
908 
909 	/*
910 	 * Allocate map for RX descriptor list.
911 	 */
912 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
913 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
914 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
915 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
916 	if (error) {
917 		device_printf(dev, "could not allocate dma tag\n");
918 		return (ENOMEM);
919 	}
920 
921 	/* Allocate DMA'able memory for the RX ring */
922 
923 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
924 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
925 	    &sc->vge_ldata.vge_rx_list_map);
926 	if (error)
927 		return (ENOMEM);
928 
929 	/* Load the map for the RX ring. */
930 
931 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
932 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
933 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
934 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
935 
936 	/* Create DMA maps for RX buffers */
937 
938 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
939 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
940 			    &sc->vge_ldata.vge_rx_dmamap[i]);
941 		if (error) {
942 			device_printf(dev, "can't create DMA map for RX\n");
943 			return (ENOMEM);
944 		}
945 	}
946 
947 	return (0);
948 }
949 
950 /*
951  * Attach the interface. Allocate softc structures, do ifmedia
952  * setup and ethernet/BPF attach.
953  */
954 static int
955 vge_attach(dev)
956 	device_t		dev;
957 {
958 	u_char			eaddr[ETHER_ADDR_LEN];
959 	struct vge_softc	*sc;
960 	struct ifnet		*ifp;
961 	int			unit, error = 0, rid;
962 
963 	sc = device_get_softc(dev);
964 	unit = device_get_unit(dev);
965 	sc->vge_dev = dev;
966 
967 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
968 	    MTX_DEF | MTX_RECURSE);
969 	/*
970 	 * Map control/status registers.
971 	 */
972 	pci_enable_busmaster(dev);
973 
974 	rid = VGE_PCI_LOMEM;
975 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
976 	    0, ~0, 1, RF_ACTIVE);
977 
978 	if (sc->vge_res == NULL) {
979 		printf ("vge%d: couldn't map ports/memory\n", unit);
980 		error = ENXIO;
981 		goto fail;
982 	}
983 
984 	sc->vge_btag = rman_get_bustag(sc->vge_res);
985 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
986 
987 	/* Allocate interrupt */
988 	rid = 0;
989 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
990 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
991 
992 	if (sc->vge_irq == NULL) {
993 		printf("vge%d: couldn't map interrupt\n", unit);
994 		error = ENXIO;
995 		goto fail;
996 	}
997 
998 	/* Reset the adapter. */
999 	vge_reset(sc);
1000 
1001 	/*
1002 	 * Get station address from the EEPROM.
1003 	 */
1004 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1005 
1006 	sc->vge_unit = unit;
1007 
1008 #if __FreeBSD_version < 502113
1009 	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1010 #endif
1011 
1012 	/*
1013 	 * Allocate the parent bus DMA tag appropriate for PCI.
1014 	 */
1015 #define VGE_NSEG_NEW 32
1016 	error = bus_dma_tag_create(NULL,	/* parent */
1017 			1, 0,			/* alignment, boundary */
1018 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1019 			BUS_SPACE_MAXADDR,	/* highaddr */
1020 			NULL, NULL,		/* filter, filterarg */
1021 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1022 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1023 			BUS_DMA_ALLOCNOW,	/* flags */
1024 			NULL, NULL,		/* lockfunc, lockarg */
1025 			&sc->vge_parent_tag);
1026 	if (error)
1027 		goto fail;
1028 
1029 	error = vge_allocmem(dev, sc);
1030 
1031 	if (error)
1032 		goto fail;
1033 
1034 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1035 	if (ifp == NULL) {
1036 		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1037 		error = ENOSPC;
1038 		goto fail;
1039 	}
1040 
1041 	/* Do MII setup */
1042 	if (mii_phy_probe(dev, &sc->vge_miibus,
1043 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1044 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1045 		error = ENXIO;
1046 		goto fail;
1047 	}
1048 
1049 	ifp->if_softc = sc;
1050 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051 	ifp->if_mtu = ETHERMTU;
1052 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053 	ifp->if_ioctl = vge_ioctl;
1054 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1055 	ifp->if_start = vge_start;
1056 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1057 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1058 	ifp->if_capenable = ifp->if_capabilities;
1059 #ifdef DEVICE_POLLING
1060 	ifp->if_capabilities |= IFCAP_POLLING;
1061 #endif
1062 	ifp->if_watchdog = vge_watchdog;
1063 	ifp->if_init = vge_init;
1064 	ifp->if_baudrate = 1000000000;
1065 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1066 
1067 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1068 
1069 	/*
1070 	 * Call MI attach routine.
1071 	 */
1072 	ether_ifattach(ifp, eaddr);
1073 
1074 	/* Hook interrupt last to avoid having to lock softc */
1075 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1076 	    vge_intr, sc, &sc->vge_intrhand);
1077 
1078 	if (error) {
1079 		printf("vge%d: couldn't set up irq\n", unit);
1080 		ether_ifdetach(ifp);
1081 		goto fail;
1082 	}
1083 
1084 fail:
1085 	if (error)
1086 		vge_detach(dev);
1087 
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Shutdown hardware and free up resources. This can be called any
1093  * time after the mutex has been initialized. It is called in both
1094  * the error case in attach and the normal detach case so it needs
1095  * to be careful about only freeing resources that have actually been
1096  * allocated.
1097  */
1098 static int
1099 vge_detach(dev)
1100 	device_t		dev;
1101 {
1102 	struct vge_softc		*sc;
1103 	struct ifnet		*ifp;
1104 	int			i;
1105 
1106 	sc = device_get_softc(dev);
1107 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1108 	ifp = sc->vge_ifp;
1109 
1110 #ifdef DEVICE_POLLING
1111 	if (ifp->if_capenable & IFCAP_POLLING)
1112 		ether_poll_deregister(ifp);
1113 #endif
1114 
1115 	/* These should only be active if attach succeeded */
1116 	if (device_is_attached(dev)) {
1117 		vge_stop(sc);
1118 		/*
1119 		 * Force off the IFF_UP flag here, in case someone
1120 		 * still had a BPF descriptor attached to this
1121 		 * interface. If they do, ether_ifattach() will cause
1122 		 * the BPF code to try and clear the promisc mode
1123 		 * flag, which will bubble down to vge_ioctl(),
1124 		 * which will try to call vge_init() again. This will
1125 		 * turn the NIC back on and restart the MII ticker,
1126 		 * which will panic the system when the kernel tries
1127 		 * to invoke the vge_tick() function that isn't there
1128 		 * anymore.
1129 		 */
1130 		ifp->if_flags &= ~IFF_UP;
1131 		ether_ifdetach(ifp);
1132 	}
1133 	if (sc->vge_miibus)
1134 		device_delete_child(dev, sc->vge_miibus);
1135 	bus_generic_detach(dev);
1136 
1137 	if (sc->vge_intrhand)
1138 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1139 	if (sc->vge_irq)
1140 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1141 	if (sc->vge_res)
1142 		bus_release_resource(dev, SYS_RES_MEMORY,
1143 		    VGE_PCI_LOMEM, sc->vge_res);
1144 	if (ifp)
1145 		if_free(ifp);
1146 
1147 	/* Unload and free the RX DMA ring memory and map */
1148 
1149 	if (sc->vge_ldata.vge_rx_list_tag) {
1150 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1151 		    sc->vge_ldata.vge_rx_list_map);
1152 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1153 		    sc->vge_ldata.vge_rx_list,
1154 		    sc->vge_ldata.vge_rx_list_map);
1155 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1156 	}
1157 
1158 	/* Unload and free the TX DMA ring memory and map */
1159 
1160 	if (sc->vge_ldata.vge_tx_list_tag) {
1161 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1162 		    sc->vge_ldata.vge_tx_list_map);
1163 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1164 		    sc->vge_ldata.vge_tx_list,
1165 		    sc->vge_ldata.vge_tx_list_map);
1166 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1167 	}
1168 
1169 	/* Destroy all the RX and TX buffer maps */
1170 
1171 	if (sc->vge_ldata.vge_mtag) {
1172 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1173 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1174 			    sc->vge_ldata.vge_tx_dmamap[i]);
1175 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1176 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1177 			    sc->vge_ldata.vge_rx_dmamap[i]);
1178 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1179 	}
1180 
1181 	if (sc->vge_parent_tag)
1182 		bus_dma_tag_destroy(sc->vge_parent_tag);
1183 
1184 	mtx_destroy(&sc->vge_mtx);
1185 
1186 	return (0);
1187 }
1188 
1189 static int
1190 vge_newbuf(sc, idx, m)
1191 	struct vge_softc	*sc;
1192 	int			idx;
1193 	struct mbuf		*m;
1194 {
1195 	struct vge_dmaload_arg	arg;
1196 	struct mbuf		*n = NULL;
1197 	int			i, error;
1198 
1199 	if (m == NULL) {
1200 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1201 		if (n == NULL)
1202 			return (ENOBUFS);
1203 		m = n;
1204 	} else
1205 		m->m_data = m->m_ext.ext_buf;
1206 
1207 
1208 #ifdef VGE_FIXUP_RX
1209 	/*
1210 	 * This is part of an evil trick to deal with non-x86 platforms.
1211 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1212 	 * boundaries, but that will hose non-x86 machines. To get around
1213 	 * this, we leave some empty space at the start of each buffer
1214 	 * and for non-x86 hosts, we copy the buffer back two bytes
1215 	 * to achieve word alignment. This is slightly more efficient
1216 	 * than allocating a new buffer, copying the contents, and
1217 	 * discarding the old buffer.
1218 	 */
1219 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1220 	m_adj(m, VGE_ETHER_ALIGN);
1221 #else
1222 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1223 #endif
1224 
1225 	arg.sc = sc;
1226 	arg.vge_idx = idx;
1227 	arg.vge_maxsegs = 1;
1228 	arg.vge_flags = 0;
1229 
1230 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1231 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1232 	    &arg, BUS_DMA_NOWAIT);
1233 	if (error || arg.vge_maxsegs != 1) {
1234 		if (n != NULL)
1235 			m_freem(n);
1236 		return (ENOMEM);
1237 	}
1238 
1239 	/*
1240 	 * Note: the manual fails to document the fact that for
1241 	 * proper opration, the driver needs to replentish the RX
1242 	 * DMA ring 4 descriptors at a time (rather than one at a
1243 	 * time, like most chips). We can allocate the new buffers
1244 	 * but we should not set the OWN bits until we're ready
1245 	 * to hand back 4 of them in one shot.
1246 	 */
1247 
1248 #define VGE_RXCHUNK 4
1249 	sc->vge_rx_consumed++;
1250 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1251 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1252 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1253 			    htole32(VGE_RDSTS_OWN);
1254 		sc->vge_rx_consumed = 0;
1255 	}
1256 
1257 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1258 
1259 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1260 	    sc->vge_ldata.vge_rx_dmamap[idx],
1261 	    BUS_DMASYNC_PREREAD);
1262 
1263 	return (0);
1264 }
1265 
1266 static int
1267 vge_tx_list_init(sc)
1268 	struct vge_softc		*sc;
1269 {
1270 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1271 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1272 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1273 
1274 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1275 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1276 	sc->vge_ldata.vge_tx_prodidx = 0;
1277 	sc->vge_ldata.vge_tx_considx = 0;
1278 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1279 
1280 	return (0);
1281 }
1282 
1283 static int
1284 vge_rx_list_init(sc)
1285 	struct vge_softc		*sc;
1286 {
1287 	int			i;
1288 
1289 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1290 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1291 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1292 
1293 	sc->vge_rx_consumed = 0;
1294 
1295 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1296 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1297 			return (ENOBUFS);
1298 	}
1299 
1300 	/* Flush the RX descriptors */
1301 
1302 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1303 	    sc->vge_ldata.vge_rx_list_map,
1304 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1305 
1306 	sc->vge_ldata.vge_rx_prodidx = 0;
1307 	sc->vge_rx_consumed = 0;
1308 	sc->vge_head = sc->vge_tail = NULL;
1309 
1310 	return (0);
1311 }
1312 
1313 #ifdef VGE_FIXUP_RX
1314 static __inline void
1315 vge_fixup_rx(m)
1316 	struct mbuf		*m;
1317 {
1318 	int			i;
1319 	uint16_t		*src, *dst;
1320 
1321 	src = mtod(m, uint16_t *);
1322 	dst = src - 1;
1323 
1324 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1325 		*dst++ = *src++;
1326 
1327 	m->m_data -= ETHER_ALIGN;
1328 
1329 	return;
1330 }
1331 #endif
1332 
1333 /*
1334  * RX handler. We support the reception of jumbo frames that have
1335  * been fragmented across multiple 2K mbuf cluster buffers.
1336  */
1337 static void
1338 vge_rxeof(sc)
1339 	struct vge_softc	*sc;
1340 {
1341 	struct mbuf		*m;
1342 	struct ifnet		*ifp;
1343 	int			i, total_len;
1344 	int			lim = 0;
1345 	struct vge_rx_desc	*cur_rx;
1346 	u_int32_t		rxstat, rxctl;
1347 
1348 	VGE_LOCK_ASSERT(sc);
1349 	ifp = sc->vge_ifp;
1350 	i = sc->vge_ldata.vge_rx_prodidx;
1351 
1352 	/* Invalidate the descriptor memory */
1353 
1354 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1355 	    sc->vge_ldata.vge_rx_list_map,
1356 	    BUS_DMASYNC_POSTREAD);
1357 
1358 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1359 
1360 #ifdef DEVICE_POLLING
1361 		if (ifp->if_capenable & IFCAP_POLLING) {
1362 			if (sc->rxcycles <= 0)
1363 				break;
1364 			sc->rxcycles--;
1365 		}
1366 #endif
1367 
1368 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1369 		m = sc->vge_ldata.vge_rx_mbuf[i];
1370 		total_len = VGE_RXBYTES(cur_rx);
1371 		rxstat = le32toh(cur_rx->vge_sts);
1372 		rxctl = le32toh(cur_rx->vge_ctl);
1373 
1374 		/* Invalidate the RX mbuf and unload its map */
1375 
1376 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1377 		    sc->vge_ldata.vge_rx_dmamap[i],
1378 		    BUS_DMASYNC_POSTWRITE);
1379 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1380 		    sc->vge_ldata.vge_rx_dmamap[i]);
1381 
1382 		/*
1383 		 * If the 'start of frame' bit is set, this indicates
1384 		 * either the first fragment in a multi-fragment receive,
1385 		 * or an intermediate fragment. Either way, we want to
1386 		 * accumulate the buffers.
1387 		 */
1388 		if (rxstat & VGE_RXPKT_SOF) {
1389 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1390 			if (sc->vge_head == NULL)
1391 				sc->vge_head = sc->vge_tail = m;
1392 			else {
1393 				m->m_flags &= ~M_PKTHDR;
1394 				sc->vge_tail->m_next = m;
1395 				sc->vge_tail = m;
1396 			}
1397 			vge_newbuf(sc, i, NULL);
1398 			VGE_RX_DESC_INC(i);
1399 			continue;
1400 		}
1401 
1402 		/*
1403 		 * Bad/error frames will have the RXOK bit cleared.
1404 		 * However, there's one error case we want to allow:
1405 		 * if a VLAN tagged frame arrives and the chip can't
1406 		 * match it against the CAM filter, it considers this
1407 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1408 		 * We don't want to drop the frame though: our VLAN
1409 		 * filtering is done in software.
1410 		 */
1411 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1412 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1413 			ifp->if_ierrors++;
1414 			/*
1415 			 * If this is part of a multi-fragment packet,
1416 			 * discard all the pieces.
1417 			 */
1418 			if (sc->vge_head != NULL) {
1419 				m_freem(sc->vge_head);
1420 				sc->vge_head = sc->vge_tail = NULL;
1421 			}
1422 			vge_newbuf(sc, i, m);
1423 			VGE_RX_DESC_INC(i);
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * If allocating a replacement mbuf fails,
1429 		 * reload the current one.
1430 		 */
1431 
1432 		if (vge_newbuf(sc, i, NULL)) {
1433 			ifp->if_ierrors++;
1434 			if (sc->vge_head != NULL) {
1435 				m_freem(sc->vge_head);
1436 				sc->vge_head = sc->vge_tail = NULL;
1437 			}
1438 			vge_newbuf(sc, i, m);
1439 			VGE_RX_DESC_INC(i);
1440 			continue;
1441 		}
1442 
1443 		VGE_RX_DESC_INC(i);
1444 
1445 		if (sc->vge_head != NULL) {
1446 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1447 			/*
1448 			 * Special case: if there's 4 bytes or less
1449 			 * in this buffer, the mbuf can be discarded:
1450 			 * the last 4 bytes is the CRC, which we don't
1451 			 * care about anyway.
1452 			 */
1453 			if (m->m_len <= ETHER_CRC_LEN) {
1454 				sc->vge_tail->m_len -=
1455 				    (ETHER_CRC_LEN - m->m_len);
1456 				m_freem(m);
1457 			} else {
1458 				m->m_len -= ETHER_CRC_LEN;
1459 				m->m_flags &= ~M_PKTHDR;
1460 				sc->vge_tail->m_next = m;
1461 			}
1462 			m = sc->vge_head;
1463 			sc->vge_head = sc->vge_tail = NULL;
1464 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1465 		} else
1466 			m->m_pkthdr.len = m->m_len =
1467 			    (total_len - ETHER_CRC_LEN);
1468 
1469 #ifdef VGE_FIXUP_RX
1470 		vge_fixup_rx(m);
1471 #endif
1472 		ifp->if_ipackets++;
1473 		m->m_pkthdr.rcvif = ifp;
1474 
1475 		/* Do RX checksumming if enabled */
1476 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1477 
1478 			/* Check IP header checksum */
1479 			if (rxctl & VGE_RDCTL_IPPKT)
1480 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1481 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1482 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1483 
1484 			/* Check TCP/UDP checksum */
1485 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1486 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1487 				m->m_pkthdr.csum_flags |=
1488 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1489 				m->m_pkthdr.csum_data = 0xffff;
1490 			}
1491 		}
1492 
1493 		if (rxstat & VGE_RDSTS_VTAG) {
1494 			VLAN_INPUT_TAG(ifp, m,
1495 			    ntohs((rxctl & VGE_RDCTL_VLANID)));
1496 			if (m == NULL)
1497 				continue;
1498 		}
1499 
1500 		VGE_UNLOCK(sc);
1501 		(*ifp->if_input)(ifp, m);
1502 		VGE_LOCK(sc);
1503 
1504 		lim++;
1505 		if (lim == VGE_RX_DESC_CNT)
1506 			break;
1507 
1508 	}
1509 
1510 	/* Flush the RX DMA ring */
1511 
1512 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1513 	    sc->vge_ldata.vge_rx_list_map,
1514 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1515 
1516 	sc->vge_ldata.vge_rx_prodidx = i;
1517 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1518 
1519 
1520 	return;
1521 }
1522 
1523 static void
1524 vge_txeof(sc)
1525 	struct vge_softc		*sc;
1526 {
1527 	struct ifnet		*ifp;
1528 	u_int32_t		txstat;
1529 	int			idx;
1530 
1531 	ifp = sc->vge_ifp;
1532 	idx = sc->vge_ldata.vge_tx_considx;
1533 
1534 	/* Invalidate the TX descriptor list */
1535 
1536 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1537 	    sc->vge_ldata.vge_tx_list_map,
1538 	    BUS_DMASYNC_POSTREAD);
1539 
1540 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1541 
1542 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1543 		if (txstat & VGE_TDSTS_OWN)
1544 			break;
1545 
1546 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1547 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1548 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1549 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1550 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1551 			ifp->if_collisions++;
1552 		if (txstat & VGE_TDSTS_TXERR)
1553 			ifp->if_oerrors++;
1554 		else
1555 			ifp->if_opackets++;
1556 
1557 		sc->vge_ldata.vge_tx_free++;
1558 		VGE_TX_DESC_INC(idx);
1559 	}
1560 
1561 	/* No changes made to the TX ring, so no flush needed */
1562 
1563 	if (idx != sc->vge_ldata.vge_tx_considx) {
1564 		sc->vge_ldata.vge_tx_considx = idx;
1565 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1566 		ifp->if_timer = 0;
1567 	}
1568 
1569 	/*
1570 	 * If not all descriptors have been released reaped yet,
1571 	 * reload the timer so that we will eventually get another
1572 	 * interrupt that will cause us to re-enter this routine.
1573 	 * This is done in case the transmitter has gone idle.
1574 	 */
1575 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1576 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1577 	}
1578 
1579 	return;
1580 }
1581 
1582 static void
1583 vge_tick(xsc)
1584 	void			*xsc;
1585 {
1586 	struct vge_softc	*sc;
1587 	struct ifnet		*ifp;
1588 	struct mii_data		*mii;
1589 
1590 	sc = xsc;
1591 	ifp = sc->vge_ifp;
1592 	VGE_LOCK(sc);
1593 	mii = device_get_softc(sc->vge_miibus);
1594 
1595 	mii_tick(mii);
1596 	if (sc->vge_link) {
1597 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1598 			sc->vge_link = 0;
1599 			if_link_state_change(sc->vge_ifp,
1600 			    LINK_STATE_DOWN);
1601 		}
1602 	} else {
1603 		if (mii->mii_media_status & IFM_ACTIVE &&
1604 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1605 			sc->vge_link = 1;
1606 			if_link_state_change(sc->vge_ifp,
1607 			    LINK_STATE_UP);
1608 #if __FreeBSD_version < 502114
1609 			if (ifp->if_snd.ifq_head != NULL)
1610 #else
1611 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1612 #endif
1613 				taskqueue_enqueue(taskqueue_swi,
1614 				    &sc->vge_txtask);
1615 		}
1616 	}
1617 
1618 	VGE_UNLOCK(sc);
1619 
1620 	return;
1621 }
1622 
1623 #ifdef DEVICE_POLLING
1624 static void
1625 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1626 {
1627 	struct vge_softc *sc = ifp->if_softc;
1628 
1629 	VGE_LOCK(sc);
1630 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1631 		goto done;
1632 
1633 	sc->rxcycles = count;
1634 	vge_rxeof(sc);
1635 	vge_txeof(sc);
1636 
1637 #if __FreeBSD_version < 502114
1638 	if (ifp->if_snd.ifq_head != NULL)
1639 #else
1640 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1641 #endif
1642 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1643 
1644 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1645 		u_int32_t       status;
1646 		status = CSR_READ_4(sc, VGE_ISR);
1647 		if (status == 0xFFFFFFFF)
1648 			goto done;
1649 		if (status)
1650 			CSR_WRITE_4(sc, VGE_ISR, status);
1651 
1652 		/*
1653 		 * XXX check behaviour on receiver stalls.
1654 		 */
1655 
1656 		if (status & VGE_ISR_TXDMA_STALL ||
1657 		    status & VGE_ISR_RXDMA_STALL)
1658 			vge_init(sc);
1659 
1660 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1661 			vge_rxeof(sc);
1662 			ifp->if_ierrors++;
1663 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1664 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1665 		}
1666 	}
1667 done:
1668 	VGE_UNLOCK(sc);
1669 }
1670 #endif /* DEVICE_POLLING */
1671 
1672 static void
1673 vge_intr(arg)
1674 	void			*arg;
1675 {
1676 	struct vge_softc	*sc;
1677 	struct ifnet		*ifp;
1678 	u_int32_t		status;
1679 
1680 	sc = arg;
1681 
1682 	if (sc->suspended) {
1683 		return;
1684 	}
1685 
1686 	VGE_LOCK(sc);
1687 	ifp = sc->vge_ifp;
1688 
1689 	if (!(ifp->if_flags & IFF_UP)) {
1690 		VGE_UNLOCK(sc);
1691 		return;
1692 	}
1693 
1694 #ifdef DEVICE_POLLING
1695 	if  (ifp->if_capenable & IFCAP_POLLING) {
1696 		VGE_UNLOCK(sc);
1697 		return;
1698 	}
1699 #endif
1700 
1701 	/* Disable interrupts */
1702 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1703 
1704 	for (;;) {
1705 
1706 		status = CSR_READ_4(sc, VGE_ISR);
1707 		/* If the card has gone away the read returns 0xffff. */
1708 		if (status == 0xFFFFFFFF)
1709 			break;
1710 
1711 		if (status)
1712 			CSR_WRITE_4(sc, VGE_ISR, status);
1713 
1714 		if ((status & VGE_INTRS) == 0)
1715 			break;
1716 
1717 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1718 			vge_rxeof(sc);
1719 
1720 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1721 			vge_rxeof(sc);
1722 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1723 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1724 		}
1725 
1726 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1727 			vge_txeof(sc);
1728 
1729 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1730 			vge_init(sc);
1731 
1732 		if (status & VGE_ISR_LINKSTS)
1733 			vge_tick(sc);
1734 	}
1735 
1736 	/* Re-enable interrupts */
1737 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1738 
1739 	VGE_UNLOCK(sc);
1740 
1741 #if __FreeBSD_version < 502114
1742 	if (ifp->if_snd.ifq_head != NULL)
1743 #else
1744 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745 #endif
1746 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1747 
1748 	return;
1749 }
1750 
1751 static int
1752 vge_encap(sc, m_head, idx)
1753 	struct vge_softc	*sc;
1754 	struct mbuf		*m_head;
1755 	int			idx;
1756 {
1757 	struct mbuf		*m_new = NULL;
1758 	struct vge_dmaload_arg	arg;
1759 	bus_dmamap_t		map;
1760 	int			error;
1761 	struct m_tag		*mtag;
1762 
1763 	if (sc->vge_ldata.vge_tx_free <= 2)
1764 		return (EFBIG);
1765 
1766 	arg.vge_flags = 0;
1767 
1768 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1769 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1770 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1771 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1772 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1773 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1774 
1775 	arg.sc = sc;
1776 	arg.vge_idx = idx;
1777 	arg.vge_m0 = m_head;
1778 	arg.vge_maxsegs = VGE_TX_FRAGS;
1779 
1780 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1781 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1782 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1783 
1784 	if (error && error != EFBIG) {
1785 		printf("vge%d: can't map mbuf (error %d)\n",
1786 		    sc->vge_unit, error);
1787 		return (ENOBUFS);
1788 	}
1789 
1790 	/* Too many segments to map, coalesce into a single mbuf */
1791 
1792 	if (error || arg.vge_maxsegs == 0) {
1793 		m_new = m_defrag(m_head, M_DONTWAIT);
1794 		if (m_new == NULL)
1795 			return (1);
1796 		else
1797 			m_head = m_new;
1798 
1799 		arg.sc = sc;
1800 		arg.vge_m0 = m_head;
1801 		arg.vge_idx = idx;
1802 		arg.vge_maxsegs = 1;
1803 
1804 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1805 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1806 		if (error) {
1807 			printf("vge%d: can't map mbuf (error %d)\n",
1808 			    sc->vge_unit, error);
1809 			return (EFBIG);
1810 		}
1811 	}
1812 
1813 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1814 	sc->vge_ldata.vge_tx_free--;
1815 
1816 	/*
1817 	 * Set up hardware VLAN tagging.
1818 	 */
1819 
1820 	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1821 	if (mtag != NULL)
1822 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1823 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1824 
1825 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1826 
1827 	return (0);
1828 }
1829 
1830 static void
1831 vge_tx_task(arg, npending)
1832 	void			*arg;
1833 	int			npending;
1834 {
1835 	struct ifnet		*ifp;
1836 
1837 	ifp = arg;
1838 	vge_start(ifp);
1839 
1840 	return;
1841 }
1842 
1843 /*
1844  * Main transmit routine.
1845  */
1846 
1847 static void
1848 vge_start(ifp)
1849 	struct ifnet		*ifp;
1850 {
1851 	struct vge_softc	*sc;
1852 	struct mbuf		*m_head = NULL;
1853 	int			idx, pidx = 0;
1854 
1855 	sc = ifp->if_softc;
1856 	VGE_LOCK(sc);
1857 
1858 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1859 		VGE_UNLOCK(sc);
1860 		return;
1861 	}
1862 
1863 #if __FreeBSD_version < 502114
1864 	if (ifp->if_snd.ifq_head == NULL) {
1865 #else
1866 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1867 #endif
1868 		VGE_UNLOCK(sc);
1869 		return;
1870 	}
1871 
1872 	idx = sc->vge_ldata.vge_tx_prodidx;
1873 
1874 	pidx = idx - 1;
1875 	if (pidx < 0)
1876 		pidx = VGE_TX_DESC_CNT - 1;
1877 
1878 
1879 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1880 #if __FreeBSD_version < 502114
1881 		IF_DEQUEUE(&ifp->if_snd, m_head);
1882 #else
1883 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1884 #endif
1885 		if (m_head == NULL)
1886 			break;
1887 
1888 		if (vge_encap(sc, m_head, idx)) {
1889 #if __FreeBSD_version >= 502114
1890 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1891 #else
1892 			IF_PREPEND(&ifp->if_snd, m_head);
1893 #endif
1894 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1895 			break;
1896 		}
1897 
1898 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1899 		    htole16(VGE_TXDESC_Q);
1900 
1901 		pidx = idx;
1902 		VGE_TX_DESC_INC(idx);
1903 
1904 		/*
1905 		 * If there's a BPF listener, bounce a copy of this frame
1906 		 * to him.
1907 		 */
1908 		BPF_MTAP(ifp, m_head);
1909 	}
1910 
1911 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1912 		VGE_UNLOCK(sc);
1913 		return;
1914 	}
1915 
1916 	/* Flush the TX descriptors */
1917 
1918 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1919 	    sc->vge_ldata.vge_tx_list_map,
1920 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1921 
1922 	/* Issue a transmit command. */
1923 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1924 
1925 	sc->vge_ldata.vge_tx_prodidx = idx;
1926 
1927 	/*
1928 	 * Use the countdown timer for interrupt moderation.
1929 	 * 'TX done' interrupts are disabled. Instead, we reset the
1930 	 * countdown timer, which will begin counting until it hits
1931 	 * the value in the SSTIMER register, and then trigger an
1932 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1933 	 * the timer count is reloaded. Only when the transmitter
1934 	 * is idle will the timer hit 0 and an interrupt fire.
1935 	 */
1936 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1937 
1938 	VGE_UNLOCK(sc);
1939 
1940 	/*
1941 	 * Set a timeout in case the chip goes out to lunch.
1942 	 */
1943 	ifp->if_timer = 5;
1944 
1945 	return;
1946 }
1947 
1948 static void
1949 vge_init(xsc)
1950 	void			*xsc;
1951 {
1952 	struct vge_softc	*sc = xsc;
1953 	struct ifnet		*ifp = sc->vge_ifp;
1954 	struct mii_data		*mii;
1955 	int			i;
1956 
1957 	VGE_LOCK(sc);
1958 	mii = device_get_softc(sc->vge_miibus);
1959 
1960 	/*
1961 	 * Cancel pending I/O and free all RX/TX buffers.
1962 	 */
1963 	vge_stop(sc);
1964 	vge_reset(sc);
1965 
1966 	/*
1967 	 * Initialize the RX and TX descriptors and mbufs.
1968 	 */
1969 
1970 	vge_rx_list_init(sc);
1971 	vge_tx_list_init(sc);
1972 
1973 	/* Set our station address */
1974 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1975 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1976 
1977 	/*
1978 	 * Set receive FIFO threshold. Also allow transmission and
1979 	 * reception of VLAN tagged frames.
1980 	 */
1981 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1982 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1983 
1984 	/* Set DMA burst length */
1985 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1986 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1987 
1988 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1989 
1990 	/* Set collision backoff algorithm */
1991 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1992 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1993 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1994 
1995 	/* Disable LPSEL field in priority resolution */
1996 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1997 
1998 	/*
1999 	 * Load the addresses of the DMA queues into the chip.
2000 	 * Note that we only use one transmit queue.
2001 	 */
2002 
2003 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2004 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2005 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2006 
2007 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2008 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2009 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2010 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2011 
2012 	/* Enable and wake up the RX descriptor queue */
2013 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2014 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2015 
2016 	/* Enable the TX descriptor queue */
2017 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2018 
2019 	/* Set up the receive filter -- allow large frames for VLANs. */
2020 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2021 
2022 	/* If we want promiscuous mode, set the allframes bit. */
2023 	if (ifp->if_flags & IFF_PROMISC) {
2024 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2025 	}
2026 
2027 	/* Set capture broadcast bit to capture broadcast frames. */
2028 	if (ifp->if_flags & IFF_BROADCAST) {
2029 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2030 	}
2031 
2032 	/* Set multicast bit to capture multicast frames. */
2033 	if (ifp->if_flags & IFF_MULTICAST) {
2034 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2035 	}
2036 
2037 	/* Init the cam filter. */
2038 	vge_cam_clear(sc);
2039 
2040 	/* Init the multicast filter. */
2041 	vge_setmulti(sc);
2042 
2043 	/* Enable flow control */
2044 
2045 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2046 
2047 	/* Enable jumbo frame reception (if desired) */
2048 
2049 	/* Start the MAC. */
2050 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2051 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2052 	CSR_WRITE_1(sc, VGE_CRS0,
2053 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2054 
2055 	/*
2056 	 * Configure one-shot timer for microsecond
2057 	 * resulution and load it for 500 usecs.
2058 	 */
2059 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2060 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2061 
2062 	/*
2063 	 * Configure interrupt moderation for receive. Enable
2064 	 * the holdoff counter and load it, and set the RX
2065 	 * suppression count to the number of descriptors we
2066 	 * want to allow before triggering an interrupt.
2067 	 * The holdoff timer is in units of 20 usecs.
2068 	 */
2069 
2070 #ifdef notyet
2071 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2072 	/* Select the interrupt holdoff timer page. */
2073 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2074 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2075 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2076 
2077 	/* Enable use of the holdoff timer. */
2078 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2079 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2080 
2081 	/* Select the RX suppression threshold page. */
2082 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2083 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2084 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2085 
2086 	/* Restore the page select bits. */
2087 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2088 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2089 #endif
2090 
2091 #ifdef DEVICE_POLLING
2092 	/*
2093 	 * Disable interrupts if we are polling.
2094 	 */
2095 	if (ifp->if_capenable & IFCAP_POLLING) {
2096 		CSR_WRITE_4(sc, VGE_IMR, 0);
2097 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2098 	} else	/* otherwise ... */
2099 #endif
2100 	{
2101 	/*
2102 	 * Enable interrupts.
2103 	 */
2104 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2105 		CSR_WRITE_4(sc, VGE_ISR, 0);
2106 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2107 	}
2108 
2109 	mii_mediachg(mii);
2110 
2111 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2112 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2113 
2114 	sc->vge_if_flags = 0;
2115 	sc->vge_link = 0;
2116 
2117 	VGE_UNLOCK(sc);
2118 
2119 	return;
2120 }
2121 
2122 /*
2123  * Set media options.
2124  */
2125 static int
2126 vge_ifmedia_upd(ifp)
2127 	struct ifnet		*ifp;
2128 {
2129 	struct vge_softc	*sc;
2130 	struct mii_data		*mii;
2131 
2132 	sc = ifp->if_softc;
2133 	mii = device_get_softc(sc->vge_miibus);
2134 	mii_mediachg(mii);
2135 
2136 	return (0);
2137 }
2138 
2139 /*
2140  * Report current media status.
2141  */
2142 static void
2143 vge_ifmedia_sts(ifp, ifmr)
2144 	struct ifnet		*ifp;
2145 	struct ifmediareq	*ifmr;
2146 {
2147 	struct vge_softc	*sc;
2148 	struct mii_data		*mii;
2149 
2150 	sc = ifp->if_softc;
2151 	mii = device_get_softc(sc->vge_miibus);
2152 
2153 	mii_pollstat(mii);
2154 	ifmr->ifm_active = mii->mii_media_active;
2155 	ifmr->ifm_status = mii->mii_media_status;
2156 
2157 	return;
2158 }
2159 
2160 static void
2161 vge_miibus_statchg(dev)
2162 	device_t		dev;
2163 {
2164 	struct vge_softc	*sc;
2165 	struct mii_data		*mii;
2166 	struct ifmedia_entry	*ife;
2167 
2168 	sc = device_get_softc(dev);
2169 	mii = device_get_softc(sc->vge_miibus);
2170 	ife = mii->mii_media.ifm_cur;
2171 
2172 	/*
2173 	 * If the user manually selects a media mode, we need to turn
2174 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2175 	 * user happens to choose a full duplex mode, we also need to
2176 	 * set the 'force full duplex' bit. This applies only to
2177 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2178 	 * mode is disabled, and in 1000baseT mode, full duplex is
2179 	 * always implied, so we turn on the forced mode bit but leave
2180 	 * the FDX bit cleared.
2181 	 */
2182 
2183 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2184 	case IFM_AUTO:
2185 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2186 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2187 		break;
2188 	case IFM_1000_T:
2189 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2190 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2191 		break;
2192 	case IFM_100_TX:
2193 	case IFM_10_T:
2194 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2195 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2196 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2197 		} else {
2198 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199 		}
2200 		break;
2201 	default:
2202 		device_printf(dev, "unknown media type: %x\n",
2203 		    IFM_SUBTYPE(ife->ifm_media));
2204 		break;
2205 	}
2206 
2207 	return;
2208 }
2209 
2210 static int
2211 vge_ioctl(ifp, command, data)
2212 	struct ifnet		*ifp;
2213 	u_long			command;
2214 	caddr_t			data;
2215 {
2216 	struct vge_softc	*sc = ifp->if_softc;
2217 	struct ifreq		*ifr = (struct ifreq *) data;
2218 	struct mii_data		*mii;
2219 	int			error = 0;
2220 
2221 	switch (command) {
2222 	case SIOCSIFMTU:
2223 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2224 			error = EINVAL;
2225 		ifp->if_mtu = ifr->ifr_mtu;
2226 		break;
2227 	case SIOCSIFFLAGS:
2228 		if (ifp->if_flags & IFF_UP) {
2229 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2230 			    ifp->if_flags & IFF_PROMISC &&
2231 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2232 				CSR_SETBIT_1(sc, VGE_RXCTL,
2233 				    VGE_RXCTL_RX_PROMISC);
2234 				vge_setmulti(sc);
2235 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2236 			    !(ifp->if_flags & IFF_PROMISC) &&
2237 			    sc->vge_if_flags & IFF_PROMISC) {
2238 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2239 				    VGE_RXCTL_RX_PROMISC);
2240 				vge_setmulti(sc);
2241                         } else
2242 				vge_init(sc);
2243 		} else {
2244 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2245 				vge_stop(sc);
2246 		}
2247 		sc->vge_if_flags = ifp->if_flags;
2248 		break;
2249 	case SIOCADDMULTI:
2250 	case SIOCDELMULTI:
2251 		vge_setmulti(sc);
2252 		break;
2253 	case SIOCGIFMEDIA:
2254 	case SIOCSIFMEDIA:
2255 		mii = device_get_softc(sc->vge_miibus);
2256 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2257 		break;
2258 	case SIOCSIFCAP:
2259 	    {
2260 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2261 #ifdef DEVICE_POLLING
2262 		if (mask & IFCAP_POLLING) {
2263 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2264 				error = ether_poll_register(vge_poll, ifp);
2265 				if (error)
2266 					return(error);
2267 				VGE_LOCK(sc);
2268 					/* Disable interrupts */
2269 				CSR_WRITE_4(sc, VGE_IMR, 0);
2270 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2271 				ifp->if_capenable |= IFCAP_POLLING;
2272 				VGE_UNLOCK(sc);
2273 			} else {
2274 				error = ether_poll_deregister(ifp);
2275 				/* Enable interrupts. */
2276 				VGE_LOCK(sc);
2277 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2278 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2279 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2280 				ifp->if_capenable &= ~IFCAP_POLLING;
2281 				VGE_UNLOCK(sc);
2282 			}
2283 		}
2284 #endif /* DEVICE_POLLING */
2285 		if (mask & IFCAP_HWCSUM) {
2286 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2287 			if (ifp->if_capenable & IFCAP_TXCSUM)
2288 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2289 			else
2290 				ifp->if_hwassist = 0;
2291 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2292 				vge_init(sc);
2293 		}
2294 	    }
2295 		break;
2296 	default:
2297 		error = ether_ioctl(ifp, command, data);
2298 		break;
2299 	}
2300 
2301 	return (error);
2302 }
2303 
2304 static void
2305 vge_watchdog(ifp)
2306 	struct ifnet		*ifp;
2307 {
2308 	struct vge_softc		*sc;
2309 
2310 	sc = ifp->if_softc;
2311 	VGE_LOCK(sc);
2312 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2313 	ifp->if_oerrors++;
2314 
2315 	vge_txeof(sc);
2316 	vge_rxeof(sc);
2317 
2318 	vge_init(sc);
2319 
2320 	VGE_UNLOCK(sc);
2321 
2322 	return;
2323 }
2324 
2325 /*
2326  * Stop the adapter and free any mbufs allocated to the
2327  * RX and TX lists.
2328  */
2329 static void
2330 vge_stop(sc)
2331 	struct vge_softc		*sc;
2332 {
2333 	register int		i;
2334 	struct ifnet		*ifp;
2335 
2336 	VGE_LOCK(sc);
2337 	ifp = sc->vge_ifp;
2338 	ifp->if_timer = 0;
2339 
2340 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2341 
2342 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2343 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2344 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2345 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2346 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2347 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2348 
2349 	if (sc->vge_head != NULL) {
2350 		m_freem(sc->vge_head);
2351 		sc->vge_head = sc->vge_tail = NULL;
2352 	}
2353 
2354 	/* Free the TX list buffers. */
2355 
2356 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2357 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2358 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2359 			    sc->vge_ldata.vge_tx_dmamap[i]);
2360 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2361 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2362 		}
2363 	}
2364 
2365 	/* Free the RX list buffers. */
2366 
2367 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2368 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2369 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2370 			    sc->vge_ldata.vge_rx_dmamap[i]);
2371 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2372 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2373 		}
2374 	}
2375 
2376 	VGE_UNLOCK(sc);
2377 
2378 	return;
2379 }
2380 
2381 /*
2382  * Device suspend routine.  Stop the interface and save some PCI
2383  * settings in case the BIOS doesn't restore them properly on
2384  * resume.
2385  */
2386 static int
2387 vge_suspend(dev)
2388 	device_t		dev;
2389 {
2390 	struct vge_softc	*sc;
2391 
2392 	sc = device_get_softc(dev);
2393 
2394 	vge_stop(sc);
2395 
2396 	sc->suspended = 1;
2397 
2398 	return (0);
2399 }
2400 
2401 /*
2402  * Device resume routine.  Restore some PCI settings in case the BIOS
2403  * doesn't, re-enable busmastering, and restart the interface if
2404  * appropriate.
2405  */
2406 static int
2407 vge_resume(dev)
2408 	device_t		dev;
2409 {
2410 	struct vge_softc	*sc;
2411 	struct ifnet		*ifp;
2412 
2413 	sc = device_get_softc(dev);
2414 	ifp = sc->vge_ifp;
2415 
2416 	/* reenable busmastering */
2417 	pci_enable_busmaster(dev);
2418 	pci_enable_io(dev, SYS_RES_MEMORY);
2419 
2420 	/* reinitialize interface if necessary */
2421 	if (ifp->if_flags & IFF_UP)
2422 		vge_init(sc);
2423 
2424 	sc->suspended = 0;
2425 
2426 	return (0);
2427 }
2428 
2429 /*
2430  * Stop all chip I/O so that the kernel's probe routines don't
2431  * get confused by errant DMAs when rebooting.
2432  */
2433 static void
2434 vge_shutdown(dev)
2435 	device_t		dev;
2436 {
2437 	struct vge_softc		*sc;
2438 
2439 	sc = device_get_softc(dev);
2440 
2441 	vge_stop(sc);
2442 }
2443