xref: /freebsd/sys/dev/vge/if_vge.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/endian.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/module.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 #include <sys/taskqueue.h>
93 
94 #include <net/if.h>
95 #include <net/if_arp.h>
96 #include <net/ethernet.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <machine/bus.h>
104 #include <machine/resource.h>
105 #include <sys/bus.h>
106 #include <sys/rman.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 
114 MODULE_DEPEND(vge, pci, 1, 1, 1);
115 MODULE_DEPEND(vge, ether, 1, 1, 1);
116 MODULE_DEPEND(vge, miibus, 1, 1, 1);
117 
118 /* "controller miibus0" required.  See GENERIC if you get errors here. */
119 #include "miibus_if.h"
120 
121 #include <dev/vge/if_vgereg.h>
122 #include <dev/vge/if_vgevar.h>
123 
124 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 static struct vge_type vge_devs[] = {
130 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
131 		"VIA Networking Gigabit Ethernet" },
132 	{ 0, 0, NULL }
133 };
134 
135 static int vge_probe		(device_t);
136 static int vge_attach		(device_t);
137 static int vge_detach		(device_t);
138 
139 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
140 
141 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
142 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
143 				    bus_size_t, int);
144 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
145 				    bus_size_t, int);
146 static int vge_allocmem		(device_t, struct vge_softc *);
147 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
148 static int vge_rx_list_init	(struct vge_softc *);
149 static int vge_tx_list_init	(struct vge_softc *);
150 #ifdef VGE_FIXUP_RX
151 static __inline void vge_fixup_rx
152 				(struct mbuf *);
153 #endif
154 static void vge_rxeof		(struct vge_softc *);
155 static void vge_txeof		(struct vge_softc *);
156 static void vge_intr		(void *);
157 static void vge_tick		(void *);
158 static void vge_tx_task		(void *, int);
159 static void vge_start		(struct ifnet *);
160 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
161 static void vge_init		(void *);
162 static void vge_stop		(struct vge_softc *);
163 static void vge_watchdog	(struct ifnet *);
164 static int vge_suspend		(device_t);
165 static int vge_resume		(device_t);
166 static void vge_shutdown	(device_t);
167 static int vge_ifmedia_upd	(struct ifnet *);
168 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
169 
170 #ifdef VGE_EEPROM
171 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
172 #endif
173 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
174 
175 static void vge_miipoll_start	(struct vge_softc *);
176 static void vge_miipoll_stop	(struct vge_softc *);
177 static int vge_miibus_readreg	(device_t, int, int);
178 static int vge_miibus_writereg	(device_t, int, int, int);
179 static void vge_miibus_statchg	(device_t);
180 
181 static void vge_cam_clear	(struct vge_softc *);
182 static int vge_cam_set		(struct vge_softc *, uint8_t *);
183 #if __FreeBSD_version < 502113
184 static uint32_t vge_mchash	(uint8_t *);
185 #endif
186 static void vge_setmulti	(struct vge_softc *);
187 static void vge_reset		(struct vge_softc *);
188 
189 #define VGE_PCI_LOIO             0x10
190 #define VGE_PCI_LOMEM            0x14
191 
192 static device_method_t vge_methods[] = {
193 	/* Device interface */
194 	DEVMETHOD(device_probe,		vge_probe),
195 	DEVMETHOD(device_attach,	vge_attach),
196 	DEVMETHOD(device_detach,	vge_detach),
197 	DEVMETHOD(device_suspend,	vge_suspend),
198 	DEVMETHOD(device_resume,	vge_resume),
199 	DEVMETHOD(device_shutdown,	vge_shutdown),
200 
201 	/* bus interface */
202 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
203 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
204 
205 	/* MII interface */
206 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
207 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
208 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
209 
210 	{ 0, 0 }
211 };
212 
213 static driver_t vge_driver = {
214 	"vge",
215 	vge_methods,
216 	sizeof(struct vge_softc)
217 };
218 
219 static devclass_t vge_devclass;
220 
221 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
222 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
223 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
224 
225 #ifdef VGE_EEPROM
226 /*
227  * Read a word of data stored in the EEPROM at address 'addr.'
228  */
229 static void
230 vge_eeprom_getword(sc, addr, dest)
231 	struct vge_softc	*sc;
232 	int			addr;
233 	u_int16_t		*dest;
234 {
235 	register int		i;
236 	u_int16_t		word = 0;
237 
238 	/*
239 	 * Enter EEPROM embedded programming mode. In order to
240 	 * access the EEPROM at all, we first have to set the
241 	 * EELOAD bit in the CHIPCFG2 register.
242 	 */
243 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
244 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
245 
246 	/* Select the address of the word we want to read */
247 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
248 
249 	/* Issue read command */
250 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
251 
252 	/* Wait for the done bit to be set. */
253 	for (i = 0; i < VGE_TIMEOUT; i++) {
254 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
255 			break;
256 	}
257 
258 	if (i == VGE_TIMEOUT) {
259 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
260 		*dest = 0;
261 		return;
262 	}
263 
264 	/* Read the result */
265 	word = CSR_READ_2(sc, VGE_EERDDAT);
266 
267 	/* Turn off EEPROM access mode. */
268 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
270 
271 	*dest = word;
272 
273 	return;
274 }
275 #endif
276 
277 /*
278  * Read a sequence of words from the EEPROM.
279  */
280 static void
281 vge_read_eeprom(sc, dest, off, cnt, swap)
282 	struct vge_softc	*sc;
283 	caddr_t			dest;
284 	int			off;
285 	int			cnt;
286 	int			swap;
287 {
288 	int			i;
289 #ifdef VGE_EEPROM
290 	u_int16_t		word = 0, *ptr;
291 
292 	for (i = 0; i < cnt; i++) {
293 		vge_eeprom_getword(sc, off + i, &word);
294 		ptr = (u_int16_t *)(dest + (i * 2));
295 		if (swap)
296 			*ptr = ntohs(word);
297 		else
298 			*ptr = word;
299 	}
300 #else
301 	for (i = 0; i < ETHER_ADDR_LEN; i++)
302 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
303 #endif
304 }
305 
306 static void
307 vge_miipoll_stop(sc)
308 	struct vge_softc	*sc;
309 {
310 	int			i;
311 
312 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
313 
314 	for (i = 0; i < VGE_TIMEOUT; i++) {
315 		DELAY(1);
316 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317 			break;
318 	}
319 
320 	if (i == VGE_TIMEOUT)
321 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 
323 	return;
324 }
325 
326 static void
327 vge_miipoll_start(sc)
328 	struct vge_softc	*sc;
329 {
330 	int			i;
331 
332 	/* First, make sure we're idle. */
333 
334 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
335 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
336 
337 	for (i = 0; i < VGE_TIMEOUT; i++) {
338 		DELAY(1);
339 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
340 			break;
341 	}
342 
343 	if (i == VGE_TIMEOUT) {
344 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
345 		return;
346 	}
347 
348 	/* Now enable auto poll mode. */
349 
350 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
351 
352 	/* And make sure it started. */
353 
354 	for (i = 0; i < VGE_TIMEOUT; i++) {
355 		DELAY(1);
356 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
357 			break;
358 	}
359 
360 	if (i == VGE_TIMEOUT)
361 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
362 
363 	return;
364 }
365 
366 static int
367 vge_miibus_readreg(dev, phy, reg)
368 	device_t		dev;
369 	int			phy, reg;
370 {
371 	struct vge_softc	*sc;
372 	int			i;
373 	u_int16_t		rval = 0;
374 
375 	sc = device_get_softc(dev);
376 
377 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
378 		return(0);
379 
380 	VGE_LOCK(sc);
381 	vge_miipoll_stop(sc);
382 
383 	/* Specify the register we want to read. */
384 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
385 
386 	/* Issue read command. */
387 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
388 
389 	/* Wait for the read command bit to self-clear. */
390 	for (i = 0; i < VGE_TIMEOUT; i++) {
391 		DELAY(1);
392 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
393 			break;
394 	}
395 
396 	if (i == VGE_TIMEOUT)
397 		device_printf(sc->vge_dev, "MII read timed out\n");
398 	else
399 		rval = CSR_READ_2(sc, VGE_MIIDATA);
400 
401 	vge_miipoll_start(sc);
402 	VGE_UNLOCK(sc);
403 
404 	return (rval);
405 }
406 
407 static int
408 vge_miibus_writereg(dev, phy, reg, data)
409 	device_t		dev;
410 	int			phy, reg, data;
411 {
412 	struct vge_softc	*sc;
413 	int			i, rval = 0;
414 
415 	sc = device_get_softc(dev);
416 
417 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
418 		return(0);
419 
420 	VGE_LOCK(sc);
421 	vge_miipoll_stop(sc);
422 
423 	/* Specify the register we want to write. */
424 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
425 
426 	/* Specify the data we want to write. */
427 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
428 
429 	/* Issue write command. */
430 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
431 
432 	/* Wait for the write command bit to self-clear. */
433 	for (i = 0; i < VGE_TIMEOUT; i++) {
434 		DELAY(1);
435 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
436 			break;
437 	}
438 
439 	if (i == VGE_TIMEOUT) {
440 		device_printf(sc->vge_dev, "MII write timed out\n");
441 		rval = EIO;
442 	}
443 
444 	vge_miipoll_start(sc);
445 	VGE_UNLOCK(sc);
446 
447 	return (rval);
448 }
449 
450 static void
451 vge_cam_clear(sc)
452 	struct vge_softc	*sc;
453 {
454 	int			i;
455 
456 	/*
457 	 * Turn off all the mask bits. This tells the chip
458 	 * that none of the entries in the CAM filter are valid.
459 	 * desired entries will be enabled as we fill the filter in.
460 	 */
461 
462 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
463 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
464 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
465 	for (i = 0; i < 8; i++)
466 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
467 
468 	/* Clear the VLAN filter too. */
469 
470 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
471 	for (i = 0; i < 8; i++)
472 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
473 
474 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
475 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
476 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
477 
478 	sc->vge_camidx = 0;
479 
480 	return;
481 }
482 
483 static int
484 vge_cam_set(sc, addr)
485 	struct vge_softc	*sc;
486 	uint8_t			*addr;
487 {
488 	int			i, error = 0;
489 
490 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
491 		return(ENOSPC);
492 
493 	/* Select the CAM data page. */
494 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
496 
497 	/* Set the filter entry we want to update and enable writing. */
498 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
499 
500 	/* Write the address to the CAM registers */
501 	for (i = 0; i < ETHER_ADDR_LEN; i++)
502 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
503 
504 	/* Issue a write command. */
505 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
506 
507 	/* Wake for it to clear. */
508 	for (i = 0; i < VGE_TIMEOUT; i++) {
509 		DELAY(1);
510 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
511 			break;
512 	}
513 
514 	if (i == VGE_TIMEOUT) {
515 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
516 		error = EIO;
517 		goto fail;
518 	}
519 
520 	/* Select the CAM mask page. */
521 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
522 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
523 
524 	/* Set the mask bit that enables this filter. */
525 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
526 	    1<<(sc->vge_camidx & 7));
527 
528 	sc->vge_camidx++;
529 
530 fail:
531 	/* Turn off access to CAM. */
532 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
533 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
534 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
535 
536 	return (error);
537 }
538 
539 #if __FreeBSD_version < 502113
540 static uint32_t
541 vge_mchash(addr)
542         uint8_t			*addr;
543 {
544 	uint32_t		crc, carry;
545 	int			idx, bit;
546 	uint8_t			data;
547 
548 	/* Compute CRC for the address value. */
549 	crc = 0xFFFFFFFF; /* initial value */
550 
551 	for (idx = 0; idx < 6; idx++) {
552 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
553 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
554 			crc <<= 1;
555 			if (carry)
556 				crc = (crc ^ 0x04c11db6) | carry;
557 		}
558 	}
559 
560 	return(crc);
561 }
562 #endif
563 
564 /*
565  * Program the multicast filter. We use the 64-entry CAM filter
566  * for perfect filtering. If there's more than 64 multicast addresses,
567  * we use the hash filter insted.
568  */
569 static void
570 vge_setmulti(sc)
571 	struct vge_softc	*sc;
572 {
573 	struct ifnet		*ifp;
574 	int			error = 0/*, h = 0*/;
575 	struct ifmultiaddr	*ifma;
576 	u_int32_t		h, hashes[2] = { 0, 0 };
577 
578 	ifp = &sc->arpcom.ac_if;
579 
580 	/* First, zot all the multicast entries. */
581 	vge_cam_clear(sc);
582 	CSR_WRITE_4(sc, VGE_MAR0, 0);
583 	CSR_WRITE_4(sc, VGE_MAR1, 0);
584 
585 	/*
586 	 * If the user wants allmulti or promisc mode, enable reception
587 	 * of all multicast frames.
588 	 */
589 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
590 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
591 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
592 		return;
593 	}
594 
595 	/* Now program new ones */
596 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
597 		if (ifma->ifma_addr->sa_family != AF_LINK)
598 			continue;
599 		error = vge_cam_set(sc,
600 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
601 		if (error)
602 			break;
603 	}
604 
605 	/* If there were too many addresses, use the hash filter. */
606 	if (error) {
607 		vge_cam_clear(sc);
608 
609 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
610 			if (ifma->ifma_addr->sa_family != AF_LINK)
611 				continue;
612 #if __FreeBSD_version < 502113
613 			h = vge_mchash(LLADDR((struct sockaddr_dl *)
614 			    ifma->ifma_addr)) >> 26;
615 #else
616 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
617 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
618 #endif
619 			if (h < 32)
620 				hashes[0] |= (1 << h);
621 			else
622 				hashes[1] |= (1 << (h - 32));
623 		}
624 
625 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
626 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
627 	}
628 
629 	return;
630 }
631 
632 static void
633 vge_reset(sc)
634 	struct vge_softc		*sc;
635 {
636 	register int		i;
637 
638 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
639 
640 	for (i = 0; i < VGE_TIMEOUT; i++) {
641 		DELAY(5);
642 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
643 			break;
644 	}
645 
646 	if (i == VGE_TIMEOUT) {
647 		device_printf(sc->vge_dev, "soft reset timed out");
648 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
649 		DELAY(2000);
650 	}
651 
652 	DELAY(5000);
653 
654 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
655 
656 	for (i = 0; i < VGE_TIMEOUT; i++) {
657 		DELAY(5);
658 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
659 			break;
660 	}
661 
662 	if (i == VGE_TIMEOUT) {
663 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
664 		return;
665 	}
666 
667 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
668 
669 	return;
670 }
671 
672 /*
673  * Probe for a VIA gigabit chip. Check the PCI vendor and device
674  * IDs against our list and return a device name if we find a match.
675  */
676 static int
677 vge_probe(dev)
678 	device_t		dev;
679 {
680 	struct vge_type		*t;
681 	struct vge_softc	*sc;
682 
683 	t = vge_devs;
684 	sc = device_get_softc(dev);
685 
686 	while (t->vge_name != NULL) {
687 		if ((pci_get_vendor(dev) == t->vge_vid) &&
688 		    (pci_get_device(dev) == t->vge_did)) {
689 			device_set_desc(dev, t->vge_name);
690 			return (BUS_PROBE_DEFAULT);
691 		}
692 		t++;
693 	}
694 
695 	return (ENXIO);
696 }
697 
698 static void
699 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
700 	void			*arg;
701 	bus_dma_segment_t	*segs;
702 	int			nseg;
703 	bus_size_t		mapsize;
704 	int			error;
705 {
706 
707 	struct vge_dmaload_arg	*ctx;
708 	struct vge_rx_desc	*d = NULL;
709 
710 	if (error)
711 		return;
712 
713 	ctx = arg;
714 
715 	/* Signal error to caller if there's too many segments */
716 	if (nseg > ctx->vge_maxsegs) {
717 		ctx->vge_maxsegs = 0;
718 		return;
719 	}
720 
721 	/*
722 	 * Map the segment array into descriptors.
723 	 */
724 
725 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
726 
727 	/* If this descriptor is still owned by the chip, bail. */
728 
729 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
730 		device_printf(ctx->sc->vge_dev,
731 		    "tried to map busy descriptor\n");
732 		ctx->vge_maxsegs = 0;
733 		return;
734 	}
735 
736 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
737 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
738 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
739 	d->vge_sts = 0;
740 	d->vge_ctl = 0;
741 
742 	ctx->vge_maxsegs = 1;
743 
744 	return;
745 }
746 
747 static void
748 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
749 	void			*arg;
750 	bus_dma_segment_t	*segs;
751 	int			nseg;
752 	bus_size_t		mapsize;
753 	int			error;
754 {
755 	struct vge_dmaload_arg	*ctx;
756 	struct vge_tx_desc	*d = NULL;
757 	struct vge_tx_frag	*f;
758 	int			i = 0;
759 
760 	if (error)
761 		return;
762 
763 	ctx = arg;
764 
765 	/* Signal error to caller if there's too many segments */
766 	if (nseg > ctx->vge_maxsegs) {
767 		ctx->vge_maxsegs = 0;
768 		return;
769 	}
770 
771 	/* Map the segment array into descriptors. */
772 
773 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
774 
775 	/* If this descriptor is still owned by the chip, bail. */
776 
777 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
778 		ctx->vge_maxsegs = 0;
779 		return;
780 	}
781 
782 	for (i = 0; i < nseg; i++) {
783 		f = &d->vge_frag[i];
784 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
785 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
786 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
787 	}
788 
789 	/* Argh. This chip does not autopad short frames */
790 
791 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
792 		f = &d->vge_frag[i];
793 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
794 		    ctx->vge_m0->m_pkthdr.len));
795 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
796 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
797 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
798 		i++;
799 	}
800 
801 	/*
802 	 * When telling the chip how many segments there are, we
803 	 * must use nsegs + 1 instead of just nsegs. Darned if I
804 	 * know why.
805 	 */
806 	i++;
807 
808 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
809 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
810 
811 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
812 		d->vge_ctl |= VGE_TDCTL_JUMBO;
813 
814 	ctx->vge_maxsegs = nseg;
815 
816 	return;
817 }
818 
819 /*
820  * Map a single buffer address.
821  */
822 
823 static void
824 vge_dma_map_addr(arg, segs, nseg, error)
825 	void			*arg;
826 	bus_dma_segment_t	*segs;
827 	int			nseg;
828 	int			error;
829 {
830 	bus_addr_t		*addr;
831 
832 	if (error)
833 		return;
834 
835 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
836 	addr = arg;
837 	*addr = segs->ds_addr;
838 
839 	return;
840 }
841 
842 static int
843 vge_allocmem(dev, sc)
844 	device_t		dev;
845 	struct vge_softc		*sc;
846 {
847 	int			error;
848 	int			nseg;
849 	int			i;
850 
851 	/*
852 	 * Allocate map for RX mbufs.
853 	 */
854 	nseg = 32;
855 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
856 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
857 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
858 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
859 	if (error) {
860 		device_printf(dev, "could not allocate dma tag\n");
861 		return (ENOMEM);
862 	}
863 
864 	/*
865 	 * Allocate map for TX descriptor list.
866 	 */
867 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
868 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
869 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
870 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
871 	if (error) {
872 		device_printf(dev, "could not allocate dma tag\n");
873 		return (ENOMEM);
874 	}
875 
876 	/* Allocate DMA'able memory for the TX ring */
877 
878 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
879 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
880 	    &sc->vge_ldata.vge_tx_list_map);
881 	if (error)
882 		return (ENOMEM);
883 
884 	/* Load the map for the TX ring. */
885 
886 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
887 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
888 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
889 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
890 
891 	/* Create DMA maps for TX buffers */
892 
893 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
894 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
895 			    &sc->vge_ldata.vge_tx_dmamap[i]);
896 		if (error) {
897 			device_printf(dev, "can't create DMA map for TX\n");
898 			return (ENOMEM);
899 		}
900 	}
901 
902 	/*
903 	 * Allocate map for RX descriptor list.
904 	 */
905 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
906 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
907 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
908 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
909 	if (error) {
910 		device_printf(dev, "could not allocate dma tag\n");
911 		return (ENOMEM);
912 	}
913 
914 	/* Allocate DMA'able memory for the RX ring */
915 
916 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
917 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
918 	    &sc->vge_ldata.vge_rx_list_map);
919 	if (error)
920 		return (ENOMEM);
921 
922 	/* Load the map for the RX ring. */
923 
924 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
925 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
926 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
927 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
928 
929 	/* Create DMA maps for RX buffers */
930 
931 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
932 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
933 			    &sc->vge_ldata.vge_rx_dmamap[i]);
934 		if (error) {
935 			device_printf(dev, "can't create DMA map for RX\n");
936 			return (ENOMEM);
937 		}
938 	}
939 
940 	return (0);
941 }
942 
943 /*
944  * Attach the interface. Allocate softc structures, do ifmedia
945  * setup and ethernet/BPF attach.
946  */
947 static int
948 vge_attach(dev)
949 	device_t		dev;
950 {
951 	u_char			eaddr[ETHER_ADDR_LEN];
952 	struct vge_softc	*sc;
953 	struct ifnet		*ifp;
954 	int			unit, error = 0, rid;
955 
956 	sc = device_get_softc(dev);
957 	unit = device_get_unit(dev);
958 	sc->vge_dev = dev;
959 
960 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
961 	    MTX_DEF | MTX_RECURSE);
962 	/*
963 	 * Map control/status registers.
964 	 */
965 	pci_enable_busmaster(dev);
966 
967 	rid = VGE_PCI_LOMEM;
968 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
969 	    0, ~0, 1, RF_ACTIVE);
970 
971 	if (sc->vge_res == NULL) {
972 		printf ("vge%d: couldn't map ports/memory\n", unit);
973 		error = ENXIO;
974 		goto fail;
975 	}
976 
977 	sc->vge_btag = rman_get_bustag(sc->vge_res);
978 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
979 
980 	/* Allocate interrupt */
981 	rid = 0;
982 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
983 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
984 
985 	if (sc->vge_irq == NULL) {
986 		printf("vge%d: couldn't map interrupt\n", unit);
987 		error = ENXIO;
988 		goto fail;
989 	}
990 
991 	/* Reset the adapter. */
992 	vge_reset(sc);
993 
994 	/*
995 	 * Get station address from the EEPROM.
996 	 */
997 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
998 
999 	sc->vge_unit = unit;
1000 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1001 
1002 #if __FreeBSD_version < 502113
1003 	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1004 #endif
1005 
1006 	/*
1007 	 * Allocate the parent bus DMA tag appropriate for PCI.
1008 	 */
1009 #define VGE_NSEG_NEW 32
1010 	error = bus_dma_tag_create(NULL,	/* parent */
1011 			1, 0,			/* alignment, boundary */
1012 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1013 			BUS_SPACE_MAXADDR,	/* highaddr */
1014 			NULL, NULL,		/* filter, filterarg */
1015 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1016 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1017 			BUS_DMA_ALLOCNOW,	/* flags */
1018 			NULL, NULL,		/* lockfunc, lockarg */
1019 			&sc->vge_parent_tag);
1020 	if (error)
1021 		goto fail;
1022 
1023 	error = vge_allocmem(dev, sc);
1024 
1025 	if (error)
1026 		goto fail;
1027 
1028 	/* Do MII setup */
1029 	if (mii_phy_probe(dev, &sc->vge_miibus,
1030 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1031 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1032 		error = ENXIO;
1033 		goto fail;
1034 	}
1035 
1036 	ifp = &sc->arpcom.ac_if;
1037 	ifp->if_softc = sc;
1038 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1039 	ifp->if_mtu = ETHERMTU;
1040 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1041 	ifp->if_ioctl = vge_ioctl;
1042 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1043 	ifp->if_start = vge_start;
1044 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1045 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1046 #ifdef DEVICE_POLLING
1047 #ifdef IFCAP_POLLING
1048 	ifp->if_capabilities |= IFCAP_POLLING;
1049 #endif
1050 #endif
1051 	ifp->if_watchdog = vge_watchdog;
1052 	ifp->if_init = vge_init;
1053 	ifp->if_baudrate = 1000000000;
1054 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1055 	ifp->if_capenable = ifp->if_capabilities;
1056 
1057 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1058 
1059 	/*
1060 	 * Call MI attach routine.
1061 	 */
1062 	ether_ifattach(ifp, eaddr);
1063 
1064 	/* Hook interrupt last to avoid having to lock softc */
1065 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1066 	    vge_intr, sc, &sc->vge_intrhand);
1067 
1068 	if (error) {
1069 		printf("vge%d: couldn't set up irq\n", unit);
1070 		ether_ifdetach(ifp);
1071 		goto fail;
1072 	}
1073 
1074 fail:
1075 	if (error)
1076 		vge_detach(dev);
1077 
1078 	return (error);
1079 }
1080 
1081 /*
1082  * Shutdown hardware and free up resources. This can be called any
1083  * time after the mutex has been initialized. It is called in both
1084  * the error case in attach and the normal detach case so it needs
1085  * to be careful about only freeing resources that have actually been
1086  * allocated.
1087  */
1088 static int
1089 vge_detach(dev)
1090 	device_t		dev;
1091 {
1092 	struct vge_softc		*sc;
1093 	struct ifnet		*ifp;
1094 	int			i;
1095 
1096 	sc = device_get_softc(dev);
1097 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1098 	ifp = &sc->arpcom.ac_if;
1099 
1100 	/* These should only be active if attach succeeded */
1101 	if (device_is_attached(dev)) {
1102 		vge_stop(sc);
1103 		/*
1104 		 * Force off the IFF_UP flag here, in case someone
1105 		 * still had a BPF descriptor attached to this
1106 		 * interface. If they do, ether_ifattach() will cause
1107 		 * the BPF code to try and clear the promisc mode
1108 		 * flag, which will bubble down to vge_ioctl(),
1109 		 * which will try to call vge_init() again. This will
1110 		 * turn the NIC back on and restart the MII ticker,
1111 		 * which will panic the system when the kernel tries
1112 		 * to invoke the vge_tick() function that isn't there
1113 		 * anymore.
1114 		 */
1115 		ifp->if_flags &= ~IFF_UP;
1116 		ether_ifdetach(ifp);
1117 	}
1118 	if (sc->vge_miibus)
1119 		device_delete_child(dev, sc->vge_miibus);
1120 	bus_generic_detach(dev);
1121 
1122 	if (sc->vge_intrhand)
1123 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1124 	if (sc->vge_irq)
1125 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1126 	if (sc->vge_res)
1127 		bus_release_resource(dev, SYS_RES_MEMORY,
1128 		    VGE_PCI_LOMEM, sc->vge_res);
1129 
1130 	/* Unload and free the RX DMA ring memory and map */
1131 
1132 	if (sc->vge_ldata.vge_rx_list_tag) {
1133 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1134 		    sc->vge_ldata.vge_rx_list_map);
1135 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1136 		    sc->vge_ldata.vge_rx_list,
1137 		    sc->vge_ldata.vge_rx_list_map);
1138 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1139 	}
1140 
1141 	/* Unload and free the TX DMA ring memory and map */
1142 
1143 	if (sc->vge_ldata.vge_tx_list_tag) {
1144 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1145 		    sc->vge_ldata.vge_tx_list_map);
1146 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1147 		    sc->vge_ldata.vge_tx_list,
1148 		    sc->vge_ldata.vge_tx_list_map);
1149 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1150 	}
1151 
1152 	/* Destroy all the RX and TX buffer maps */
1153 
1154 	if (sc->vge_ldata.vge_mtag) {
1155 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1156 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1157 			    sc->vge_ldata.vge_tx_dmamap[i]);
1158 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1159 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1160 			    sc->vge_ldata.vge_rx_dmamap[i]);
1161 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1162 	}
1163 
1164 	if (sc->vge_parent_tag)
1165 		bus_dma_tag_destroy(sc->vge_parent_tag);
1166 
1167 	mtx_destroy(&sc->vge_mtx);
1168 
1169 	return (0);
1170 }
1171 
1172 static int
1173 vge_newbuf(sc, idx, m)
1174 	struct vge_softc	*sc;
1175 	int			idx;
1176 	struct mbuf		*m;
1177 {
1178 	struct vge_dmaload_arg	arg;
1179 	struct mbuf		*n = NULL;
1180 	int			i, error;
1181 
1182 	if (m == NULL) {
1183 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1184 		if (n == NULL)
1185 			return (ENOBUFS);
1186 		m = n;
1187 	} else
1188 		m->m_data = m->m_ext.ext_buf;
1189 
1190 
1191 #ifdef VGE_FIXUP_RX
1192 	/*
1193 	 * This is part of an evil trick to deal with non-x86 platforms.
1194 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1195 	 * boundaries, but that will hose non-x86 machines. To get around
1196 	 * this, we leave some empty space at the start of each buffer
1197 	 * and for non-x86 hosts, we copy the buffer back two bytes
1198 	 * to achieve word alignment. This is slightly more efficient
1199 	 * than allocating a new buffer, copying the contents, and
1200 	 * discarding the old buffer.
1201 	 */
1202 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1203 	m_adj(m, VGE_ETHER_ALIGN);
1204 #else
1205 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1206 #endif
1207 
1208 	arg.sc = sc;
1209 	arg.vge_idx = idx;
1210 	arg.vge_maxsegs = 1;
1211 	arg.vge_flags = 0;
1212 
1213 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1214 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1215 	    &arg, BUS_DMA_NOWAIT);
1216 	if (error || arg.vge_maxsegs != 1) {
1217 		if (n != NULL)
1218 			m_freem(n);
1219 		return (ENOMEM);
1220 	}
1221 
1222 	/*
1223 	 * Note: the manual fails to document the fact that for
1224 	 * proper opration, the driver needs to replentish the RX
1225 	 * DMA ring 4 descriptors at a time (rather than one at a
1226 	 * time, like most chips). We can allocate the new buffers
1227 	 * but we should not set the OWN bits until we're ready
1228 	 * to hand back 4 of them in one shot.
1229 	 */
1230 
1231 #define VGE_RXCHUNK 4
1232 	sc->vge_rx_consumed++;
1233 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1234 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1235 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1236 			    htole32(VGE_RDSTS_OWN);
1237 		sc->vge_rx_consumed = 0;
1238 	}
1239 
1240 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1241 
1242 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1243 	    sc->vge_ldata.vge_rx_dmamap[idx],
1244 	    BUS_DMASYNC_PREREAD);
1245 
1246 	return (0);
1247 }
1248 
1249 static int
1250 vge_tx_list_init(sc)
1251 	struct vge_softc		*sc;
1252 {
1253 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1254 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1255 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1256 
1257 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1258 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1259 	sc->vge_ldata.vge_tx_prodidx = 0;
1260 	sc->vge_ldata.vge_tx_considx = 0;
1261 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1262 
1263 	return (0);
1264 }
1265 
1266 static int
1267 vge_rx_list_init(sc)
1268 	struct vge_softc		*sc;
1269 {
1270 	int			i;
1271 
1272 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1273 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1274 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1275 
1276 	sc->vge_rx_consumed = 0;
1277 
1278 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1279 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1280 			return (ENOBUFS);
1281 	}
1282 
1283 	/* Flush the RX descriptors */
1284 
1285 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1286 	    sc->vge_ldata.vge_rx_list_map,
1287 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1288 
1289 	sc->vge_ldata.vge_rx_prodidx = 0;
1290 	sc->vge_rx_consumed = 0;
1291 	sc->vge_head = sc->vge_tail = NULL;
1292 
1293 	return (0);
1294 }
1295 
1296 #ifdef VGE_FIXUP_RX
1297 static __inline void
1298 vge_fixup_rx(m)
1299 	struct mbuf		*m;
1300 {
1301 	int			i;
1302 	uint16_t		*src, *dst;
1303 
1304 	src = mtod(m, uint16_t *);
1305 	dst = src - 1;
1306 
1307 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1308 		*dst++ = *src++;
1309 
1310 	m->m_data -= ETHER_ALIGN;
1311 
1312 	return;
1313 }
1314 #endif
1315 
1316 /*
1317  * RX handler. We support the reception of jumbo frames that have
1318  * been fragmented across multiple 2K mbuf cluster buffers.
1319  */
1320 static void
1321 vge_rxeof(sc)
1322 	struct vge_softc	*sc;
1323 {
1324 	struct mbuf		*m;
1325 	struct ifnet		*ifp;
1326 	int			i, total_len;
1327 	int			lim = 0;
1328 	struct vge_rx_desc	*cur_rx;
1329 	u_int32_t		rxstat, rxctl;
1330 
1331 	VGE_LOCK_ASSERT(sc);
1332 	ifp = &sc->arpcom.ac_if;
1333 	i = sc->vge_ldata.vge_rx_prodidx;
1334 
1335 	/* Invalidate the descriptor memory */
1336 
1337 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1338 	    sc->vge_ldata.vge_rx_list_map,
1339 	    BUS_DMASYNC_POSTREAD);
1340 
1341 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1342 
1343 #ifdef DEVICE_POLLING
1344 		if (ifp->if_flags & IFF_POLLING) {
1345 			if (sc->rxcycles <= 0)
1346 				break;
1347 			sc->rxcycles--;
1348 		}
1349 #endif /* DEVICE_POLLING */
1350 
1351 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1352 		m = sc->vge_ldata.vge_rx_mbuf[i];
1353 		total_len = VGE_RXBYTES(cur_rx);
1354 		rxstat = le32toh(cur_rx->vge_sts);
1355 		rxctl = le32toh(cur_rx->vge_ctl);
1356 
1357 		/* Invalidate the RX mbuf and unload its map */
1358 
1359 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1360 		    sc->vge_ldata.vge_rx_dmamap[i],
1361 		    BUS_DMASYNC_POSTWRITE);
1362 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1363 		    sc->vge_ldata.vge_rx_dmamap[i]);
1364 
1365 		/*
1366 		 * If the 'start of frame' bit is set, this indicates
1367 		 * either the first fragment in a multi-fragment receive,
1368 		 * or an intermediate fragment. Either way, we want to
1369 		 * accumulate the buffers.
1370 		 */
1371 		if (rxstat & VGE_RXPKT_SOF) {
1372 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1373 			if (sc->vge_head == NULL)
1374 				sc->vge_head = sc->vge_tail = m;
1375 			else {
1376 				m->m_flags &= ~M_PKTHDR;
1377 				sc->vge_tail->m_next = m;
1378 				sc->vge_tail = m;
1379 			}
1380 			vge_newbuf(sc, i, NULL);
1381 			VGE_RX_DESC_INC(i);
1382 			continue;
1383 		}
1384 
1385 		/*
1386 		 * Bad/error frames will have the RXOK bit cleared.
1387 		 * However, there's one error case we want to allow:
1388 		 * if a VLAN tagged frame arrives and the chip can't
1389 		 * match it against the CAM filter, it considers this
1390 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1391 		 * We don't want to drop the frame though: our VLAN
1392 		 * filtering is done in software.
1393 		 */
1394 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1395 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1396 			ifp->if_ierrors++;
1397 			/*
1398 			 * If this is part of a multi-fragment packet,
1399 			 * discard all the pieces.
1400 			 */
1401 			if (sc->vge_head != NULL) {
1402 				m_freem(sc->vge_head);
1403 				sc->vge_head = sc->vge_tail = NULL;
1404 			}
1405 			vge_newbuf(sc, i, m);
1406 			VGE_RX_DESC_INC(i);
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * If allocating a replacement mbuf fails,
1412 		 * reload the current one.
1413 		 */
1414 
1415 		if (vge_newbuf(sc, i, NULL)) {
1416 			ifp->if_ierrors++;
1417 			if (sc->vge_head != NULL) {
1418 				m_freem(sc->vge_head);
1419 				sc->vge_head = sc->vge_tail = NULL;
1420 			}
1421 			vge_newbuf(sc, i, m);
1422 			VGE_RX_DESC_INC(i);
1423 			continue;
1424 		}
1425 
1426 		VGE_RX_DESC_INC(i);
1427 
1428 		if (sc->vge_head != NULL) {
1429 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1430 			/*
1431 			 * Special case: if there's 4 bytes or less
1432 			 * in this buffer, the mbuf can be discarded:
1433 			 * the last 4 bytes is the CRC, which we don't
1434 			 * care about anyway.
1435 			 */
1436 			if (m->m_len <= ETHER_CRC_LEN) {
1437 				sc->vge_tail->m_len -=
1438 				    (ETHER_CRC_LEN - m->m_len);
1439 				m_freem(m);
1440 			} else {
1441 				m->m_len -= ETHER_CRC_LEN;
1442 				m->m_flags &= ~M_PKTHDR;
1443 				sc->vge_tail->m_next = m;
1444 			}
1445 			m = sc->vge_head;
1446 			sc->vge_head = sc->vge_tail = NULL;
1447 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1448 		} else
1449 			m->m_pkthdr.len = m->m_len =
1450 			    (total_len - ETHER_CRC_LEN);
1451 
1452 #ifdef VGE_FIXUP_RX
1453 		vge_fixup_rx(m);
1454 #endif
1455 		ifp->if_ipackets++;
1456 		m->m_pkthdr.rcvif = ifp;
1457 
1458 		/* Do RX checksumming if enabled */
1459 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1460 
1461 			/* Check IP header checksum */
1462 			if (rxctl & VGE_RDCTL_IPPKT)
1463 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1464 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1465 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1466 
1467 			/* Check TCP/UDP checksum */
1468 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1469 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1470 				m->m_pkthdr.csum_flags |=
1471 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1472 				m->m_pkthdr.csum_data = 0xffff;
1473 			}
1474 		}
1475 
1476 		if (rxstat & VGE_RDSTS_VTAG)
1477 			VLAN_INPUT_TAG(ifp, m,
1478 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1479 
1480 		VGE_UNLOCK(sc);
1481 		(*ifp->if_input)(ifp, m);
1482 		VGE_LOCK(sc);
1483 
1484 		lim++;
1485 		if (lim == VGE_RX_DESC_CNT)
1486 			break;
1487 
1488 	}
1489 
1490 	/* Flush the RX DMA ring */
1491 
1492 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1493 	    sc->vge_ldata.vge_rx_list_map,
1494 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1495 
1496 	sc->vge_ldata.vge_rx_prodidx = i;
1497 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1498 
1499 
1500 	return;
1501 }
1502 
1503 static void
1504 vge_txeof(sc)
1505 	struct vge_softc		*sc;
1506 {
1507 	struct ifnet		*ifp;
1508 	u_int32_t		txstat;
1509 	int			idx;
1510 
1511 	ifp = &sc->arpcom.ac_if;
1512 	idx = sc->vge_ldata.vge_tx_considx;
1513 
1514 	/* Invalidate the TX descriptor list */
1515 
1516 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1517 	    sc->vge_ldata.vge_tx_list_map,
1518 	    BUS_DMASYNC_POSTREAD);
1519 
1520 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1521 
1522 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1523 		if (txstat & VGE_TDSTS_OWN)
1524 			break;
1525 
1526 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1527 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1528 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1529 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1530 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1531 			ifp->if_collisions++;
1532 		if (txstat & VGE_TDSTS_TXERR)
1533 			ifp->if_oerrors++;
1534 		else
1535 			ifp->if_opackets++;
1536 
1537 		sc->vge_ldata.vge_tx_free++;
1538 		VGE_TX_DESC_INC(idx);
1539 	}
1540 
1541 	/* No changes made to the TX ring, so no flush needed */
1542 
1543 	if (idx != sc->vge_ldata.vge_tx_considx) {
1544 		sc->vge_ldata.vge_tx_considx = idx;
1545 		ifp->if_flags &= ~IFF_OACTIVE;
1546 		ifp->if_timer = 0;
1547 	}
1548 
1549 	/*
1550 	 * If not all descriptors have been released reaped yet,
1551 	 * reload the timer so that we will eventually get another
1552 	 * interrupt that will cause us to re-enter this routine.
1553 	 * This is done in case the transmitter has gone idle.
1554 	 */
1555 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1556 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1557 	}
1558 
1559 	return;
1560 }
1561 
1562 static void
1563 vge_tick(xsc)
1564 	void			*xsc;
1565 {
1566 	struct vge_softc	*sc;
1567 	struct ifnet		*ifp;
1568 	struct mii_data		*mii;
1569 
1570 	sc = xsc;
1571 	ifp = &sc->arpcom.ac_if;
1572 	VGE_LOCK(sc);
1573 	mii = device_get_softc(sc->vge_miibus);
1574 
1575 	mii_tick(mii);
1576 	if (sc->vge_link) {
1577 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1578 			sc->vge_link = 0;
1579 			if_link_state_change(&sc->arpcom.ac_if,
1580 			    LINK_STATE_DOWN);
1581 		}
1582 	} else {
1583 		if (mii->mii_media_status & IFM_ACTIVE &&
1584 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1585 			sc->vge_link = 1;
1586 			if_link_state_change(&sc->arpcom.ac_if,
1587 			    LINK_STATE_UP);
1588 #if __FreeBSD_version < 502114
1589 			if (ifp->if_snd.ifq_head != NULL)
1590 #else
1591 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1592 #endif
1593 				taskqueue_enqueue(taskqueue_swi,
1594 				    &sc->vge_txtask);
1595 		}
1596 	}
1597 
1598 	VGE_UNLOCK(sc);
1599 
1600 	return;
1601 }
1602 
1603 #ifdef DEVICE_POLLING
1604 static void
1605 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1606 {
1607 	struct vge_softc *sc = ifp->if_softc;
1608 
1609 	VGE_LOCK(sc);
1610 #ifdef IFCAP_POLLING
1611 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1612 		ether_poll_deregister(ifp);
1613 		cmd = POLL_DEREGISTER;
1614 	}
1615 #endif
1616 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1617 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1618 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1619 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1620 		goto done;
1621 	}
1622 
1623 	sc->rxcycles = count;
1624 	vge_rxeof(sc);
1625 	vge_txeof(sc);
1626 
1627 #if __FreeBSD_version < 502114
1628 	if (ifp->if_snd.ifq_head != NULL)
1629 #else
1630 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1631 #endif
1632 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1633 
1634 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1635 		u_int32_t       status;
1636 		status = CSR_READ_4(sc, VGE_ISR);
1637 		if (status == 0xFFFFFFFF)
1638 			goto done;
1639 		if (status)
1640 			CSR_WRITE_4(sc, VGE_ISR, status);
1641 
1642 		/*
1643 		 * XXX check behaviour on receiver stalls.
1644 		 */
1645 
1646 		if (status & VGE_ISR_TXDMA_STALL ||
1647 		    status & VGE_ISR_RXDMA_STALL)
1648 			vge_init(sc);
1649 
1650 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1651 			vge_rxeof(sc);
1652 			ifp->if_ierrors++;
1653 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1654 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1655 		}
1656 	}
1657 done:
1658 	VGE_UNLOCK(sc);
1659 }
1660 #endif /* DEVICE_POLLING */
1661 
1662 static void
1663 vge_intr(arg)
1664 	void			*arg;
1665 {
1666 	struct vge_softc	*sc;
1667 	struct ifnet		*ifp;
1668 	u_int32_t		status;
1669 
1670 	sc = arg;
1671 
1672 	if (sc->suspended) {
1673 		return;
1674 	}
1675 
1676 	VGE_LOCK(sc);
1677 	ifp = &sc->arpcom.ac_if;
1678 
1679 	if (!(ifp->if_flags & IFF_UP)) {
1680 		VGE_UNLOCK(sc);
1681 		return;
1682 	}
1683 
1684 #ifdef DEVICE_POLLING
1685 	if  (ifp->if_flags & IFF_POLLING)
1686 		goto done;
1687 	if (
1688 #ifdef IFCAP_POLLING
1689 	    (ifp->if_capenable & IFCAP_POLLING) &&
1690 #endif
1691 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1692 		CSR_WRITE_4(sc, VGE_IMR, 0);
1693 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1694 		vge_poll(ifp, 0, 1);
1695 		goto done;
1696 	}
1697 
1698 #endif /* DEVICE_POLLING */
1699 
1700 	/* Disable interrupts */
1701 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1702 
1703 	for (;;) {
1704 
1705 		status = CSR_READ_4(sc, VGE_ISR);
1706 		/* If the card has gone away the read returns 0xffff. */
1707 		if (status == 0xFFFFFFFF)
1708 			break;
1709 
1710 		if (status)
1711 			CSR_WRITE_4(sc, VGE_ISR, status);
1712 
1713 		if ((status & VGE_INTRS) == 0)
1714 			break;
1715 
1716 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1717 			vge_rxeof(sc);
1718 
1719 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1720 			vge_rxeof(sc);
1721 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1722 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1723 		}
1724 
1725 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1726 			vge_txeof(sc);
1727 
1728 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1729 			vge_init(sc);
1730 
1731 		if (status & VGE_ISR_LINKSTS)
1732 			vge_tick(sc);
1733 	}
1734 
1735 	/* Re-enable interrupts */
1736 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1737 
1738 #ifdef DEVICE_POLLING
1739 done:
1740 #endif
1741 	VGE_UNLOCK(sc);
1742 
1743 #if __FreeBSD_version < 502114
1744 	if (ifp->if_snd.ifq_head != NULL)
1745 #else
1746 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1747 #endif
1748 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1749 
1750 	return;
1751 }
1752 
1753 static int
1754 vge_encap(sc, m_head, idx)
1755 	struct vge_softc	*sc;
1756 	struct mbuf		*m_head;
1757 	int			idx;
1758 {
1759 	struct mbuf		*m_new = NULL;
1760 	struct vge_dmaload_arg	arg;
1761 	bus_dmamap_t		map;
1762 	int			error;
1763 	struct m_tag		*mtag;
1764 
1765 	if (sc->vge_ldata.vge_tx_free <= 2)
1766 		return (EFBIG);
1767 
1768 	arg.vge_flags = 0;
1769 
1770 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1771 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1772 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1773 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1774 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1775 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1776 
1777 	arg.sc = sc;
1778 	arg.vge_idx = idx;
1779 	arg.vge_m0 = m_head;
1780 	arg.vge_maxsegs = VGE_TX_FRAGS;
1781 
1782 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1783 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1784 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1785 
1786 	if (error && error != EFBIG) {
1787 		printf("vge%d: can't map mbuf (error %d)\n",
1788 		    sc->vge_unit, error);
1789 		return (ENOBUFS);
1790 	}
1791 
1792 	/* Too many segments to map, coalesce into a single mbuf */
1793 
1794 	if (error || arg.vge_maxsegs == 0) {
1795 		m_new = m_defrag(m_head, M_DONTWAIT);
1796 		if (m_new == NULL)
1797 			return (1);
1798 		else
1799 			m_head = m_new;
1800 
1801 		arg.sc = sc;
1802 		arg.vge_m0 = m_head;
1803 		arg.vge_idx = idx;
1804 		arg.vge_maxsegs = 1;
1805 
1806 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1807 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1808 		if (error) {
1809 			printf("vge%d: can't map mbuf (error %d)\n",
1810 			    sc->vge_unit, error);
1811 			return (EFBIG);
1812 		}
1813 	}
1814 
1815 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1816 	sc->vge_ldata.vge_tx_free--;
1817 
1818 	/*
1819 	 * Set up hardware VLAN tagging.
1820 	 */
1821 
1822 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1823 	if (mtag != NULL)
1824 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1825 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1826 
1827 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1828 
1829 	return (0);
1830 }
1831 
1832 static void
1833 vge_tx_task(arg, npending)
1834 	void			*arg;
1835 	int			npending;
1836 {
1837 	struct ifnet		*ifp;
1838 
1839 	ifp = arg;
1840 	vge_start(ifp);
1841 
1842 	return;
1843 }
1844 
1845 /*
1846  * Main transmit routine.
1847  */
1848 
1849 static void
1850 vge_start(ifp)
1851 	struct ifnet		*ifp;
1852 {
1853 	struct vge_softc	*sc;
1854 	struct mbuf		*m_head = NULL;
1855 	int			idx, pidx = 0;
1856 
1857 	sc = ifp->if_softc;
1858 	VGE_LOCK(sc);
1859 
1860 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1861 		VGE_UNLOCK(sc);
1862 		return;
1863 	}
1864 
1865 #if __FreeBSD_version < 502114
1866 	if (ifp->if_snd.ifq_head == NULL) {
1867 #else
1868 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1869 #endif
1870 		VGE_UNLOCK(sc);
1871 		return;
1872 	}
1873 
1874 	idx = sc->vge_ldata.vge_tx_prodidx;
1875 
1876 	pidx = idx - 1;
1877 	if (pidx < 0)
1878 		pidx = VGE_TX_DESC_CNT - 1;
1879 
1880 
1881 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1882 #if __FreeBSD_version < 502114
1883 		IF_DEQUEUE(&ifp->if_snd, m_head);
1884 #else
1885 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1886 #endif
1887 		if (m_head == NULL)
1888 			break;
1889 
1890 		if (vge_encap(sc, m_head, idx)) {
1891 #if __FreeBSD_version >= 502114
1892 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1893 #else
1894 			IF_PREPEND(&ifp->if_snd, m_head);
1895 #endif
1896 			ifp->if_flags |= IFF_OACTIVE;
1897 			break;
1898 		}
1899 
1900 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1901 		    htole16(VGE_TXDESC_Q);
1902 
1903 		pidx = idx;
1904 		VGE_TX_DESC_INC(idx);
1905 
1906 		/*
1907 		 * If there's a BPF listener, bounce a copy of this frame
1908 		 * to him.
1909 		 */
1910 		BPF_MTAP(ifp, m_head);
1911 	}
1912 
1913 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1914 		VGE_UNLOCK(sc);
1915 		return;
1916 	}
1917 
1918 	/* Flush the TX descriptors */
1919 
1920 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1921 	    sc->vge_ldata.vge_tx_list_map,
1922 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1923 
1924 	/* Issue a transmit command. */
1925 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1926 
1927 	sc->vge_ldata.vge_tx_prodidx = idx;
1928 
1929 	/*
1930 	 * Use the countdown timer for interrupt moderation.
1931 	 * 'TX done' interrupts are disabled. Instead, we reset the
1932 	 * countdown timer, which will begin counting until it hits
1933 	 * the value in the SSTIMER register, and then trigger an
1934 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1935 	 * the timer count is reloaded. Only when the transmitter
1936 	 * is idle will the timer hit 0 and an interrupt fire.
1937 	 */
1938 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1939 
1940 	VGE_UNLOCK(sc);
1941 
1942 	/*
1943 	 * Set a timeout in case the chip goes out to lunch.
1944 	 */
1945 	ifp->if_timer = 5;
1946 
1947 	return;
1948 }
1949 
1950 static void
1951 vge_init(xsc)
1952 	void			*xsc;
1953 {
1954 	struct vge_softc	*sc = xsc;
1955 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1956 	struct mii_data		*mii;
1957 	int			i;
1958 
1959 	VGE_LOCK(sc);
1960 	mii = device_get_softc(sc->vge_miibus);
1961 
1962 	/*
1963 	 * Cancel pending I/O and free all RX/TX buffers.
1964 	 */
1965 	vge_stop(sc);
1966 	vge_reset(sc);
1967 
1968 	/*
1969 	 * Initialize the RX and TX descriptors and mbufs.
1970 	 */
1971 
1972 	vge_rx_list_init(sc);
1973 	vge_tx_list_init(sc);
1974 
1975 	/* Set our station address */
1976 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1977 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1978 
1979 	/*
1980 	 * Set receive FIFO threshold. Also allow transmission and
1981 	 * reception of VLAN tagged frames.
1982 	 */
1983 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1984 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1985 
1986 	/* Set DMA burst length */
1987 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1988 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1989 
1990 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1991 
1992 	/* Set collision backoff algorithm */
1993 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1994 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1995 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1996 
1997 	/* Disable LPSEL field in priority resolution */
1998 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1999 
2000 	/*
2001 	 * Load the addresses of the DMA queues into the chip.
2002 	 * Note that we only use one transmit queue.
2003 	 */
2004 
2005 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2006 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2007 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2008 
2009 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2010 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2011 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2012 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2013 
2014 	/* Enable and wake up the RX descriptor queue */
2015 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2016 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2017 
2018 	/* Enable the TX descriptor queue */
2019 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2020 
2021 	/* Set up the receive filter -- allow large frames for VLANs. */
2022 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2023 
2024 	/* If we want promiscuous mode, set the allframes bit. */
2025 	if (ifp->if_flags & IFF_PROMISC) {
2026 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2027 	}
2028 
2029 	/* Set capture broadcast bit to capture broadcast frames. */
2030 	if (ifp->if_flags & IFF_BROADCAST) {
2031 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2032 	}
2033 
2034 	/* Set multicast bit to capture multicast frames. */
2035 	if (ifp->if_flags & IFF_MULTICAST) {
2036 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2037 	}
2038 
2039 	/* Init the cam filter. */
2040 	vge_cam_clear(sc);
2041 
2042 	/* Init the multicast filter. */
2043 	vge_setmulti(sc);
2044 
2045 	/* Enable flow control */
2046 
2047 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2048 
2049 	/* Enable jumbo frame reception (if desired) */
2050 
2051 	/* Start the MAC. */
2052 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2053 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2054 	CSR_WRITE_1(sc, VGE_CRS0,
2055 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2056 
2057 	/*
2058 	 * Configure one-shot timer for microsecond
2059 	 * resulution and load it for 500 usecs.
2060 	 */
2061 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2062 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2063 
2064 	/*
2065 	 * Configure interrupt moderation for receive. Enable
2066 	 * the holdoff counter and load it, and set the RX
2067 	 * suppression count to the number of descriptors we
2068 	 * want to allow before triggering an interrupt.
2069 	 * The holdoff timer is in units of 20 usecs.
2070 	 */
2071 
2072 #ifdef notyet
2073 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2074 	/* Select the interrupt holdoff timer page. */
2075 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2076 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2077 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2078 
2079 	/* Enable use of the holdoff timer. */
2080 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2081 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2082 
2083 	/* Select the RX suppression threshold page. */
2084 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2085 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2086 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2087 
2088 	/* Restore the page select bits. */
2089 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2090 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2091 #endif
2092 
2093 #ifdef DEVICE_POLLING
2094 	/*
2095 	 * Disable interrupts if we are polling.
2096 	 */
2097 	if (ifp->if_flags & IFF_POLLING) {
2098 		CSR_WRITE_4(sc, VGE_IMR, 0);
2099 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2100 	} else	/* otherwise ... */
2101 #endif /* DEVICE_POLLING */
2102 	{
2103 	/*
2104 	 * Enable interrupts.
2105 	 */
2106 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2107 		CSR_WRITE_4(sc, VGE_ISR, 0);
2108 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2109 	}
2110 
2111 	mii_mediachg(mii);
2112 
2113 	ifp->if_flags |= IFF_RUNNING;
2114 	ifp->if_flags &= ~IFF_OACTIVE;
2115 
2116 	sc->vge_if_flags = 0;
2117 	sc->vge_link = 0;
2118 
2119 	VGE_UNLOCK(sc);
2120 
2121 	return;
2122 }
2123 
2124 /*
2125  * Set media options.
2126  */
2127 static int
2128 vge_ifmedia_upd(ifp)
2129 	struct ifnet		*ifp;
2130 {
2131 	struct vge_softc	*sc;
2132 	struct mii_data		*mii;
2133 
2134 	sc = ifp->if_softc;
2135 	mii = device_get_softc(sc->vge_miibus);
2136 	mii_mediachg(mii);
2137 
2138 	return (0);
2139 }
2140 
2141 /*
2142  * Report current media status.
2143  */
2144 static void
2145 vge_ifmedia_sts(ifp, ifmr)
2146 	struct ifnet		*ifp;
2147 	struct ifmediareq	*ifmr;
2148 {
2149 	struct vge_softc	*sc;
2150 	struct mii_data		*mii;
2151 
2152 	sc = ifp->if_softc;
2153 	mii = device_get_softc(sc->vge_miibus);
2154 
2155 	mii_pollstat(mii);
2156 	ifmr->ifm_active = mii->mii_media_active;
2157 	ifmr->ifm_status = mii->mii_media_status;
2158 
2159 	return;
2160 }
2161 
2162 static void
2163 vge_miibus_statchg(dev)
2164 	device_t		dev;
2165 {
2166 	struct vge_softc	*sc;
2167 	struct mii_data		*mii;
2168 	struct ifmedia_entry	*ife;
2169 
2170 	sc = device_get_softc(dev);
2171 	mii = device_get_softc(sc->vge_miibus);
2172 	ife = mii->mii_media.ifm_cur;
2173 
2174 	/*
2175 	 * If the user manually selects a media mode, we need to turn
2176 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2177 	 * user happens to choose a full duplex mode, we also need to
2178 	 * set the 'force full duplex' bit. This applies only to
2179 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2180 	 * mode is disabled, and in 1000baseT mode, full duplex is
2181 	 * always implied, so we turn on the forced mode bit but leave
2182 	 * the FDX bit cleared.
2183 	 */
2184 
2185 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2186 	case IFM_AUTO:
2187 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2188 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2189 		break;
2190 	case IFM_1000_T:
2191 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2192 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2193 		break;
2194 	case IFM_100_TX:
2195 	case IFM_10_T:
2196 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2198 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199 		} else {
2200 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2201 		}
2202 		break;
2203 	default:
2204 		device_printf(dev, "unknown media type: %x\n",
2205 		    IFM_SUBTYPE(ife->ifm_media));
2206 		break;
2207 	}
2208 
2209 	return;
2210 }
2211 
2212 static int
2213 vge_ioctl(ifp, command, data)
2214 	struct ifnet		*ifp;
2215 	u_long			command;
2216 	caddr_t			data;
2217 {
2218 	struct vge_softc	*sc = ifp->if_softc;
2219 	struct ifreq		*ifr = (struct ifreq *) data;
2220 	struct mii_data		*mii;
2221 	int			error = 0;
2222 
2223 	switch (command) {
2224 	case SIOCSIFMTU:
2225 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2226 			error = EINVAL;
2227 		ifp->if_mtu = ifr->ifr_mtu;
2228 		break;
2229 	case SIOCSIFFLAGS:
2230 		if (ifp->if_flags & IFF_UP) {
2231 			if (ifp->if_flags & IFF_RUNNING &&
2232 			    ifp->if_flags & IFF_PROMISC &&
2233 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2234 				CSR_SETBIT_1(sc, VGE_RXCTL,
2235 				    VGE_RXCTL_RX_PROMISC);
2236 				vge_setmulti(sc);
2237 			} else if (ifp->if_flags & IFF_RUNNING &&
2238 			    !(ifp->if_flags & IFF_PROMISC) &&
2239 			    sc->vge_if_flags & IFF_PROMISC) {
2240 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2241 				    VGE_RXCTL_RX_PROMISC);
2242 				vge_setmulti(sc);
2243                         } else
2244 				vge_init(sc);
2245 		} else {
2246 			if (ifp->if_flags & IFF_RUNNING)
2247 				vge_stop(sc);
2248 		}
2249 		sc->vge_if_flags = ifp->if_flags;
2250 		break;
2251 	case SIOCADDMULTI:
2252 	case SIOCDELMULTI:
2253 		vge_setmulti(sc);
2254 		break;
2255 	case SIOCGIFMEDIA:
2256 	case SIOCSIFMEDIA:
2257 		mii = device_get_softc(sc->vge_miibus);
2258 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2259 		break;
2260 	case SIOCSIFCAP:
2261 #ifdef IFCAP_POLLING
2262 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2263 #else
2264 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2265 #endif
2266 		ifp->if_capenable |=
2267 #ifdef IFCAP_POLLING
2268 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2269 #else
2270 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2271 #endif
2272 		if (ifp->if_capenable & IFCAP_TXCSUM)
2273 			ifp->if_hwassist = VGE_CSUM_FEATURES;
2274 		else
2275 			ifp->if_hwassist = 0;
2276 		if (ifp->if_flags & IFF_RUNNING)
2277 			vge_init(sc);
2278 		break;
2279 	default:
2280 		error = ether_ioctl(ifp, command, data);
2281 		break;
2282 	}
2283 
2284 	return (error);
2285 }
2286 
2287 static void
2288 vge_watchdog(ifp)
2289 	struct ifnet		*ifp;
2290 {
2291 	struct vge_softc		*sc;
2292 
2293 	sc = ifp->if_softc;
2294 	VGE_LOCK(sc);
2295 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2296 	ifp->if_oerrors++;
2297 
2298 	vge_txeof(sc);
2299 	vge_rxeof(sc);
2300 
2301 	vge_init(sc);
2302 
2303 	VGE_UNLOCK(sc);
2304 
2305 	return;
2306 }
2307 
2308 /*
2309  * Stop the adapter and free any mbufs allocated to the
2310  * RX and TX lists.
2311  */
2312 static void
2313 vge_stop(sc)
2314 	struct vge_softc		*sc;
2315 {
2316 	register int		i;
2317 	struct ifnet		*ifp;
2318 
2319 	VGE_LOCK(sc);
2320 	ifp = &sc->arpcom.ac_if;
2321 	ifp->if_timer = 0;
2322 
2323 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2324 #ifdef DEVICE_POLLING
2325 	ether_poll_deregister(ifp);
2326 #endif /* DEVICE_POLLING */
2327 
2328 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2329 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2330 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2331 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2332 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2333 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2334 
2335 	if (sc->vge_head != NULL) {
2336 		m_freem(sc->vge_head);
2337 		sc->vge_head = sc->vge_tail = NULL;
2338 	}
2339 
2340 	/* Free the TX list buffers. */
2341 
2342 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2343 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2344 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2345 			    sc->vge_ldata.vge_tx_dmamap[i]);
2346 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2347 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2348 		}
2349 	}
2350 
2351 	/* Free the RX list buffers. */
2352 
2353 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2354 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2355 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2356 			    sc->vge_ldata.vge_rx_dmamap[i]);
2357 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2358 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2359 		}
2360 	}
2361 
2362 	VGE_UNLOCK(sc);
2363 
2364 	return;
2365 }
2366 
2367 /*
2368  * Device suspend routine.  Stop the interface and save some PCI
2369  * settings in case the BIOS doesn't restore them properly on
2370  * resume.
2371  */
2372 static int
2373 vge_suspend(dev)
2374 	device_t		dev;
2375 {
2376 	struct vge_softc	*sc;
2377 	int			i;
2378 
2379 	sc = device_get_softc(dev);
2380 
2381 	vge_stop(sc);
2382 
2383         for (i = 0; i < 5; i++)
2384 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2385 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2386 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2387 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2388 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2389 
2390 	sc->suspended = 1;
2391 
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Device resume routine.  Restore some PCI settings in case the BIOS
2397  * doesn't, re-enable busmastering, and restart the interface if
2398  * appropriate.
2399  */
2400 static int
2401 vge_resume(dev)
2402 	device_t		dev;
2403 {
2404 	struct vge_softc	*sc;
2405 	struct ifnet		*ifp;
2406 	int			i;
2407 
2408 	sc = device_get_softc(dev);
2409 	ifp = &sc->arpcom.ac_if;
2410 
2411         /* better way to do this? */
2412 	for (i = 0; i < 5; i++)
2413 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2414 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2415 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2416 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2417 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2418 
2419 	/* reenable busmastering */
2420 	pci_enable_busmaster(dev);
2421 	pci_enable_io(dev, SYS_RES_MEMORY);
2422 
2423 	/* reinitialize interface if necessary */
2424 	if (ifp->if_flags & IFF_UP)
2425 		vge_init(sc);
2426 
2427 	sc->suspended = 0;
2428 
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Stop all chip I/O so that the kernel's probe routines don't
2434  * get confused by errant DMAs when rebooting.
2435  */
2436 static void
2437 vge_shutdown(dev)
2438 	device_t		dev;
2439 {
2440 	struct vge_softc		*sc;
2441 
2442 	sc = device_get_softc(dev);
2443 
2444 	vge_stop(sc);
2445 }
2446