xref: /freebsd/sys/dev/vge/if_vge.c (revision 7562eaabc01a48e6b11d5b558c41e3b92dae5c2d)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/endian.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/module.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 #include <sys/taskqueue.h>
93 
94 #include <net/if.h>
95 #include <net/if_arp.h>
96 #include <net/ethernet.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_vlan_var.h>
100 #include <net/route.h>
101 
102 #include <net/bpf.h>
103 
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 
117 MODULE_DEPEND(vge, pci, 1, 1, 1);
118 MODULE_DEPEND(vge, ether, 1, 1, 1);
119 MODULE_DEPEND(vge, miibus, 1, 1, 1);
120 
121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123 
124 #include <dev/vge/if_vgereg.h>
125 #include <dev/vge/if_vgevar.h>
126 
127 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
128 
129 /*
130  * Various supported device vendors/types and their names.
131  */
132 static struct vge_type vge_devs[] = {
133 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
134 		"VIA Networking Gigabit Ethernet" },
135 	{ 0, 0, NULL }
136 };
137 
138 static int vge_probe		(device_t);
139 static int vge_attach		(device_t);
140 static int vge_detach		(device_t);
141 
142 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
143 
144 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
145 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
146 				    bus_size_t, int);
147 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
148 				    bus_size_t, int);
149 static int vge_allocmem		(device_t, struct vge_softc *);
150 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
151 static int vge_rx_list_init	(struct vge_softc *);
152 static int vge_tx_list_init	(struct vge_softc *);
153 #ifdef VGE_FIXUP_RX
154 static __inline void vge_fixup_rx
155 				(struct mbuf *);
156 #endif
157 static void vge_rxeof		(struct vge_softc *);
158 static void vge_txeof		(struct vge_softc *);
159 static void vge_intr		(void *);
160 static void vge_tick		(void *);
161 static void vge_tx_task		(void *, int);
162 static void vge_start		(struct ifnet *);
163 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
164 static void vge_init		(void *);
165 static void vge_stop		(struct vge_softc *);
166 static void vge_watchdog	(struct ifnet *);
167 static int vge_suspend		(device_t);
168 static int vge_resume		(device_t);
169 static void vge_shutdown	(device_t);
170 static int vge_ifmedia_upd	(struct ifnet *);
171 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
172 
173 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
174 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
175 
176 static void vge_miipoll_start	(struct vge_softc *);
177 static void vge_miipoll_stop	(struct vge_softc *);
178 static int vge_miibus_readreg	(device_t, int, int);
179 static int vge_miibus_writereg	(device_t, int, int, int);
180 static void vge_miibus_statchg	(device_t);
181 
182 static void vge_cam_clear	(struct vge_softc *);
183 static int vge_cam_set		(struct vge_softc *, uint8_t *);
184 #if __FreeBSD_version < 502113
185 static uint32_t vge_mchash	(uint8_t *);
186 #endif
187 static void vge_setmulti	(struct vge_softc *);
188 static void vge_reset		(struct vge_softc *);
189 
190 #define VGE_PCI_LOIO             0x10
191 #define VGE_PCI_LOMEM            0x14
192 
193 static device_method_t vge_methods[] = {
194 	/* Device interface */
195 	DEVMETHOD(device_probe,		vge_probe),
196 	DEVMETHOD(device_attach,	vge_attach),
197 	DEVMETHOD(device_detach,	vge_detach),
198 	DEVMETHOD(device_suspend,	vge_suspend),
199 	DEVMETHOD(device_resume,	vge_resume),
200 	DEVMETHOD(device_shutdown,	vge_shutdown),
201 
202 	/* bus interface */
203 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
204 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
205 
206 	/* MII interface */
207 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
208 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
209 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
210 
211 	{ 0, 0 }
212 };
213 
214 static driver_t vge_driver = {
215 	"vge",
216 	vge_methods,
217 	sizeof(struct vge_softc)
218 };
219 
220 static devclass_t vge_devclass;
221 
222 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
223 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225 
226 /*
227  * Read a word of data stored in the EEPROM at address 'addr.'
228  */
229 static void
230 vge_eeprom_getword(sc, addr, dest)
231 	struct vge_softc	*sc;
232 	int			addr;
233 	u_int16_t		*dest;
234 {
235 	register int		i;
236 	u_int16_t		word = 0;
237 
238 	/*
239 	 * Enter EEPROM embedded programming mode. In order to
240 	 * access the EEPROM at all, we first have to set the
241 	 * EELOAD bit in the CHIPCFG2 register.
242 	 */
243 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
244 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
245 
246 	/* Select the address of the word we want to read */
247 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
248 
249 	/* Issue read command */
250 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
251 
252 	/* Wait for the done bit to be set. */
253 	for (i = 0; i < VGE_TIMEOUT; i++) {
254 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
255 			break;
256 	}
257 
258 	if (i == VGE_TIMEOUT) {
259 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
260 		*dest = 0;
261 		return;
262 	}
263 
264 	/* Read the result */
265 	word = CSR_READ_2(sc, VGE_EERDDAT);
266 
267 	/* Turn off EEPROM access mode. */
268 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
270 
271 	*dest = word;
272 
273 	return;
274 }
275 
276 /*
277  * Read a sequence of words from the EEPROM.
278  */
279 static void
280 vge_read_eeprom(sc, dest, off, cnt, swap)
281 	struct vge_softc	*sc;
282 	caddr_t			dest;
283 	int			off;
284 	int			cnt;
285 	int			swap;
286 {
287 	int			i;
288 	u_int16_t		word = 0, *ptr;
289 
290 	for (i = 0; i < cnt; i++) {
291 		vge_eeprom_getword(sc, off + i, &word);
292 		ptr = (u_int16_t *)(dest + (i * 2));
293 		if (swap)
294 			*ptr = ntohs(word);
295 		else
296 			*ptr = word;
297 	}
298 }
299 
300 static void
301 vge_miipoll_stop(sc)
302 	struct vge_softc	*sc;
303 {
304 	int			i;
305 
306 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
307 
308 	for (i = 0; i < VGE_TIMEOUT; i++) {
309 		DELAY(1);
310 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
311 			break;
312 	}
313 
314 	if (i == VGE_TIMEOUT)
315 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
316 
317 	return;
318 }
319 
320 static void
321 vge_miipoll_start(sc)
322 	struct vge_softc	*sc;
323 {
324 	int			i;
325 
326 	/* First, make sure we're idle. */
327 
328 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
329 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330 
331 	for (i = 0; i < VGE_TIMEOUT; i++) {
332 		DELAY(1);
333 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334 			break;
335 	}
336 
337 	if (i == VGE_TIMEOUT) {
338 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339 		return;
340 	}
341 
342 	/* Now enable auto poll mode. */
343 
344 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345 
346 	/* And make sure it started. */
347 
348 	for (i = 0; i < VGE_TIMEOUT; i++) {
349 		DELAY(1);
350 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351 			break;
352 	}
353 
354 	if (i == VGE_TIMEOUT)
355 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356 
357 	return;
358 }
359 
360 static int
361 vge_miibus_readreg(dev, phy, reg)
362 	device_t		dev;
363 	int			phy, reg;
364 {
365 	struct vge_softc	*sc;
366 	int			i;
367 	u_int16_t		rval = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
372 		return(0);
373 
374 	VGE_LOCK(sc);
375 	vge_miipoll_stop(sc);
376 
377 	/* Specify the register we want to read. */
378 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
379 
380 	/* Issue read command. */
381 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
382 
383 	/* Wait for the read command bit to self-clear. */
384 	for (i = 0; i < VGE_TIMEOUT; i++) {
385 		DELAY(1);
386 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
387 			break;
388 	}
389 
390 	if (i == VGE_TIMEOUT)
391 		device_printf(sc->vge_dev, "MII read timed out\n");
392 	else
393 		rval = CSR_READ_2(sc, VGE_MIIDATA);
394 
395 	vge_miipoll_start(sc);
396 	VGE_UNLOCK(sc);
397 
398 	return (rval);
399 }
400 
401 static int
402 vge_miibus_writereg(dev, phy, reg, data)
403 	device_t		dev;
404 	int			phy, reg, data;
405 {
406 	struct vge_softc	*sc;
407 	int			i, rval = 0;
408 
409 	sc = device_get_softc(dev);
410 
411 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
412 		return(0);
413 
414 	VGE_LOCK(sc);
415 	vge_miipoll_stop(sc);
416 
417 	/* Specify the register we want to write. */
418 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
419 
420 	/* Specify the data we want to write. */
421 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
422 
423 	/* Issue write command. */
424 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
425 
426 	/* Wait for the write command bit to self-clear. */
427 	for (i = 0; i < VGE_TIMEOUT; i++) {
428 		DELAY(1);
429 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
430 			break;
431 	}
432 
433 	if (i == VGE_TIMEOUT) {
434 		device_printf(sc->vge_dev, "MII write timed out\n");
435 		rval = EIO;
436 	}
437 
438 	vge_miipoll_start(sc);
439 	VGE_UNLOCK(sc);
440 
441 	return (rval);
442 }
443 
444 static void
445 vge_cam_clear(sc)
446 	struct vge_softc	*sc;
447 {
448 	int			i;
449 
450 	/*
451 	 * Turn off all the mask bits. This tells the chip
452 	 * that none of the entries in the CAM filter are valid.
453 	 * desired entries will be enabled as we fill the filter in.
454 	 */
455 
456 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
458 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
459 	for (i = 0; i < 8; i++)
460 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
461 
462 	/* Clear the VLAN filter too. */
463 
464 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
465 	for (i = 0; i < 8; i++)
466 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
467 
468 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
469 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
470 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
471 
472 	sc->vge_camidx = 0;
473 
474 	return;
475 }
476 
477 static int
478 vge_cam_set(sc, addr)
479 	struct vge_softc	*sc;
480 	uint8_t			*addr;
481 {
482 	int			i, error = 0;
483 
484 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
485 		return(ENOSPC);
486 
487 	/* Select the CAM data page. */
488 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
489 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
490 
491 	/* Set the filter entry we want to update and enable writing. */
492 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
493 
494 	/* Write the address to the CAM registers */
495 	for (i = 0; i < ETHER_ADDR_LEN; i++)
496 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
497 
498 	/* Issue a write command. */
499 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
500 
501 	/* Wake for it to clear. */
502 	for (i = 0; i < VGE_TIMEOUT; i++) {
503 		DELAY(1);
504 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
505 			break;
506 	}
507 
508 	if (i == VGE_TIMEOUT) {
509 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
510 		error = EIO;
511 		goto fail;
512 	}
513 
514 	/* Select the CAM mask page. */
515 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
516 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
517 
518 	/* Set the mask bit that enables this filter. */
519 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
520 	    1<<(sc->vge_camidx & 7));
521 
522 	sc->vge_camidx++;
523 
524 fail:
525 	/* Turn off access to CAM. */
526 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
527 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
528 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
529 
530 	return (error);
531 }
532 
533 #if __FreeBSD_version < 502113
534 static uint32_t
535 vge_mchash(addr)
536         uint8_t			*addr;
537 {
538 	uint32_t		crc, carry;
539 	int			idx, bit;
540 	uint8_t			data;
541 
542 	/* Compute CRC for the address value. */
543 	crc = 0xFFFFFFFF; /* initial value */
544 
545 	for (idx = 0; idx < 6; idx++) {
546 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
547 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
548 			crc <<= 1;
549 			if (carry)
550 				crc = (crc ^ 0x04c11db6) | carry;
551 		}
552 	}
553 
554 	return(crc);
555 }
556 #endif
557 
558 /*
559  * Program the multicast filter. We use the 64-entry CAM filter
560  * for perfect filtering. If there's more than 64 multicast addresses,
561  * we use the hash filter insted.
562  */
563 static void
564 vge_setmulti(sc)
565 	struct vge_softc	*sc;
566 {
567 	struct ifnet		*ifp;
568 	int			error = 0/*, h = 0*/;
569 	struct ifmultiaddr	*ifma;
570 	u_int32_t		h, hashes[2] = { 0, 0 };
571 
572 	ifp = &sc->arpcom.ac_if;
573 
574 	/* First, zot all the multicast entries. */
575 	vge_cam_clear(sc);
576 	CSR_WRITE_4(sc, VGE_MAR0, 0);
577 	CSR_WRITE_4(sc, VGE_MAR1, 0);
578 
579 	/*
580 	 * If the user wants allmulti or promisc mode, enable reception
581 	 * of all multicast frames.
582 	 */
583 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
584 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
585 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
586 		return;
587 	}
588 
589 	/* Now program new ones */
590 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
591 		if (ifma->ifma_addr->sa_family != AF_LINK)
592 			continue;
593 		error = vge_cam_set(sc,
594 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
595 		if (error)
596 			break;
597 	}
598 
599 	/* If there were too many addresses, use the hash filter. */
600 	if (error) {
601 		vge_cam_clear(sc);
602 
603 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
604 			if (ifma->ifma_addr->sa_family != AF_LINK)
605 				continue;
606 #if __FreeBSD_version < 502113
607 			h = vge_mchash(LLADDR((struct sockaddr_dl *)
608 			    ifma->ifma_addr)) >> 26;
609 #else
610 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
611 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
612 #endif
613 			if (h < 32)
614 				hashes[0] |= (1 << h);
615 			else
616 				hashes[1] |= (1 << (h - 32));
617 		}
618 
619 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
620 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
621 	}
622 
623 	return;
624 }
625 
626 static void
627 vge_reset(sc)
628 	struct vge_softc		*sc;
629 {
630 	register int		i;
631 
632 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
633 
634 	for (i = 0; i < VGE_TIMEOUT; i++) {
635 		DELAY(5);
636 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
637 			break;
638 	}
639 
640 	if (i == VGE_TIMEOUT) {
641 		device_printf(sc->vge_dev, "soft reset timed out");
642 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
643 		DELAY(2000);
644 	}
645 
646 	DELAY(5000);
647 
648 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
649 
650 	for (i = 0; i < VGE_TIMEOUT; i++) {
651 		DELAY(5);
652 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
653 			break;
654 	}
655 
656 	if (i == VGE_TIMEOUT) {
657 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
658 		return;
659 	}
660 
661 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
662 
663 	return;
664 }
665 
666 /*
667  * Probe for a VIA gigabit chip. Check the PCI vendor and device
668  * IDs against our list and return a device name if we find a match.
669  */
670 static int
671 vge_probe(dev)
672 	device_t		dev;
673 {
674 	struct vge_type		*t;
675 	struct vge_softc	*sc;
676 
677 	t = vge_devs;
678 	sc = device_get_softc(dev);
679 
680 	while (t->vge_name != NULL) {
681 		if ((pci_get_vendor(dev) == t->vge_vid) &&
682 		    (pci_get_device(dev) == t->vge_did)) {
683 			device_set_desc(dev, t->vge_name);
684 			return (0);
685 		}
686 		t++;
687 	}
688 
689 	return (ENXIO);
690 }
691 
692 static void
693 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
694 	void			*arg;
695 	bus_dma_segment_t	*segs;
696 	int			nseg;
697 	bus_size_t		mapsize;
698 	int			error;
699 {
700 
701 	struct vge_dmaload_arg	*ctx;
702 	struct vge_rx_desc	*d = NULL;
703 
704 	if (error)
705 		return;
706 
707 	ctx = arg;
708 
709 	/* Signal error to caller if there's too many segments */
710 	if (nseg > ctx->vge_maxsegs) {
711 		ctx->vge_maxsegs = 0;
712 		return;
713 	}
714 
715 	/*
716 	 * Map the segment array into descriptors.
717 	 */
718 
719 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
720 
721 	/* If this descriptor is still owned by the chip, bail. */
722 
723 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
724 		device_printf(ctx->sc->vge_dev,
725 		    "tried to map busy descriptor\n");
726 		ctx->vge_maxsegs = 0;
727 		return;
728 	}
729 
730 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
731 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
732 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
733 	d->vge_sts = 0;
734 	d->vge_ctl = 0;
735 
736 	ctx->vge_maxsegs = 1;
737 
738 	return;
739 }
740 
741 static void
742 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
743 	void			*arg;
744 	bus_dma_segment_t	*segs;
745 	int			nseg;
746 	bus_size_t		mapsize;
747 	int			error;
748 {
749 	struct vge_dmaload_arg	*ctx;
750 	struct vge_tx_desc	*d = NULL;
751 	struct vge_tx_frag	*f;
752 	int			i = 0;
753 
754 	if (error)
755 		return;
756 
757 	ctx = arg;
758 
759 	/* Signal error to caller if there's too many segments */
760 	if (nseg > ctx->vge_maxsegs) {
761 		ctx->vge_maxsegs = 0;
762 		return;
763 	}
764 
765 	/* Map the segment array into descriptors. */
766 
767 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
768 
769 	/* If this descriptor is still owned by the chip, bail. */
770 
771 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
772 		ctx->vge_maxsegs = 0;
773 		return;
774 	}
775 
776 	for (i = 0; i < nseg; i++) {
777 		f = &d->vge_frag[i];
778 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
779 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
780 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
781 	}
782 
783 	/* Argh. This chip does not autopad short frames */
784 
785 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
786 		f = &d->vge_frag[i];
787 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
788 		    ctx->vge_m0->m_pkthdr.len));
789 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
790 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
791 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
792 		i++;
793 	}
794 
795 	/*
796 	 * When telling the chip how many segments there are, we
797 	 * must use nsegs + 1 instead of just nsegs. Darned if I
798 	 * know why.
799 	 */
800 	i++;
801 
802 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
803 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
804 
805 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
806 		d->vge_ctl |= VGE_TDCTL_JUMBO;
807 
808 	ctx->vge_maxsegs = nseg;
809 
810 	return;
811 }
812 
813 /*
814  * Map a single buffer address.
815  */
816 
817 static void
818 vge_dma_map_addr(arg, segs, nseg, error)
819 	void			*arg;
820 	bus_dma_segment_t	*segs;
821 	int			nseg;
822 	int			error;
823 {
824 	bus_addr_t		*addr;
825 
826 	if (error)
827 		return;
828 
829 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
830 	addr = arg;
831 	*addr = segs->ds_addr;
832 
833 	return;
834 }
835 
836 static int
837 vge_allocmem(dev, sc)
838 	device_t		dev;
839 	struct vge_softc		*sc;
840 {
841 	int			error;
842 	int			nseg;
843 	int			i;
844 
845 	/*
846 	 * Allocate map for RX mbufs.
847 	 */
848 	nseg = 32;
849 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
850 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
851 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
852 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
853 	if (error) {
854 		device_printf(dev, "could not allocate dma tag\n");
855 		return (ENOMEM);
856 	}
857 
858 	/*
859 	 * Allocate map for TX descriptor list.
860 	 */
861 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
862 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
863 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
864 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
865 	if (error) {
866 		device_printf(dev, "could not allocate dma tag\n");
867 		return (ENOMEM);
868 	}
869 
870 	/* Allocate DMA'able memory for the TX ring */
871 
872 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
873 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
874 	    &sc->vge_ldata.vge_tx_list_map);
875 	if (error)
876 		return (ENOMEM);
877 
878 	/* Load the map for the TX ring. */
879 
880 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
881 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
882 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
883 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
884 
885 	/* Create DMA maps for TX buffers */
886 
887 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
888 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
889 			    &sc->vge_ldata.vge_tx_dmamap[i]);
890 		if (error) {
891 			device_printf(dev, "can't create DMA map for TX\n");
892 			return (ENOMEM);
893 		}
894 	}
895 
896 	/*
897 	 * Allocate map for RX descriptor list.
898 	 */
899 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
900 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
901 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
902 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
903 	if (error) {
904 		device_printf(dev, "could not allocate dma tag\n");
905 		return (ENOMEM);
906 	}
907 
908 	/* Allocate DMA'able memory for the RX ring */
909 
910 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
911 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
912 	    &sc->vge_ldata.vge_rx_list_map);
913 	if (error)
914 		return (ENOMEM);
915 
916 	/* Load the map for the RX ring. */
917 
918 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
919 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
920 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
921 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
922 
923 	/* Create DMA maps for RX buffers */
924 
925 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
926 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
927 			    &sc->vge_ldata.vge_rx_dmamap[i]);
928 		if (error) {
929 			device_printf(dev, "can't create DMA map for RX\n");
930 			return (ENOMEM);
931 		}
932 	}
933 
934 	return (0);
935 }
936 
937 /*
938  * Attach the interface. Allocate softc structures, do ifmedia
939  * setup and ethernet/BPF attach.
940  */
941 static int
942 vge_attach(dev)
943 	device_t		dev;
944 {
945 	u_char			eaddr[ETHER_ADDR_LEN];
946 	struct vge_softc	*sc;
947 	struct ifnet		*ifp;
948 	int			unit, error = 0, rid;
949 
950 	sc = device_get_softc(dev);
951 	unit = device_get_unit(dev);
952 	sc->vge_dev = dev;
953 
954 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
955 	    MTX_DEF | MTX_RECURSE);
956 	/*
957 	 * Map control/status registers.
958 	 */
959 	pci_enable_busmaster(dev);
960 
961 	rid = VGE_PCI_LOMEM;
962 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
963 	    0, ~0, 1, RF_ACTIVE);
964 
965 	if (sc->vge_res == NULL) {
966 		printf ("vge%d: couldn't map ports/memory\n", unit);
967 		error = ENXIO;
968 		goto fail;
969 	}
970 
971 	sc->vge_btag = rman_get_bustag(sc->vge_res);
972 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
973 
974 	/* Allocate interrupt */
975 	rid = 0;
976 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
977 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
978 
979 	if (sc->vge_irq == NULL) {
980 		printf("vge%d: couldn't map interrupt\n", unit);
981 		error = ENXIO;
982 		goto fail;
983 	}
984 
985 	/* Reset the adapter. */
986 	vge_reset(sc);
987 
988 	/*
989 	 * Get station address from the EEPROM.
990 	 */
991 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
992 
993 	sc->vge_unit = unit;
994 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
995 
996 #if __FreeBSD_version < 502113
997 	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
998 #endif
999 
1000 	/*
1001 	 * Allocate the parent bus DMA tag appropriate for PCI.
1002 	 */
1003 #define VGE_NSEG_NEW 32
1004 	error = bus_dma_tag_create(NULL,	/* parent */
1005 			1, 0,			/* alignment, boundary */
1006 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1007 			BUS_SPACE_MAXADDR,	/* highaddr */
1008 			NULL, NULL,		/* filter, filterarg */
1009 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1010 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1011 			BUS_DMA_ALLOCNOW,	/* flags */
1012 			NULL, NULL,		/* lockfunc, lockarg */
1013 			&sc->vge_parent_tag);
1014 	if (error)
1015 		goto fail;
1016 
1017 	error = vge_allocmem(dev, sc);
1018 
1019 	if (error)
1020 		goto fail;
1021 
1022 	/* Do MII setup */
1023 	if (mii_phy_probe(dev, &sc->vge_miibus,
1024 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1025 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1026 		error = ENXIO;
1027 		goto fail;
1028 	}
1029 
1030 	ifp = &sc->arpcom.ac_if;
1031 	ifp->if_softc = sc;
1032 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1033 	ifp->if_mtu = ETHERMTU;
1034 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1035 	ifp->if_ioctl = vge_ioctl;
1036 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1037 	ifp->if_start = vge_start;
1038 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1039 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1040 #ifdef DEVICE_POLLING
1041 #ifdef IFCAP_POLLING
1042 	ifp->if_capabilities |= IFCAP_POLLING;
1043 #endif
1044 #endif
1045 	ifp->if_watchdog = vge_watchdog;
1046 	ifp->if_init = vge_init;
1047 	ifp->if_baudrate = 1000000000;
1048 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1049 	ifp->if_capenable = ifp->if_capabilities;
1050 
1051 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1052 
1053 	/*
1054 	 * Call MI attach routine.
1055 	 */
1056 	ether_ifattach(ifp, eaddr);
1057 
1058 	/* Hook interrupt last to avoid having to lock softc */
1059 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1060 	    vge_intr, sc, &sc->vge_intrhand);
1061 
1062 	if (error) {
1063 		printf("vge%d: couldn't set up irq\n", unit);
1064 		ether_ifdetach(ifp);
1065 		goto fail;
1066 	}
1067 
1068 fail:
1069 	if (error)
1070 		vge_detach(dev);
1071 
1072 	return (error);
1073 }
1074 
1075 /*
1076  * Shutdown hardware and free up resources. This can be called any
1077  * time after the mutex has been initialized. It is called in both
1078  * the error case in attach and the normal detach case so it needs
1079  * to be careful about only freeing resources that have actually been
1080  * allocated.
1081  */
1082 static int
1083 vge_detach(dev)
1084 	device_t		dev;
1085 {
1086 	struct vge_softc		*sc;
1087 	struct ifnet		*ifp;
1088 	int			i;
1089 
1090 	sc = device_get_softc(dev);
1091 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1092 	ifp = &sc->arpcom.ac_if;
1093 
1094 	/* These should only be active if attach succeeded */
1095 	if (device_is_attached(dev)) {
1096 		vge_stop(sc);
1097 		/*
1098 		 * Force off the IFF_UP flag here, in case someone
1099 		 * still had a BPF descriptor attached to this
1100 		 * interface. If they do, ether_ifattach() will cause
1101 		 * the BPF code to try and clear the promisc mode
1102 		 * flag, which will bubble down to vge_ioctl(),
1103 		 * which will try to call vge_init() again. This will
1104 		 * turn the NIC back on and restart the MII ticker,
1105 		 * which will panic the system when the kernel tries
1106 		 * to invoke the vge_tick() function that isn't there
1107 		 * anymore.
1108 		 */
1109 		ifp->if_flags &= ~IFF_UP;
1110 		ether_ifdetach(ifp);
1111 	}
1112 	if (sc->vge_miibus)
1113 		device_delete_child(dev, sc->vge_miibus);
1114 	bus_generic_detach(dev);
1115 
1116 	if (sc->vge_intrhand)
1117 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1118 	if (sc->vge_irq)
1119 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1120 	if (sc->vge_res)
1121 		bus_release_resource(dev, SYS_RES_MEMORY,
1122 		    VGE_PCI_LOMEM, sc->vge_res);
1123 
1124 	/* Unload and free the RX DMA ring memory and map */
1125 
1126 	if (sc->vge_ldata.vge_rx_list_tag) {
1127 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1128 		    sc->vge_ldata.vge_rx_list_map);
1129 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1130 		    sc->vge_ldata.vge_rx_list,
1131 		    sc->vge_ldata.vge_rx_list_map);
1132 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1133 	}
1134 
1135 	/* Unload and free the TX DMA ring memory and map */
1136 
1137 	if (sc->vge_ldata.vge_tx_list_tag) {
1138 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1139 		    sc->vge_ldata.vge_tx_list_map);
1140 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1141 		    sc->vge_ldata.vge_tx_list,
1142 		    sc->vge_ldata.vge_tx_list_map);
1143 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1144 	}
1145 
1146 	/* Destroy all the RX and TX buffer maps */
1147 
1148 	if (sc->vge_ldata.vge_mtag) {
1149 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1150 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1151 			    sc->vge_ldata.vge_tx_dmamap[i]);
1152 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1153 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1154 			    sc->vge_ldata.vge_rx_dmamap[i]);
1155 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1156 	}
1157 
1158 	if (sc->vge_parent_tag)
1159 		bus_dma_tag_destroy(sc->vge_parent_tag);
1160 
1161 	mtx_destroy(&sc->vge_mtx);
1162 
1163 	return (0);
1164 }
1165 
1166 static int
1167 vge_newbuf(sc, idx, m)
1168 	struct vge_softc	*sc;
1169 	int			idx;
1170 	struct mbuf		*m;
1171 {
1172 	struct vge_dmaload_arg	arg;
1173 	struct mbuf		*n = NULL;
1174 	int			i, error;
1175 
1176 	if (m == NULL) {
1177 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1178 		if (n == NULL)
1179 			return (ENOBUFS);
1180 		m = n;
1181 	} else
1182 		m->m_data = m->m_ext.ext_buf;
1183 
1184 
1185 #ifdef VGE_FIXUP_RX
1186 	/*
1187 	 * This is part of an evil trick to deal with non-x86 platforms.
1188 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1189 	 * boundaries, but that will hose non-x86 machines. To get around
1190 	 * this, we leave some empty space at the start of each buffer
1191 	 * and for non-x86 hosts, we copy the buffer back two bytes
1192 	 * to achieve word alignment. This is slightly more efficient
1193 	 * than allocating a new buffer, copying the contents, and
1194 	 * discarding the old buffer.
1195 	 */
1196 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1197 	m_adj(m, VGE_ETHER_ALIGN);
1198 #else
1199 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1200 #endif
1201 
1202 	arg.sc = sc;
1203 	arg.vge_idx = idx;
1204 	arg.vge_maxsegs = 1;
1205 	arg.vge_flags = 0;
1206 
1207 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1208 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1209 	    &arg, BUS_DMA_NOWAIT);
1210 	if (error || arg.vge_maxsegs != 1) {
1211 		if (n != NULL)
1212 			m_freem(n);
1213 		return (ENOMEM);
1214 	}
1215 
1216 	/*
1217 	 * Note: the manual fails to document the fact that for
1218 	 * proper opration, the driver needs to replentish the RX
1219 	 * DMA ring 4 descriptors at a time (rather than one at a
1220 	 * time, like most chips). We can allocate the new buffers
1221 	 * but we should not set the OWN bits until we're ready
1222 	 * to hand back 4 of them in one shot.
1223 	 */
1224 
1225 #define VGE_RXCHUNK 4
1226 	sc->vge_rx_consumed++;
1227 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1228 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1229 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1230 			    htole32(VGE_RDSTS_OWN);
1231 		sc->vge_rx_consumed = 0;
1232 	}
1233 
1234 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1235 
1236 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1237 	    sc->vge_ldata.vge_rx_dmamap[idx],
1238 	    BUS_DMASYNC_PREREAD);
1239 
1240 	return (0);
1241 }
1242 
1243 static int
1244 vge_tx_list_init(sc)
1245 	struct vge_softc		*sc;
1246 {
1247 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1248 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1249 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1250 
1251 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1252 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1253 	sc->vge_ldata.vge_tx_prodidx = 0;
1254 	sc->vge_ldata.vge_tx_considx = 0;
1255 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1256 
1257 	return (0);
1258 }
1259 
1260 static int
1261 vge_rx_list_init(sc)
1262 	struct vge_softc		*sc;
1263 {
1264 	int			i;
1265 
1266 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1267 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1268 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1269 
1270 	sc->vge_rx_consumed = 0;
1271 
1272 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1273 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1274 			return (ENOBUFS);
1275 	}
1276 
1277 	/* Flush the RX descriptors */
1278 
1279 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1280 	    sc->vge_ldata.vge_rx_list_map,
1281 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1282 
1283 	sc->vge_ldata.vge_rx_prodidx = 0;
1284 	sc->vge_rx_consumed = 0;
1285 	sc->vge_head = sc->vge_tail = NULL;
1286 
1287 	return (0);
1288 }
1289 
1290 #ifdef VGE_FIXUP_RX
1291 static __inline void
1292 vge_fixup_rx(m)
1293 	struct mbuf		*m;
1294 {
1295 	int			i;
1296 	uint16_t		*src, *dst;
1297 
1298 	src = mtod(m, uint16_t *);
1299 	dst = src - 1;
1300 
1301 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1302 		*dst++ = *src++;
1303 
1304 	m->m_data -= ETHER_ALIGN;
1305 
1306 	return;
1307 }
1308 #endif
1309 
1310 /*
1311  * RX handler. We support the reception of jumbo frames that have
1312  * been fragmented across multiple 2K mbuf cluster buffers.
1313  */
1314 static void
1315 vge_rxeof(sc)
1316 	struct vge_softc	*sc;
1317 {
1318 	struct mbuf		*m;
1319 	struct ifnet		*ifp;
1320 	int			i, total_len;
1321 	int			lim = 0;
1322 	struct vge_rx_desc	*cur_rx;
1323 	u_int32_t		rxstat, rxctl;
1324 
1325 	VGE_LOCK_ASSERT(sc);
1326 	ifp = &sc->arpcom.ac_if;
1327 	i = sc->vge_ldata.vge_rx_prodidx;
1328 
1329 	/* Invalidate the descriptor memory */
1330 
1331 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1332 	    sc->vge_ldata.vge_rx_list_map,
1333 	    BUS_DMASYNC_POSTREAD);
1334 
1335 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1336 
1337 #ifdef DEVICE_POLLING
1338 		if (ifp->if_flags & IFF_POLLING) {
1339 			if (sc->rxcycles <= 0)
1340 				break;
1341 			sc->rxcycles--;
1342 		}
1343 #endif /* DEVICE_POLLING */
1344 
1345 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1346 		m = sc->vge_ldata.vge_rx_mbuf[i];
1347 		total_len = VGE_RXBYTES(cur_rx);
1348 		rxstat = le32toh(cur_rx->vge_sts);
1349 		rxctl = le32toh(cur_rx->vge_ctl);
1350 
1351 		/* Invalidate the RX mbuf and unload its map */
1352 
1353 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1354 		    sc->vge_ldata.vge_rx_dmamap[i],
1355 		    BUS_DMASYNC_POSTWRITE);
1356 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1357 		    sc->vge_ldata.vge_rx_dmamap[i]);
1358 
1359 		/*
1360 		 * If the 'start of frame' bit is set, this indicates
1361 		 * either the first fragment in a multi-fragment receive,
1362 		 * or an intermediate fragment. Either way, we want to
1363 		 * accumulate the buffers.
1364 		 */
1365 		if (rxstat & VGE_RXPKT_SOF) {
1366 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1367 			if (sc->vge_head == NULL)
1368 				sc->vge_head = sc->vge_tail = m;
1369 			else {
1370 				m->m_flags &= ~M_PKTHDR;
1371 				sc->vge_tail->m_next = m;
1372 				sc->vge_tail = m;
1373 			}
1374 			vge_newbuf(sc, i, NULL);
1375 			VGE_RX_DESC_INC(i);
1376 			continue;
1377 		}
1378 
1379 		/*
1380 		 * Bad/error frames will have the RXOK bit cleared.
1381 		 * However, there's one error case we want to allow:
1382 		 * if a VLAN tagged frame arrives and the chip can't
1383 		 * match it against the CAM filter, it considers this
1384 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1385 		 * We don't want to drop the frame though: our VLAN
1386 		 * filtering is done in software.
1387 		 */
1388 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1389 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1390 			ifp->if_ierrors++;
1391 			/*
1392 			 * If this is part of a multi-fragment packet,
1393 			 * discard all the pieces.
1394 			 */
1395 			if (sc->vge_head != NULL) {
1396 				m_freem(sc->vge_head);
1397 				sc->vge_head = sc->vge_tail = NULL;
1398 			}
1399 			vge_newbuf(sc, i, m);
1400 			VGE_RX_DESC_INC(i);
1401 			continue;
1402 		}
1403 
1404 		/*
1405 		 * If allocating a replacement mbuf fails,
1406 		 * reload the current one.
1407 		 */
1408 
1409 		if (vge_newbuf(sc, i, NULL)) {
1410 			ifp->if_ierrors++;
1411 			if (sc->vge_head != NULL) {
1412 				m_freem(sc->vge_head);
1413 				sc->vge_head = sc->vge_tail = NULL;
1414 			}
1415 			vge_newbuf(sc, i, m);
1416 			VGE_RX_DESC_INC(i);
1417 			continue;
1418 		}
1419 
1420 		VGE_RX_DESC_INC(i);
1421 
1422 		if (sc->vge_head != NULL) {
1423 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1424 			/*
1425 			 * Special case: if there's 4 bytes or less
1426 			 * in this buffer, the mbuf can be discarded:
1427 			 * the last 4 bytes is the CRC, which we don't
1428 			 * care about anyway.
1429 			 */
1430 			if (m->m_len <= ETHER_CRC_LEN) {
1431 				sc->vge_tail->m_len -=
1432 				    (ETHER_CRC_LEN - m->m_len);
1433 				m_freem(m);
1434 			} else {
1435 				m->m_len -= ETHER_CRC_LEN;
1436 				m->m_flags &= ~M_PKTHDR;
1437 				sc->vge_tail->m_next = m;
1438 			}
1439 			m = sc->vge_head;
1440 			sc->vge_head = sc->vge_tail = NULL;
1441 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1442 		} else
1443 			m->m_pkthdr.len = m->m_len =
1444 			    (total_len - ETHER_CRC_LEN);
1445 
1446 #ifdef VGE_FIXUP_RX
1447 		vge_fixup_rx(m);
1448 #endif
1449 		ifp->if_ipackets++;
1450 		m->m_pkthdr.rcvif = ifp;
1451 
1452 		/* Do RX checksumming if enabled */
1453 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1454 
1455 			/* Check IP header checksum */
1456 			if (rxctl & VGE_RDCTL_IPPKT)
1457 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1458 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1459 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1460 
1461 			/* Check TCP/UDP checksum */
1462 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1463 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1464 				m->m_pkthdr.csum_flags |=
1465 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1466 				m->m_pkthdr.csum_data = 0xffff;
1467 			}
1468 		}
1469 
1470 		if (rxstat & VGE_RDSTS_VTAG)
1471 			VLAN_INPUT_TAG(ifp, m,
1472 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1473 
1474 		VGE_UNLOCK(sc);
1475 		(*ifp->if_input)(ifp, m);
1476 		VGE_LOCK(sc);
1477 
1478 		lim++;
1479 		if (lim == VGE_RX_DESC_CNT)
1480 			break;
1481 
1482 	}
1483 
1484 	/* Flush the RX DMA ring */
1485 
1486 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1487 	    sc->vge_ldata.vge_rx_list_map,
1488 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1489 
1490 	sc->vge_ldata.vge_rx_prodidx = i;
1491 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1492 
1493 
1494 	return;
1495 }
1496 
1497 static void
1498 vge_txeof(sc)
1499 	struct vge_softc		*sc;
1500 {
1501 	struct ifnet		*ifp;
1502 	u_int32_t		txstat;
1503 	int			idx;
1504 
1505 	ifp = &sc->arpcom.ac_if;
1506 	idx = sc->vge_ldata.vge_tx_considx;
1507 
1508 	/* Invalidate the TX descriptor list */
1509 
1510 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1511 	    sc->vge_ldata.vge_tx_list_map,
1512 	    BUS_DMASYNC_POSTREAD);
1513 
1514 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1515 
1516 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1517 		if (txstat & VGE_TDSTS_OWN)
1518 			break;
1519 
1520 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1521 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1522 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1523 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1524 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1525 			ifp->if_collisions++;
1526 		if (txstat & VGE_TDSTS_TXERR)
1527 			ifp->if_oerrors++;
1528 		else
1529 			ifp->if_opackets++;
1530 
1531 		sc->vge_ldata.vge_tx_free++;
1532 		VGE_TX_DESC_INC(idx);
1533 	}
1534 
1535 	/* No changes made to the TX ring, so no flush needed */
1536 
1537 	if (idx != sc->vge_ldata.vge_tx_considx) {
1538 		sc->vge_ldata.vge_tx_considx = idx;
1539 		ifp->if_flags &= ~IFF_OACTIVE;
1540 		ifp->if_timer = 0;
1541 	}
1542 
1543 	/*
1544 	 * If not all descriptors have been released reaped yet,
1545 	 * reload the timer so that we will eventually get another
1546 	 * interrupt that will cause us to re-enter this routine.
1547 	 * This is done in case the transmitter has gone idle.
1548 	 */
1549 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1550 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1551 	}
1552 
1553 	return;
1554 }
1555 
1556 static void
1557 vge_tick(xsc)
1558 	void			*xsc;
1559 {
1560 	struct vge_softc	*sc;
1561 	struct ifnet		*ifp;
1562 	struct mii_data		*mii;
1563 
1564 	sc = xsc;
1565 	ifp = &sc->arpcom.ac_if;
1566 	VGE_LOCK(sc);
1567 	mii = device_get_softc(sc->vge_miibus);
1568 
1569 	mii_tick(mii);
1570 	if (sc->vge_link) {
1571 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1572 			sc->vge_link = 0;
1573 #ifdef LINK_STATE_UP
1574 			sc->arpcom.ac_if.if_link_state = LINK_STATE_UP;
1575 			rt_ifmsg(&(sc->arpcom.ac_if));
1576 #endif /* LINK_STATE_UP */
1577 		}
1578 	} else {
1579 		if (mii->mii_media_status & IFM_ACTIVE &&
1580 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1581 			sc->vge_link = 1;
1582 #ifdef LINK_STATE_DOWN
1583 			sc->arpcom.ac_if.if_link_state = LINK_STATE_DOWN;
1584 			rt_ifmsg(&(sc->arpcom.ac_if));
1585 #endif /* LINK_STATE_DOWN */
1586 #if __FreeBSD_version < 502114
1587 			if (ifp->if_snd.ifq_head != NULL)
1588 #else
1589 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1590 #endif
1591 				taskqueue_enqueue(taskqueue_swi,
1592 				    &sc->vge_txtask);
1593 		}
1594 	}
1595 
1596 	VGE_UNLOCK(sc);
1597 
1598 	return;
1599 }
1600 
1601 #ifdef DEVICE_POLLING
1602 static void
1603 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1604 {
1605 	struct vge_softc *sc = ifp->if_softc;
1606 
1607 	VGE_LOCK(sc);
1608 #ifdef IFCAP_POLLING
1609 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1610 		ether_poll_deregister(ifp);
1611 		cmd = POLL_DEREGISTER;
1612 	}
1613 #endif
1614 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1615 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1616 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1617 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1618 		goto done;
1619 	}
1620 
1621 	sc->rxcycles = count;
1622 	vge_rxeof(sc);
1623 	vge_txeof(sc);
1624 
1625 #if __FreeBSD_version < 502114
1626 	if (ifp->if_snd.ifq_head != NULL)
1627 #else
1628 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1629 #endif
1630 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1631 
1632 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1633 		u_int32_t       status;
1634 		status = CSR_READ_4(sc, VGE_ISR);
1635 		if (status == 0xFFFFFFFF)
1636 			goto done;
1637 		if (status)
1638 			CSR_WRITE_4(sc, VGE_ISR, status);
1639 
1640 		/*
1641 		 * XXX check behaviour on receiver stalls.
1642 		 */
1643 
1644 		if (status & VGE_ISR_TXDMA_STALL ||
1645 		    status & VGE_ISR_RXDMA_STALL)
1646 			vge_init(sc);
1647 
1648 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1649 			vge_rxeof(sc);
1650 			ifp->if_ierrors++;
1651 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1652 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1653 		}
1654 	}
1655 done:
1656 	VGE_UNLOCK(sc);
1657 }
1658 #endif /* DEVICE_POLLING */
1659 
1660 static void
1661 vge_intr(arg)
1662 	void			*arg;
1663 {
1664 	struct vge_softc	*sc;
1665 	struct ifnet		*ifp;
1666 	u_int32_t		status;
1667 
1668 	sc = arg;
1669 
1670 	if (sc->suspended) {
1671 		return;
1672 	}
1673 
1674 	VGE_LOCK(sc);
1675 	ifp = &sc->arpcom.ac_if;
1676 
1677 	if (!(ifp->if_flags & IFF_UP)) {
1678 		VGE_UNLOCK(sc);
1679 		return;
1680 	}
1681 
1682 #ifdef DEVICE_POLLING
1683 	if  (ifp->if_flags & IFF_POLLING)
1684 		goto done;
1685 	if (
1686 #ifdef IFCAP_POLLING
1687 	    (ifp->if_capenable & IFCAP_POLLING) &&
1688 #endif
1689 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1690 		CSR_WRITE_4(sc, VGE_IMR, 0);
1691 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1692 		vge_poll(ifp, 0, 1);
1693 		goto done;
1694 	}
1695 
1696 #endif /* DEVICE_POLLING */
1697 
1698 	/* Disable interrupts */
1699 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1700 
1701 	for (;;) {
1702 
1703 		status = CSR_READ_4(sc, VGE_ISR);
1704 		/* If the card has gone away the read returns 0xffff. */
1705 		if (status == 0xFFFFFFFF)
1706 			break;
1707 
1708 		if (status)
1709 			CSR_WRITE_4(sc, VGE_ISR, status);
1710 
1711 		if ((status & VGE_INTRS) == 0)
1712 			break;
1713 
1714 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1715 			vge_rxeof(sc);
1716 
1717 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1718 			vge_rxeof(sc);
1719 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1720 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1721 		}
1722 
1723 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1724 			vge_txeof(sc);
1725 
1726 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1727 			vge_init(sc);
1728 
1729 		if (status & VGE_ISR_LINKSTS)
1730 			vge_tick(sc);
1731 	}
1732 
1733 	/* Re-enable interrupts */
1734 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1735 
1736 #ifdef DEVICE_POLLING
1737 done:
1738 #endif
1739 	VGE_UNLOCK(sc);
1740 
1741 #if __FreeBSD_version < 502114
1742 	if (ifp->if_snd.ifq_head != NULL)
1743 #else
1744 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745 #endif
1746 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1747 
1748 	return;
1749 }
1750 
1751 static int
1752 vge_encap(sc, m_head, idx)
1753 	struct vge_softc	*sc;
1754 	struct mbuf		*m_head;
1755 	int			idx;
1756 {
1757 	struct mbuf		*m_new = NULL;
1758 	struct vge_dmaload_arg	arg;
1759 	bus_dmamap_t		map;
1760 	int			error;
1761 	struct m_tag		*mtag;
1762 
1763 	if (sc->vge_ldata.vge_tx_free <= 2)
1764 		return (EFBIG);
1765 
1766 	arg.vge_flags = 0;
1767 
1768 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1769 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1770 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1771 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1772 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1773 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1774 
1775 	arg.sc = sc;
1776 	arg.vge_idx = idx;
1777 	arg.vge_m0 = m_head;
1778 	arg.vge_maxsegs = VGE_TX_FRAGS;
1779 
1780 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1781 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1782 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1783 
1784 	if (error && error != EFBIG) {
1785 		printf("vge%d: can't map mbuf (error %d)\n",
1786 		    sc->vge_unit, error);
1787 		return (ENOBUFS);
1788 	}
1789 
1790 	/* Too many segments to map, coalesce into a single mbuf */
1791 
1792 	if (error || arg.vge_maxsegs == 0) {
1793 		m_new = m_defrag(m_head, M_DONTWAIT);
1794 		if (m_new == NULL)
1795 			return (1);
1796 		else
1797 			m_head = m_new;
1798 
1799 		arg.sc = sc;
1800 		arg.vge_m0 = m_head;
1801 		arg.vge_idx = idx;
1802 		arg.vge_maxsegs = 1;
1803 
1804 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1805 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1806 		if (error) {
1807 			printf("vge%d: can't map mbuf (error %d)\n",
1808 			    sc->vge_unit, error);
1809 			return (EFBIG);
1810 		}
1811 	}
1812 
1813 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1814 	sc->vge_ldata.vge_tx_free--;
1815 
1816 	/*
1817 	 * Set up hardware VLAN tagging.
1818 	 */
1819 
1820 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1821 	if (mtag != NULL)
1822 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1823 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1824 
1825 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1826 
1827 	return (0);
1828 }
1829 
1830 static void
1831 vge_tx_task(arg, npending)
1832 	void			*arg;
1833 	int			npending;
1834 {
1835 	struct ifnet		*ifp;
1836 
1837 	ifp = arg;
1838 	vge_start(ifp);
1839 
1840 	return;
1841 }
1842 
1843 /*
1844  * Main transmit routine.
1845  */
1846 
1847 static void
1848 vge_start(ifp)
1849 	struct ifnet		*ifp;
1850 {
1851 	struct vge_softc	*sc;
1852 	struct mbuf		*m_head = NULL;
1853 	int			idx, pidx = 0;
1854 
1855 	sc = ifp->if_softc;
1856 	VGE_LOCK(sc);
1857 
1858 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1859 		VGE_UNLOCK(sc);
1860 		return;
1861 	}
1862 
1863 #if __FreeBSD_version < 502114
1864 	if (ifp->if_snd.ifq_head == NULL) {
1865 #else
1866 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1867 #endif
1868 		VGE_UNLOCK(sc);
1869 		return;
1870 	}
1871 
1872 	idx = sc->vge_ldata.vge_tx_prodidx;
1873 
1874 	pidx = idx - 1;
1875 	if (pidx < 0)
1876 		pidx = VGE_TX_DESC_CNT - 1;
1877 
1878 
1879 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1880 #if __FreeBSD_version < 502114
1881 		IF_DEQUEUE(&ifp->if_snd, m_head);
1882 #else
1883 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1884 #endif
1885 		if (m_head == NULL)
1886 			break;
1887 
1888 		if (vge_encap(sc, m_head, idx)) {
1889 #if __FreeBSD_version >= 502114
1890 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1891 #else
1892 			IF_PREPEND(&ifp->if_snd, m_head);
1893 #endif
1894 			ifp->if_flags |= IFF_OACTIVE;
1895 			break;
1896 		}
1897 
1898 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1899 		    htole16(VGE_TXDESC_Q);
1900 
1901 		pidx = idx;
1902 		VGE_TX_DESC_INC(idx);
1903 
1904 		/*
1905 		 * If there's a BPF listener, bounce a copy of this frame
1906 		 * to him.
1907 		 */
1908 		BPF_MTAP(ifp, m_head);
1909 	}
1910 
1911 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1912 		VGE_UNLOCK(sc);
1913 		return;
1914 	}
1915 
1916 	/* Flush the TX descriptors */
1917 
1918 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1919 	    sc->vge_ldata.vge_tx_list_map,
1920 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1921 
1922 	/* Issue a transmit command. */
1923 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1924 
1925 	sc->vge_ldata.vge_tx_prodidx = idx;
1926 
1927 	/*
1928 	 * Use the countdown timer for interrupt moderation.
1929 	 * 'TX done' interrupts are disabled. Instead, we reset the
1930 	 * countdown timer, which will begin counting until it hits
1931 	 * the value in the SSTIMER register, and then trigger an
1932 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1933 	 * the timer count is reloaded. Only when the transmitter
1934 	 * is idle will the timer hit 0 and an interrupt fire.
1935 	 */
1936 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1937 
1938 	VGE_UNLOCK(sc);
1939 
1940 	/*
1941 	 * Set a timeout in case the chip goes out to lunch.
1942 	 */
1943 	ifp->if_timer = 5;
1944 
1945 	return;
1946 }
1947 
1948 static void
1949 vge_init(xsc)
1950 	void			*xsc;
1951 {
1952 	struct vge_softc	*sc = xsc;
1953 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1954 	struct mii_data		*mii;
1955 	int			i;
1956 
1957 	VGE_LOCK(sc);
1958 	mii = device_get_softc(sc->vge_miibus);
1959 
1960 	/*
1961 	 * Cancel pending I/O and free all RX/TX buffers.
1962 	 */
1963 	vge_stop(sc);
1964 	vge_reset(sc);
1965 
1966 	/*
1967 	 * Initialize the RX and TX descriptors and mbufs.
1968 	 */
1969 
1970 	vge_rx_list_init(sc);
1971 	vge_tx_list_init(sc);
1972 
1973 	/* Set our station address */
1974 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1975 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1976 
1977 	/*
1978 	 * Set receive FIFO threshold. Also allow transmission and
1979 	 * reception of VLAN tagged frames.
1980 	 */
1981 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1982 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1983 
1984 	/* Set DMA burst length */
1985 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1986 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1987 
1988 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1989 
1990 	/* Set collision backoff algorithm */
1991 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1992 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1993 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1994 
1995 	/* Disable LPSEL field in priority resolution */
1996 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1997 
1998 	/*
1999 	 * Load the addresses of the DMA queues into the chip.
2000 	 * Note that we only use one transmit queue.
2001 	 */
2002 
2003 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2004 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2005 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2006 
2007 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2008 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2009 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2010 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2011 
2012 	/* Enable and wake up the RX descriptor queue */
2013 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2014 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2015 
2016 	/* Enable the TX descriptor queue */
2017 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2018 
2019 	/* Set up the receive filter -- allow large frames for VLANs. */
2020 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2021 
2022 	/* If we want promiscuous mode, set the allframes bit. */
2023 	if (ifp->if_flags & IFF_PROMISC) {
2024 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2025 	}
2026 
2027 	/* Set capture broadcast bit to capture broadcast frames. */
2028 	if (ifp->if_flags & IFF_BROADCAST) {
2029 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2030 	}
2031 
2032 	/* Set multicast bit to capture multicast frames. */
2033 	if (ifp->if_flags & IFF_MULTICAST) {
2034 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2035 	}
2036 
2037 	/* Init the cam filter. */
2038 	vge_cam_clear(sc);
2039 
2040 	/* Init the multicast filter. */
2041 	vge_setmulti(sc);
2042 
2043 	/* Enable flow control */
2044 
2045 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2046 
2047 	/* Enable jumbo frame reception (if desired) */
2048 
2049 	/* Start the MAC. */
2050 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2051 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2052 	CSR_WRITE_1(sc, VGE_CRS0,
2053 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2054 
2055 	/*
2056 	 * Configure one-shot timer for microsecond
2057 	 * resulution and load it for 500 usecs.
2058 	 */
2059 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2060 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2061 
2062 	/*
2063 	 * Configure interrupt moderation for receive. Enable
2064 	 * the holdoff counter and load it, and set the RX
2065 	 * suppression count to the number of descriptors we
2066 	 * want to allow before triggering an interrupt.
2067 	 * The holdoff timer is in units of 20 usecs.
2068 	 */
2069 
2070 #ifdef notyet
2071 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2072 	/* Select the interrupt holdoff timer page. */
2073 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2074 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2075 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2076 
2077 	/* Enable use of the holdoff timer. */
2078 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2079 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2080 
2081 	/* Select the RX suppression threshold page. */
2082 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2083 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2084 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2085 
2086 	/* Restore the page select bits. */
2087 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2088 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2089 #endif
2090 
2091 #ifdef DEVICE_POLLING
2092 	/*
2093 	 * Disable interrupts if we are polling.
2094 	 */
2095 	if (ifp->if_flags & IFF_POLLING) {
2096 		CSR_WRITE_4(sc, VGE_IMR, 0);
2097 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2098 	} else	/* otherwise ... */
2099 #endif /* DEVICE_POLLING */
2100 	{
2101 	/*
2102 	 * Enable interrupts.
2103 	 */
2104 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2105 		CSR_WRITE_4(sc, VGE_ISR, 0);
2106 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2107 	}
2108 
2109 	mii_mediachg(mii);
2110 
2111 	ifp->if_flags |= IFF_RUNNING;
2112 	ifp->if_flags &= ~IFF_OACTIVE;
2113 
2114 	sc->vge_if_flags = 0;
2115 	sc->vge_link = 0;
2116 
2117 	VGE_UNLOCK(sc);
2118 
2119 	return;
2120 }
2121 
2122 /*
2123  * Set media options.
2124  */
2125 static int
2126 vge_ifmedia_upd(ifp)
2127 	struct ifnet		*ifp;
2128 {
2129 	struct vge_softc	*sc;
2130 	struct mii_data		*mii;
2131 
2132 	sc = ifp->if_softc;
2133 	mii = device_get_softc(sc->vge_miibus);
2134 	mii_mediachg(mii);
2135 
2136 	return (0);
2137 }
2138 
2139 /*
2140  * Report current media status.
2141  */
2142 static void
2143 vge_ifmedia_sts(ifp, ifmr)
2144 	struct ifnet		*ifp;
2145 	struct ifmediareq	*ifmr;
2146 {
2147 	struct vge_softc	*sc;
2148 	struct mii_data		*mii;
2149 
2150 	sc = ifp->if_softc;
2151 	mii = device_get_softc(sc->vge_miibus);
2152 
2153 	mii_pollstat(mii);
2154 	ifmr->ifm_active = mii->mii_media_active;
2155 	ifmr->ifm_status = mii->mii_media_status;
2156 
2157 	return;
2158 }
2159 
2160 static void
2161 vge_miibus_statchg(dev)
2162 	device_t		dev;
2163 {
2164 	struct vge_softc	*sc;
2165 	struct mii_data		*mii;
2166 	struct ifmedia_entry	*ife;
2167 
2168 	sc = device_get_softc(dev);
2169 	mii = device_get_softc(sc->vge_miibus);
2170 	ife = mii->mii_media.ifm_cur;
2171 
2172 	/*
2173 	 * If the user manually selects a media mode, we need to turn
2174 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2175 	 * user happens to choose a full duplex mode, we also need to
2176 	 * set the 'force full duplex' bit. This applies only to
2177 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2178 	 * mode is disabled, and in 1000baseT mode, full duplex is
2179 	 * always implied, so we turn on the forced mode bit but leave
2180 	 * the FDX bit cleared.
2181 	 */
2182 
2183 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2184 	case IFM_AUTO:
2185 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2186 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2187 		break;
2188 	case IFM_1000_T:
2189 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2190 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2191 		break;
2192 	case IFM_100_TX:
2193 	case IFM_10_T:
2194 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2195 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2196 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2197 		} else {
2198 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199 		}
2200 		break;
2201 	default:
2202 		device_printf(dev, "unknown media type: %x\n",
2203 		    IFM_SUBTYPE(ife->ifm_media));
2204 		break;
2205 	}
2206 
2207 	return;
2208 }
2209 
2210 static int
2211 vge_ioctl(ifp, command, data)
2212 	struct ifnet		*ifp;
2213 	u_long			command;
2214 	caddr_t			data;
2215 {
2216 	struct vge_softc	*sc = ifp->if_softc;
2217 	struct ifreq		*ifr = (struct ifreq *) data;
2218 	struct mii_data		*mii;
2219 	int			error = 0;
2220 
2221 	switch (command) {
2222 	case SIOCSIFMTU:
2223 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2224 			error = EINVAL;
2225 		ifp->if_mtu = ifr->ifr_mtu;
2226 		break;
2227 	case SIOCSIFFLAGS:
2228 		if (ifp->if_flags & IFF_UP) {
2229 			if (ifp->if_flags & IFF_RUNNING &&
2230 			    ifp->if_flags & IFF_PROMISC &&
2231 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2232 				CSR_SETBIT_1(sc, VGE_RXCTL,
2233 				    VGE_RXCTL_RX_PROMISC);
2234 				vge_setmulti(sc);
2235 			} else if (ifp->if_flags & IFF_RUNNING &&
2236 			    !(ifp->if_flags & IFF_PROMISC) &&
2237 			    sc->vge_if_flags & IFF_PROMISC) {
2238 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2239 				    VGE_RXCTL_RX_PROMISC);
2240 				vge_setmulti(sc);
2241                         } else
2242 				vge_init(sc);
2243 		} else {
2244 			if (ifp->if_flags & IFF_RUNNING)
2245 				vge_stop(sc);
2246 		}
2247 		sc->vge_if_flags = ifp->if_flags;
2248 		break;
2249 	case SIOCADDMULTI:
2250 	case SIOCDELMULTI:
2251 		vge_setmulti(sc);
2252 		break;
2253 	case SIOCGIFMEDIA:
2254 	case SIOCSIFMEDIA:
2255 		mii = device_get_softc(sc->vge_miibus);
2256 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2257 		break;
2258 	case SIOCSIFCAP:
2259 #ifdef IFCAP_POLLING
2260 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2261 #else
2262 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2263 #endif
2264 		ifp->if_capenable |=
2265 #ifdef IFCAP_POLLING
2266 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2267 #else
2268 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2269 #endif
2270 		if (ifp->if_capenable & IFCAP_TXCSUM)
2271 			ifp->if_hwassist = VGE_CSUM_FEATURES;
2272 		else
2273 			ifp->if_hwassist = 0;
2274 		if (ifp->if_flags & IFF_RUNNING)
2275 			vge_init(sc);
2276 		break;
2277 	default:
2278 		error = ether_ioctl(ifp, command, data);
2279 		break;
2280 	}
2281 
2282 	return (error);
2283 }
2284 
2285 static void
2286 vge_watchdog(ifp)
2287 	struct ifnet		*ifp;
2288 {
2289 	struct vge_softc		*sc;
2290 
2291 	sc = ifp->if_softc;
2292 	VGE_LOCK(sc);
2293 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2294 	ifp->if_oerrors++;
2295 
2296 	vge_txeof(sc);
2297 	vge_rxeof(sc);
2298 
2299 	vge_init(sc);
2300 
2301 	VGE_UNLOCK(sc);
2302 
2303 	return;
2304 }
2305 
2306 /*
2307  * Stop the adapter and free any mbufs allocated to the
2308  * RX and TX lists.
2309  */
2310 static void
2311 vge_stop(sc)
2312 	struct vge_softc		*sc;
2313 {
2314 	register int		i;
2315 	struct ifnet		*ifp;
2316 
2317 	VGE_LOCK(sc);
2318 	ifp = &sc->arpcom.ac_if;
2319 	ifp->if_timer = 0;
2320 
2321 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2322 #ifdef DEVICE_POLLING
2323 	ether_poll_deregister(ifp);
2324 #endif /* DEVICE_POLLING */
2325 
2326 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2327 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2328 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2329 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2330 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2331 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2332 
2333 	if (sc->vge_head != NULL) {
2334 		m_freem(sc->vge_head);
2335 		sc->vge_head = sc->vge_tail = NULL;
2336 	}
2337 
2338 	/* Free the TX list buffers. */
2339 
2340 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2341 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2342 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2343 			    sc->vge_ldata.vge_tx_dmamap[i]);
2344 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2345 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2346 		}
2347 	}
2348 
2349 	/* Free the RX list buffers. */
2350 
2351 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2352 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2353 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2354 			    sc->vge_ldata.vge_rx_dmamap[i]);
2355 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2356 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2357 		}
2358 	}
2359 
2360 	VGE_UNLOCK(sc);
2361 
2362 	return;
2363 }
2364 
2365 /*
2366  * Device suspend routine.  Stop the interface and save some PCI
2367  * settings in case the BIOS doesn't restore them properly on
2368  * resume.
2369  */
2370 static int
2371 vge_suspend(dev)
2372 	device_t		dev;
2373 {
2374 	struct vge_softc	*sc;
2375 	int			i;
2376 
2377 	sc = device_get_softc(dev);
2378 
2379 	vge_stop(sc);
2380 
2381         for (i = 0; i < 5; i++)
2382 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2383 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2384 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2385 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2386 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2387 
2388 	sc->suspended = 1;
2389 
2390 	return (0);
2391 }
2392 
2393 /*
2394  * Device resume routine.  Restore some PCI settings in case the BIOS
2395  * doesn't, re-enable busmastering, and restart the interface if
2396  * appropriate.
2397  */
2398 static int
2399 vge_resume(dev)
2400 	device_t		dev;
2401 {
2402 	struct vge_softc	*sc;
2403 	struct ifnet		*ifp;
2404 	int			i;
2405 
2406 	sc = device_get_softc(dev);
2407 	ifp = &sc->arpcom.ac_if;
2408 
2409         /* better way to do this? */
2410 	for (i = 0; i < 5; i++)
2411 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2412 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2413 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2414 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2415 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2416 
2417 	/* reenable busmastering */
2418 	pci_enable_busmaster(dev);
2419 	pci_enable_io(dev, SYS_RES_MEMORY);
2420 
2421 	/* reinitialize interface if necessary */
2422 	if (ifp->if_flags & IFF_UP)
2423 		vge_init(sc);
2424 
2425 	sc->suspended = 0;
2426 
2427 	return (0);
2428 }
2429 
2430 /*
2431  * Stop all chip I/O so that the kernel's probe routines don't
2432  * get confused by errant DMAs when rebooting.
2433  */
2434 static void
2435 vge_shutdown(dev)
2436 	device_t		dev;
2437 {
2438 	struct vge_softc		*sc;
2439 
2440 	sc = device_get_softc(dev);
2441 
2442 	vge_stop(sc);
2443 }
2444