xref: /freebsd/sys/dev/vge/if_vge.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /* Tunables */
132 static int msi_disable = 0;
133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134 
135 /*
136  * The SQE error counter of MIB seems to report bogus value.
137  * Vendor's workaround does not seem to work on PCIe based
138  * controllers. Disable it until we find better workaround.
139  */
140 #undef VGE_ENABLE_SQEERR
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct vge_type vge_devs[] = {
146 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147 		"VIA Networking Velocity Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int	vge_attach(device_t);
152 static int	vge_detach(device_t);
153 static int	vge_probe(device_t);
154 static int	vge_resume(device_t);
155 static int	vge_shutdown(device_t);
156 static int	vge_suspend(device_t);
157 
158 static void	vge_cam_clear(struct vge_softc *);
159 static int	vge_cam_set(struct vge_softc *, uint8_t *);
160 static void	vge_clrwol(struct vge_softc *);
161 static void	vge_discard_rxbuf(struct vge_softc *, int);
162 static int	vge_dma_alloc(struct vge_softc *);
163 static void	vge_dma_free(struct vge_softc *);
164 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165 #ifdef VGE_EEPROM
166 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167 #endif
168 static int	vge_encap(struct vge_softc *, struct mbuf **);
169 #ifndef __NO_STRICT_ALIGNMENT
170 static __inline void
171 		vge_fixup_rx(struct mbuf *);
172 #endif
173 static void	vge_freebufs(struct vge_softc *);
174 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 static int	vge_ifmedia_upd(struct ifnet *);
176 static void	vge_init(void *);
177 static void	vge_init_locked(struct vge_softc *);
178 static void	vge_intr(void *);
179 static void	vge_intr_holdoff(struct vge_softc *);
180 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
181 static void	vge_link_statchg(void *);
182 static int	vge_miibus_readreg(device_t, int, int);
183 static void	vge_miibus_statchg(device_t);
184 static int	vge_miibus_writereg(device_t, int, int, int);
185 static void	vge_miipoll_start(struct vge_softc *);
186 static void	vge_miipoll_stop(struct vge_softc *);
187 static int	vge_newbuf(struct vge_softc *, int);
188 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189 static void	vge_reset(struct vge_softc *);
190 static int	vge_rx_list_init(struct vge_softc *);
191 static int	vge_rxeof(struct vge_softc *, int);
192 static void	vge_rxfilter(struct vge_softc *);
193 static void	vge_setvlan(struct vge_softc *);
194 static void	vge_setwol(struct vge_softc *);
195 static void	vge_start(struct ifnet *);
196 static void	vge_start_locked(struct ifnet *);
197 static void	vge_stats_clear(struct vge_softc *);
198 static void	vge_stats_update(struct vge_softc *);
199 static void	vge_stop(struct vge_softc *);
200 static void	vge_sysctl_node(struct vge_softc *);
201 static int	vge_tx_list_init(struct vge_softc *);
202 static void	vge_txeof(struct vge_softc *);
203 static void	vge_watchdog(void *);
204 
205 static device_method_t vge_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_probe,		vge_probe),
208 	DEVMETHOD(device_attach,	vge_attach),
209 	DEVMETHOD(device_detach,	vge_detach),
210 	DEVMETHOD(device_suspend,	vge_suspend),
211 	DEVMETHOD(device_resume,	vge_resume),
212 	DEVMETHOD(device_shutdown,	vge_shutdown),
213 
214 	/* bus interface */
215 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
216 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
222 
223 	{ 0, 0 }
224 };
225 
226 static driver_t vge_driver = {
227 	"vge",
228 	vge_methods,
229 	sizeof(struct vge_softc)
230 };
231 
232 static devclass_t vge_devclass;
233 
234 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236 
237 #ifdef VGE_EEPROM
238 /*
239  * Read a word of data stored in the EEPROM at address 'addr.'
240  */
241 static void
242 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243 {
244 	int i;
245 	uint16_t word = 0;
246 
247 	/*
248 	 * Enter EEPROM embedded programming mode. In order to
249 	 * access the EEPROM at all, we first have to set the
250 	 * EELOAD bit in the CHIPCFG2 register.
251 	 */
252 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254 
255 	/* Select the address of the word we want to read */
256 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
257 
258 	/* Issue read command */
259 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260 
261 	/* Wait for the done bit to be set. */
262 	for (i = 0; i < VGE_TIMEOUT; i++) {
263 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264 			break;
265 	}
266 
267 	if (i == VGE_TIMEOUT) {
268 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
269 		*dest = 0;
270 		return;
271 	}
272 
273 	/* Read the result */
274 	word = CSR_READ_2(sc, VGE_EERDDAT);
275 
276 	/* Turn off EEPROM access mode. */
277 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279 
280 	*dest = word;
281 }
282 #endif
283 
284 /*
285  * Read a sequence of words from the EEPROM.
286  */
287 static void
288 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289 {
290 	int i;
291 #ifdef VGE_EEPROM
292 	uint16_t word = 0, *ptr;
293 
294 	for (i = 0; i < cnt; i++) {
295 		vge_eeprom_getword(sc, off + i, &word);
296 		ptr = (uint16_t *)(dest + (i * 2));
297 		if (swap)
298 			*ptr = ntohs(word);
299 		else
300 			*ptr = word;
301 	}
302 #else
303 	for (i = 0; i < ETHER_ADDR_LEN; i++)
304 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305 #endif
306 }
307 
308 static void
309 vge_miipoll_stop(struct vge_softc *sc)
310 {
311 	int i;
312 
313 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314 
315 	for (i = 0; i < VGE_TIMEOUT; i++) {
316 		DELAY(1);
317 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 			break;
319 	}
320 
321 	if (i == VGE_TIMEOUT)
322 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 }
324 
325 static void
326 vge_miipoll_start(struct vge_softc *sc)
327 {
328 	int i;
329 
330 	/* First, make sure we're idle. */
331 
332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 
335 	for (i = 0; i < VGE_TIMEOUT; i++) {
336 		DELAY(1);
337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 			break;
339 	}
340 
341 	if (i == VGE_TIMEOUT) {
342 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343 		return;
344 	}
345 
346 	/* Now enable auto poll mode. */
347 
348 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349 
350 	/* And make sure it started. */
351 
352 	for (i = 0; i < VGE_TIMEOUT; i++) {
353 		DELAY(1);
354 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355 			break;
356 	}
357 
358 	if (i == VGE_TIMEOUT)
359 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360 }
361 
362 static int
363 vge_miibus_readreg(device_t dev, int phy, int reg)
364 {
365 	struct vge_softc *sc;
366 	int i;
367 	uint16_t rval = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	vge_miipoll_stop(sc);
372 
373 	/* Specify the register we want to read. */
374 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
375 
376 	/* Issue read command. */
377 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
378 
379 	/* Wait for the read command bit to self-clear. */
380 	for (i = 0; i < VGE_TIMEOUT; i++) {
381 		DELAY(1);
382 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
383 			break;
384 	}
385 
386 	if (i == VGE_TIMEOUT)
387 		device_printf(sc->vge_dev, "MII read timed out\n");
388 	else
389 		rval = CSR_READ_2(sc, VGE_MIIDATA);
390 
391 	vge_miipoll_start(sc);
392 
393 	return (rval);
394 }
395 
396 static int
397 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
398 {
399 	struct vge_softc *sc;
400 	int i, rval = 0;
401 
402 	sc = device_get_softc(dev);
403 
404 	vge_miipoll_stop(sc);
405 
406 	/* Specify the register we want to write. */
407 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408 
409 	/* Specify the data we want to write. */
410 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
411 
412 	/* Issue write command. */
413 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414 
415 	/* Wait for the write command bit to self-clear. */
416 	for (i = 0; i < VGE_TIMEOUT; i++) {
417 		DELAY(1);
418 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419 			break;
420 	}
421 
422 	if (i == VGE_TIMEOUT) {
423 		device_printf(sc->vge_dev, "MII write timed out\n");
424 		rval = EIO;
425 	}
426 
427 	vge_miipoll_start(sc);
428 
429 	return (rval);
430 }
431 
432 static void
433 vge_cam_clear(struct vge_softc *sc)
434 {
435 	int i;
436 
437 	/*
438 	 * Turn off all the mask bits. This tells the chip
439 	 * that none of the entries in the CAM filter are valid.
440 	 * desired entries will be enabled as we fill the filter in.
441 	 */
442 
443 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
445 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
446 	for (i = 0; i < 8; i++)
447 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
448 
449 	/* Clear the VLAN filter too. */
450 
451 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
452 	for (i = 0; i < 8; i++)
453 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454 
455 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
456 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
458 
459 	sc->vge_camidx = 0;
460 }
461 
462 static int
463 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
464 {
465 	int i, error = 0;
466 
467 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
468 		return (ENOSPC);
469 
470 	/* Select the CAM data page. */
471 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
473 
474 	/* Set the filter entry we want to update and enable writing. */
475 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
476 
477 	/* Write the address to the CAM registers */
478 	for (i = 0; i < ETHER_ADDR_LEN; i++)
479 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
480 
481 	/* Issue a write command. */
482 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
483 
484 	/* Wake for it to clear. */
485 	for (i = 0; i < VGE_TIMEOUT; i++) {
486 		DELAY(1);
487 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
488 			break;
489 	}
490 
491 	if (i == VGE_TIMEOUT) {
492 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
493 		error = EIO;
494 		goto fail;
495 	}
496 
497 	/* Select the CAM mask page. */
498 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
500 
501 	/* Set the mask bit that enables this filter. */
502 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
503 	    1<<(sc->vge_camidx & 7));
504 
505 	sc->vge_camidx++;
506 
507 fail:
508 	/* Turn off access to CAM. */
509 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
510 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
511 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
512 
513 	return (error);
514 }
515 
516 static void
517 vge_setvlan(struct vge_softc *sc)
518 {
519 	struct ifnet *ifp;
520 	uint8_t cfg;
521 
522 	VGE_LOCK_ASSERT(sc);
523 
524 	ifp = sc->vge_ifp;
525 	cfg = CSR_READ_1(sc, VGE_RXCFG);
526 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
527 		cfg |= VGE_VTAG_OPT2;
528 	else
529 		cfg &= ~VGE_VTAG_OPT2;
530 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
531 }
532 
533 /*
534  * Program the multicast filter. We use the 64-entry CAM filter
535  * for perfect filtering. If there's more than 64 multicast addresses,
536  * we use the hash filter instead.
537  */
538 static void
539 vge_rxfilter(struct vge_softc *sc)
540 {
541 	struct ifnet *ifp;
542 	struct ifmultiaddr *ifma;
543 	uint32_t h, hashes[2];
544 	uint8_t rxcfg;
545 	int error = 0;
546 
547 	VGE_LOCK_ASSERT(sc);
548 
549 	/* First, zot all the multicast entries. */
550 	hashes[0] = 0;
551 	hashes[1] = 0;
552 
553 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
554 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
555 	    VGE_RXCTL_RX_PROMISC);
556 	/*
557 	 * Always allow VLAN oversized frames and frames for
558 	 * this host.
559 	 */
560 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
561 
562 	ifp = sc->vge_ifp;
563 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
564 		rxcfg |= VGE_RXCTL_RX_BCAST;
565 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
566 		if ((ifp->if_flags & IFF_PROMISC) != 0)
567 			rxcfg |= VGE_RXCTL_RX_PROMISC;
568 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
569 			hashes[0] = 0xFFFFFFFF;
570 			hashes[1] = 0xFFFFFFFF;
571 		}
572 		goto done;
573 	}
574 
575 	vge_cam_clear(sc);
576 	/* Now program new ones */
577 	if_maddr_rlock(ifp);
578 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
579 		if (ifma->ifma_addr->sa_family != AF_LINK)
580 			continue;
581 		error = vge_cam_set(sc,
582 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
583 		if (error)
584 			break;
585 	}
586 
587 	/* If there were too many addresses, use the hash filter. */
588 	if (error) {
589 		vge_cam_clear(sc);
590 
591 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592 			if (ifma->ifma_addr->sa_family != AF_LINK)
593 				continue;
594 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
595 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
596 			if (h < 32)
597 				hashes[0] |= (1 << h);
598 			else
599 				hashes[1] |= (1 << (h - 32));
600 		}
601 	}
602 	if_maddr_runlock(ifp);
603 
604 done:
605 	if (hashes[0] != 0 || hashes[1] != 0)
606 		rxcfg |= VGE_RXCTL_RX_MCAST;
607 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
608 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
609 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
610 }
611 
612 static void
613 vge_reset(struct vge_softc *sc)
614 {
615 	int i;
616 
617 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
618 
619 	for (i = 0; i < VGE_TIMEOUT; i++) {
620 		DELAY(5);
621 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
622 			break;
623 	}
624 
625 	if (i == VGE_TIMEOUT) {
626 		device_printf(sc->vge_dev, "soft reset timed out\n");
627 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
628 		DELAY(2000);
629 	}
630 
631 	DELAY(5000);
632 }
633 
634 /*
635  * Probe for a VIA gigabit chip. Check the PCI vendor and device
636  * IDs against our list and return a device name if we find a match.
637  */
638 static int
639 vge_probe(device_t dev)
640 {
641 	struct vge_type	*t;
642 
643 	t = vge_devs;
644 
645 	while (t->vge_name != NULL) {
646 		if ((pci_get_vendor(dev) == t->vge_vid) &&
647 		    (pci_get_device(dev) == t->vge_did)) {
648 			device_set_desc(dev, t->vge_name);
649 			return (BUS_PROBE_DEFAULT);
650 		}
651 		t++;
652 	}
653 
654 	return (ENXIO);
655 }
656 
657 /*
658  * Map a single buffer address.
659  */
660 
661 struct vge_dmamap_arg {
662 	bus_addr_t	vge_busaddr;
663 };
664 
665 static void
666 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
667 {
668 	struct vge_dmamap_arg *ctx;
669 
670 	if (error != 0)
671 		return;
672 
673 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
674 
675 	ctx = (struct vge_dmamap_arg *)arg;
676 	ctx->vge_busaddr = segs[0].ds_addr;
677 }
678 
679 static int
680 vge_dma_alloc(struct vge_softc *sc)
681 {
682 	struct vge_dmamap_arg ctx;
683 	struct vge_txdesc *txd;
684 	struct vge_rxdesc *rxd;
685 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
686 	int error, i;
687 
688 	/*
689 	 * It seems old PCI controllers do not support DAC.  DAC
690 	 * configuration can be enabled by accessing VGE_CHIPCFG3
691 	 * register but honor EEPROM configuration instead of
692 	 * blindly overriding DAC configuration.  PCIe based
693 	 * controllers are supposed to support 64bit DMA so enable
694 	 * 64bit DMA on these controllers.
695 	 */
696 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
697 		lowaddr = BUS_SPACE_MAXADDR;
698 	else
699 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
700 
701 again:
702 	/* Create parent ring tag. */
703 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
704 	    1, 0,			/* algnmnt, boundary */
705 	    lowaddr,			/* lowaddr */
706 	    BUS_SPACE_MAXADDR,		/* highaddr */
707 	    NULL, NULL,			/* filter, filterarg */
708 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
709 	    0,				/* nsegments */
710 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
711 	    0,				/* flags */
712 	    NULL, NULL,			/* lockfunc, lockarg */
713 	    &sc->vge_cdata.vge_ring_tag);
714 	if (error != 0) {
715 		device_printf(sc->vge_dev,
716 		    "could not create parent DMA tag.\n");
717 		goto fail;
718 	}
719 
720 	/* Create tag for Tx ring. */
721 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
722 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
723 	    BUS_SPACE_MAXADDR,		/* lowaddr */
724 	    BUS_SPACE_MAXADDR,		/* highaddr */
725 	    NULL, NULL,			/* filter, filterarg */
726 	    VGE_TX_LIST_SZ,		/* maxsize */
727 	    1,				/* nsegments */
728 	    VGE_TX_LIST_SZ,		/* maxsegsize */
729 	    0,				/* flags */
730 	    NULL, NULL,			/* lockfunc, lockarg */
731 	    &sc->vge_cdata.vge_tx_ring_tag);
732 	if (error != 0) {
733 		device_printf(sc->vge_dev,
734 		    "could not allocate Tx ring DMA tag.\n");
735 		goto fail;
736 	}
737 
738 	/* Create tag for Rx ring. */
739 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
740 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
741 	    BUS_SPACE_MAXADDR,		/* lowaddr */
742 	    BUS_SPACE_MAXADDR,		/* highaddr */
743 	    NULL, NULL,			/* filter, filterarg */
744 	    VGE_RX_LIST_SZ,		/* maxsize */
745 	    1,				/* nsegments */
746 	    VGE_RX_LIST_SZ,		/* maxsegsize */
747 	    0,				/* flags */
748 	    NULL, NULL,			/* lockfunc, lockarg */
749 	    &sc->vge_cdata.vge_rx_ring_tag);
750 	if (error != 0) {
751 		device_printf(sc->vge_dev,
752 		    "could not allocate Rx ring DMA tag.\n");
753 		goto fail;
754 	}
755 
756 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
757 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
758 	    (void **)&sc->vge_rdata.vge_tx_ring,
759 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
760 	    &sc->vge_cdata.vge_tx_ring_map);
761 	if (error != 0) {
762 		device_printf(sc->vge_dev,
763 		    "could not allocate DMA'able memory for Tx ring.\n");
764 		goto fail;
765 	}
766 
767 	ctx.vge_busaddr = 0;
768 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
769 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
770 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
771 	if (error != 0 || ctx.vge_busaddr == 0) {
772 		device_printf(sc->vge_dev,
773 		    "could not load DMA'able memory for Tx ring.\n");
774 		goto fail;
775 	}
776 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
777 
778 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
779 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
780 	    (void **)&sc->vge_rdata.vge_rx_ring,
781 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
782 	    &sc->vge_cdata.vge_rx_ring_map);
783 	if (error != 0) {
784 		device_printf(sc->vge_dev,
785 		    "could not allocate DMA'able memory for Rx ring.\n");
786 		goto fail;
787 	}
788 
789 	ctx.vge_busaddr = 0;
790 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
791 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
792 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
793 	if (error != 0 || ctx.vge_busaddr == 0) {
794 		device_printf(sc->vge_dev,
795 		    "could not load DMA'able memory for Rx ring.\n");
796 		goto fail;
797 	}
798 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
799 
800 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
801 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
802 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
803 	if ((VGE_ADDR_HI(tx_ring_end) !=
804 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
805 	    (VGE_ADDR_HI(rx_ring_end) !=
806 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
807 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
808 		device_printf(sc->vge_dev, "4GB boundary crossed, "
809 		    "switching to 32bit DMA address mode.\n");
810 		vge_dma_free(sc);
811 		/* Limit DMA address space to 32bit and try again. */
812 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
813 		goto again;
814 	}
815 
816 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
817 		lowaddr = VGE_BUF_DMA_MAXADDR;
818 	else
819 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
820 	/* Create parent buffer tag. */
821 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
822 	    1, 0,			/* algnmnt, boundary */
823 	    lowaddr,			/* lowaddr */
824 	    BUS_SPACE_MAXADDR,		/* highaddr */
825 	    NULL, NULL,			/* filter, filterarg */
826 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
827 	    0,				/* nsegments */
828 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
829 	    0,				/* flags */
830 	    NULL, NULL,			/* lockfunc, lockarg */
831 	    &sc->vge_cdata.vge_buffer_tag);
832 	if (error != 0) {
833 		device_printf(sc->vge_dev,
834 		    "could not create parent buffer DMA tag.\n");
835 		goto fail;
836 	}
837 
838 	/* Create tag for Tx buffers. */
839 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
840 	    1, 0,			/* algnmnt, boundary */
841 	    BUS_SPACE_MAXADDR,		/* lowaddr */
842 	    BUS_SPACE_MAXADDR,		/* highaddr */
843 	    NULL, NULL,			/* filter, filterarg */
844 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
845 	    VGE_MAXTXSEGS,		/* nsegments */
846 	    MCLBYTES,			/* maxsegsize */
847 	    0,				/* flags */
848 	    NULL, NULL,			/* lockfunc, lockarg */
849 	    &sc->vge_cdata.vge_tx_tag);
850 	if (error != 0) {
851 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
852 		goto fail;
853 	}
854 
855 	/* Create tag for Rx buffers. */
856 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
857 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
858 	    BUS_SPACE_MAXADDR,		/* lowaddr */
859 	    BUS_SPACE_MAXADDR,		/* highaddr */
860 	    NULL, NULL,			/* filter, filterarg */
861 	    MCLBYTES,			/* maxsize */
862 	    1,				/* nsegments */
863 	    MCLBYTES,			/* maxsegsize */
864 	    0,				/* flags */
865 	    NULL, NULL,			/* lockfunc, lockarg */
866 	    &sc->vge_cdata.vge_rx_tag);
867 	if (error != 0) {
868 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
869 		goto fail;
870 	}
871 
872 	/* Create DMA maps for Tx buffers. */
873 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
874 		txd = &sc->vge_cdata.vge_txdesc[i];
875 		txd->tx_m = NULL;
876 		txd->tx_dmamap = NULL;
877 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
878 		    &txd->tx_dmamap);
879 		if (error != 0) {
880 			device_printf(sc->vge_dev,
881 			    "could not create Tx dmamap.\n");
882 			goto fail;
883 		}
884 	}
885 	/* Create DMA maps for Rx buffers. */
886 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
887 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
888 		device_printf(sc->vge_dev,
889 		    "could not create spare Rx dmamap.\n");
890 		goto fail;
891 	}
892 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
893 		rxd = &sc->vge_cdata.vge_rxdesc[i];
894 		rxd->rx_m = NULL;
895 		rxd->rx_dmamap = NULL;
896 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
897 		    &rxd->rx_dmamap);
898 		if (error != 0) {
899 			device_printf(sc->vge_dev,
900 			    "could not create Rx dmamap.\n");
901 			goto fail;
902 		}
903 	}
904 
905 fail:
906 	return (error);
907 }
908 
909 static void
910 vge_dma_free(struct vge_softc *sc)
911 {
912 	struct vge_txdesc *txd;
913 	struct vge_rxdesc *rxd;
914 	int i;
915 
916 	/* Tx ring. */
917 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
918 		if (sc->vge_cdata.vge_tx_ring_map)
919 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
920 			    sc->vge_cdata.vge_tx_ring_map);
921 		if (sc->vge_cdata.vge_tx_ring_map &&
922 		    sc->vge_rdata.vge_tx_ring)
923 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
924 			    sc->vge_rdata.vge_tx_ring,
925 			    sc->vge_cdata.vge_tx_ring_map);
926 		sc->vge_rdata.vge_tx_ring = NULL;
927 		sc->vge_cdata.vge_tx_ring_map = NULL;
928 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
929 		sc->vge_cdata.vge_tx_ring_tag = NULL;
930 	}
931 	/* Rx ring. */
932 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
933 		if (sc->vge_cdata.vge_rx_ring_map)
934 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
935 			    sc->vge_cdata.vge_rx_ring_map);
936 		if (sc->vge_cdata.vge_rx_ring_map &&
937 		    sc->vge_rdata.vge_rx_ring)
938 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939 			    sc->vge_rdata.vge_rx_ring,
940 			    sc->vge_cdata.vge_rx_ring_map);
941 		sc->vge_rdata.vge_rx_ring = NULL;
942 		sc->vge_cdata.vge_rx_ring_map = NULL;
943 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944 		sc->vge_cdata.vge_rx_ring_tag = NULL;
945 	}
946 	/* Tx buffers. */
947 	if (sc->vge_cdata.vge_tx_tag != NULL) {
948 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949 			txd = &sc->vge_cdata.vge_txdesc[i];
950 			if (txd->tx_dmamap != NULL) {
951 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952 				    txd->tx_dmamap);
953 				txd->tx_dmamap = NULL;
954 			}
955 		}
956 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957 		sc->vge_cdata.vge_tx_tag = NULL;
958 	}
959 	/* Rx buffers. */
960 	if (sc->vge_cdata.vge_rx_tag != NULL) {
961 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962 			rxd = &sc->vge_cdata.vge_rxdesc[i];
963 			if (rxd->rx_dmamap != NULL) {
964 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965 				    rxd->rx_dmamap);
966 				rxd->rx_dmamap = NULL;
967 			}
968 		}
969 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971 			    sc->vge_cdata.vge_rx_sparemap);
972 			sc->vge_cdata.vge_rx_sparemap = NULL;
973 		}
974 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975 		sc->vge_cdata.vge_rx_tag = NULL;
976 	}
977 
978 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980 		sc->vge_cdata.vge_buffer_tag = NULL;
981 	}
982 	if (sc->vge_cdata.vge_ring_tag != NULL) {
983 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984 		sc->vge_cdata.vge_ring_tag = NULL;
985 	}
986 }
987 
988 /*
989  * Attach the interface. Allocate softc structures, do ifmedia
990  * setup and ethernet/BPF attach.
991  */
992 static int
993 vge_attach(device_t dev)
994 {
995 	u_char eaddr[ETHER_ADDR_LEN];
996 	struct vge_softc *sc;
997 	struct ifnet *ifp;
998 	int error = 0, cap, i, msic, rid;
999 
1000 	sc = device_get_softc(dev);
1001 	sc->vge_dev = dev;
1002 
1003 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004 	    MTX_DEF);
1005 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006 
1007 	/*
1008 	 * Map control/status registers.
1009 	 */
1010 	pci_enable_busmaster(dev);
1011 
1012 	rid = PCIR_BAR(1);
1013 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014 	    RF_ACTIVE);
1015 
1016 	if (sc->vge_res == NULL) {
1017 		device_printf(dev, "couldn't map ports/memory\n");
1018 		error = ENXIO;
1019 		goto fail;
1020 	}
1021 
1022 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023 		sc->vge_flags |= VGE_FLAG_PCIE;
1024 		sc->vge_expcap = cap;
1025 	} else
1026 		sc->vge_flags |= VGE_FLAG_JUMBO;
1027 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028 		sc->vge_flags |= VGE_FLAG_PMCAP;
1029 		sc->vge_pmcap = cap;
1030 	}
1031 	rid = 0;
1032 	msic = pci_msi_count(dev);
1033 	if (msi_disable == 0 && msic > 0) {
1034 		msic = 1;
1035 		if (pci_alloc_msi(dev, &msic) == 0) {
1036 			if (msic == 1) {
1037 				sc->vge_flags |= VGE_FLAG_MSI;
1038 				device_printf(dev, "Using %d MSI message\n",
1039 				    msic);
1040 				rid = 1;
1041 			} else
1042 				pci_release_msi(dev);
1043 		}
1044 	}
1045 
1046 	/* Allocate interrupt */
1047 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049 	if (sc->vge_irq == NULL) {
1050 		device_printf(dev, "couldn't map interrupt\n");
1051 		error = ENXIO;
1052 		goto fail;
1053 	}
1054 
1055 	/* Reset the adapter. */
1056 	vge_reset(sc);
1057 	/* Reload EEPROM. */
1058 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059 	for (i = 0; i < VGE_TIMEOUT; i++) {
1060 		DELAY(5);
1061 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062 			break;
1063 	}
1064 	if (i == VGE_TIMEOUT)
1065 		device_printf(dev, "EEPROM reload timed out\n");
1066 	/*
1067 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068 	 * MAC will receive magic packet which in turn confuses
1069 	 * controller.
1070 	 */
1071 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072 
1073 	/*
1074 	 * Get station address from the EEPROM.
1075 	 */
1076 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077 	/*
1078 	 * Save configured PHY address.
1079 	 * It seems the PHY address of PCIe controllers just
1080 	 * reflects media jump strapping status so we assume the
1081 	 * internal PHY address of PCIe controller is at 1.
1082 	 */
1083 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084 		sc->vge_phyaddr = 1;
1085 	else
1086 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087 		    VGE_MIICFG_PHYADDR;
1088 	/* Clear WOL and take hardware from powerdown. */
1089 	vge_clrwol(sc);
1090 	vge_sysctl_node(sc);
1091 	error = vge_dma_alloc(sc);
1092 	if (error)
1093 		goto fail;
1094 
1095 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096 	if (ifp == NULL) {
1097 		device_printf(dev, "can not if_alloc()\n");
1098 		error = ENOSPC;
1099 		goto fail;
1100 	}
1101 
1102 	/* Do MII setup */
1103 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1104 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1105 	    0);
1106 	if (error != 0) {
1107 		device_printf(dev, "attaching PHYs failed\n");
1108 		goto fail;
1109 	}
1110 
1111 	ifp->if_softc = sc;
1112 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1113 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1114 	ifp->if_ioctl = vge_ioctl;
1115 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1116 	ifp->if_start = vge_start;
1117 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1118 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1119 	    IFCAP_VLAN_HWTAGGING;
1120 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1121 		ifp->if_capabilities |= IFCAP_WOL;
1122 	ifp->if_capenable = ifp->if_capabilities;
1123 #ifdef DEVICE_POLLING
1124 	ifp->if_capabilities |= IFCAP_POLLING;
1125 #endif
1126 	ifp->if_init = vge_init;
1127 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1128 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1129 	IFQ_SET_READY(&ifp->if_snd);
1130 
1131 	/*
1132 	 * Call MI attach routine.
1133 	 */
1134 	ether_ifattach(ifp, eaddr);
1135 
1136 	/* Tell the upper layer(s) we support long frames. */
1137 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1138 
1139 	/* Hook interrupt last to avoid having to lock softc */
1140 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1141 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1142 
1143 	if (error) {
1144 		device_printf(dev, "couldn't set up irq\n");
1145 		ether_ifdetach(ifp);
1146 		goto fail;
1147 	}
1148 
1149 fail:
1150 	if (error)
1151 		vge_detach(dev);
1152 
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Shutdown hardware and free up resources. This can be called any
1158  * time after the mutex has been initialized. It is called in both
1159  * the error case in attach and the normal detach case so it needs
1160  * to be careful about only freeing resources that have actually been
1161  * allocated.
1162  */
1163 static int
1164 vge_detach(device_t dev)
1165 {
1166 	struct vge_softc *sc;
1167 	struct ifnet *ifp;
1168 
1169 	sc = device_get_softc(dev);
1170 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1171 	ifp = sc->vge_ifp;
1172 
1173 #ifdef DEVICE_POLLING
1174 	if (ifp->if_capenable & IFCAP_POLLING)
1175 		ether_poll_deregister(ifp);
1176 #endif
1177 
1178 	/* These should only be active if attach succeeded */
1179 	if (device_is_attached(dev)) {
1180 		ether_ifdetach(ifp);
1181 		VGE_LOCK(sc);
1182 		vge_stop(sc);
1183 		VGE_UNLOCK(sc);
1184 		callout_drain(&sc->vge_watchdog);
1185 	}
1186 	if (sc->vge_miibus)
1187 		device_delete_child(dev, sc->vge_miibus);
1188 	bus_generic_detach(dev);
1189 
1190 	if (sc->vge_intrhand)
1191 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1192 	if (sc->vge_irq)
1193 		bus_release_resource(dev, SYS_RES_IRQ,
1194 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1195 	if (sc->vge_flags & VGE_FLAG_MSI)
1196 		pci_release_msi(dev);
1197 	if (sc->vge_res)
1198 		bus_release_resource(dev, SYS_RES_MEMORY,
1199 		    PCIR_BAR(1), sc->vge_res);
1200 	if (ifp)
1201 		if_free(ifp);
1202 
1203 	vge_dma_free(sc);
1204 	mtx_destroy(&sc->vge_mtx);
1205 
1206 	return (0);
1207 }
1208 
1209 static void
1210 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1211 {
1212 	struct vge_rxdesc *rxd;
1213 	int i;
1214 
1215 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1216 	rxd->rx_desc->vge_sts = 0;
1217 	rxd->rx_desc->vge_ctl = 0;
1218 
1219 	/*
1220 	 * Note: the manual fails to document the fact that for
1221 	 * proper opration, the driver needs to replentish the RX
1222 	 * DMA ring 4 descriptors at a time (rather than one at a
1223 	 * time, like most chips). We can allocate the new buffers
1224 	 * but we should not set the OWN bits until we're ready
1225 	 * to hand back 4 of them in one shot.
1226 	 */
1227 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1228 		for (i = VGE_RXCHUNK; i > 0; i--) {
1229 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1230 			rxd = rxd->rxd_prev;
1231 		}
1232 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1233 	}
1234 }
1235 
1236 static int
1237 vge_newbuf(struct vge_softc *sc, int prod)
1238 {
1239 	struct vge_rxdesc *rxd;
1240 	struct mbuf *m;
1241 	bus_dma_segment_t segs[1];
1242 	bus_dmamap_t map;
1243 	int i, nsegs;
1244 
1245 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1246 	if (m == NULL)
1247 		return (ENOBUFS);
1248 	/*
1249 	 * This is part of an evil trick to deal with strict-alignment
1250 	 * architectures. The VIA chip requires RX buffers to be aligned
1251 	 * on 32-bit boundaries, but that will hose strict-alignment
1252 	 * architectures. To get around this, we leave some empty space
1253 	 * at the start of each buffer and for non-strict-alignment hosts,
1254 	 * we copy the buffer back two bytes to achieve word alignment.
1255 	 * This is slightly more efficient than allocating a new buffer,
1256 	 * copying the contents, and discarding the old buffer.
1257 	 */
1258 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1259 	m_adj(m, VGE_RX_BUF_ALIGN);
1260 
1261 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1262 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1263 		m_freem(m);
1264 		return (ENOBUFS);
1265 	}
1266 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267 
1268 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1269 	if (rxd->rx_m != NULL) {
1270 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1271 		    BUS_DMASYNC_POSTREAD);
1272 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1273 	}
1274 	map = rxd->rx_dmamap;
1275 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1276 	sc->vge_cdata.vge_rx_sparemap = map;
1277 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1278 	    BUS_DMASYNC_PREREAD);
1279 	rxd->rx_m = m;
1280 
1281 	rxd->rx_desc->vge_sts = 0;
1282 	rxd->rx_desc->vge_ctl = 0;
1283 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1284 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1285 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1286 
1287 	/*
1288 	 * Note: the manual fails to document the fact that for
1289 	 * proper operation, the driver needs to replenish the RX
1290 	 * DMA ring 4 descriptors at a time (rather than one at a
1291 	 * time, like most chips). We can allocate the new buffers
1292 	 * but we should not set the OWN bits until we're ready
1293 	 * to hand back 4 of them in one shot.
1294 	 */
1295 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1296 		for (i = VGE_RXCHUNK; i > 0; i--) {
1297 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1298 			rxd = rxd->rxd_prev;
1299 		}
1300 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1301 	}
1302 
1303 	return (0);
1304 }
1305 
1306 static int
1307 vge_tx_list_init(struct vge_softc *sc)
1308 {
1309 	struct vge_ring_data *rd;
1310 	struct vge_txdesc *txd;
1311 	int i;
1312 
1313 	VGE_LOCK_ASSERT(sc);
1314 
1315 	sc->vge_cdata.vge_tx_prodidx = 0;
1316 	sc->vge_cdata.vge_tx_considx = 0;
1317 	sc->vge_cdata.vge_tx_cnt = 0;
1318 
1319 	rd = &sc->vge_rdata;
1320 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1321 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1322 		txd = &sc->vge_cdata.vge_txdesc[i];
1323 		txd->tx_m = NULL;
1324 		txd->tx_desc = &rd->vge_tx_ring[i];
1325 	}
1326 
1327 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1328 	    sc->vge_cdata.vge_tx_ring_map,
1329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330 
1331 	return (0);
1332 }
1333 
1334 static int
1335 vge_rx_list_init(struct vge_softc *sc)
1336 {
1337 	struct vge_ring_data *rd;
1338 	struct vge_rxdesc *rxd;
1339 	int i;
1340 
1341 	VGE_LOCK_ASSERT(sc);
1342 
1343 	sc->vge_cdata.vge_rx_prodidx = 0;
1344 	sc->vge_cdata.vge_head = NULL;
1345 	sc->vge_cdata.vge_tail = NULL;
1346 	sc->vge_cdata.vge_rx_commit = 0;
1347 
1348 	rd = &sc->vge_rdata;
1349 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1350 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1351 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1352 		rxd->rx_m = NULL;
1353 		rxd->rx_desc = &rd->vge_rx_ring[i];
1354 		if (i == 0)
1355 			rxd->rxd_prev =
1356 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1357 		else
1358 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1359 		if (vge_newbuf(sc, i) != 0)
1360 			return (ENOBUFS);
1361 	}
1362 
1363 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1364 	    sc->vge_cdata.vge_rx_ring_map,
1365 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366 
1367 	sc->vge_cdata.vge_rx_commit = 0;
1368 
1369 	return (0);
1370 }
1371 
1372 static void
1373 vge_freebufs(struct vge_softc *sc)
1374 {
1375 	struct vge_txdesc *txd;
1376 	struct vge_rxdesc *rxd;
1377 	struct ifnet *ifp;
1378 	int i;
1379 
1380 	VGE_LOCK_ASSERT(sc);
1381 
1382 	ifp = sc->vge_ifp;
1383 	/*
1384 	 * Free RX and TX mbufs still in the queues.
1385 	 */
1386 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1387 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1388 		if (rxd->rx_m != NULL) {
1389 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1390 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1391 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1392 			    rxd->rx_dmamap);
1393 			m_freem(rxd->rx_m);
1394 			rxd->rx_m = NULL;
1395 		}
1396 	}
1397 
1398 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1399 		txd = &sc->vge_cdata.vge_txdesc[i];
1400 		if (txd->tx_m != NULL) {
1401 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1402 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1403 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1404 			    txd->tx_dmamap);
1405 			m_freem(txd->tx_m);
1406 			txd->tx_m = NULL;
1407 			ifp->if_oerrors++;
1408 		}
1409 	}
1410 }
1411 
1412 #ifndef	__NO_STRICT_ALIGNMENT
1413 static __inline void
1414 vge_fixup_rx(struct mbuf *m)
1415 {
1416 	int i;
1417 	uint16_t *src, *dst;
1418 
1419 	src = mtod(m, uint16_t *);
1420 	dst = src - 1;
1421 
1422 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1423 		*dst++ = *src++;
1424 
1425 	m->m_data -= ETHER_ALIGN;
1426 }
1427 #endif
1428 
1429 /*
1430  * RX handler. We support the reception of jumbo frames that have
1431  * been fragmented across multiple 2K mbuf cluster buffers.
1432  */
1433 static int
1434 vge_rxeof(struct vge_softc *sc, int count)
1435 {
1436 	struct mbuf *m;
1437 	struct ifnet *ifp;
1438 	int prod, prog, total_len;
1439 	struct vge_rxdesc *rxd;
1440 	struct vge_rx_desc *cur_rx;
1441 	uint32_t rxstat, rxctl;
1442 
1443 	VGE_LOCK_ASSERT(sc);
1444 
1445 	ifp = sc->vge_ifp;
1446 
1447 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1448 	    sc->vge_cdata.vge_rx_ring_map,
1449 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450 
1451 	prod = sc->vge_cdata.vge_rx_prodidx;
1452 	for (prog = 0; count > 0 &&
1453 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1454 	    VGE_RX_DESC_INC(prod)) {
1455 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1456 		rxstat = le32toh(cur_rx->vge_sts);
1457 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1458 			break;
1459 		count--;
1460 		prog++;
1461 		rxctl = le32toh(cur_rx->vge_ctl);
1462 		total_len = VGE_RXBYTES(rxstat);
1463 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1464 		m = rxd->rx_m;
1465 
1466 		/*
1467 		 * If the 'start of frame' bit is set, this indicates
1468 		 * either the first fragment in a multi-fragment receive,
1469 		 * or an intermediate fragment. Either way, we want to
1470 		 * accumulate the buffers.
1471 		 */
1472 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1473 			if (vge_newbuf(sc, prod) != 0) {
1474 				ifp->if_iqdrops++;
1475 				VGE_CHAIN_RESET(sc);
1476 				vge_discard_rxbuf(sc, prod);
1477 				continue;
1478 			}
1479 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1480 			if (sc->vge_cdata.vge_head == NULL) {
1481 				sc->vge_cdata.vge_head = m;
1482 				sc->vge_cdata.vge_tail = m;
1483 			} else {
1484 				m->m_flags &= ~M_PKTHDR;
1485 				sc->vge_cdata.vge_tail->m_next = m;
1486 				sc->vge_cdata.vge_tail = m;
1487 			}
1488 			continue;
1489 		}
1490 
1491 		/*
1492 		 * Bad/error frames will have the RXOK bit cleared.
1493 		 * However, there's one error case we want to allow:
1494 		 * if a VLAN tagged frame arrives and the chip can't
1495 		 * match it against the CAM filter, it considers this
1496 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1497 		 * We don't want to drop the frame though: our VLAN
1498 		 * filtering is done in software.
1499 		 * We also want to receive bad-checksummed frames and
1500 		 * and frames with bad-length.
1501 		 */
1502 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1503 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1504 		    VGE_RDSTS_CSUMERR)) == 0) {
1505 			ifp->if_ierrors++;
1506 			/*
1507 			 * If this is part of a multi-fragment packet,
1508 			 * discard all the pieces.
1509 			 */
1510 			VGE_CHAIN_RESET(sc);
1511 			vge_discard_rxbuf(sc, prod);
1512 			continue;
1513 		}
1514 
1515 		if (vge_newbuf(sc, prod) != 0) {
1516 			ifp->if_iqdrops++;
1517 			VGE_CHAIN_RESET(sc);
1518 			vge_discard_rxbuf(sc, prod);
1519 			continue;
1520 		}
1521 
1522 		/* Chain received mbufs. */
1523 		if (sc->vge_cdata.vge_head != NULL) {
1524 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1525 			/*
1526 			 * Special case: if there's 4 bytes or less
1527 			 * in this buffer, the mbuf can be discarded:
1528 			 * the last 4 bytes is the CRC, which we don't
1529 			 * care about anyway.
1530 			 */
1531 			if (m->m_len <= ETHER_CRC_LEN) {
1532 				sc->vge_cdata.vge_tail->m_len -=
1533 				    (ETHER_CRC_LEN - m->m_len);
1534 				m_freem(m);
1535 			} else {
1536 				m->m_len -= ETHER_CRC_LEN;
1537 				m->m_flags &= ~M_PKTHDR;
1538 				sc->vge_cdata.vge_tail->m_next = m;
1539 			}
1540 			m = sc->vge_cdata.vge_head;
1541 			m->m_flags |= M_PKTHDR;
1542 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1543 		} else {
1544 			m->m_flags |= M_PKTHDR;
1545 			m->m_pkthdr.len = m->m_len =
1546 			    (total_len - ETHER_CRC_LEN);
1547 		}
1548 
1549 #ifndef	__NO_STRICT_ALIGNMENT
1550 		vge_fixup_rx(m);
1551 #endif
1552 		m->m_pkthdr.rcvif = ifp;
1553 
1554 		/* Do RX checksumming if enabled */
1555 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1556 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1557 			/* Check IP header checksum */
1558 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1559 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1560 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1561 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1562 
1563 			/* Check TCP/UDP checksum */
1564 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1565 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1566 				m->m_pkthdr.csum_flags |=
1567 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1568 				m->m_pkthdr.csum_data = 0xffff;
1569 			}
1570 		}
1571 
1572 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1573 			/*
1574 			 * The 32-bit rxctl register is stored in little-endian.
1575 			 * However, the 16-bit vlan tag is stored in big-endian,
1576 			 * so we have to byte swap it.
1577 			 */
1578 			m->m_pkthdr.ether_vtag =
1579 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1580 			m->m_flags |= M_VLANTAG;
1581 		}
1582 
1583 		VGE_UNLOCK(sc);
1584 		(*ifp->if_input)(ifp, m);
1585 		VGE_LOCK(sc);
1586 		sc->vge_cdata.vge_head = NULL;
1587 		sc->vge_cdata.vge_tail = NULL;
1588 	}
1589 
1590 	if (prog > 0) {
1591 		sc->vge_cdata.vge_rx_prodidx = prod;
1592 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1593 		    sc->vge_cdata.vge_rx_ring_map,
1594 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595 		/* Update residue counter. */
1596 		if (sc->vge_cdata.vge_rx_commit != 0) {
1597 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1598 			    sc->vge_cdata.vge_rx_commit);
1599 			sc->vge_cdata.vge_rx_commit = 0;
1600 		}
1601 	}
1602 	return (prog);
1603 }
1604 
1605 static void
1606 vge_txeof(struct vge_softc *sc)
1607 {
1608 	struct ifnet *ifp;
1609 	struct vge_tx_desc *cur_tx;
1610 	struct vge_txdesc *txd;
1611 	uint32_t txstat;
1612 	int cons, prod;
1613 
1614 	VGE_LOCK_ASSERT(sc);
1615 
1616 	ifp = sc->vge_ifp;
1617 
1618 	if (sc->vge_cdata.vge_tx_cnt == 0)
1619 		return;
1620 
1621 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1622 	    sc->vge_cdata.vge_tx_ring_map,
1623 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624 
1625 	/*
1626 	 * Go through our tx list and free mbufs for those
1627 	 * frames that have been transmitted.
1628 	 */
1629 	cons = sc->vge_cdata.vge_tx_considx;
1630 	prod = sc->vge_cdata.vge_tx_prodidx;
1631 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1632 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1633 		txstat = le32toh(cur_tx->vge_sts);
1634 		if ((txstat & VGE_TDSTS_OWN) != 0)
1635 			break;
1636 		sc->vge_cdata.vge_tx_cnt--;
1637 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1638 
1639 		txd = &sc->vge_cdata.vge_txdesc[cons];
1640 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1641 		    BUS_DMASYNC_POSTWRITE);
1642 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1643 
1644 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1645 		    __func__));
1646 		m_freem(txd->tx_m);
1647 		txd->tx_m = NULL;
1648 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1649 	}
1650 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1651 	    sc->vge_cdata.vge_tx_ring_map,
1652 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1653 	sc->vge_cdata.vge_tx_considx = cons;
1654 	if (sc->vge_cdata.vge_tx_cnt == 0)
1655 		sc->vge_timer = 0;
1656 }
1657 
1658 static void
1659 vge_link_statchg(void *xsc)
1660 {
1661 	struct vge_softc *sc;
1662 	struct ifnet *ifp;
1663 	struct mii_data *mii;
1664 
1665 	sc = xsc;
1666 	ifp = sc->vge_ifp;
1667 	VGE_LOCK_ASSERT(sc);
1668 	mii = device_get_softc(sc->vge_miibus);
1669 
1670 	mii_pollstat(mii);
1671 	if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1672 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1673 			sc->vge_flags &= ~VGE_FLAG_LINK;
1674 			if_link_state_change(sc->vge_ifp,
1675 			    LINK_STATE_DOWN);
1676 		}
1677 	} else {
1678 		if (mii->mii_media_status & IFM_ACTIVE &&
1679 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1680 			sc->vge_flags |= VGE_FLAG_LINK;
1681 			if_link_state_change(sc->vge_ifp,
1682 			    LINK_STATE_UP);
1683 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1684 				vge_start_locked(ifp);
1685 		}
1686 	}
1687 }
1688 
1689 #ifdef DEVICE_POLLING
1690 static int
1691 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1692 {
1693 	struct vge_softc *sc = ifp->if_softc;
1694 	int rx_npkts = 0;
1695 
1696 	VGE_LOCK(sc);
1697 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1698 		goto done;
1699 
1700 	rx_npkts = vge_rxeof(sc, count);
1701 	vge_txeof(sc);
1702 
1703 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1704 		vge_start_locked(ifp);
1705 
1706 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1707 		uint32_t       status;
1708 		status = CSR_READ_4(sc, VGE_ISR);
1709 		if (status == 0xFFFFFFFF)
1710 			goto done;
1711 		if (status)
1712 			CSR_WRITE_4(sc, VGE_ISR, status);
1713 
1714 		/*
1715 		 * XXX check behaviour on receiver stalls.
1716 		 */
1717 
1718 		if (status & VGE_ISR_TXDMA_STALL ||
1719 		    status & VGE_ISR_RXDMA_STALL) {
1720 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721 			vge_init_locked(sc);
1722 		}
1723 
1724 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1725 			vge_rxeof(sc, count);
1726 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1727 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1728 		}
1729 	}
1730 done:
1731 	VGE_UNLOCK(sc);
1732 	return (rx_npkts);
1733 }
1734 #endif /* DEVICE_POLLING */
1735 
1736 static void
1737 vge_intr(void *arg)
1738 {
1739 	struct vge_softc *sc;
1740 	struct ifnet *ifp;
1741 	uint32_t status;
1742 
1743 	sc = arg;
1744 	VGE_LOCK(sc);
1745 
1746 	ifp = sc->vge_ifp;
1747 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1748 	    (ifp->if_flags & IFF_UP) == 0) {
1749 		VGE_UNLOCK(sc);
1750 		return;
1751 	}
1752 
1753 #ifdef DEVICE_POLLING
1754 	if  (ifp->if_capenable & IFCAP_POLLING) {
1755 		VGE_UNLOCK(sc);
1756 		return;
1757 	}
1758 #endif
1759 
1760 	/* Disable interrupts */
1761 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1762 	status = CSR_READ_4(sc, VGE_ISR);
1763 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1764 	/* If the card has gone away the read returns 0xffff. */
1765 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1766 		goto done;
1767 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1768 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1769 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1770 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1771 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1772 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1773 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1774 		}
1775 
1776 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1777 			vge_txeof(sc);
1778 
1779 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1780 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1781 			vge_init_locked(sc);
1782 		}
1783 
1784 		if (status & VGE_ISR_LINKSTS)
1785 			vge_link_statchg(sc);
1786 	}
1787 done:
1788 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1789 		/* Re-enable interrupts */
1790 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1791 
1792 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793 			vge_start_locked(ifp);
1794 	}
1795 	VGE_UNLOCK(sc);
1796 }
1797 
1798 static int
1799 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1800 {
1801 	struct vge_txdesc *txd;
1802 	struct vge_tx_frag *frag;
1803 	struct mbuf *m;
1804 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1805 	int error, i, nsegs, padlen;
1806 	uint32_t cflags;
1807 
1808 	VGE_LOCK_ASSERT(sc);
1809 
1810 	M_ASSERTPKTHDR((*m_head));
1811 
1812 	/* Argh. This chip does not autopad short frames. */
1813 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1814 		m = *m_head;
1815 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1816 		if (M_WRITABLE(m) == 0) {
1817 			/* Get a writable copy. */
1818 			m = m_dup(*m_head, M_DONTWAIT);
1819 			m_freem(*m_head);
1820 			if (m == NULL) {
1821 				*m_head = NULL;
1822 				return (ENOBUFS);
1823 			}
1824 			*m_head = m;
1825 		}
1826 		if (M_TRAILINGSPACE(m) < padlen) {
1827 			m = m_defrag(m, M_DONTWAIT);
1828 			if (m == NULL) {
1829 				m_freem(*m_head);
1830 				*m_head = NULL;
1831 				return (ENOBUFS);
1832 			}
1833 		}
1834 		/*
1835 		 * Manually pad short frames, and zero the pad space
1836 		 * to avoid leaking data.
1837 		 */
1838 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1839 		m->m_pkthdr.len += padlen;
1840 		m->m_len = m->m_pkthdr.len;
1841 		*m_head = m;
1842 	}
1843 
1844 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1845 
1846 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1847 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1848 	if (error == EFBIG) {
1849 		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1850 		if (m == NULL) {
1851 			m_freem(*m_head);
1852 			*m_head = NULL;
1853 			return (ENOMEM);
1854 		}
1855 		*m_head = m;
1856 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1857 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1858 		if (error != 0) {
1859 			m_freem(*m_head);
1860 			*m_head = NULL;
1861 			return (error);
1862 		}
1863 	} else if (error != 0)
1864 		return (error);
1865 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1866 	    BUS_DMASYNC_PREWRITE);
1867 
1868 	m = *m_head;
1869 	cflags = 0;
1870 
1871 	/* Configure checksum offload. */
1872 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1873 		cflags |= VGE_TDCTL_IPCSUM;
1874 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1875 		cflags |= VGE_TDCTL_TCPCSUM;
1876 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1877 		cflags |= VGE_TDCTL_UDPCSUM;
1878 
1879 	/* Configure VLAN. */
1880 	if ((m->m_flags & M_VLANTAG) != 0)
1881 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1882 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1883 	/*
1884 	 * XXX
1885 	 * Velocity family seems to support TSO but no information
1886 	 * for MSS configuration is available. Also the number of
1887 	 * fragments supported by a descriptor is too small to hold
1888 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1889 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1890 	 * longer chain of buffers but no additional information is
1891 	 * available.
1892 	 *
1893 	 * When telling the chip how many segments there are, we
1894 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1895 	 * know why. This also means we can't use the last fragment
1896 	 * field of Tx descriptor.
1897 	 */
1898 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1899 	    VGE_TD_LS_NORM);
1900 	for (i = 0; i < nsegs; i++) {
1901 		frag = &txd->tx_desc->vge_frag[i];
1902 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1903 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1904 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1905 	}
1906 
1907 	sc->vge_cdata.vge_tx_cnt++;
1908 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1909 
1910 	/*
1911 	 * Finally request interrupt and give the first descriptor
1912 	 * ownership to hardware.
1913 	 */
1914 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1915 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1916 	txd->tx_m = m;
1917 
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Main transmit routine.
1923  */
1924 
1925 static void
1926 vge_start(struct ifnet *ifp)
1927 {
1928 	struct vge_softc *sc;
1929 
1930 	sc = ifp->if_softc;
1931 	VGE_LOCK(sc);
1932 	vge_start_locked(ifp);
1933 	VGE_UNLOCK(sc);
1934 }
1935 
1936 
1937 static void
1938 vge_start_locked(struct ifnet *ifp)
1939 {
1940 	struct vge_softc *sc;
1941 	struct vge_txdesc *txd;
1942 	struct mbuf *m_head;
1943 	int enq, idx;
1944 
1945 	sc = ifp->if_softc;
1946 
1947 	VGE_LOCK_ASSERT(sc);
1948 
1949 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1950 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1951 	    IFF_DRV_RUNNING)
1952 		return;
1953 
1954 	idx = sc->vge_cdata.vge_tx_prodidx;
1955 	VGE_TX_DESC_DEC(idx);
1956 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1957 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1958 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1959 		if (m_head == NULL)
1960 			break;
1961 		/*
1962 		 * Pack the data into the transmit ring. If we
1963 		 * don't have room, set the OACTIVE flag and wait
1964 		 * for the NIC to drain the ring.
1965 		 */
1966 		if (vge_encap(sc, &m_head)) {
1967 			if (m_head == NULL)
1968 				break;
1969 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1970 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1971 			break;
1972 		}
1973 
1974 		txd = &sc->vge_cdata.vge_txdesc[idx];
1975 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1976 		VGE_TX_DESC_INC(idx);
1977 
1978 		enq++;
1979 		/*
1980 		 * If there's a BPF listener, bounce a copy of this frame
1981 		 * to him.
1982 		 */
1983 		ETHER_BPF_MTAP(ifp, m_head);
1984 	}
1985 
1986 	if (enq > 0) {
1987 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1988 		    sc->vge_cdata.vge_tx_ring_map,
1989 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1990 		/* Issue a transmit command. */
1991 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1992 		/*
1993 		 * Set a timeout in case the chip goes out to lunch.
1994 		 */
1995 		sc->vge_timer = 5;
1996 	}
1997 }
1998 
1999 static void
2000 vge_init(void *xsc)
2001 {
2002 	struct vge_softc *sc = xsc;
2003 
2004 	VGE_LOCK(sc);
2005 	vge_init_locked(sc);
2006 	VGE_UNLOCK(sc);
2007 }
2008 
2009 static void
2010 vge_init_locked(struct vge_softc *sc)
2011 {
2012 	struct ifnet *ifp = sc->vge_ifp;
2013 	struct mii_data *mii;
2014 	int error, i;
2015 
2016 	VGE_LOCK_ASSERT(sc);
2017 	mii = device_get_softc(sc->vge_miibus);
2018 
2019 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2020 		return;
2021 
2022 	/*
2023 	 * Cancel pending I/O and free all RX/TX buffers.
2024 	 */
2025 	vge_stop(sc);
2026 	vge_reset(sc);
2027 
2028 	/*
2029 	 * Initialize the RX and TX descriptors and mbufs.
2030 	 */
2031 
2032 	error = vge_rx_list_init(sc);
2033 	if (error != 0) {
2034                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2035                 return;
2036 	}
2037 	vge_tx_list_init(sc);
2038 	/* Clear MAC statistics. */
2039 	vge_stats_clear(sc);
2040 	/* Set our station address */
2041 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2042 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2043 
2044 	/*
2045 	 * Set receive FIFO threshold. Also allow transmission and
2046 	 * reception of VLAN tagged frames.
2047 	 */
2048 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2049 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2050 
2051 	/* Set DMA burst length */
2052 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2053 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2054 
2055 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2056 
2057 	/* Set collision backoff algorithm */
2058 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2059 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2060 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2061 
2062 	/* Disable LPSEL field in priority resolution */
2063 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2064 
2065 	/*
2066 	 * Load the addresses of the DMA queues into the chip.
2067 	 * Note that we only use one transmit queue.
2068 	 */
2069 
2070 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2071 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2072 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2073 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2074 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2075 
2076 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2077 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2078 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2079 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2080 
2081 	/* Configure interrupt moderation. */
2082 	vge_intr_holdoff(sc);
2083 
2084 	/* Enable and wake up the RX descriptor queue */
2085 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2086 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2087 
2088 	/* Enable the TX descriptor queue */
2089 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2090 
2091 	/* Init the cam filter. */
2092 	vge_cam_clear(sc);
2093 
2094 	/* Set up receiver filter. */
2095 	vge_rxfilter(sc);
2096 	vge_setvlan(sc);
2097 
2098 	/* Enable flow control */
2099 
2100 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2101 
2102 	/* Enable jumbo frame reception (if desired) */
2103 
2104 	/* Start the MAC. */
2105 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2106 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2107 	CSR_WRITE_1(sc, VGE_CRS0,
2108 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2109 
2110 #ifdef DEVICE_POLLING
2111 	/*
2112 	 * Disable interrupts if we are polling.
2113 	 */
2114 	if (ifp->if_capenable & IFCAP_POLLING) {
2115 		CSR_WRITE_4(sc, VGE_IMR, 0);
2116 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2117 	} else	/* otherwise ... */
2118 #endif
2119 	{
2120 	/*
2121 	 * Enable interrupts.
2122 	 */
2123 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2124 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2125 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2126 	}
2127 
2128 	sc->vge_flags &= ~VGE_FLAG_LINK;
2129 	mii_mediachg(mii);
2130 
2131 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2132 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2133 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2134 }
2135 
2136 /*
2137  * Set media options.
2138  */
2139 static int
2140 vge_ifmedia_upd(struct ifnet *ifp)
2141 {
2142 	struct vge_softc *sc;
2143 	struct mii_data *mii;
2144 	int error;
2145 
2146 	sc = ifp->if_softc;
2147 	VGE_LOCK(sc);
2148 	mii = device_get_softc(sc->vge_miibus);
2149 	error = mii_mediachg(mii);
2150 	VGE_UNLOCK(sc);
2151 
2152 	return (error);
2153 }
2154 
2155 /*
2156  * Report current media status.
2157  */
2158 static void
2159 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2160 {
2161 	struct vge_softc *sc;
2162 	struct mii_data *mii;
2163 
2164 	sc = ifp->if_softc;
2165 	mii = device_get_softc(sc->vge_miibus);
2166 
2167 	VGE_LOCK(sc);
2168 	if ((ifp->if_flags & IFF_UP) == 0) {
2169 		VGE_UNLOCK(sc);
2170 		return;
2171 	}
2172 	mii_pollstat(mii);
2173 	VGE_UNLOCK(sc);
2174 	ifmr->ifm_active = mii->mii_media_active;
2175 	ifmr->ifm_status = mii->mii_media_status;
2176 }
2177 
2178 static void
2179 vge_miibus_statchg(device_t dev)
2180 {
2181 	struct vge_softc *sc;
2182 	struct mii_data *mii;
2183 	struct ifmedia_entry *ife;
2184 
2185 	sc = device_get_softc(dev);
2186 	mii = device_get_softc(sc->vge_miibus);
2187 	ife = mii->mii_media.ifm_cur;
2188 
2189 	/*
2190 	 * If the user manually selects a media mode, we need to turn
2191 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2192 	 * user happens to choose a full duplex mode, we also need to
2193 	 * set the 'force full duplex' bit. This applies only to
2194 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2195 	 * mode is disabled, and in 1000baseT mode, full duplex is
2196 	 * always implied, so we turn on the forced mode bit but leave
2197 	 * the FDX bit cleared.
2198 	 */
2199 
2200 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2201 	case IFM_AUTO:
2202 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2203 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2204 		break;
2205 	case IFM_1000_T:
2206 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2207 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2208 		break;
2209 	case IFM_100_TX:
2210 	case IFM_10_T:
2211 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2212 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2213 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2214 		} else {
2215 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2216 		}
2217 		break;
2218 	default:
2219 		device_printf(dev, "unknown media type: %x\n",
2220 		    IFM_SUBTYPE(ife->ifm_media));
2221 		break;
2222 	}
2223 }
2224 
2225 static int
2226 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2227 {
2228 	struct vge_softc *sc = ifp->if_softc;
2229 	struct ifreq *ifr = (struct ifreq *) data;
2230 	struct mii_data *mii;
2231 	int error = 0, mask;
2232 
2233 	switch (command) {
2234 	case SIOCSIFMTU:
2235 		VGE_LOCK(sc);
2236 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2237 			error = EINVAL;
2238 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2239 			if (ifr->ifr_mtu > ETHERMTU &&
2240 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2241 				error = EINVAL;
2242 			else
2243 				ifp->if_mtu = ifr->ifr_mtu;
2244 		}
2245 		VGE_UNLOCK(sc);
2246 		break;
2247 	case SIOCSIFFLAGS:
2248 		VGE_LOCK(sc);
2249 		if ((ifp->if_flags & IFF_UP) != 0) {
2250 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2251 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2252 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2253 				vge_rxfilter(sc);
2254 			else
2255 				vge_init_locked(sc);
2256 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2257 			vge_stop(sc);
2258 		sc->vge_if_flags = ifp->if_flags;
2259 		VGE_UNLOCK(sc);
2260 		break;
2261 	case SIOCADDMULTI:
2262 	case SIOCDELMULTI:
2263 		VGE_LOCK(sc);
2264 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2265 			vge_rxfilter(sc);
2266 		VGE_UNLOCK(sc);
2267 		break;
2268 	case SIOCGIFMEDIA:
2269 	case SIOCSIFMEDIA:
2270 		mii = device_get_softc(sc->vge_miibus);
2271 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2272 		break;
2273 	case SIOCSIFCAP:
2274 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2275 #ifdef DEVICE_POLLING
2276 		if (mask & IFCAP_POLLING) {
2277 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2278 				error = ether_poll_register(vge_poll, ifp);
2279 				if (error)
2280 					return (error);
2281 				VGE_LOCK(sc);
2282 					/* Disable interrupts */
2283 				CSR_WRITE_4(sc, VGE_IMR, 0);
2284 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2285 				ifp->if_capenable |= IFCAP_POLLING;
2286 				VGE_UNLOCK(sc);
2287 			} else {
2288 				error = ether_poll_deregister(ifp);
2289 				/* Enable interrupts. */
2290 				VGE_LOCK(sc);
2291 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2292 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2293 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2294 				ifp->if_capenable &= ~IFCAP_POLLING;
2295 				VGE_UNLOCK(sc);
2296 			}
2297 		}
2298 #endif /* DEVICE_POLLING */
2299 		VGE_LOCK(sc);
2300 		if ((mask & IFCAP_TXCSUM) != 0 &&
2301 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2302 			ifp->if_capenable ^= IFCAP_TXCSUM;
2303 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2304 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2305 			else
2306 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2307 		}
2308 		if ((mask & IFCAP_RXCSUM) != 0 &&
2309 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2310 			ifp->if_capenable ^= IFCAP_RXCSUM;
2311 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2312 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2313 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2314 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2315 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2316 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2317 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2318 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2319 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2320 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2321 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2322 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2323 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2324 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2325 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2326 			vge_setvlan(sc);
2327 		}
2328 		VGE_UNLOCK(sc);
2329 		VLAN_CAPABILITIES(ifp);
2330 		break;
2331 	default:
2332 		error = ether_ioctl(ifp, command, data);
2333 		break;
2334 	}
2335 
2336 	return (error);
2337 }
2338 
2339 static void
2340 vge_watchdog(void *arg)
2341 {
2342 	struct vge_softc *sc;
2343 	struct ifnet *ifp;
2344 
2345 	sc = arg;
2346 	VGE_LOCK_ASSERT(sc);
2347 	vge_stats_update(sc);
2348 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2349 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2350 		return;
2351 
2352 	ifp = sc->vge_ifp;
2353 	if_printf(ifp, "watchdog timeout\n");
2354 	ifp->if_oerrors++;
2355 
2356 	vge_txeof(sc);
2357 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2358 
2359 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2360 	vge_init_locked(sc);
2361 }
2362 
2363 /*
2364  * Stop the adapter and free any mbufs allocated to the
2365  * RX and TX lists.
2366  */
2367 static void
2368 vge_stop(struct vge_softc *sc)
2369 {
2370 	struct ifnet *ifp;
2371 
2372 	VGE_LOCK_ASSERT(sc);
2373 	ifp = sc->vge_ifp;
2374 	sc->vge_timer = 0;
2375 	callout_stop(&sc->vge_watchdog);
2376 
2377 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2378 
2379 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2380 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2381 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2382 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2383 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2384 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2385 
2386 	vge_stats_update(sc);
2387 	VGE_CHAIN_RESET(sc);
2388 	vge_txeof(sc);
2389 	vge_freebufs(sc);
2390 }
2391 
2392 /*
2393  * Device suspend routine.  Stop the interface and save some PCI
2394  * settings in case the BIOS doesn't restore them properly on
2395  * resume.
2396  */
2397 static int
2398 vge_suspend(device_t dev)
2399 {
2400 	struct vge_softc *sc;
2401 
2402 	sc = device_get_softc(dev);
2403 
2404 	VGE_LOCK(sc);
2405 	vge_stop(sc);
2406 	vge_setwol(sc);
2407 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2408 	VGE_UNLOCK(sc);
2409 
2410 	return (0);
2411 }
2412 
2413 /*
2414  * Device resume routine.  Restore some PCI settings in case the BIOS
2415  * doesn't, re-enable busmastering, and restart the interface if
2416  * appropriate.
2417  */
2418 static int
2419 vge_resume(device_t dev)
2420 {
2421 	struct vge_softc *sc;
2422 	struct ifnet *ifp;
2423 	uint16_t pmstat;
2424 
2425 	sc = device_get_softc(dev);
2426 	VGE_LOCK(sc);
2427 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2428 		/* Disable PME and clear PME status. */
2429 		pmstat = pci_read_config(sc->vge_dev,
2430 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2431 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2432 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2433 			pci_write_config(sc->vge_dev,
2434 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2435 		}
2436 	}
2437 	vge_clrwol(sc);
2438 	/* Restart MII auto-polling. */
2439 	vge_miipoll_start(sc);
2440 	ifp = sc->vge_ifp;
2441 	/* Reinitialize interface if necessary. */
2442 	if ((ifp->if_flags & IFF_UP) != 0) {
2443 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2444 		vge_init_locked(sc);
2445 	}
2446 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2447 	VGE_UNLOCK(sc);
2448 
2449 	return (0);
2450 }
2451 
2452 /*
2453  * Stop all chip I/O so that the kernel's probe routines don't
2454  * get confused by errant DMAs when rebooting.
2455  */
2456 static int
2457 vge_shutdown(device_t dev)
2458 {
2459 
2460 	return (vge_suspend(dev));
2461 }
2462 
2463 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2464 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2465 
2466 static void
2467 vge_sysctl_node(struct vge_softc *sc)
2468 {
2469 	struct sysctl_ctx_list *ctx;
2470 	struct sysctl_oid_list *child, *parent;
2471 	struct sysctl_oid *tree;
2472 	struct vge_hw_stats *stats;
2473 
2474 	stats = &sc->vge_stats;
2475 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2476 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2477 
2478 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2479 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2480 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2481 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2482 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2483 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2484 
2485 	/* Pull in device tunables. */
2486 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2487 	resource_int_value(device_get_name(sc->vge_dev),
2488 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2489 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2490 	resource_int_value(device_get_name(sc->vge_dev),
2491 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2492 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2493 	resource_int_value(device_get_name(sc->vge_dev),
2494 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2495 
2496 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2497 	    NULL, "VGE statistics");
2498 	parent = SYSCTL_CHILDREN(tree);
2499 
2500 	/* Rx statistics. */
2501 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2502 	    NULL, "RX MAC statistics");
2503 	child = SYSCTL_CHILDREN(tree);
2504 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2505 	    &stats->rx_frames, "frames");
2506 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2507 	    &stats->rx_good_frames, "Good frames");
2508 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2509 	    &stats->rx_fifo_oflows, "FIFO overflows");
2510 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2511 	    &stats->rx_runts, "Too short frames");
2512 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2513 	    &stats->rx_runts_errs, "Too short frames with errors");
2514 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2515 	    &stats->rx_pkts_64, "64 bytes frames");
2516 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2517 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2518 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2519 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2520 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2521 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2522 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2523 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2524 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2525 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2526 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2527 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2528 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2529 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2530 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2531 	    &stats->rx_jumbos, "Jumbo frames");
2532 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2533 	    &stats->rx_crcerrs, "CRC errors");
2534 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2535 	    &stats->rx_pause_frames, "CRC errors");
2536 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2537 	    &stats->rx_alignerrs, "Alignment errors");
2538 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2539 	    &stats->rx_nobufs, "Frames with no buffer event");
2540 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2541 	    &stats->rx_symerrs, "Frames with symbol errors");
2542 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2543 	    &stats->rx_lenerrs, "Frames with length mismatched");
2544 
2545 	/* Tx statistics. */
2546 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2547 	    NULL, "TX MAC statistics");
2548 	child = SYSCTL_CHILDREN(tree);
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2550 	    &stats->tx_good_frames, "Good frames");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2552 	    &stats->tx_pkts_64, "64 bytes frames");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2554 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2556 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2558 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2560 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2562 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2564 	    &stats->tx_jumbos, "Jumbo frames");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2566 	    &stats->tx_colls, "Collisions");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2568 	    &stats->tx_latecolls, "Late collisions");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2570 	    &stats->tx_pause, "Pause frames");
2571 #ifdef VGE_ENABLE_SQEERR
2572 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2573 	    &stats->tx_sqeerrs, "SQE errors");
2574 #endif
2575 	/* Clear MAC statistics. */
2576 	vge_stats_clear(sc);
2577 }
2578 
2579 #undef	VGE_SYSCTL_STAT_ADD32
2580 
2581 static void
2582 vge_stats_clear(struct vge_softc *sc)
2583 {
2584 	int i;
2585 
2586 	CSR_WRITE_1(sc, VGE_MIBCSR,
2587 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2588 	CSR_WRITE_1(sc, VGE_MIBCSR,
2589 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2590 	for (i = VGE_TIMEOUT; i > 0; i--) {
2591 		DELAY(1);
2592 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2593 			break;
2594 	}
2595 	if (i == 0)
2596 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2597 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2598 	    ~VGE_MIBCSR_FREEZE);
2599 }
2600 
2601 static void
2602 vge_stats_update(struct vge_softc *sc)
2603 {
2604 	struct vge_hw_stats *stats;
2605 	struct ifnet *ifp;
2606 	uint32_t mib[VGE_MIB_CNT], val;
2607 	int i;
2608 
2609 	VGE_LOCK_ASSERT(sc);
2610 
2611 	stats = &sc->vge_stats;
2612 	ifp = sc->vge_ifp;
2613 
2614 	CSR_WRITE_1(sc, VGE_MIBCSR,
2615 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2616 	for (i = VGE_TIMEOUT; i > 0; i--) {
2617 		DELAY(1);
2618 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2619 			break;
2620 	}
2621 	if (i == 0) {
2622 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2623 		vge_stats_clear(sc);
2624 		return;
2625 	}
2626 
2627 	bzero(mib, sizeof(mib));
2628 reset_idx:
2629 	/* Set MIB read index to 0. */
2630 	CSR_WRITE_1(sc, VGE_MIBCSR,
2631 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2632 	for (i = 0; i < VGE_MIB_CNT; i++) {
2633 		val = CSR_READ_4(sc, VGE_MIBDATA);
2634 		if (i != VGE_MIB_DATA_IDX(val)) {
2635 			/* Reading interrupted. */
2636 			goto reset_idx;
2637 		}
2638 		mib[i] = val & VGE_MIB_DATA_MASK;
2639 	}
2640 
2641 	/* Rx stats. */
2642 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2643 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2644 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2645 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2646 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2647 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2648 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2649 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2650 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2651 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2652 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2653 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2654 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2655 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2656 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2657 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2658 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2659 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2660 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2661 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2662 
2663 	/* Tx stats. */
2664 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2665 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2666 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2667 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2668 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2669 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2670 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2671 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2672 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2673 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2674 #ifdef VGE_ENABLE_SQEERR
2675 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2676 #endif
2677 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2678 
2679 	/* Update counters in ifnet. */
2680 	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2681 
2682 	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2683 	    mib[VGE_MIB_TX_LATECOLLS];
2684 
2685 	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2686 	    mib[VGE_MIB_TX_LATECOLLS];
2687 
2688 	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2689 
2690 	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2691 	    mib[VGE_MIB_RX_RUNTS] +
2692 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2693 	    mib[VGE_MIB_RX_CRCERRS] +
2694 	    mib[VGE_MIB_RX_ALIGNERRS] +
2695 	    mib[VGE_MIB_RX_NOBUFS] +
2696 	    mib[VGE_MIB_RX_SYMERRS] +
2697 	    mib[VGE_MIB_RX_LENERRS];
2698 }
2699 
2700 static void
2701 vge_intr_holdoff(struct vge_softc *sc)
2702 {
2703 	uint8_t intctl;
2704 
2705 	VGE_LOCK_ASSERT(sc);
2706 
2707 	/*
2708 	 * Set Tx interrupt supression threshold.
2709 	 * It's possible to use single-shot timer in VGE_CRS1 register
2710 	 * in Tx path such that driver can remove most of Tx completion
2711 	 * interrupts. However this requires additional access to
2712 	 * VGE_CRS1 register to reload the timer in addintion to
2713 	 * activating Tx kick command. Another downside is we don't know
2714 	 * what single-shot timer value should be used in advance so
2715 	 * reclaiming transmitted mbufs could be delayed a lot which in
2716 	 * turn slows down Tx operation.
2717 	 */
2718 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2719 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2720 
2721 	/* Set Rx interrupt suppresion threshold. */
2722 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2723 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2724 
2725 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2726 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2727 	intctl |= VGE_INTCTL_HC_RELOAD;
2728 	if (sc->vge_tx_coal_pkt <= 0)
2729 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2730 	else
2731 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2732 	if (sc->vge_rx_coal_pkt <= 0)
2733 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2734 	else
2735 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2736 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2737 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2738 	if (sc->vge_int_holdoff > 0) {
2739 		/* Set interrupt holdoff timer. */
2740 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2741 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2742 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2743 		/* Enable holdoff timer. */
2744 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2745 	}
2746 }
2747 
2748 static void
2749 vge_setlinkspeed(struct vge_softc *sc)
2750 {
2751 	struct mii_data *mii;
2752 	int aneg, i;
2753 
2754 	VGE_LOCK_ASSERT(sc);
2755 
2756 	mii = device_get_softc(sc->vge_miibus);
2757 	mii_pollstat(mii);
2758 	aneg = 0;
2759 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2760 	    (IFM_ACTIVE | IFM_AVALID)) {
2761 		switch IFM_SUBTYPE(mii->mii_media_active) {
2762 		case IFM_10_T:
2763 		case IFM_100_TX:
2764 			return;
2765 		case IFM_1000_T:
2766 			aneg++;
2767 		default:
2768 			break;
2769 		}
2770 	}
2771 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2772 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2773 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2774 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2775 	    BMCR_AUTOEN | BMCR_STARTNEG);
2776 	DELAY(1000);
2777 	if (aneg != 0) {
2778 		/* Poll link state until vge(4) get a 10/100 link. */
2779 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2780 			mii_pollstat(mii);
2781 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2782 			    == (IFM_ACTIVE | IFM_AVALID)) {
2783 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2784 				case IFM_10_T:
2785 				case IFM_100_TX:
2786 					return;
2787 				default:
2788 					break;
2789 				}
2790 			}
2791 			VGE_UNLOCK(sc);
2792 			pause("vgelnk", hz);
2793 			VGE_LOCK(sc);
2794 		}
2795 		if (i == MII_ANEGTICKS_GIGE)
2796 			device_printf(sc->vge_dev, "establishing link failed, "
2797 			    "WOL may not work!");
2798 	}
2799 	/*
2800 	 * No link, force MAC to have 100Mbps, full-duplex link.
2801 	 * This is the last resort and may/may not work.
2802 	 */
2803 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2804 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2805 }
2806 
2807 static void
2808 vge_setwol(struct vge_softc *sc)
2809 {
2810 	struct ifnet *ifp;
2811 	uint16_t pmstat;
2812 	uint8_t val;
2813 
2814 	VGE_LOCK_ASSERT(sc);
2815 
2816 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2817 		/* No PME capability, PHY power down. */
2818 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2819 		    BMCR_PDOWN);
2820 		vge_miipoll_stop(sc);
2821 		return;
2822 	}
2823 
2824 	ifp = sc->vge_ifp;
2825 
2826 	/* Clear WOL on pattern match. */
2827 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2828 	/* Disable WOL on magic/unicast packet. */
2829 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2830 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2831 	    VGE_WOLCFG_PMEOVR);
2832 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2833 		vge_setlinkspeed(sc);
2834 		val = 0;
2835 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2836 			val |= VGE_WOLCR1_UCAST;
2837 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2838 			val |= VGE_WOLCR1_MAGIC;
2839 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2840 		val = 0;
2841 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2842 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2843 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2844 		/* Disable MII auto-polling. */
2845 		vge_miipoll_stop(sc);
2846 	}
2847 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2848 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2849 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2850 
2851 	/* Clear WOL status on pattern match. */
2852 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2853 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2854 
2855 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2856 	val |= VGE_STICKHW_SWPTAG;
2857 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2858 	/* Put hardware into sleep. */
2859 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2860 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2861 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2862 	/* Request PME if WOL is requested. */
2863 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2864 	    PCIR_POWER_STATUS, 2);
2865 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2866 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2867 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2868 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2869 	    pmstat, 2);
2870 }
2871 
2872 static void
2873 vge_clrwol(struct vge_softc *sc)
2874 {
2875 	uint8_t val;
2876 
2877 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2878 	val &= ~VGE_STICKHW_SWPTAG;
2879 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2880 	/* Disable WOL and clear power state indicator. */
2881 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2882 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2883 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2884 
2885 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2886 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2887 
2888 	/* Clear WOL on pattern match. */
2889 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2890 	/* Disable WOL on magic/unicast packet. */
2891 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2892 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2893 	    VGE_WOLCFG_PMEOVR);
2894 	/* Clear WOL status on pattern match. */
2895 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2896 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2897 }
2898