xref: /freebsd/sys/dev/vge/if_vge.c (revision a0b9e2e854027e6ff61fb075a1309dbc71c42b54)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *	o Jumbo frame support up to 16K
52  *	o Transmit and receive flow control
53  *	o IPv4 checksum offload
54  *	o VLAN tag insertion and stripping
55  *	o TCP large send
56  *	o 64-bit multicast hash table filter
57  *	o 64 entry CAM filter
58  *	o 16K RX FIFO and 48K TX FIFO memory
59  *	o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84 
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125 
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128 
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131 
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137 
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
150 		"VIA Networking Velocity Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static int	vge_attach(device_t);
155 static int	vge_detach(device_t);
156 static int	vge_probe(device_t);
157 static int	vge_resume(device_t);
158 static int	vge_shutdown(device_t);
159 static int	vge_suspend(device_t);
160 
161 static void	vge_cam_clear(struct vge_softc *);
162 static int	vge_cam_set(struct vge_softc *, uint8_t *);
163 static void	vge_clrwol(struct vge_softc *);
164 static void	vge_discard_rxbuf(struct vge_softc *, int);
165 static int	vge_dma_alloc(struct vge_softc *);
166 static void	vge_dma_free(struct vge_softc *);
167 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int	vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174 		vge_fixup_rx(struct mbuf *);
175 #endif
176 static void	vge_freebufs(struct vge_softc *);
177 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int	vge_ifmedia_upd(struct ifnet *);
179 static int	vge_ifmedia_upd_locked(struct vge_softc *);
180 static void	vge_init(void *);
181 static void	vge_init_locked(struct vge_softc *);
182 static void	vge_intr(void *);
183 static void	vge_intr_holdoff(struct vge_softc *);
184 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void	vge_link_statchg(void *);
186 static int	vge_miibus_readreg(device_t, int, int);
187 static int	vge_miibus_writereg(device_t, int, int, int);
188 static void	vge_miipoll_start(struct vge_softc *);
189 static void	vge_miipoll_stop(struct vge_softc *);
190 static int	vge_newbuf(struct vge_softc *, int);
191 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void	vge_reset(struct vge_softc *);
193 static int	vge_rx_list_init(struct vge_softc *);
194 static int	vge_rxeof(struct vge_softc *, int);
195 static void	vge_rxfilter(struct vge_softc *);
196 static void	vge_setmedia(struct vge_softc *);
197 static void	vge_setvlan(struct vge_softc *);
198 static void	vge_setwol(struct vge_softc *);
199 static void	vge_start(struct ifnet *);
200 static void	vge_start_locked(struct ifnet *);
201 static void	vge_stats_clear(struct vge_softc *);
202 static void	vge_stats_update(struct vge_softc *);
203 static void	vge_stop(struct vge_softc *);
204 static void	vge_sysctl_node(struct vge_softc *);
205 static int	vge_tx_list_init(struct vge_softc *);
206 static void	vge_txeof(struct vge_softc *);
207 static void	vge_watchdog(void *);
208 
209 static device_method_t vge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		vge_probe),
212 	DEVMETHOD(device_attach,	vge_attach),
213 	DEVMETHOD(device_detach,	vge_detach),
214 	DEVMETHOD(device_suspend,	vge_suspend),
215 	DEVMETHOD(device_resume,	vge_resume),
216 	DEVMETHOD(device_shutdown,	vge_shutdown),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t vge_driver = {
226 	"vge",
227 	vge_methods,
228 	sizeof(struct vge_softc)
229 };
230 
231 static devclass_t vge_devclass;
232 
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235 
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243 	int i;
244 	uint16_t word = 0;
245 
246 	/*
247 	 * Enter EEPROM embedded programming mode. In order to
248 	 * access the EEPROM at all, we first have to set the
249 	 * EELOAD bit in the CHIPCFG2 register.
250 	 */
251 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253 
254 	/* Select the address of the word we want to read */
255 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
256 
257 	/* Issue read command */
258 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259 
260 	/* Wait for the done bit to be set. */
261 	for (i = 0; i < VGE_TIMEOUT; i++) {
262 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263 			break;
264 	}
265 
266 	if (i == VGE_TIMEOUT) {
267 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
268 		*dest = 0;
269 		return;
270 	}
271 
272 	/* Read the result */
273 	word = CSR_READ_2(sc, VGE_EERDDAT);
274 
275 	/* Turn off EEPROM access mode. */
276 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278 
279 	*dest = word;
280 }
281 #endif
282 
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289 	int i;
290 #ifdef VGE_EEPROM
291 	uint16_t word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (uint16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310 	int i;
311 
312 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
313 
314 	for (i = 0; i < VGE_TIMEOUT; i++) {
315 		DELAY(1);
316 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317 			break;
318 	}
319 
320 	if (i == VGE_TIMEOUT)
321 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323 
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327 	int i;
328 
329 	/* First, make sure we're idle. */
330 
331 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
332 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333 
334 	for (i = 0; i < VGE_TIMEOUT; i++) {
335 		DELAY(1);
336 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337 			break;
338 	}
339 
340 	if (i == VGE_TIMEOUT) {
341 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342 		return;
343 	}
344 
345 	/* Now enable auto poll mode. */
346 
347 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348 
349 	/* And make sure it started. */
350 
351 	for (i = 0; i < VGE_TIMEOUT; i++) {
352 		DELAY(1);
353 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354 			break;
355 	}
356 
357 	if (i == VGE_TIMEOUT)
358 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360 
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct vge_softc *sc;
365 	int i;
366 	uint16_t rval = 0;
367 
368 	sc = device_get_softc(dev);
369 
370 	vge_miipoll_stop(sc);
371 
372 	/* Specify the register we want to read. */
373 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374 
375 	/* Issue read command. */
376 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377 
378 	/* Wait for the read command bit to self-clear. */
379 	for (i = 0; i < VGE_TIMEOUT; i++) {
380 		DELAY(1);
381 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382 			break;
383 	}
384 
385 	if (i == VGE_TIMEOUT)
386 		device_printf(sc->vge_dev, "MII read timed out\n");
387 	else
388 		rval = CSR_READ_2(sc, VGE_MIIDATA);
389 
390 	vge_miipoll_start(sc);
391 
392 	return (rval);
393 }
394 
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398 	struct vge_softc *sc;
399 	int i, rval = 0;
400 
401 	sc = device_get_softc(dev);
402 
403 	vge_miipoll_stop(sc);
404 
405 	/* Specify the register we want to write. */
406 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407 
408 	/* Specify the data we want to write. */
409 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
410 
411 	/* Issue write command. */
412 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413 
414 	/* Wait for the write command bit to self-clear. */
415 	for (i = 0; i < VGE_TIMEOUT; i++) {
416 		DELAY(1);
417 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418 			break;
419 	}
420 
421 	if (i == VGE_TIMEOUT) {
422 		device_printf(sc->vge_dev, "MII write timed out\n");
423 		rval = EIO;
424 	}
425 
426 	vge_miipoll_start(sc);
427 
428 	return (rval);
429 }
430 
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434 	int i;
435 
436 	/*
437 	 * Turn off all the mask bits. This tells the chip
438 	 * that none of the entries in the CAM filter are valid.
439 	 * desired entries will be enabled as we fill the filter in.
440 	 */
441 
442 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445 	for (i = 0; i < 8; i++)
446 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447 
448 	/* Clear the VLAN filter too. */
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451 	for (i = 0; i < 8; i++)
452 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453 
454 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457 
458 	sc->vge_camidx = 0;
459 }
460 
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464 	int i, error = 0;
465 
466 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467 		return (ENOSPC);
468 
469 	/* Select the CAM data page. */
470 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472 
473 	/* Set the filter entry we want to update and enable writing. */
474 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475 
476 	/* Write the address to the CAM registers */
477 	for (i = 0; i < ETHER_ADDR_LEN; i++)
478 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479 
480 	/* Issue a write command. */
481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482 
483 	/* Wake for it to clear. */
484 	for (i = 0; i < VGE_TIMEOUT; i++) {
485 		DELAY(1);
486 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487 			break;
488 	}
489 
490 	if (i == VGE_TIMEOUT) {
491 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
492 		error = EIO;
493 		goto fail;
494 	}
495 
496 	/* Select the CAM mask page. */
497 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499 
500 	/* Set the mask bit that enables this filter. */
501 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502 	    1<<(sc->vge_camidx & 7));
503 
504 	sc->vge_camidx++;
505 
506 fail:
507 	/* Turn off access to CAM. */
508 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511 
512 	return (error);
513 }
514 
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518 	struct ifnet *ifp;
519 	uint8_t cfg;
520 
521 	VGE_LOCK_ASSERT(sc);
522 
523 	ifp = sc->vge_ifp;
524 	cfg = CSR_READ_1(sc, VGE_RXCFG);
525 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526 		cfg |= VGE_VTAG_OPT2;
527 	else
528 		cfg &= ~VGE_VTAG_OPT2;
529 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531 
532 static u_int
533 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
534 {
535 	struct vge_softc *sc = arg;
536 
537         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
538 		return (0);
539 
540 	(void )vge_cam_set(sc, LLADDR(sdl));
541 
542 	return (1);
543 }
544 
545 static u_int
546 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
547 {
548 	uint32_t h, *hashes = arg;
549 
550 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
551 	if (h < 32)
552 		hashes[0] |= (1 << h);
553 	else
554 		hashes[1] |= (1 << (h - 32));
555 
556 	return (1);
557 }
558 
559 /*
560  * Program the multicast filter. We use the 64-entry CAM filter
561  * for perfect filtering. If there's more than 64 multicast addresses,
562  * we use the hash filter instead.
563  */
564 static void
565 vge_rxfilter(struct vge_softc *sc)
566 {
567 	struct ifnet *ifp;
568 	uint32_t hashes[2];
569 	uint8_t rxcfg;
570 
571 	VGE_LOCK_ASSERT(sc);
572 
573 	/* First, zot all the multicast entries. */
574 	hashes[0] = 0;
575 	hashes[1] = 0;
576 
577 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
578 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
579 	    VGE_RXCTL_RX_PROMISC);
580 	/*
581 	 * Always allow VLAN oversized frames and frames for
582 	 * this host.
583 	 */
584 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
585 
586 	ifp = sc->vge_ifp;
587 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
588 		rxcfg |= VGE_RXCTL_RX_BCAST;
589 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
590 		if ((ifp->if_flags & IFF_PROMISC) != 0)
591 			rxcfg |= VGE_RXCTL_RX_PROMISC;
592 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
593 			hashes[0] = 0xFFFFFFFF;
594 			hashes[1] = 0xFFFFFFFF;
595 		}
596 		goto done;
597 	}
598 
599 	vge_cam_clear(sc);
600 
601 	/* Now program new ones */
602 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
603 
604 	/* If there were too many addresses, use the hash filter. */
605         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
606 		vge_cam_clear(sc);
607 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
608 	}
609 
610 done:
611 	if (hashes[0] != 0 || hashes[1] != 0)
612 		rxcfg |= VGE_RXCTL_RX_MCAST;
613 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
614 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
615 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
616 }
617 
618 static void
619 vge_reset(struct vge_softc *sc)
620 {
621 	int i;
622 
623 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
624 
625 	for (i = 0; i < VGE_TIMEOUT; i++) {
626 		DELAY(5);
627 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
628 			break;
629 	}
630 
631 	if (i == VGE_TIMEOUT) {
632 		device_printf(sc->vge_dev, "soft reset timed out\n");
633 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
634 		DELAY(2000);
635 	}
636 
637 	DELAY(5000);
638 }
639 
640 /*
641  * Probe for a VIA gigabit chip. Check the PCI vendor and device
642  * IDs against our list and return a device name if we find a match.
643  */
644 static int
645 vge_probe(device_t dev)
646 {
647 	struct vge_type	*t;
648 
649 	t = vge_devs;
650 
651 	while (t->vge_name != NULL) {
652 		if ((pci_get_vendor(dev) == t->vge_vid) &&
653 		    (pci_get_device(dev) == t->vge_did)) {
654 			device_set_desc(dev, t->vge_name);
655 			return (BUS_PROBE_DEFAULT);
656 		}
657 		t++;
658 	}
659 
660 	return (ENXIO);
661 }
662 
663 /*
664  * Map a single buffer address.
665  */
666 
667 struct vge_dmamap_arg {
668 	bus_addr_t	vge_busaddr;
669 };
670 
671 static void
672 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
673 {
674 	struct vge_dmamap_arg *ctx;
675 
676 	if (error != 0)
677 		return;
678 
679 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
680 
681 	ctx = (struct vge_dmamap_arg *)arg;
682 	ctx->vge_busaddr = segs[0].ds_addr;
683 }
684 
685 static int
686 vge_dma_alloc(struct vge_softc *sc)
687 {
688 	struct vge_dmamap_arg ctx;
689 	struct vge_txdesc *txd;
690 	struct vge_rxdesc *rxd;
691 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
692 	int error, i;
693 
694 	/*
695 	 * It seems old PCI controllers do not support DAC.  DAC
696 	 * configuration can be enabled by accessing VGE_CHIPCFG3
697 	 * register but honor EEPROM configuration instead of
698 	 * blindly overriding DAC configuration.  PCIe based
699 	 * controllers are supposed to support 64bit DMA so enable
700 	 * 64bit DMA on these controllers.
701 	 */
702 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
703 		lowaddr = BUS_SPACE_MAXADDR;
704 	else
705 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
706 
707 again:
708 	/* Create parent ring tag. */
709 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
710 	    1, 0,			/* algnmnt, boundary */
711 	    lowaddr,			/* lowaddr */
712 	    BUS_SPACE_MAXADDR,		/* highaddr */
713 	    NULL, NULL,			/* filter, filterarg */
714 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
715 	    0,				/* nsegments */
716 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
717 	    0,				/* flags */
718 	    NULL, NULL,			/* lockfunc, lockarg */
719 	    &sc->vge_cdata.vge_ring_tag);
720 	if (error != 0) {
721 		device_printf(sc->vge_dev,
722 		    "could not create parent DMA tag.\n");
723 		goto fail;
724 	}
725 
726 	/* Create tag for Tx ring. */
727 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
728 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
729 	    BUS_SPACE_MAXADDR,		/* lowaddr */
730 	    BUS_SPACE_MAXADDR,		/* highaddr */
731 	    NULL, NULL,			/* filter, filterarg */
732 	    VGE_TX_LIST_SZ,		/* maxsize */
733 	    1,				/* nsegments */
734 	    VGE_TX_LIST_SZ,		/* maxsegsize */
735 	    0,				/* flags */
736 	    NULL, NULL,			/* lockfunc, lockarg */
737 	    &sc->vge_cdata.vge_tx_ring_tag);
738 	if (error != 0) {
739 		device_printf(sc->vge_dev,
740 		    "could not allocate Tx ring DMA tag.\n");
741 		goto fail;
742 	}
743 
744 	/* Create tag for Rx ring. */
745 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
746 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
747 	    BUS_SPACE_MAXADDR,		/* lowaddr */
748 	    BUS_SPACE_MAXADDR,		/* highaddr */
749 	    NULL, NULL,			/* filter, filterarg */
750 	    VGE_RX_LIST_SZ,		/* maxsize */
751 	    1,				/* nsegments */
752 	    VGE_RX_LIST_SZ,		/* maxsegsize */
753 	    0,				/* flags */
754 	    NULL, NULL,			/* lockfunc, lockarg */
755 	    &sc->vge_cdata.vge_rx_ring_tag);
756 	if (error != 0) {
757 		device_printf(sc->vge_dev,
758 		    "could not allocate Rx ring DMA tag.\n");
759 		goto fail;
760 	}
761 
762 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
763 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
764 	    (void **)&sc->vge_rdata.vge_tx_ring,
765 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
766 	    &sc->vge_cdata.vge_tx_ring_map);
767 	if (error != 0) {
768 		device_printf(sc->vge_dev,
769 		    "could not allocate DMA'able memory for Tx ring.\n");
770 		goto fail;
771 	}
772 
773 	ctx.vge_busaddr = 0;
774 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
775 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
776 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
777 	if (error != 0 || ctx.vge_busaddr == 0) {
778 		device_printf(sc->vge_dev,
779 		    "could not load DMA'able memory for Tx ring.\n");
780 		goto fail;
781 	}
782 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
783 
784 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
785 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
786 	    (void **)&sc->vge_rdata.vge_rx_ring,
787 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
788 	    &sc->vge_cdata.vge_rx_ring_map);
789 	if (error != 0) {
790 		device_printf(sc->vge_dev,
791 		    "could not allocate DMA'able memory for Rx ring.\n");
792 		goto fail;
793 	}
794 
795 	ctx.vge_busaddr = 0;
796 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
797 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
798 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
799 	if (error != 0 || ctx.vge_busaddr == 0) {
800 		device_printf(sc->vge_dev,
801 		    "could not load DMA'able memory for Rx ring.\n");
802 		goto fail;
803 	}
804 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
805 
806 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
807 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
808 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
809 	if ((VGE_ADDR_HI(tx_ring_end) !=
810 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
811 	    (VGE_ADDR_HI(rx_ring_end) !=
812 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
813 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
814 		device_printf(sc->vge_dev, "4GB boundary crossed, "
815 		    "switching to 32bit DMA address mode.\n");
816 		vge_dma_free(sc);
817 		/* Limit DMA address space to 32bit and try again. */
818 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
819 		goto again;
820 	}
821 
822 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
823 		lowaddr = VGE_BUF_DMA_MAXADDR;
824 	else
825 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
826 	/* Create parent buffer tag. */
827 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
828 	    1, 0,			/* algnmnt, boundary */
829 	    lowaddr,			/* lowaddr */
830 	    BUS_SPACE_MAXADDR,		/* highaddr */
831 	    NULL, NULL,			/* filter, filterarg */
832 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
833 	    0,				/* nsegments */
834 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
835 	    0,				/* flags */
836 	    NULL, NULL,			/* lockfunc, lockarg */
837 	    &sc->vge_cdata.vge_buffer_tag);
838 	if (error != 0) {
839 		device_printf(sc->vge_dev,
840 		    "could not create parent buffer DMA tag.\n");
841 		goto fail;
842 	}
843 
844 	/* Create tag for Tx buffers. */
845 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
846 	    1, 0,			/* algnmnt, boundary */
847 	    BUS_SPACE_MAXADDR,		/* lowaddr */
848 	    BUS_SPACE_MAXADDR,		/* highaddr */
849 	    NULL, NULL,			/* filter, filterarg */
850 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
851 	    VGE_MAXTXSEGS,		/* nsegments */
852 	    MCLBYTES,			/* maxsegsize */
853 	    0,				/* flags */
854 	    NULL, NULL,			/* lockfunc, lockarg */
855 	    &sc->vge_cdata.vge_tx_tag);
856 	if (error != 0) {
857 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
858 		goto fail;
859 	}
860 
861 	/* Create tag for Rx buffers. */
862 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
863 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
864 	    BUS_SPACE_MAXADDR,		/* lowaddr */
865 	    BUS_SPACE_MAXADDR,		/* highaddr */
866 	    NULL, NULL,			/* filter, filterarg */
867 	    MCLBYTES,			/* maxsize */
868 	    1,				/* nsegments */
869 	    MCLBYTES,			/* maxsegsize */
870 	    0,				/* flags */
871 	    NULL, NULL,			/* lockfunc, lockarg */
872 	    &sc->vge_cdata.vge_rx_tag);
873 	if (error != 0) {
874 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
875 		goto fail;
876 	}
877 
878 	/* Create DMA maps for Tx buffers. */
879 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
880 		txd = &sc->vge_cdata.vge_txdesc[i];
881 		txd->tx_m = NULL;
882 		txd->tx_dmamap = NULL;
883 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
884 		    &txd->tx_dmamap);
885 		if (error != 0) {
886 			device_printf(sc->vge_dev,
887 			    "could not create Tx dmamap.\n");
888 			goto fail;
889 		}
890 	}
891 	/* Create DMA maps for Rx buffers. */
892 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
894 		device_printf(sc->vge_dev,
895 		    "could not create spare Rx dmamap.\n");
896 		goto fail;
897 	}
898 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
899 		rxd = &sc->vge_cdata.vge_rxdesc[i];
900 		rxd->rx_m = NULL;
901 		rxd->rx_dmamap = NULL;
902 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
903 		    &rxd->rx_dmamap);
904 		if (error != 0) {
905 			device_printf(sc->vge_dev,
906 			    "could not create Rx dmamap.\n");
907 			goto fail;
908 		}
909 	}
910 
911 fail:
912 	return (error);
913 }
914 
915 static void
916 vge_dma_free(struct vge_softc *sc)
917 {
918 	struct vge_txdesc *txd;
919 	struct vge_rxdesc *rxd;
920 	int i;
921 
922 	/* Tx ring. */
923 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
924 		if (sc->vge_rdata.vge_tx_ring_paddr)
925 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
926 			    sc->vge_cdata.vge_tx_ring_map);
927 		if (sc->vge_rdata.vge_tx_ring)
928 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
929 			    sc->vge_rdata.vge_tx_ring,
930 			    sc->vge_cdata.vge_tx_ring_map);
931 		sc->vge_rdata.vge_tx_ring = NULL;
932 		sc->vge_rdata.vge_tx_ring_paddr = 0;
933 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
934 		sc->vge_cdata.vge_tx_ring_tag = NULL;
935 	}
936 	/* Rx ring. */
937 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
938 		if (sc->vge_rdata.vge_rx_ring_paddr)
939 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
940 			    sc->vge_cdata.vge_rx_ring_map);
941 		if (sc->vge_rdata.vge_rx_ring)
942 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
943 			    sc->vge_rdata.vge_rx_ring,
944 			    sc->vge_cdata.vge_rx_ring_map);
945 		sc->vge_rdata.vge_rx_ring = NULL;
946 		sc->vge_rdata.vge_rx_ring_paddr = 0;
947 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
948 		sc->vge_cdata.vge_rx_ring_tag = NULL;
949 	}
950 	/* Tx buffers. */
951 	if (sc->vge_cdata.vge_tx_tag != NULL) {
952 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
953 			txd = &sc->vge_cdata.vge_txdesc[i];
954 			if (txd->tx_dmamap != NULL) {
955 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
956 				    txd->tx_dmamap);
957 				txd->tx_dmamap = NULL;
958 			}
959 		}
960 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
961 		sc->vge_cdata.vge_tx_tag = NULL;
962 	}
963 	/* Rx buffers. */
964 	if (sc->vge_cdata.vge_rx_tag != NULL) {
965 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
966 			rxd = &sc->vge_cdata.vge_rxdesc[i];
967 			if (rxd->rx_dmamap != NULL) {
968 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
969 				    rxd->rx_dmamap);
970 				rxd->rx_dmamap = NULL;
971 			}
972 		}
973 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
974 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
975 			    sc->vge_cdata.vge_rx_sparemap);
976 			sc->vge_cdata.vge_rx_sparemap = NULL;
977 		}
978 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
979 		sc->vge_cdata.vge_rx_tag = NULL;
980 	}
981 
982 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
983 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
984 		sc->vge_cdata.vge_buffer_tag = NULL;
985 	}
986 	if (sc->vge_cdata.vge_ring_tag != NULL) {
987 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
988 		sc->vge_cdata.vge_ring_tag = NULL;
989 	}
990 }
991 
992 /*
993  * Attach the interface. Allocate softc structures, do ifmedia
994  * setup and ethernet/BPF attach.
995  */
996 static int
997 vge_attach(device_t dev)
998 {
999 	u_char eaddr[ETHER_ADDR_LEN];
1000 	struct vge_softc *sc;
1001 	struct ifnet *ifp;
1002 	int error = 0, cap, i, msic, rid;
1003 
1004 	sc = device_get_softc(dev);
1005 	sc->vge_dev = dev;
1006 
1007 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1008 	    MTX_DEF);
1009 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1010 
1011 	/*
1012 	 * Map control/status registers.
1013 	 */
1014 	pci_enable_busmaster(dev);
1015 
1016 	rid = PCIR_BAR(1);
1017 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1018 	    RF_ACTIVE);
1019 
1020 	if (sc->vge_res == NULL) {
1021 		device_printf(dev, "couldn't map ports/memory\n");
1022 		error = ENXIO;
1023 		goto fail;
1024 	}
1025 
1026 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1027 		sc->vge_flags |= VGE_FLAG_PCIE;
1028 		sc->vge_expcap = cap;
1029 	} else
1030 		sc->vge_flags |= VGE_FLAG_JUMBO;
1031 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1032 		sc->vge_flags |= VGE_FLAG_PMCAP;
1033 		sc->vge_pmcap = cap;
1034 	}
1035 	rid = 0;
1036 	msic = pci_msi_count(dev);
1037 	if (msi_disable == 0 && msic > 0) {
1038 		msic = 1;
1039 		if (pci_alloc_msi(dev, &msic) == 0) {
1040 			if (msic == 1) {
1041 				sc->vge_flags |= VGE_FLAG_MSI;
1042 				device_printf(dev, "Using %d MSI message\n",
1043 				    msic);
1044 				rid = 1;
1045 			} else
1046 				pci_release_msi(dev);
1047 		}
1048 	}
1049 
1050 	/* Allocate interrupt */
1051 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1052 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1053 	if (sc->vge_irq == NULL) {
1054 		device_printf(dev, "couldn't map interrupt\n");
1055 		error = ENXIO;
1056 		goto fail;
1057 	}
1058 
1059 	/* Reset the adapter. */
1060 	vge_reset(sc);
1061 	/* Reload EEPROM. */
1062 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1063 	for (i = 0; i < VGE_TIMEOUT; i++) {
1064 		DELAY(5);
1065 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1066 			break;
1067 	}
1068 	if (i == VGE_TIMEOUT)
1069 		device_printf(dev, "EEPROM reload timed out\n");
1070 	/*
1071 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1072 	 * MAC will receive magic packet which in turn confuses
1073 	 * controller.
1074 	 */
1075 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1076 
1077 	/*
1078 	 * Get station address from the EEPROM.
1079 	 */
1080 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1081 	/*
1082 	 * Save configured PHY address.
1083 	 * It seems the PHY address of PCIe controllers just
1084 	 * reflects media jump strapping status so we assume the
1085 	 * internal PHY address of PCIe controller is at 1.
1086 	 */
1087 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1088 		sc->vge_phyaddr = 1;
1089 	else
1090 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1091 		    VGE_MIICFG_PHYADDR;
1092 	/* Clear WOL and take hardware from powerdown. */
1093 	vge_clrwol(sc);
1094 	vge_sysctl_node(sc);
1095 	error = vge_dma_alloc(sc);
1096 	if (error)
1097 		goto fail;
1098 
1099 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1100 	if (ifp == NULL) {
1101 		device_printf(dev, "can not if_alloc()\n");
1102 		error = ENOSPC;
1103 		goto fail;
1104 	}
1105 
1106 	vge_miipoll_start(sc);
1107 	/* Do MII setup */
1108 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1109 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1110 	    MIIF_DOPAUSE);
1111 	if (error != 0) {
1112 		device_printf(dev, "attaching PHYs failed\n");
1113 		goto fail;
1114 	}
1115 
1116 	ifp->if_softc = sc;
1117 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1118 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1119 	ifp->if_ioctl = vge_ioctl;
1120 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1121 	ifp->if_start = vge_start;
1122 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1123 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1124 	    IFCAP_VLAN_HWTAGGING;
1125 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1126 		ifp->if_capabilities |= IFCAP_WOL;
1127 	ifp->if_capenable = ifp->if_capabilities;
1128 #ifdef DEVICE_POLLING
1129 	ifp->if_capabilities |= IFCAP_POLLING;
1130 #endif
1131 	ifp->if_init = vge_init;
1132 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1133 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1134 	IFQ_SET_READY(&ifp->if_snd);
1135 
1136 	/*
1137 	 * Call MI attach routine.
1138 	 */
1139 	ether_ifattach(ifp, eaddr);
1140 
1141 	/* Tell the upper layer(s) we support long frames. */
1142 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1143 
1144 	/* Hook interrupt last to avoid having to lock softc */
1145 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1146 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1147 
1148 	if (error) {
1149 		device_printf(dev, "couldn't set up irq\n");
1150 		ether_ifdetach(ifp);
1151 		goto fail;
1152 	}
1153 
1154 fail:
1155 	if (error)
1156 		vge_detach(dev);
1157 
1158 	return (error);
1159 }
1160 
1161 /*
1162  * Shutdown hardware and free up resources. This can be called any
1163  * time after the mutex has been initialized. It is called in both
1164  * the error case in attach and the normal detach case so it needs
1165  * to be careful about only freeing resources that have actually been
1166  * allocated.
1167  */
1168 static int
1169 vge_detach(device_t dev)
1170 {
1171 	struct vge_softc *sc;
1172 	struct ifnet *ifp;
1173 
1174 	sc = device_get_softc(dev);
1175 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1176 	ifp = sc->vge_ifp;
1177 
1178 #ifdef DEVICE_POLLING
1179 	if (ifp->if_capenable & IFCAP_POLLING)
1180 		ether_poll_deregister(ifp);
1181 #endif
1182 
1183 	/* These should only be active if attach succeeded */
1184 	if (device_is_attached(dev)) {
1185 		ether_ifdetach(ifp);
1186 		VGE_LOCK(sc);
1187 		vge_stop(sc);
1188 		VGE_UNLOCK(sc);
1189 		callout_drain(&sc->vge_watchdog);
1190 	}
1191 	if (sc->vge_miibus)
1192 		device_delete_child(dev, sc->vge_miibus);
1193 	bus_generic_detach(dev);
1194 
1195 	if (sc->vge_intrhand)
1196 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1197 	if (sc->vge_irq)
1198 		bus_release_resource(dev, SYS_RES_IRQ,
1199 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1200 	if (sc->vge_flags & VGE_FLAG_MSI)
1201 		pci_release_msi(dev);
1202 	if (sc->vge_res)
1203 		bus_release_resource(dev, SYS_RES_MEMORY,
1204 		    PCIR_BAR(1), sc->vge_res);
1205 	if (ifp)
1206 		if_free(ifp);
1207 
1208 	vge_dma_free(sc);
1209 	mtx_destroy(&sc->vge_mtx);
1210 
1211 	return (0);
1212 }
1213 
1214 static void
1215 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1216 {
1217 	struct vge_rxdesc *rxd;
1218 	int i;
1219 
1220 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1221 	rxd->rx_desc->vge_sts = 0;
1222 	rxd->rx_desc->vge_ctl = 0;
1223 
1224 	/*
1225 	 * Note: the manual fails to document the fact that for
1226 	 * proper opration, the driver needs to replentish the RX
1227 	 * DMA ring 4 descriptors at a time (rather than one at a
1228 	 * time, like most chips). We can allocate the new buffers
1229 	 * but we should not set the OWN bits until we're ready
1230 	 * to hand back 4 of them in one shot.
1231 	 */
1232 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1233 		for (i = VGE_RXCHUNK; i > 0; i--) {
1234 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1235 			rxd = rxd->rxd_prev;
1236 		}
1237 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1238 	}
1239 }
1240 
1241 static int
1242 vge_newbuf(struct vge_softc *sc, int prod)
1243 {
1244 	struct vge_rxdesc *rxd;
1245 	struct mbuf *m;
1246 	bus_dma_segment_t segs[1];
1247 	bus_dmamap_t map;
1248 	int i, nsegs;
1249 
1250 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1251 	if (m == NULL)
1252 		return (ENOBUFS);
1253 	/*
1254 	 * This is part of an evil trick to deal with strict-alignment
1255 	 * architectures. The VIA chip requires RX buffers to be aligned
1256 	 * on 32-bit boundaries, but that will hose strict-alignment
1257 	 * architectures. To get around this, we leave some empty space
1258 	 * at the start of each buffer and for non-strict-alignment hosts,
1259 	 * we copy the buffer back two bytes to achieve word alignment.
1260 	 * This is slightly more efficient than allocating a new buffer,
1261 	 * copying the contents, and discarding the old buffer.
1262 	 */
1263 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1264 	m_adj(m, VGE_RX_BUF_ALIGN);
1265 
1266 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1267 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1268 		m_freem(m);
1269 		return (ENOBUFS);
1270 	}
1271 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1272 
1273 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1274 	if (rxd->rx_m != NULL) {
1275 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1276 		    BUS_DMASYNC_POSTREAD);
1277 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1278 	}
1279 	map = rxd->rx_dmamap;
1280 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1281 	sc->vge_cdata.vge_rx_sparemap = map;
1282 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1283 	    BUS_DMASYNC_PREREAD);
1284 	rxd->rx_m = m;
1285 
1286 	rxd->rx_desc->vge_sts = 0;
1287 	rxd->rx_desc->vge_ctl = 0;
1288 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1289 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1290 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1291 
1292 	/*
1293 	 * Note: the manual fails to document the fact that for
1294 	 * proper operation, the driver needs to replenish the RX
1295 	 * DMA ring 4 descriptors at a time (rather than one at a
1296 	 * time, like most chips). We can allocate the new buffers
1297 	 * but we should not set the OWN bits until we're ready
1298 	 * to hand back 4 of them in one shot.
1299 	 */
1300 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1301 		for (i = VGE_RXCHUNK; i > 0; i--) {
1302 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1303 			rxd = rxd->rxd_prev;
1304 		}
1305 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1306 	}
1307 
1308 	return (0);
1309 }
1310 
1311 static int
1312 vge_tx_list_init(struct vge_softc *sc)
1313 {
1314 	struct vge_ring_data *rd;
1315 	struct vge_txdesc *txd;
1316 	int i;
1317 
1318 	VGE_LOCK_ASSERT(sc);
1319 
1320 	sc->vge_cdata.vge_tx_prodidx = 0;
1321 	sc->vge_cdata.vge_tx_considx = 0;
1322 	sc->vge_cdata.vge_tx_cnt = 0;
1323 
1324 	rd = &sc->vge_rdata;
1325 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1326 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1327 		txd = &sc->vge_cdata.vge_txdesc[i];
1328 		txd->tx_m = NULL;
1329 		txd->tx_desc = &rd->vge_tx_ring[i];
1330 	}
1331 
1332 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1333 	    sc->vge_cdata.vge_tx_ring_map,
1334 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1335 
1336 	return (0);
1337 }
1338 
1339 static int
1340 vge_rx_list_init(struct vge_softc *sc)
1341 {
1342 	struct vge_ring_data *rd;
1343 	struct vge_rxdesc *rxd;
1344 	int i;
1345 
1346 	VGE_LOCK_ASSERT(sc);
1347 
1348 	sc->vge_cdata.vge_rx_prodidx = 0;
1349 	sc->vge_cdata.vge_head = NULL;
1350 	sc->vge_cdata.vge_tail = NULL;
1351 	sc->vge_cdata.vge_rx_commit = 0;
1352 
1353 	rd = &sc->vge_rdata;
1354 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1355 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1356 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1357 		rxd->rx_m = NULL;
1358 		rxd->rx_desc = &rd->vge_rx_ring[i];
1359 		if (i == 0)
1360 			rxd->rxd_prev =
1361 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1362 		else
1363 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1364 		if (vge_newbuf(sc, i) != 0)
1365 			return (ENOBUFS);
1366 	}
1367 
1368 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1369 	    sc->vge_cdata.vge_rx_ring_map,
1370 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371 
1372 	sc->vge_cdata.vge_rx_commit = 0;
1373 
1374 	return (0);
1375 }
1376 
1377 static void
1378 vge_freebufs(struct vge_softc *sc)
1379 {
1380 	struct vge_txdesc *txd;
1381 	struct vge_rxdesc *rxd;
1382 	struct ifnet *ifp;
1383 	int i;
1384 
1385 	VGE_LOCK_ASSERT(sc);
1386 
1387 	ifp = sc->vge_ifp;
1388 	/*
1389 	 * Free RX and TX mbufs still in the queues.
1390 	 */
1391 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1392 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1393 		if (rxd->rx_m != NULL) {
1394 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1395 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1396 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1397 			    rxd->rx_dmamap);
1398 			m_freem(rxd->rx_m);
1399 			rxd->rx_m = NULL;
1400 		}
1401 	}
1402 
1403 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1404 		txd = &sc->vge_cdata.vge_txdesc[i];
1405 		if (txd->tx_m != NULL) {
1406 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1407 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1408 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1409 			    txd->tx_dmamap);
1410 			m_freem(txd->tx_m);
1411 			txd->tx_m = NULL;
1412 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1413 		}
1414 	}
1415 }
1416 
1417 #ifndef	__NO_STRICT_ALIGNMENT
1418 static __inline void
1419 vge_fixup_rx(struct mbuf *m)
1420 {
1421 	int i;
1422 	uint16_t *src, *dst;
1423 
1424 	src = mtod(m, uint16_t *);
1425 	dst = src - 1;
1426 
1427 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428 		*dst++ = *src++;
1429 
1430 	m->m_data -= ETHER_ALIGN;
1431 }
1432 #endif
1433 
1434 /*
1435  * RX handler. We support the reception of jumbo frames that have
1436  * been fragmented across multiple 2K mbuf cluster buffers.
1437  */
1438 static int
1439 vge_rxeof(struct vge_softc *sc, int count)
1440 {
1441 	struct mbuf *m;
1442 	struct ifnet *ifp;
1443 	int prod, prog, total_len;
1444 	struct vge_rxdesc *rxd;
1445 	struct vge_rx_desc *cur_rx;
1446 	uint32_t rxstat, rxctl;
1447 
1448 	VGE_LOCK_ASSERT(sc);
1449 
1450 	ifp = sc->vge_ifp;
1451 
1452 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1453 	    sc->vge_cdata.vge_rx_ring_map,
1454 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1455 
1456 	prod = sc->vge_cdata.vge_rx_prodidx;
1457 	for (prog = 0; count > 0 &&
1458 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1459 	    VGE_RX_DESC_INC(prod)) {
1460 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1461 		rxstat = le32toh(cur_rx->vge_sts);
1462 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1463 			break;
1464 		count--;
1465 		prog++;
1466 		rxctl = le32toh(cur_rx->vge_ctl);
1467 		total_len = VGE_RXBYTES(rxstat);
1468 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1469 		m = rxd->rx_m;
1470 
1471 		/*
1472 		 * If the 'start of frame' bit is set, this indicates
1473 		 * either the first fragment in a multi-fragment receive,
1474 		 * or an intermediate fragment. Either way, we want to
1475 		 * accumulate the buffers.
1476 		 */
1477 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1478 			if (vge_newbuf(sc, prod) != 0) {
1479 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1480 				VGE_CHAIN_RESET(sc);
1481 				vge_discard_rxbuf(sc, prod);
1482 				continue;
1483 			}
1484 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1485 			if (sc->vge_cdata.vge_head == NULL) {
1486 				sc->vge_cdata.vge_head = m;
1487 				sc->vge_cdata.vge_tail = m;
1488 			} else {
1489 				m->m_flags &= ~M_PKTHDR;
1490 				sc->vge_cdata.vge_tail->m_next = m;
1491 				sc->vge_cdata.vge_tail = m;
1492 			}
1493 			continue;
1494 		}
1495 
1496 		/*
1497 		 * Bad/error frames will have the RXOK bit cleared.
1498 		 * However, there's one error case we want to allow:
1499 		 * if a VLAN tagged frame arrives and the chip can't
1500 		 * match it against the CAM filter, it considers this
1501 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1502 		 * We don't want to drop the frame though: our VLAN
1503 		 * filtering is done in software.
1504 		 * We also want to receive bad-checksummed frames and
1505 		 * and frames with bad-length.
1506 		 */
1507 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1508 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1509 		    VGE_RDSTS_CSUMERR)) == 0) {
1510 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1511 			/*
1512 			 * If this is part of a multi-fragment packet,
1513 			 * discard all the pieces.
1514 			 */
1515 			VGE_CHAIN_RESET(sc);
1516 			vge_discard_rxbuf(sc, prod);
1517 			continue;
1518 		}
1519 
1520 		if (vge_newbuf(sc, prod) != 0) {
1521 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1522 			VGE_CHAIN_RESET(sc);
1523 			vge_discard_rxbuf(sc, prod);
1524 			continue;
1525 		}
1526 
1527 		/* Chain received mbufs. */
1528 		if (sc->vge_cdata.vge_head != NULL) {
1529 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1530 			/*
1531 			 * Special case: if there's 4 bytes or less
1532 			 * in this buffer, the mbuf can be discarded:
1533 			 * the last 4 bytes is the CRC, which we don't
1534 			 * care about anyway.
1535 			 */
1536 			if (m->m_len <= ETHER_CRC_LEN) {
1537 				sc->vge_cdata.vge_tail->m_len -=
1538 				    (ETHER_CRC_LEN - m->m_len);
1539 				m_freem(m);
1540 			} else {
1541 				m->m_len -= ETHER_CRC_LEN;
1542 				m->m_flags &= ~M_PKTHDR;
1543 				sc->vge_cdata.vge_tail->m_next = m;
1544 			}
1545 			m = sc->vge_cdata.vge_head;
1546 			m->m_flags |= M_PKTHDR;
1547 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1548 		} else {
1549 			m->m_flags |= M_PKTHDR;
1550 			m->m_pkthdr.len = m->m_len =
1551 			    (total_len - ETHER_CRC_LEN);
1552 		}
1553 
1554 #ifndef	__NO_STRICT_ALIGNMENT
1555 		vge_fixup_rx(m);
1556 #endif
1557 		m->m_pkthdr.rcvif = ifp;
1558 
1559 		/* Do RX checksumming if enabled */
1560 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1561 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1562 			/* Check IP header checksum */
1563 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1564 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1565 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1566 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1567 
1568 			/* Check TCP/UDP checksum */
1569 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1570 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1571 				m->m_pkthdr.csum_flags |=
1572 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1573 				m->m_pkthdr.csum_data = 0xffff;
1574 			}
1575 		}
1576 
1577 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1578 			/*
1579 			 * The 32-bit rxctl register is stored in little-endian.
1580 			 * However, the 16-bit vlan tag is stored in big-endian,
1581 			 * so we have to byte swap it.
1582 			 */
1583 			m->m_pkthdr.ether_vtag =
1584 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1585 			m->m_flags |= M_VLANTAG;
1586 		}
1587 
1588 		VGE_UNLOCK(sc);
1589 		(*ifp->if_input)(ifp, m);
1590 		VGE_LOCK(sc);
1591 		sc->vge_cdata.vge_head = NULL;
1592 		sc->vge_cdata.vge_tail = NULL;
1593 	}
1594 
1595 	if (prog > 0) {
1596 		sc->vge_cdata.vge_rx_prodidx = prod;
1597 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1598 		    sc->vge_cdata.vge_rx_ring_map,
1599 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1600 		/* Update residue counter. */
1601 		if (sc->vge_cdata.vge_rx_commit != 0) {
1602 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1603 			    sc->vge_cdata.vge_rx_commit);
1604 			sc->vge_cdata.vge_rx_commit = 0;
1605 		}
1606 	}
1607 	return (prog);
1608 }
1609 
1610 static void
1611 vge_txeof(struct vge_softc *sc)
1612 {
1613 	struct ifnet *ifp;
1614 	struct vge_tx_desc *cur_tx;
1615 	struct vge_txdesc *txd;
1616 	uint32_t txstat;
1617 	int cons, prod;
1618 
1619 	VGE_LOCK_ASSERT(sc);
1620 
1621 	ifp = sc->vge_ifp;
1622 
1623 	if (sc->vge_cdata.vge_tx_cnt == 0)
1624 		return;
1625 
1626 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1627 	    sc->vge_cdata.vge_tx_ring_map,
1628 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1629 
1630 	/*
1631 	 * Go through our tx list and free mbufs for those
1632 	 * frames that have been transmitted.
1633 	 */
1634 	cons = sc->vge_cdata.vge_tx_considx;
1635 	prod = sc->vge_cdata.vge_tx_prodidx;
1636 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1637 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1638 		txstat = le32toh(cur_tx->vge_sts);
1639 		if ((txstat & VGE_TDSTS_OWN) != 0)
1640 			break;
1641 		sc->vge_cdata.vge_tx_cnt--;
1642 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1643 
1644 		txd = &sc->vge_cdata.vge_txdesc[cons];
1645 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1646 		    BUS_DMASYNC_POSTWRITE);
1647 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1648 
1649 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1650 		    __func__));
1651 		m_freem(txd->tx_m);
1652 		txd->tx_m = NULL;
1653 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1654 	}
1655 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1656 	    sc->vge_cdata.vge_tx_ring_map,
1657 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1658 	sc->vge_cdata.vge_tx_considx = cons;
1659 	if (sc->vge_cdata.vge_tx_cnt == 0)
1660 		sc->vge_timer = 0;
1661 }
1662 
1663 static void
1664 vge_link_statchg(void *xsc)
1665 {
1666 	struct vge_softc *sc;
1667 	struct ifnet *ifp;
1668 	uint8_t physts;
1669 
1670 	sc = xsc;
1671 	ifp = sc->vge_ifp;
1672 	VGE_LOCK_ASSERT(sc);
1673 
1674 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1675 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1676 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1677 			sc->vge_flags &= ~VGE_FLAG_LINK;
1678 			if_link_state_change(sc->vge_ifp,
1679 			    LINK_STATE_DOWN);
1680 		} else {
1681 			sc->vge_flags |= VGE_FLAG_LINK;
1682 			if_link_state_change(sc->vge_ifp,
1683 			    LINK_STATE_UP);
1684 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1685 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1686 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1687 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1688 					CSR_WRITE_1(sc, VGE_CRS2,
1689 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1690 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1691 					CSR_WRITE_1(sc, VGE_CRS2,
1692 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1693 			}
1694 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1695 				vge_start_locked(ifp);
1696 		}
1697 	}
1698 	/*
1699 	 * Restart MII auto-polling because link state change interrupt
1700 	 * will disable it.
1701 	 */
1702 	vge_miipoll_start(sc);
1703 }
1704 
1705 #ifdef DEVICE_POLLING
1706 static int
1707 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1708 {
1709 	struct vge_softc *sc = ifp->if_softc;
1710 	int rx_npkts = 0;
1711 
1712 	VGE_LOCK(sc);
1713 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1714 		goto done;
1715 
1716 	rx_npkts = vge_rxeof(sc, count);
1717 	vge_txeof(sc);
1718 
1719 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1720 		vge_start_locked(ifp);
1721 
1722 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1723 		uint32_t       status;
1724 		status = CSR_READ_4(sc, VGE_ISR);
1725 		if (status == 0xFFFFFFFF)
1726 			goto done;
1727 		if (status)
1728 			CSR_WRITE_4(sc, VGE_ISR, status);
1729 
1730 		/*
1731 		 * XXX check behaviour on receiver stalls.
1732 		 */
1733 
1734 		if (status & VGE_ISR_TXDMA_STALL ||
1735 		    status & VGE_ISR_RXDMA_STALL) {
1736 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1737 			vge_init_locked(sc);
1738 		}
1739 
1740 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1741 			vge_rxeof(sc, count);
1742 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1743 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1744 		}
1745 	}
1746 done:
1747 	VGE_UNLOCK(sc);
1748 	return (rx_npkts);
1749 }
1750 #endif /* DEVICE_POLLING */
1751 
1752 static void
1753 vge_intr(void *arg)
1754 {
1755 	struct vge_softc *sc;
1756 	struct ifnet *ifp;
1757 	uint32_t status;
1758 
1759 	sc = arg;
1760 	VGE_LOCK(sc);
1761 
1762 	ifp = sc->vge_ifp;
1763 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1764 	    (ifp->if_flags & IFF_UP) == 0) {
1765 		VGE_UNLOCK(sc);
1766 		return;
1767 	}
1768 
1769 #ifdef DEVICE_POLLING
1770 	if  (ifp->if_capenable & IFCAP_POLLING) {
1771 		status = CSR_READ_4(sc, VGE_ISR);
1772 		CSR_WRITE_4(sc, VGE_ISR, status);
1773 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1774 			vge_link_statchg(sc);
1775 		VGE_UNLOCK(sc);
1776 		return;
1777 	}
1778 #endif
1779 
1780 	/* Disable interrupts */
1781 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1782 	status = CSR_READ_4(sc, VGE_ISR);
1783 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1784 	/* If the card has gone away the read returns 0xffff. */
1785 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1786 		goto done;
1787 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1788 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1789 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1790 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1791 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1792 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1793 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1794 		}
1795 
1796 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1797 			vge_txeof(sc);
1798 
1799 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1800 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801 			vge_init_locked(sc);
1802 		}
1803 
1804 		if (status & VGE_ISR_LINKSTS)
1805 			vge_link_statchg(sc);
1806 	}
1807 done:
1808 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1809 		/* Re-enable interrupts */
1810 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1811 
1812 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1813 			vge_start_locked(ifp);
1814 	}
1815 	VGE_UNLOCK(sc);
1816 }
1817 
1818 static int
1819 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1820 {
1821 	struct vge_txdesc *txd;
1822 	struct vge_tx_frag *frag;
1823 	struct mbuf *m;
1824 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1825 	int error, i, nsegs, padlen;
1826 	uint32_t cflags;
1827 
1828 	VGE_LOCK_ASSERT(sc);
1829 
1830 	M_ASSERTPKTHDR((*m_head));
1831 
1832 	/* Argh. This chip does not autopad short frames. */
1833 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1834 		m = *m_head;
1835 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1836 		if (M_WRITABLE(m) == 0) {
1837 			/* Get a writable copy. */
1838 			m = m_dup(*m_head, M_NOWAIT);
1839 			m_freem(*m_head);
1840 			if (m == NULL) {
1841 				*m_head = NULL;
1842 				return (ENOBUFS);
1843 			}
1844 			*m_head = m;
1845 		}
1846 		if (M_TRAILINGSPACE(m) < padlen) {
1847 			m = m_defrag(m, M_NOWAIT);
1848 			if (m == NULL) {
1849 				m_freem(*m_head);
1850 				*m_head = NULL;
1851 				return (ENOBUFS);
1852 			}
1853 		}
1854 		/*
1855 		 * Manually pad short frames, and zero the pad space
1856 		 * to avoid leaking data.
1857 		 */
1858 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1859 		m->m_pkthdr.len += padlen;
1860 		m->m_len = m->m_pkthdr.len;
1861 		*m_head = m;
1862 	}
1863 
1864 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1865 
1866 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1867 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1868 	if (error == EFBIG) {
1869 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1870 		if (m == NULL) {
1871 			m_freem(*m_head);
1872 			*m_head = NULL;
1873 			return (ENOMEM);
1874 		}
1875 		*m_head = m;
1876 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1877 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1878 		if (error != 0) {
1879 			m_freem(*m_head);
1880 			*m_head = NULL;
1881 			return (error);
1882 		}
1883 	} else if (error != 0)
1884 		return (error);
1885 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1886 	    BUS_DMASYNC_PREWRITE);
1887 
1888 	m = *m_head;
1889 	cflags = 0;
1890 
1891 	/* Configure checksum offload. */
1892 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1893 		cflags |= VGE_TDCTL_IPCSUM;
1894 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1895 		cflags |= VGE_TDCTL_TCPCSUM;
1896 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1897 		cflags |= VGE_TDCTL_UDPCSUM;
1898 
1899 	/* Configure VLAN. */
1900 	if ((m->m_flags & M_VLANTAG) != 0)
1901 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1902 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1903 	/*
1904 	 * XXX
1905 	 * Velocity family seems to support TSO but no information
1906 	 * for MSS configuration is available. Also the number of
1907 	 * fragments supported by a descriptor is too small to hold
1908 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1909 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1910 	 * longer chain of buffers but no additional information is
1911 	 * available.
1912 	 *
1913 	 * When telling the chip how many segments there are, we
1914 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1915 	 * know why. This also means we can't use the last fragment
1916 	 * field of Tx descriptor.
1917 	 */
1918 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1919 	    VGE_TD_LS_NORM);
1920 	for (i = 0; i < nsegs; i++) {
1921 		frag = &txd->tx_desc->vge_frag[i];
1922 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1923 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1924 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1925 	}
1926 
1927 	sc->vge_cdata.vge_tx_cnt++;
1928 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1929 
1930 	/*
1931 	 * Finally request interrupt and give the first descriptor
1932 	 * ownership to hardware.
1933 	 */
1934 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1935 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1936 	txd->tx_m = m;
1937 
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Main transmit routine.
1943  */
1944 
1945 static void
1946 vge_start(struct ifnet *ifp)
1947 {
1948 	struct vge_softc *sc;
1949 
1950 	sc = ifp->if_softc;
1951 	VGE_LOCK(sc);
1952 	vge_start_locked(ifp);
1953 	VGE_UNLOCK(sc);
1954 }
1955 
1956 static void
1957 vge_start_locked(struct ifnet *ifp)
1958 {
1959 	struct vge_softc *sc;
1960 	struct vge_txdesc *txd;
1961 	struct mbuf *m_head;
1962 	int enq, idx;
1963 
1964 	sc = ifp->if_softc;
1965 
1966 	VGE_LOCK_ASSERT(sc);
1967 
1968 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1969 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1970 	    IFF_DRV_RUNNING)
1971 		return;
1972 
1973 	idx = sc->vge_cdata.vge_tx_prodidx;
1974 	VGE_TX_DESC_DEC(idx);
1975 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1976 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1977 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1978 		if (m_head == NULL)
1979 			break;
1980 		/*
1981 		 * Pack the data into the transmit ring. If we
1982 		 * don't have room, set the OACTIVE flag and wait
1983 		 * for the NIC to drain the ring.
1984 		 */
1985 		if (vge_encap(sc, &m_head)) {
1986 			if (m_head == NULL)
1987 				break;
1988 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1989 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1990 			break;
1991 		}
1992 
1993 		txd = &sc->vge_cdata.vge_txdesc[idx];
1994 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1995 		VGE_TX_DESC_INC(idx);
1996 
1997 		enq++;
1998 		/*
1999 		 * If there's a BPF listener, bounce a copy of this frame
2000 		 * to him.
2001 		 */
2002 		ETHER_BPF_MTAP(ifp, m_head);
2003 	}
2004 
2005 	if (enq > 0) {
2006 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2007 		    sc->vge_cdata.vge_tx_ring_map,
2008 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2009 		/* Issue a transmit command. */
2010 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2011 		/*
2012 		 * Set a timeout in case the chip goes out to lunch.
2013 		 */
2014 		sc->vge_timer = 5;
2015 	}
2016 }
2017 
2018 static void
2019 vge_init(void *xsc)
2020 {
2021 	struct vge_softc *sc = xsc;
2022 
2023 	VGE_LOCK(sc);
2024 	vge_init_locked(sc);
2025 	VGE_UNLOCK(sc);
2026 }
2027 
2028 static void
2029 vge_init_locked(struct vge_softc *sc)
2030 {
2031 	struct ifnet *ifp = sc->vge_ifp;
2032 	int error, i;
2033 
2034 	VGE_LOCK_ASSERT(sc);
2035 
2036 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2037 		return;
2038 
2039 	/*
2040 	 * Cancel pending I/O and free all RX/TX buffers.
2041 	 */
2042 	vge_stop(sc);
2043 	vge_reset(sc);
2044 	vge_miipoll_start(sc);
2045 
2046 	/*
2047 	 * Initialize the RX and TX descriptors and mbufs.
2048 	 */
2049 
2050 	error = vge_rx_list_init(sc);
2051 	if (error != 0) {
2052                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2053                 return;
2054 	}
2055 	vge_tx_list_init(sc);
2056 	/* Clear MAC statistics. */
2057 	vge_stats_clear(sc);
2058 	/* Set our station address */
2059 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2060 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2061 
2062 	/*
2063 	 * Set receive FIFO threshold. Also allow transmission and
2064 	 * reception of VLAN tagged frames.
2065 	 */
2066 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2067 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2068 
2069 	/* Set DMA burst length */
2070 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2071 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2072 
2073 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2074 
2075 	/* Set collision backoff algorithm */
2076 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2077 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2078 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2079 
2080 	/* Disable LPSEL field in priority resolution */
2081 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2082 
2083 	/*
2084 	 * Load the addresses of the DMA queues into the chip.
2085 	 * Note that we only use one transmit queue.
2086 	 */
2087 
2088 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2089 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2090 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2091 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2092 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2093 
2094 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2095 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2096 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2097 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2098 
2099 	/* Configure interrupt moderation. */
2100 	vge_intr_holdoff(sc);
2101 
2102 	/* Enable and wake up the RX descriptor queue */
2103 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2104 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2105 
2106 	/* Enable the TX descriptor queue */
2107 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2108 
2109 	/* Init the cam filter. */
2110 	vge_cam_clear(sc);
2111 
2112 	/* Set up receiver filter. */
2113 	vge_rxfilter(sc);
2114 	vge_setvlan(sc);
2115 
2116 	/* Initialize pause timer. */
2117 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2118 	/*
2119 	 * Initialize flow control parameters.
2120 	 *  TX XON high threshold : 48
2121 	 *  TX pause low threshold : 24
2122 	 *  Disable hald-duplex flow control
2123 	 */
2124 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2125 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2126 
2127 	/* Enable jumbo frame reception (if desired) */
2128 
2129 	/* Start the MAC. */
2130 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2131 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2132 	CSR_WRITE_1(sc, VGE_CRS0,
2133 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2134 
2135 #ifdef DEVICE_POLLING
2136 	/*
2137 	 * Disable interrupts except link state change if we are polling.
2138 	 */
2139 	if (ifp->if_capenable & IFCAP_POLLING) {
2140 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2141 	} else	/* otherwise ... */
2142 #endif
2143 	{
2144 	/*
2145 	 * Enable interrupts.
2146 	 */
2147 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2148 	}
2149 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2150 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2151 
2152 	sc->vge_flags &= ~VGE_FLAG_LINK;
2153 	vge_ifmedia_upd_locked(sc);
2154 
2155 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2156 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2157 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2158 }
2159 
2160 /*
2161  * Set media options.
2162  */
2163 static int
2164 vge_ifmedia_upd(struct ifnet *ifp)
2165 {
2166 	struct vge_softc *sc;
2167 	int error;
2168 
2169 	sc = ifp->if_softc;
2170 	VGE_LOCK(sc);
2171 	error = vge_ifmedia_upd_locked(sc);
2172 	VGE_UNLOCK(sc);
2173 
2174 	return (error);
2175 }
2176 
2177 static int
2178 vge_ifmedia_upd_locked(struct vge_softc *sc)
2179 {
2180 	struct mii_data *mii;
2181 	struct mii_softc *miisc;
2182 	int error;
2183 
2184 	mii = device_get_softc(sc->vge_miibus);
2185 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2186 		PHY_RESET(miisc);
2187 	vge_setmedia(sc);
2188 	error = mii_mediachg(mii);
2189 
2190 	return (error);
2191 }
2192 
2193 /*
2194  * Report current media status.
2195  */
2196 static void
2197 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2198 {
2199 	struct vge_softc *sc;
2200 	struct mii_data *mii;
2201 
2202 	sc = ifp->if_softc;
2203 	mii = device_get_softc(sc->vge_miibus);
2204 
2205 	VGE_LOCK(sc);
2206 	if ((ifp->if_flags & IFF_UP) == 0) {
2207 		VGE_UNLOCK(sc);
2208 		return;
2209 	}
2210 	mii_pollstat(mii);
2211 	ifmr->ifm_active = mii->mii_media_active;
2212 	ifmr->ifm_status = mii->mii_media_status;
2213 	VGE_UNLOCK(sc);
2214 }
2215 
2216 static void
2217 vge_setmedia(struct vge_softc *sc)
2218 {
2219 	struct mii_data *mii;
2220 	struct ifmedia_entry *ife;
2221 
2222 	mii = device_get_softc(sc->vge_miibus);
2223 	ife = mii->mii_media.ifm_cur;
2224 
2225 	/*
2226 	 * If the user manually selects a media mode, we need to turn
2227 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2228 	 * user happens to choose a full duplex mode, we also need to
2229 	 * set the 'force full duplex' bit. This applies only to
2230 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2231 	 * mode is disabled, and in 1000baseT mode, full duplex is
2232 	 * always implied, so we turn on the forced mode bit but leave
2233 	 * the FDX bit cleared.
2234 	 */
2235 
2236 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2237 	case IFM_AUTO:
2238 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2239 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2240 		break;
2241 	case IFM_1000_T:
2242 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2243 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244 		break;
2245 	case IFM_100_TX:
2246 	case IFM_10_T:
2247 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2248 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2249 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2250 		} else {
2251 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2252 		}
2253 		break;
2254 	default:
2255 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2256 		    IFM_SUBTYPE(ife->ifm_media));
2257 		break;
2258 	}
2259 }
2260 
2261 static int
2262 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2263 {
2264 	struct vge_softc *sc = ifp->if_softc;
2265 	struct ifreq *ifr = (struct ifreq *) data;
2266 	struct mii_data *mii;
2267 	int error = 0, mask;
2268 
2269 	switch (command) {
2270 	case SIOCSIFMTU:
2271 		VGE_LOCK(sc);
2272 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2273 			error = EINVAL;
2274 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2275 			if (ifr->ifr_mtu > ETHERMTU &&
2276 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2277 				error = EINVAL;
2278 			else
2279 				ifp->if_mtu = ifr->ifr_mtu;
2280 		}
2281 		VGE_UNLOCK(sc);
2282 		break;
2283 	case SIOCSIFFLAGS:
2284 		VGE_LOCK(sc);
2285 		if ((ifp->if_flags & IFF_UP) != 0) {
2286 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2287 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2288 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2289 				vge_rxfilter(sc);
2290 			else
2291 				vge_init_locked(sc);
2292 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2293 			vge_stop(sc);
2294 		sc->vge_if_flags = ifp->if_flags;
2295 		VGE_UNLOCK(sc);
2296 		break;
2297 	case SIOCADDMULTI:
2298 	case SIOCDELMULTI:
2299 		VGE_LOCK(sc);
2300 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2301 			vge_rxfilter(sc);
2302 		VGE_UNLOCK(sc);
2303 		break;
2304 	case SIOCGIFMEDIA:
2305 	case SIOCSIFMEDIA:
2306 		mii = device_get_softc(sc->vge_miibus);
2307 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2308 		break;
2309 	case SIOCSIFCAP:
2310 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2311 #ifdef DEVICE_POLLING
2312 		if (mask & IFCAP_POLLING) {
2313 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2314 				error = ether_poll_register(vge_poll, ifp);
2315 				if (error)
2316 					return (error);
2317 				VGE_LOCK(sc);
2318 					/* Disable interrupts */
2319 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2320 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2321 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2322 				ifp->if_capenable |= IFCAP_POLLING;
2323 				VGE_UNLOCK(sc);
2324 			} else {
2325 				error = ether_poll_deregister(ifp);
2326 				/* Enable interrupts. */
2327 				VGE_LOCK(sc);
2328 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2329 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2330 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2331 				ifp->if_capenable &= ~IFCAP_POLLING;
2332 				VGE_UNLOCK(sc);
2333 			}
2334 		}
2335 #endif /* DEVICE_POLLING */
2336 		VGE_LOCK(sc);
2337 		if ((mask & IFCAP_TXCSUM) != 0 &&
2338 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2339 			ifp->if_capenable ^= IFCAP_TXCSUM;
2340 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2341 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2342 			else
2343 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2344 		}
2345 		if ((mask & IFCAP_RXCSUM) != 0 &&
2346 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2347 			ifp->if_capenable ^= IFCAP_RXCSUM;
2348 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2349 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2350 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2351 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2352 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2353 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2354 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2355 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2356 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2357 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2358 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2359 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2360 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2361 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2362 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2363 			vge_setvlan(sc);
2364 		}
2365 		VGE_UNLOCK(sc);
2366 		VLAN_CAPABILITIES(ifp);
2367 		break;
2368 	default:
2369 		error = ether_ioctl(ifp, command, data);
2370 		break;
2371 	}
2372 
2373 	return (error);
2374 }
2375 
2376 static void
2377 vge_watchdog(void *arg)
2378 {
2379 	struct vge_softc *sc;
2380 	struct ifnet *ifp;
2381 
2382 	sc = arg;
2383 	VGE_LOCK_ASSERT(sc);
2384 	vge_stats_update(sc);
2385 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2386 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2387 		return;
2388 
2389 	ifp = sc->vge_ifp;
2390 	if_printf(ifp, "watchdog timeout\n");
2391 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2392 
2393 	vge_txeof(sc);
2394 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2395 
2396 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2397 	vge_init_locked(sc);
2398 }
2399 
2400 /*
2401  * Stop the adapter and free any mbufs allocated to the
2402  * RX and TX lists.
2403  */
2404 static void
2405 vge_stop(struct vge_softc *sc)
2406 {
2407 	struct ifnet *ifp;
2408 
2409 	VGE_LOCK_ASSERT(sc);
2410 	ifp = sc->vge_ifp;
2411 	sc->vge_timer = 0;
2412 	callout_stop(&sc->vge_watchdog);
2413 
2414 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2415 
2416 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2417 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2418 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2419 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2420 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2421 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2422 
2423 	vge_stats_update(sc);
2424 	VGE_CHAIN_RESET(sc);
2425 	vge_txeof(sc);
2426 	vge_freebufs(sc);
2427 }
2428 
2429 /*
2430  * Device suspend routine.  Stop the interface and save some PCI
2431  * settings in case the BIOS doesn't restore them properly on
2432  * resume.
2433  */
2434 static int
2435 vge_suspend(device_t dev)
2436 {
2437 	struct vge_softc *sc;
2438 
2439 	sc = device_get_softc(dev);
2440 
2441 	VGE_LOCK(sc);
2442 	vge_stop(sc);
2443 	vge_setwol(sc);
2444 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2445 	VGE_UNLOCK(sc);
2446 
2447 	return (0);
2448 }
2449 
2450 /*
2451  * Device resume routine.  Restore some PCI settings in case the BIOS
2452  * doesn't, re-enable busmastering, and restart the interface if
2453  * appropriate.
2454  */
2455 static int
2456 vge_resume(device_t dev)
2457 {
2458 	struct vge_softc *sc;
2459 	struct ifnet *ifp;
2460 	uint16_t pmstat;
2461 
2462 	sc = device_get_softc(dev);
2463 	VGE_LOCK(sc);
2464 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2465 		/* Disable PME and clear PME status. */
2466 		pmstat = pci_read_config(sc->vge_dev,
2467 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2468 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2469 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2470 			pci_write_config(sc->vge_dev,
2471 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2472 		}
2473 	}
2474 	vge_clrwol(sc);
2475 	/* Restart MII auto-polling. */
2476 	vge_miipoll_start(sc);
2477 	ifp = sc->vge_ifp;
2478 	/* Reinitialize interface if necessary. */
2479 	if ((ifp->if_flags & IFF_UP) != 0) {
2480 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2481 		vge_init_locked(sc);
2482 	}
2483 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2484 	VGE_UNLOCK(sc);
2485 
2486 	return (0);
2487 }
2488 
2489 /*
2490  * Stop all chip I/O so that the kernel's probe routines don't
2491  * get confused by errant DMAs when rebooting.
2492  */
2493 static int
2494 vge_shutdown(device_t dev)
2495 {
2496 
2497 	return (vge_suspend(dev));
2498 }
2499 
2500 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2501 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2502 
2503 static void
2504 vge_sysctl_node(struct vge_softc *sc)
2505 {
2506 	struct sysctl_ctx_list *ctx;
2507 	struct sysctl_oid_list *child, *parent;
2508 	struct sysctl_oid *tree;
2509 	struct vge_hw_stats *stats;
2510 
2511 	stats = &sc->vge_stats;
2512 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2513 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2514 
2515 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2516 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2517 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2518 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2519 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2520 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2521 
2522 	/* Pull in device tunables. */
2523 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2524 	resource_int_value(device_get_name(sc->vge_dev),
2525 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2526 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2527 	resource_int_value(device_get_name(sc->vge_dev),
2528 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2529 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2530 	resource_int_value(device_get_name(sc->vge_dev),
2531 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2532 
2533 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2534 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2535 	parent = SYSCTL_CHILDREN(tree);
2536 
2537 	/* Rx statistics. */
2538 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2539 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2540 	child = SYSCTL_CHILDREN(tree);
2541 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2542 	    &stats->rx_frames, "frames");
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2544 	    &stats->rx_good_frames, "Good frames");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2546 	    &stats->rx_fifo_oflows, "FIFO overflows");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2548 	    &stats->rx_runts, "Too short frames");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2550 	    &stats->rx_runts_errs, "Too short frames with errors");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2552 	    &stats->rx_pkts_64, "64 bytes frames");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2554 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2556 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2558 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2560 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2562 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2564 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2566 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2568 	    &stats->rx_jumbos, "Jumbo frames");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2570 	    &stats->rx_crcerrs, "CRC errors");
2571 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2572 	    &stats->rx_pause_frames, "CRC errors");
2573 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2574 	    &stats->rx_alignerrs, "Alignment errors");
2575 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2576 	    &stats->rx_nobufs, "Frames with no buffer event");
2577 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2578 	    &stats->rx_symerrs, "Frames with symbol errors");
2579 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2580 	    &stats->rx_lenerrs, "Frames with length mismatched");
2581 
2582 	/* Tx statistics. */
2583 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2584 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2585 	child = SYSCTL_CHILDREN(tree);
2586 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2587 	    &stats->tx_good_frames, "Good frames");
2588 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2589 	    &stats->tx_pkts_64, "64 bytes frames");
2590 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2591 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2592 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2593 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2594 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2595 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2596 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2597 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2598 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2599 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2600 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2601 	    &stats->tx_jumbos, "Jumbo frames");
2602 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2603 	    &stats->tx_colls, "Collisions");
2604 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2605 	    &stats->tx_latecolls, "Late collisions");
2606 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2607 	    &stats->tx_pause, "Pause frames");
2608 #ifdef VGE_ENABLE_SQEERR
2609 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2610 	    &stats->tx_sqeerrs, "SQE errors");
2611 #endif
2612 	/* Clear MAC statistics. */
2613 	vge_stats_clear(sc);
2614 }
2615 
2616 #undef	VGE_SYSCTL_STAT_ADD32
2617 
2618 static void
2619 vge_stats_clear(struct vge_softc *sc)
2620 {
2621 	int i;
2622 
2623 	CSR_WRITE_1(sc, VGE_MIBCSR,
2624 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2625 	CSR_WRITE_1(sc, VGE_MIBCSR,
2626 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2627 	for (i = VGE_TIMEOUT; i > 0; i--) {
2628 		DELAY(1);
2629 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2630 			break;
2631 	}
2632 	if (i == 0)
2633 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2634 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2635 	    ~VGE_MIBCSR_FREEZE);
2636 }
2637 
2638 static void
2639 vge_stats_update(struct vge_softc *sc)
2640 {
2641 	struct vge_hw_stats *stats;
2642 	struct ifnet *ifp;
2643 	uint32_t mib[VGE_MIB_CNT], val;
2644 	int i;
2645 
2646 	VGE_LOCK_ASSERT(sc);
2647 
2648 	stats = &sc->vge_stats;
2649 	ifp = sc->vge_ifp;
2650 
2651 	CSR_WRITE_1(sc, VGE_MIBCSR,
2652 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2653 	for (i = VGE_TIMEOUT; i > 0; i--) {
2654 		DELAY(1);
2655 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2656 			break;
2657 	}
2658 	if (i == 0) {
2659 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2660 		vge_stats_clear(sc);
2661 		return;
2662 	}
2663 
2664 	bzero(mib, sizeof(mib));
2665 reset_idx:
2666 	/* Set MIB read index to 0. */
2667 	CSR_WRITE_1(sc, VGE_MIBCSR,
2668 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2669 	for (i = 0; i < VGE_MIB_CNT; i++) {
2670 		val = CSR_READ_4(sc, VGE_MIBDATA);
2671 		if (i != VGE_MIB_DATA_IDX(val)) {
2672 			/* Reading interrupted. */
2673 			goto reset_idx;
2674 		}
2675 		mib[i] = val & VGE_MIB_DATA_MASK;
2676 	}
2677 
2678 	/* Rx stats. */
2679 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2680 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2681 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2682 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2683 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2684 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2685 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2686 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2687 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2688 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2689 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2690 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2691 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2692 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2693 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2694 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2695 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2696 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2697 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2698 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2699 
2700 	/* Tx stats. */
2701 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2702 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2703 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2704 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2705 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2706 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2707 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2708 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2709 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2710 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2711 #ifdef VGE_ENABLE_SQEERR
2712 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2713 #endif
2714 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2715 
2716 	/* Update counters in ifnet. */
2717 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2718 
2719 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2720 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2721 
2722 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2723 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2724 
2725 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2726 
2727 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2728 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2729 	    mib[VGE_MIB_RX_RUNTS] +
2730 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2731 	    mib[VGE_MIB_RX_CRCERRS] +
2732 	    mib[VGE_MIB_RX_ALIGNERRS] +
2733 	    mib[VGE_MIB_RX_NOBUFS] +
2734 	    mib[VGE_MIB_RX_SYMERRS] +
2735 	    mib[VGE_MIB_RX_LENERRS]);
2736 }
2737 
2738 static void
2739 vge_intr_holdoff(struct vge_softc *sc)
2740 {
2741 	uint8_t intctl;
2742 
2743 	VGE_LOCK_ASSERT(sc);
2744 
2745 	/*
2746 	 * Set Tx interrupt supression threshold.
2747 	 * It's possible to use single-shot timer in VGE_CRS1 register
2748 	 * in Tx path such that driver can remove most of Tx completion
2749 	 * interrupts. However this requires additional access to
2750 	 * VGE_CRS1 register to reload the timer in addintion to
2751 	 * activating Tx kick command. Another downside is we don't know
2752 	 * what single-shot timer value should be used in advance so
2753 	 * reclaiming transmitted mbufs could be delayed a lot which in
2754 	 * turn slows down Tx operation.
2755 	 */
2756 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2757 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2758 
2759 	/* Set Rx interrupt suppresion threshold. */
2760 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2761 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2762 
2763 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2764 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2765 	intctl |= VGE_INTCTL_HC_RELOAD;
2766 	if (sc->vge_tx_coal_pkt <= 0)
2767 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2768 	else
2769 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2770 	if (sc->vge_rx_coal_pkt <= 0)
2771 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2772 	else
2773 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2774 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2775 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2776 	if (sc->vge_int_holdoff > 0) {
2777 		/* Set interrupt holdoff timer. */
2778 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2779 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2780 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2781 		/* Enable holdoff timer. */
2782 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2783 	}
2784 }
2785 
2786 static void
2787 vge_setlinkspeed(struct vge_softc *sc)
2788 {
2789 	struct mii_data *mii;
2790 	int aneg, i;
2791 
2792 	VGE_LOCK_ASSERT(sc);
2793 
2794 	mii = device_get_softc(sc->vge_miibus);
2795 	mii_pollstat(mii);
2796 	aneg = 0;
2797 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2798 	    (IFM_ACTIVE | IFM_AVALID)) {
2799 		switch IFM_SUBTYPE(mii->mii_media_active) {
2800 		case IFM_10_T:
2801 		case IFM_100_TX:
2802 			return;
2803 		case IFM_1000_T:
2804 			aneg++;
2805 		default:
2806 			break;
2807 		}
2808 	}
2809 	/* Clear forced MAC speed/duplex configuration. */
2810 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2811 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2812 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2813 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2814 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2815 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2816 	    BMCR_AUTOEN | BMCR_STARTNEG);
2817 	DELAY(1000);
2818 	if (aneg != 0) {
2819 		/* Poll link state until vge(4) get a 10/100 link. */
2820 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2821 			mii_pollstat(mii);
2822 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2823 			    == (IFM_ACTIVE | IFM_AVALID)) {
2824 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2825 				case IFM_10_T:
2826 				case IFM_100_TX:
2827 					return;
2828 				default:
2829 					break;
2830 				}
2831 			}
2832 			VGE_UNLOCK(sc);
2833 			pause("vgelnk", hz);
2834 			VGE_LOCK(sc);
2835 		}
2836 		if (i == MII_ANEGTICKS_GIGE)
2837 			device_printf(sc->vge_dev, "establishing link failed, "
2838 			    "WOL may not work!");
2839 	}
2840 	/*
2841 	 * No link, force MAC to have 100Mbps, full-duplex link.
2842 	 * This is the last resort and may/may not work.
2843 	 */
2844 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2845 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2846 }
2847 
2848 static void
2849 vge_setwol(struct vge_softc *sc)
2850 {
2851 	struct ifnet *ifp;
2852 	uint16_t pmstat;
2853 	uint8_t val;
2854 
2855 	VGE_LOCK_ASSERT(sc);
2856 
2857 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2858 		/* No PME capability, PHY power down. */
2859 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2860 		    BMCR_PDOWN);
2861 		vge_miipoll_stop(sc);
2862 		return;
2863 	}
2864 
2865 	ifp = sc->vge_ifp;
2866 
2867 	/* Clear WOL on pattern match. */
2868 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2869 	/* Disable WOL on magic/unicast packet. */
2870 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2871 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2872 	    VGE_WOLCFG_PMEOVR);
2873 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2874 		vge_setlinkspeed(sc);
2875 		val = 0;
2876 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2877 			val |= VGE_WOLCR1_UCAST;
2878 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2879 			val |= VGE_WOLCR1_MAGIC;
2880 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2881 		val = 0;
2882 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2883 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2884 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2885 		/* Disable MII auto-polling. */
2886 		vge_miipoll_stop(sc);
2887 	}
2888 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2889 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2890 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2891 
2892 	/* Clear WOL status on pattern match. */
2893 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2894 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2895 
2896 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2897 	val |= VGE_STICKHW_SWPTAG;
2898 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2899 	/* Put hardware into sleep. */
2900 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2901 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2902 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2903 	/* Request PME if WOL is requested. */
2904 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2905 	    PCIR_POWER_STATUS, 2);
2906 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2907 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2908 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2909 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2910 	    pmstat, 2);
2911 }
2912 
2913 static void
2914 vge_clrwol(struct vge_softc *sc)
2915 {
2916 	uint8_t val;
2917 
2918 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2919 	val &= ~VGE_STICKHW_SWPTAG;
2920 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2921 	/* Disable WOL and clear power state indicator. */
2922 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2923 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2924 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2925 
2926 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2927 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2928 
2929 	/* Clear WOL on pattern match. */
2930 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2931 	/* Disable WOL on magic/unicast packet. */
2932 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2933 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2934 	    VGE_WOLCFG_PMEOVR);
2935 	/* Clear WOL status on pattern match. */
2936 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2937 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2938 }
2939