xref: /freebsd/sys/dev/vge/if_vge.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *	o Jumbo frame support up to 16K
52  *	o Transmit and receive flow control
53  *	o IPv4 checksum offload
54  *	o VLAN tag insertion and stripping
55  *	o TCP large send
56  *	o 64-bit multicast hash table filter
57  *	o 64 entry CAM filter
58  *	o 16K RX FIFO and 48K TX FIFO memory
59  *	o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84 
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125 
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128 
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131 
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137 
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
150 		"VIA Networking Velocity Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static int	vge_attach(device_t);
155 static int	vge_detach(device_t);
156 static int	vge_probe(device_t);
157 static int	vge_resume(device_t);
158 static int	vge_shutdown(device_t);
159 static int	vge_suspend(device_t);
160 
161 static void	vge_cam_clear(struct vge_softc *);
162 static int	vge_cam_set(struct vge_softc *, uint8_t *);
163 static void	vge_clrwol(struct vge_softc *);
164 static void	vge_discard_rxbuf(struct vge_softc *, int);
165 static int	vge_dma_alloc(struct vge_softc *);
166 static void	vge_dma_free(struct vge_softc *);
167 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int	vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174 		vge_fixup_rx(struct mbuf *);
175 #endif
176 static void	vge_freebufs(struct vge_softc *);
177 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int	vge_ifmedia_upd(struct ifnet *);
179 static int	vge_ifmedia_upd_locked(struct vge_softc *);
180 static void	vge_init(void *);
181 static void	vge_init_locked(struct vge_softc *);
182 static void	vge_intr(void *);
183 static void	vge_intr_holdoff(struct vge_softc *);
184 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void	vge_link_statchg(void *);
186 static int	vge_miibus_readreg(device_t, int, int);
187 static int	vge_miibus_writereg(device_t, int, int, int);
188 static void	vge_miipoll_start(struct vge_softc *);
189 static void	vge_miipoll_stop(struct vge_softc *);
190 static int	vge_newbuf(struct vge_softc *, int);
191 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void	vge_reset(struct vge_softc *);
193 static int	vge_rx_list_init(struct vge_softc *);
194 static int	vge_rxeof(struct vge_softc *, int);
195 static void	vge_rxfilter(struct vge_softc *);
196 static void	vge_setmedia(struct vge_softc *);
197 static void	vge_setvlan(struct vge_softc *);
198 static void	vge_setwol(struct vge_softc *);
199 static void	vge_start(struct ifnet *);
200 static void	vge_start_locked(struct ifnet *);
201 static void	vge_stats_clear(struct vge_softc *);
202 static void	vge_stats_update(struct vge_softc *);
203 static void	vge_stop(struct vge_softc *);
204 static void	vge_sysctl_node(struct vge_softc *);
205 static int	vge_tx_list_init(struct vge_softc *);
206 static void	vge_txeof(struct vge_softc *);
207 static void	vge_watchdog(void *);
208 
209 static device_method_t vge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		vge_probe),
212 	DEVMETHOD(device_attach,	vge_attach),
213 	DEVMETHOD(device_detach,	vge_detach),
214 	DEVMETHOD(device_suspend,	vge_suspend),
215 	DEVMETHOD(device_resume,	vge_resume),
216 	DEVMETHOD(device_shutdown,	vge_shutdown),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t vge_driver = {
226 	"vge",
227 	vge_methods,
228 	sizeof(struct vge_softc)
229 };
230 
231 static devclass_t vge_devclass;
232 
233 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
234 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
235 
236 #ifdef VGE_EEPROM
237 /*
238  * Read a word of data stored in the EEPROM at address 'addr.'
239  */
240 static void
241 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
242 {
243 	int i;
244 	uint16_t word = 0;
245 
246 	/*
247 	 * Enter EEPROM embedded programming mode. In order to
248 	 * access the EEPROM at all, we first have to set the
249 	 * EELOAD bit in the CHIPCFG2 register.
250 	 */
251 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
252 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
253 
254 	/* Select the address of the word we want to read */
255 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
256 
257 	/* Issue read command */
258 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
259 
260 	/* Wait for the done bit to be set. */
261 	for (i = 0; i < VGE_TIMEOUT; i++) {
262 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
263 			break;
264 	}
265 
266 	if (i == VGE_TIMEOUT) {
267 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
268 		*dest = 0;
269 		return;
270 	}
271 
272 	/* Read the result */
273 	word = CSR_READ_2(sc, VGE_EERDDAT);
274 
275 	/* Turn off EEPROM access mode. */
276 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
277 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
278 
279 	*dest = word;
280 }
281 #endif
282 
283 /*
284  * Read a sequence of words from the EEPROM.
285  */
286 static void
287 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
288 {
289 	int i;
290 #ifdef VGE_EEPROM
291 	uint16_t word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (uint16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(struct vge_softc *sc)
309 {
310 	int i;
311 
312 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
313 
314 	for (i = 0; i < VGE_TIMEOUT; i++) {
315 		DELAY(1);
316 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317 			break;
318 	}
319 
320 	if (i == VGE_TIMEOUT)
321 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322 }
323 
324 static void
325 vge_miipoll_start(struct vge_softc *sc)
326 {
327 	int i;
328 
329 	/* First, make sure we're idle. */
330 
331 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
332 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
333 
334 	for (i = 0; i < VGE_TIMEOUT; i++) {
335 		DELAY(1);
336 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
337 			break;
338 	}
339 
340 	if (i == VGE_TIMEOUT) {
341 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
342 		return;
343 	}
344 
345 	/* Now enable auto poll mode. */
346 
347 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
348 
349 	/* And make sure it started. */
350 
351 	for (i = 0; i < VGE_TIMEOUT; i++) {
352 		DELAY(1);
353 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
354 			break;
355 	}
356 
357 	if (i == VGE_TIMEOUT)
358 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
359 }
360 
361 static int
362 vge_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct vge_softc *sc;
365 	int i;
366 	uint16_t rval = 0;
367 
368 	sc = device_get_softc(dev);
369 
370 	vge_miipoll_stop(sc);
371 
372 	/* Specify the register we want to read. */
373 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
374 
375 	/* Issue read command. */
376 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
377 
378 	/* Wait for the read command bit to self-clear. */
379 	for (i = 0; i < VGE_TIMEOUT; i++) {
380 		DELAY(1);
381 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
382 			break;
383 	}
384 
385 	if (i == VGE_TIMEOUT)
386 		device_printf(sc->vge_dev, "MII read timed out\n");
387 	else
388 		rval = CSR_READ_2(sc, VGE_MIIDATA);
389 
390 	vge_miipoll_start(sc);
391 
392 	return (rval);
393 }
394 
395 static int
396 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
397 {
398 	struct vge_softc *sc;
399 	int i, rval = 0;
400 
401 	sc = device_get_softc(dev);
402 
403 	vge_miipoll_stop(sc);
404 
405 	/* Specify the register we want to write. */
406 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
407 
408 	/* Specify the data we want to write. */
409 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
410 
411 	/* Issue write command. */
412 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
413 
414 	/* Wait for the write command bit to self-clear. */
415 	for (i = 0; i < VGE_TIMEOUT; i++) {
416 		DELAY(1);
417 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
418 			break;
419 	}
420 
421 	if (i == VGE_TIMEOUT) {
422 		device_printf(sc->vge_dev, "MII write timed out\n");
423 		rval = EIO;
424 	}
425 
426 	vge_miipoll_start(sc);
427 
428 	return (rval);
429 }
430 
431 static void
432 vge_cam_clear(struct vge_softc *sc)
433 {
434 	int i;
435 
436 	/*
437 	 * Turn off all the mask bits. This tells the chip
438 	 * that none of the entries in the CAM filter are valid.
439 	 * desired entries will be enabled as we fill the filter in.
440 	 */
441 
442 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445 	for (i = 0; i < 8; i++)
446 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447 
448 	/* Clear the VLAN filter too. */
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451 	for (i = 0; i < 8; i++)
452 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453 
454 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457 
458 	sc->vge_camidx = 0;
459 }
460 
461 static int
462 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463 {
464 	int i, error = 0;
465 
466 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467 		return (ENOSPC);
468 
469 	/* Select the CAM data page. */
470 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472 
473 	/* Set the filter entry we want to update and enable writing. */
474 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475 
476 	/* Write the address to the CAM registers */
477 	for (i = 0; i < ETHER_ADDR_LEN; i++)
478 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479 
480 	/* Issue a write command. */
481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482 
483 	/* Wake for it to clear. */
484 	for (i = 0; i < VGE_TIMEOUT; i++) {
485 		DELAY(1);
486 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487 			break;
488 	}
489 
490 	if (i == VGE_TIMEOUT) {
491 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
492 		error = EIO;
493 		goto fail;
494 	}
495 
496 	/* Select the CAM mask page. */
497 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499 
500 	/* Set the mask bit that enables this filter. */
501 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502 	    1<<(sc->vge_camidx & 7));
503 
504 	sc->vge_camidx++;
505 
506 fail:
507 	/* Turn off access to CAM. */
508 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511 
512 	return (error);
513 }
514 
515 static void
516 vge_setvlan(struct vge_softc *sc)
517 {
518 	struct ifnet *ifp;
519 	uint8_t cfg;
520 
521 	VGE_LOCK_ASSERT(sc);
522 
523 	ifp = sc->vge_ifp;
524 	cfg = CSR_READ_1(sc, VGE_RXCFG);
525 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
526 		cfg |= VGE_VTAG_OPT2;
527 	else
528 		cfg &= ~VGE_VTAG_OPT2;
529 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
530 }
531 
532 /*
533  * Program the multicast filter. We use the 64-entry CAM filter
534  * for perfect filtering. If there's more than 64 multicast addresses,
535  * we use the hash filter instead.
536  */
537 static void
538 vge_rxfilter(struct vge_softc *sc)
539 {
540 	struct ifnet *ifp;
541 	struct ifmultiaddr *ifma;
542 	uint32_t h, hashes[2];
543 	uint8_t rxcfg;
544 	int error = 0;
545 
546 	VGE_LOCK_ASSERT(sc);
547 
548 	/* First, zot all the multicast entries. */
549 	hashes[0] = 0;
550 	hashes[1] = 0;
551 
552 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
553 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
554 	    VGE_RXCTL_RX_PROMISC);
555 	/*
556 	 * Always allow VLAN oversized frames and frames for
557 	 * this host.
558 	 */
559 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
560 
561 	ifp = sc->vge_ifp;
562 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
563 		rxcfg |= VGE_RXCTL_RX_BCAST;
564 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
565 		if ((ifp->if_flags & IFF_PROMISC) != 0)
566 			rxcfg |= VGE_RXCTL_RX_PROMISC;
567 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
568 			hashes[0] = 0xFFFFFFFF;
569 			hashes[1] = 0xFFFFFFFF;
570 		}
571 		goto done;
572 	}
573 
574 	vge_cam_clear(sc);
575 	/* Now program new ones */
576 	if_maddr_rlock(ifp);
577 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
578 		if (ifma->ifma_addr->sa_family != AF_LINK)
579 			continue;
580 		error = vge_cam_set(sc,
581 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
582 		if (error)
583 			break;
584 	}
585 
586 	/* If there were too many addresses, use the hash filter. */
587 	if (error) {
588 		vge_cam_clear(sc);
589 
590 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
591 			if (ifma->ifma_addr->sa_family != AF_LINK)
592 				continue;
593 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
594 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
595 			if (h < 32)
596 				hashes[0] |= (1 << h);
597 			else
598 				hashes[1] |= (1 << (h - 32));
599 		}
600 	}
601 	if_maddr_runlock(ifp);
602 
603 done:
604 	if (hashes[0] != 0 || hashes[1] != 0)
605 		rxcfg |= VGE_RXCTL_RX_MCAST;
606 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
607 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
608 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
609 }
610 
611 static void
612 vge_reset(struct vge_softc *sc)
613 {
614 	int i;
615 
616 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
617 
618 	for (i = 0; i < VGE_TIMEOUT; i++) {
619 		DELAY(5);
620 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
621 			break;
622 	}
623 
624 	if (i == VGE_TIMEOUT) {
625 		device_printf(sc->vge_dev, "soft reset timed out\n");
626 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
627 		DELAY(2000);
628 	}
629 
630 	DELAY(5000);
631 }
632 
633 /*
634  * Probe for a VIA gigabit chip. Check the PCI vendor and device
635  * IDs against our list and return a device name if we find a match.
636  */
637 static int
638 vge_probe(device_t dev)
639 {
640 	struct vge_type	*t;
641 
642 	t = vge_devs;
643 
644 	while (t->vge_name != NULL) {
645 		if ((pci_get_vendor(dev) == t->vge_vid) &&
646 		    (pci_get_device(dev) == t->vge_did)) {
647 			device_set_desc(dev, t->vge_name);
648 			return (BUS_PROBE_DEFAULT);
649 		}
650 		t++;
651 	}
652 
653 	return (ENXIO);
654 }
655 
656 /*
657  * Map a single buffer address.
658  */
659 
660 struct vge_dmamap_arg {
661 	bus_addr_t	vge_busaddr;
662 };
663 
664 static void
665 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
666 {
667 	struct vge_dmamap_arg *ctx;
668 
669 	if (error != 0)
670 		return;
671 
672 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
673 
674 	ctx = (struct vge_dmamap_arg *)arg;
675 	ctx->vge_busaddr = segs[0].ds_addr;
676 }
677 
678 static int
679 vge_dma_alloc(struct vge_softc *sc)
680 {
681 	struct vge_dmamap_arg ctx;
682 	struct vge_txdesc *txd;
683 	struct vge_rxdesc *rxd;
684 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
685 	int error, i;
686 
687 	/*
688 	 * It seems old PCI controllers do not support DAC.  DAC
689 	 * configuration can be enabled by accessing VGE_CHIPCFG3
690 	 * register but honor EEPROM configuration instead of
691 	 * blindly overriding DAC configuration.  PCIe based
692 	 * controllers are supposed to support 64bit DMA so enable
693 	 * 64bit DMA on these controllers.
694 	 */
695 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
696 		lowaddr = BUS_SPACE_MAXADDR;
697 	else
698 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
699 
700 again:
701 	/* Create parent ring tag. */
702 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
703 	    1, 0,			/* algnmnt, boundary */
704 	    lowaddr,			/* lowaddr */
705 	    BUS_SPACE_MAXADDR,		/* highaddr */
706 	    NULL, NULL,			/* filter, filterarg */
707 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
708 	    0,				/* nsegments */
709 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
710 	    0,				/* flags */
711 	    NULL, NULL,			/* lockfunc, lockarg */
712 	    &sc->vge_cdata.vge_ring_tag);
713 	if (error != 0) {
714 		device_printf(sc->vge_dev,
715 		    "could not create parent DMA tag.\n");
716 		goto fail;
717 	}
718 
719 	/* Create tag for Tx ring. */
720 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
721 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
722 	    BUS_SPACE_MAXADDR,		/* lowaddr */
723 	    BUS_SPACE_MAXADDR,		/* highaddr */
724 	    NULL, NULL,			/* filter, filterarg */
725 	    VGE_TX_LIST_SZ,		/* maxsize */
726 	    1,				/* nsegments */
727 	    VGE_TX_LIST_SZ,		/* maxsegsize */
728 	    0,				/* flags */
729 	    NULL, NULL,			/* lockfunc, lockarg */
730 	    &sc->vge_cdata.vge_tx_ring_tag);
731 	if (error != 0) {
732 		device_printf(sc->vge_dev,
733 		    "could not allocate Tx ring DMA tag.\n");
734 		goto fail;
735 	}
736 
737 	/* Create tag for Rx ring. */
738 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
739 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
740 	    BUS_SPACE_MAXADDR,		/* lowaddr */
741 	    BUS_SPACE_MAXADDR,		/* highaddr */
742 	    NULL, NULL,			/* filter, filterarg */
743 	    VGE_RX_LIST_SZ,		/* maxsize */
744 	    1,				/* nsegments */
745 	    VGE_RX_LIST_SZ,		/* maxsegsize */
746 	    0,				/* flags */
747 	    NULL, NULL,			/* lockfunc, lockarg */
748 	    &sc->vge_cdata.vge_rx_ring_tag);
749 	if (error != 0) {
750 		device_printf(sc->vge_dev,
751 		    "could not allocate Rx ring DMA tag.\n");
752 		goto fail;
753 	}
754 
755 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
756 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
757 	    (void **)&sc->vge_rdata.vge_tx_ring,
758 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
759 	    &sc->vge_cdata.vge_tx_ring_map);
760 	if (error != 0) {
761 		device_printf(sc->vge_dev,
762 		    "could not allocate DMA'able memory for Tx ring.\n");
763 		goto fail;
764 	}
765 
766 	ctx.vge_busaddr = 0;
767 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
768 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
769 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
770 	if (error != 0 || ctx.vge_busaddr == 0) {
771 		device_printf(sc->vge_dev,
772 		    "could not load DMA'able memory for Tx ring.\n");
773 		goto fail;
774 	}
775 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
776 
777 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
778 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
779 	    (void **)&sc->vge_rdata.vge_rx_ring,
780 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
781 	    &sc->vge_cdata.vge_rx_ring_map);
782 	if (error != 0) {
783 		device_printf(sc->vge_dev,
784 		    "could not allocate DMA'able memory for Rx ring.\n");
785 		goto fail;
786 	}
787 
788 	ctx.vge_busaddr = 0;
789 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
790 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
791 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
792 	if (error != 0 || ctx.vge_busaddr == 0) {
793 		device_printf(sc->vge_dev,
794 		    "could not load DMA'able memory for Rx ring.\n");
795 		goto fail;
796 	}
797 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
798 
799 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
800 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
801 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
802 	if ((VGE_ADDR_HI(tx_ring_end) !=
803 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
804 	    (VGE_ADDR_HI(rx_ring_end) !=
805 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
806 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
807 		device_printf(sc->vge_dev, "4GB boundary crossed, "
808 		    "switching to 32bit DMA address mode.\n");
809 		vge_dma_free(sc);
810 		/* Limit DMA address space to 32bit and try again. */
811 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
812 		goto again;
813 	}
814 
815 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
816 		lowaddr = VGE_BUF_DMA_MAXADDR;
817 	else
818 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
819 	/* Create parent buffer tag. */
820 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
821 	    1, 0,			/* algnmnt, boundary */
822 	    lowaddr,			/* lowaddr */
823 	    BUS_SPACE_MAXADDR,		/* highaddr */
824 	    NULL, NULL,			/* filter, filterarg */
825 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
826 	    0,				/* nsegments */
827 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
828 	    0,				/* flags */
829 	    NULL, NULL,			/* lockfunc, lockarg */
830 	    &sc->vge_cdata.vge_buffer_tag);
831 	if (error != 0) {
832 		device_printf(sc->vge_dev,
833 		    "could not create parent buffer DMA tag.\n");
834 		goto fail;
835 	}
836 
837 	/* Create tag for Tx buffers. */
838 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
839 	    1, 0,			/* algnmnt, boundary */
840 	    BUS_SPACE_MAXADDR,		/* lowaddr */
841 	    BUS_SPACE_MAXADDR,		/* highaddr */
842 	    NULL, NULL,			/* filter, filterarg */
843 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
844 	    VGE_MAXTXSEGS,		/* nsegments */
845 	    MCLBYTES,			/* maxsegsize */
846 	    0,				/* flags */
847 	    NULL, NULL,			/* lockfunc, lockarg */
848 	    &sc->vge_cdata.vge_tx_tag);
849 	if (error != 0) {
850 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
851 		goto fail;
852 	}
853 
854 	/* Create tag for Rx buffers. */
855 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
856 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
857 	    BUS_SPACE_MAXADDR,		/* lowaddr */
858 	    BUS_SPACE_MAXADDR,		/* highaddr */
859 	    NULL, NULL,			/* filter, filterarg */
860 	    MCLBYTES,			/* maxsize */
861 	    1,				/* nsegments */
862 	    MCLBYTES,			/* maxsegsize */
863 	    0,				/* flags */
864 	    NULL, NULL,			/* lockfunc, lockarg */
865 	    &sc->vge_cdata.vge_rx_tag);
866 	if (error != 0) {
867 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
868 		goto fail;
869 	}
870 
871 	/* Create DMA maps for Tx buffers. */
872 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
873 		txd = &sc->vge_cdata.vge_txdesc[i];
874 		txd->tx_m = NULL;
875 		txd->tx_dmamap = NULL;
876 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
877 		    &txd->tx_dmamap);
878 		if (error != 0) {
879 			device_printf(sc->vge_dev,
880 			    "could not create Tx dmamap.\n");
881 			goto fail;
882 		}
883 	}
884 	/* Create DMA maps for Rx buffers. */
885 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
886 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
887 		device_printf(sc->vge_dev,
888 		    "could not create spare Rx dmamap.\n");
889 		goto fail;
890 	}
891 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
892 		rxd = &sc->vge_cdata.vge_rxdesc[i];
893 		rxd->rx_m = NULL;
894 		rxd->rx_dmamap = NULL;
895 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
896 		    &rxd->rx_dmamap);
897 		if (error != 0) {
898 			device_printf(sc->vge_dev,
899 			    "could not create Rx dmamap.\n");
900 			goto fail;
901 		}
902 	}
903 
904 fail:
905 	return (error);
906 }
907 
908 static void
909 vge_dma_free(struct vge_softc *sc)
910 {
911 	struct vge_txdesc *txd;
912 	struct vge_rxdesc *rxd;
913 	int i;
914 
915 	/* Tx ring. */
916 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
917 		if (sc->vge_rdata.vge_tx_ring_paddr)
918 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
919 			    sc->vge_cdata.vge_tx_ring_map);
920 		if (sc->vge_rdata.vge_tx_ring)
921 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
922 			    sc->vge_rdata.vge_tx_ring,
923 			    sc->vge_cdata.vge_tx_ring_map);
924 		sc->vge_rdata.vge_tx_ring = NULL;
925 		sc->vge_rdata.vge_tx_ring_paddr = 0;
926 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
927 		sc->vge_cdata.vge_tx_ring_tag = NULL;
928 	}
929 	/* Rx ring. */
930 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
931 		if (sc->vge_rdata.vge_rx_ring_paddr)
932 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
933 			    sc->vge_cdata.vge_rx_ring_map);
934 		if (sc->vge_rdata.vge_rx_ring)
935 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
936 			    sc->vge_rdata.vge_rx_ring,
937 			    sc->vge_cdata.vge_rx_ring_map);
938 		sc->vge_rdata.vge_rx_ring = NULL;
939 		sc->vge_rdata.vge_rx_ring_paddr = 0;
940 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
941 		sc->vge_cdata.vge_rx_ring_tag = NULL;
942 	}
943 	/* Tx buffers. */
944 	if (sc->vge_cdata.vge_tx_tag != NULL) {
945 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
946 			txd = &sc->vge_cdata.vge_txdesc[i];
947 			if (txd->tx_dmamap != NULL) {
948 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
949 				    txd->tx_dmamap);
950 				txd->tx_dmamap = NULL;
951 			}
952 		}
953 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
954 		sc->vge_cdata.vge_tx_tag = NULL;
955 	}
956 	/* Rx buffers. */
957 	if (sc->vge_cdata.vge_rx_tag != NULL) {
958 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
959 			rxd = &sc->vge_cdata.vge_rxdesc[i];
960 			if (rxd->rx_dmamap != NULL) {
961 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
962 				    rxd->rx_dmamap);
963 				rxd->rx_dmamap = NULL;
964 			}
965 		}
966 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
967 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
968 			    sc->vge_cdata.vge_rx_sparemap);
969 			sc->vge_cdata.vge_rx_sparemap = NULL;
970 		}
971 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
972 		sc->vge_cdata.vge_rx_tag = NULL;
973 	}
974 
975 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
976 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
977 		sc->vge_cdata.vge_buffer_tag = NULL;
978 	}
979 	if (sc->vge_cdata.vge_ring_tag != NULL) {
980 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
981 		sc->vge_cdata.vge_ring_tag = NULL;
982 	}
983 }
984 
985 /*
986  * Attach the interface. Allocate softc structures, do ifmedia
987  * setup and ethernet/BPF attach.
988  */
989 static int
990 vge_attach(device_t dev)
991 {
992 	u_char eaddr[ETHER_ADDR_LEN];
993 	struct vge_softc *sc;
994 	struct ifnet *ifp;
995 	int error = 0, cap, i, msic, rid;
996 
997 	sc = device_get_softc(dev);
998 	sc->vge_dev = dev;
999 
1000 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1001 	    MTX_DEF);
1002 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1003 
1004 	/*
1005 	 * Map control/status registers.
1006 	 */
1007 	pci_enable_busmaster(dev);
1008 
1009 	rid = PCIR_BAR(1);
1010 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1011 	    RF_ACTIVE);
1012 
1013 	if (sc->vge_res == NULL) {
1014 		device_printf(dev, "couldn't map ports/memory\n");
1015 		error = ENXIO;
1016 		goto fail;
1017 	}
1018 
1019 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1020 		sc->vge_flags |= VGE_FLAG_PCIE;
1021 		sc->vge_expcap = cap;
1022 	} else
1023 		sc->vge_flags |= VGE_FLAG_JUMBO;
1024 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1025 		sc->vge_flags |= VGE_FLAG_PMCAP;
1026 		sc->vge_pmcap = cap;
1027 	}
1028 	rid = 0;
1029 	msic = pci_msi_count(dev);
1030 	if (msi_disable == 0 && msic > 0) {
1031 		msic = 1;
1032 		if (pci_alloc_msi(dev, &msic) == 0) {
1033 			if (msic == 1) {
1034 				sc->vge_flags |= VGE_FLAG_MSI;
1035 				device_printf(dev, "Using %d MSI message\n",
1036 				    msic);
1037 				rid = 1;
1038 			} else
1039 				pci_release_msi(dev);
1040 		}
1041 	}
1042 
1043 	/* Allocate interrupt */
1044 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1045 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1046 	if (sc->vge_irq == NULL) {
1047 		device_printf(dev, "couldn't map interrupt\n");
1048 		error = ENXIO;
1049 		goto fail;
1050 	}
1051 
1052 	/* Reset the adapter. */
1053 	vge_reset(sc);
1054 	/* Reload EEPROM. */
1055 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1056 	for (i = 0; i < VGE_TIMEOUT; i++) {
1057 		DELAY(5);
1058 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1059 			break;
1060 	}
1061 	if (i == VGE_TIMEOUT)
1062 		device_printf(dev, "EEPROM reload timed out\n");
1063 	/*
1064 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1065 	 * MAC will receive magic packet which in turn confuses
1066 	 * controller.
1067 	 */
1068 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1069 
1070 	/*
1071 	 * Get station address from the EEPROM.
1072 	 */
1073 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1074 	/*
1075 	 * Save configured PHY address.
1076 	 * It seems the PHY address of PCIe controllers just
1077 	 * reflects media jump strapping status so we assume the
1078 	 * internal PHY address of PCIe controller is at 1.
1079 	 */
1080 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1081 		sc->vge_phyaddr = 1;
1082 	else
1083 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1084 		    VGE_MIICFG_PHYADDR;
1085 	/* Clear WOL and take hardware from powerdown. */
1086 	vge_clrwol(sc);
1087 	vge_sysctl_node(sc);
1088 	error = vge_dma_alloc(sc);
1089 	if (error)
1090 		goto fail;
1091 
1092 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1093 	if (ifp == NULL) {
1094 		device_printf(dev, "can not if_alloc()\n");
1095 		error = ENOSPC;
1096 		goto fail;
1097 	}
1098 
1099 	vge_miipoll_start(sc);
1100 	/* Do MII setup */
1101 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1102 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1103 	    MIIF_DOPAUSE);
1104 	if (error != 0) {
1105 		device_printf(dev, "attaching PHYs failed\n");
1106 		goto fail;
1107 	}
1108 
1109 	ifp->if_softc = sc;
1110 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1111 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1112 	ifp->if_ioctl = vge_ioctl;
1113 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1114 	ifp->if_start = vge_start;
1115 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1116 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1117 	    IFCAP_VLAN_HWTAGGING;
1118 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1119 		ifp->if_capabilities |= IFCAP_WOL;
1120 	ifp->if_capenable = ifp->if_capabilities;
1121 #ifdef DEVICE_POLLING
1122 	ifp->if_capabilities |= IFCAP_POLLING;
1123 #endif
1124 	ifp->if_init = vge_init;
1125 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1126 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1127 	IFQ_SET_READY(&ifp->if_snd);
1128 
1129 	/*
1130 	 * Call MI attach routine.
1131 	 */
1132 	ether_ifattach(ifp, eaddr);
1133 
1134 	/* Tell the upper layer(s) we support long frames. */
1135 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1136 
1137 	/* Hook interrupt last to avoid having to lock softc */
1138 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1139 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1140 
1141 	if (error) {
1142 		device_printf(dev, "couldn't set up irq\n");
1143 		ether_ifdetach(ifp);
1144 		goto fail;
1145 	}
1146 
1147 fail:
1148 	if (error)
1149 		vge_detach(dev);
1150 
1151 	return (error);
1152 }
1153 
1154 /*
1155  * Shutdown hardware and free up resources. This can be called any
1156  * time after the mutex has been initialized. It is called in both
1157  * the error case in attach and the normal detach case so it needs
1158  * to be careful about only freeing resources that have actually been
1159  * allocated.
1160  */
1161 static int
1162 vge_detach(device_t dev)
1163 {
1164 	struct vge_softc *sc;
1165 	struct ifnet *ifp;
1166 
1167 	sc = device_get_softc(dev);
1168 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1169 	ifp = sc->vge_ifp;
1170 
1171 #ifdef DEVICE_POLLING
1172 	if (ifp->if_capenable & IFCAP_POLLING)
1173 		ether_poll_deregister(ifp);
1174 #endif
1175 
1176 	/* These should only be active if attach succeeded */
1177 	if (device_is_attached(dev)) {
1178 		ether_ifdetach(ifp);
1179 		VGE_LOCK(sc);
1180 		vge_stop(sc);
1181 		VGE_UNLOCK(sc);
1182 		callout_drain(&sc->vge_watchdog);
1183 	}
1184 	if (sc->vge_miibus)
1185 		device_delete_child(dev, sc->vge_miibus);
1186 	bus_generic_detach(dev);
1187 
1188 	if (sc->vge_intrhand)
1189 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1190 	if (sc->vge_irq)
1191 		bus_release_resource(dev, SYS_RES_IRQ,
1192 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1193 	if (sc->vge_flags & VGE_FLAG_MSI)
1194 		pci_release_msi(dev);
1195 	if (sc->vge_res)
1196 		bus_release_resource(dev, SYS_RES_MEMORY,
1197 		    PCIR_BAR(1), sc->vge_res);
1198 	if (ifp)
1199 		if_free(ifp);
1200 
1201 	vge_dma_free(sc);
1202 	mtx_destroy(&sc->vge_mtx);
1203 
1204 	return (0);
1205 }
1206 
1207 static void
1208 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1209 {
1210 	struct vge_rxdesc *rxd;
1211 	int i;
1212 
1213 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1214 	rxd->rx_desc->vge_sts = 0;
1215 	rxd->rx_desc->vge_ctl = 0;
1216 
1217 	/*
1218 	 * Note: the manual fails to document the fact that for
1219 	 * proper opration, the driver needs to replentish the RX
1220 	 * DMA ring 4 descriptors at a time (rather than one at a
1221 	 * time, like most chips). We can allocate the new buffers
1222 	 * but we should not set the OWN bits until we're ready
1223 	 * to hand back 4 of them in one shot.
1224 	 */
1225 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1226 		for (i = VGE_RXCHUNK; i > 0; i--) {
1227 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1228 			rxd = rxd->rxd_prev;
1229 		}
1230 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1231 	}
1232 }
1233 
1234 static int
1235 vge_newbuf(struct vge_softc *sc, int prod)
1236 {
1237 	struct vge_rxdesc *rxd;
1238 	struct mbuf *m;
1239 	bus_dma_segment_t segs[1];
1240 	bus_dmamap_t map;
1241 	int i, nsegs;
1242 
1243 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1244 	if (m == NULL)
1245 		return (ENOBUFS);
1246 	/*
1247 	 * This is part of an evil trick to deal with strict-alignment
1248 	 * architectures. The VIA chip requires RX buffers to be aligned
1249 	 * on 32-bit boundaries, but that will hose strict-alignment
1250 	 * architectures. To get around this, we leave some empty space
1251 	 * at the start of each buffer and for non-strict-alignment hosts,
1252 	 * we copy the buffer back two bytes to achieve word alignment.
1253 	 * This is slightly more efficient than allocating a new buffer,
1254 	 * copying the contents, and discarding the old buffer.
1255 	 */
1256 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1257 	m_adj(m, VGE_RX_BUF_ALIGN);
1258 
1259 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1260 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1261 		m_freem(m);
1262 		return (ENOBUFS);
1263 	}
1264 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1265 
1266 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1267 	if (rxd->rx_m != NULL) {
1268 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1269 		    BUS_DMASYNC_POSTREAD);
1270 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1271 	}
1272 	map = rxd->rx_dmamap;
1273 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1274 	sc->vge_cdata.vge_rx_sparemap = map;
1275 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1276 	    BUS_DMASYNC_PREREAD);
1277 	rxd->rx_m = m;
1278 
1279 	rxd->rx_desc->vge_sts = 0;
1280 	rxd->rx_desc->vge_ctl = 0;
1281 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1282 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1283 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1284 
1285 	/*
1286 	 * Note: the manual fails to document the fact that for
1287 	 * proper operation, the driver needs to replenish the RX
1288 	 * DMA ring 4 descriptors at a time (rather than one at a
1289 	 * time, like most chips). We can allocate the new buffers
1290 	 * but we should not set the OWN bits until we're ready
1291 	 * to hand back 4 of them in one shot.
1292 	 */
1293 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1294 		for (i = VGE_RXCHUNK; i > 0; i--) {
1295 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1296 			rxd = rxd->rxd_prev;
1297 		}
1298 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1299 	}
1300 
1301 	return (0);
1302 }
1303 
1304 static int
1305 vge_tx_list_init(struct vge_softc *sc)
1306 {
1307 	struct vge_ring_data *rd;
1308 	struct vge_txdesc *txd;
1309 	int i;
1310 
1311 	VGE_LOCK_ASSERT(sc);
1312 
1313 	sc->vge_cdata.vge_tx_prodidx = 0;
1314 	sc->vge_cdata.vge_tx_considx = 0;
1315 	sc->vge_cdata.vge_tx_cnt = 0;
1316 
1317 	rd = &sc->vge_rdata;
1318 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1319 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1320 		txd = &sc->vge_cdata.vge_txdesc[i];
1321 		txd->tx_m = NULL;
1322 		txd->tx_desc = &rd->vge_tx_ring[i];
1323 	}
1324 
1325 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1326 	    sc->vge_cdata.vge_tx_ring_map,
1327 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1328 
1329 	return (0);
1330 }
1331 
1332 static int
1333 vge_rx_list_init(struct vge_softc *sc)
1334 {
1335 	struct vge_ring_data *rd;
1336 	struct vge_rxdesc *rxd;
1337 	int i;
1338 
1339 	VGE_LOCK_ASSERT(sc);
1340 
1341 	sc->vge_cdata.vge_rx_prodidx = 0;
1342 	sc->vge_cdata.vge_head = NULL;
1343 	sc->vge_cdata.vge_tail = NULL;
1344 	sc->vge_cdata.vge_rx_commit = 0;
1345 
1346 	rd = &sc->vge_rdata;
1347 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1348 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1349 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1350 		rxd->rx_m = NULL;
1351 		rxd->rx_desc = &rd->vge_rx_ring[i];
1352 		if (i == 0)
1353 			rxd->rxd_prev =
1354 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1355 		else
1356 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1357 		if (vge_newbuf(sc, i) != 0)
1358 			return (ENOBUFS);
1359 	}
1360 
1361 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1362 	    sc->vge_cdata.vge_rx_ring_map,
1363 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1364 
1365 	sc->vge_cdata.vge_rx_commit = 0;
1366 
1367 	return (0);
1368 }
1369 
1370 static void
1371 vge_freebufs(struct vge_softc *sc)
1372 {
1373 	struct vge_txdesc *txd;
1374 	struct vge_rxdesc *rxd;
1375 	struct ifnet *ifp;
1376 	int i;
1377 
1378 	VGE_LOCK_ASSERT(sc);
1379 
1380 	ifp = sc->vge_ifp;
1381 	/*
1382 	 * Free RX and TX mbufs still in the queues.
1383 	 */
1384 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1385 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1386 		if (rxd->rx_m != NULL) {
1387 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1388 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1389 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1390 			    rxd->rx_dmamap);
1391 			m_freem(rxd->rx_m);
1392 			rxd->rx_m = NULL;
1393 		}
1394 	}
1395 
1396 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1397 		txd = &sc->vge_cdata.vge_txdesc[i];
1398 		if (txd->tx_m != NULL) {
1399 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1400 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1401 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1402 			    txd->tx_dmamap);
1403 			m_freem(txd->tx_m);
1404 			txd->tx_m = NULL;
1405 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1406 		}
1407 	}
1408 }
1409 
1410 #ifndef	__NO_STRICT_ALIGNMENT
1411 static __inline void
1412 vge_fixup_rx(struct mbuf *m)
1413 {
1414 	int i;
1415 	uint16_t *src, *dst;
1416 
1417 	src = mtod(m, uint16_t *);
1418 	dst = src - 1;
1419 
1420 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1421 		*dst++ = *src++;
1422 
1423 	m->m_data -= ETHER_ALIGN;
1424 }
1425 #endif
1426 
1427 /*
1428  * RX handler. We support the reception of jumbo frames that have
1429  * been fragmented across multiple 2K mbuf cluster buffers.
1430  */
1431 static int
1432 vge_rxeof(struct vge_softc *sc, int count)
1433 {
1434 	struct mbuf *m;
1435 	struct ifnet *ifp;
1436 	int prod, prog, total_len;
1437 	struct vge_rxdesc *rxd;
1438 	struct vge_rx_desc *cur_rx;
1439 	uint32_t rxstat, rxctl;
1440 
1441 	VGE_LOCK_ASSERT(sc);
1442 
1443 	ifp = sc->vge_ifp;
1444 
1445 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1446 	    sc->vge_cdata.vge_rx_ring_map,
1447 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1448 
1449 	prod = sc->vge_cdata.vge_rx_prodidx;
1450 	for (prog = 0; count > 0 &&
1451 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1452 	    VGE_RX_DESC_INC(prod)) {
1453 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1454 		rxstat = le32toh(cur_rx->vge_sts);
1455 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1456 			break;
1457 		count--;
1458 		prog++;
1459 		rxctl = le32toh(cur_rx->vge_ctl);
1460 		total_len = VGE_RXBYTES(rxstat);
1461 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1462 		m = rxd->rx_m;
1463 
1464 		/*
1465 		 * If the 'start of frame' bit is set, this indicates
1466 		 * either the first fragment in a multi-fragment receive,
1467 		 * or an intermediate fragment. Either way, we want to
1468 		 * accumulate the buffers.
1469 		 */
1470 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1471 			if (vge_newbuf(sc, prod) != 0) {
1472 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1473 				VGE_CHAIN_RESET(sc);
1474 				vge_discard_rxbuf(sc, prod);
1475 				continue;
1476 			}
1477 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1478 			if (sc->vge_cdata.vge_head == NULL) {
1479 				sc->vge_cdata.vge_head = m;
1480 				sc->vge_cdata.vge_tail = m;
1481 			} else {
1482 				m->m_flags &= ~M_PKTHDR;
1483 				sc->vge_cdata.vge_tail->m_next = m;
1484 				sc->vge_cdata.vge_tail = m;
1485 			}
1486 			continue;
1487 		}
1488 
1489 		/*
1490 		 * Bad/error frames will have the RXOK bit cleared.
1491 		 * However, there's one error case we want to allow:
1492 		 * if a VLAN tagged frame arrives and the chip can't
1493 		 * match it against the CAM filter, it considers this
1494 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1495 		 * We don't want to drop the frame though: our VLAN
1496 		 * filtering is done in software.
1497 		 * We also want to receive bad-checksummed frames and
1498 		 * and frames with bad-length.
1499 		 */
1500 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1501 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1502 		    VGE_RDSTS_CSUMERR)) == 0) {
1503 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1504 			/*
1505 			 * If this is part of a multi-fragment packet,
1506 			 * discard all the pieces.
1507 			 */
1508 			VGE_CHAIN_RESET(sc);
1509 			vge_discard_rxbuf(sc, prod);
1510 			continue;
1511 		}
1512 
1513 		if (vge_newbuf(sc, prod) != 0) {
1514 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1515 			VGE_CHAIN_RESET(sc);
1516 			vge_discard_rxbuf(sc, prod);
1517 			continue;
1518 		}
1519 
1520 		/* Chain received mbufs. */
1521 		if (sc->vge_cdata.vge_head != NULL) {
1522 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1523 			/*
1524 			 * Special case: if there's 4 bytes or less
1525 			 * in this buffer, the mbuf can be discarded:
1526 			 * the last 4 bytes is the CRC, which we don't
1527 			 * care about anyway.
1528 			 */
1529 			if (m->m_len <= ETHER_CRC_LEN) {
1530 				sc->vge_cdata.vge_tail->m_len -=
1531 				    (ETHER_CRC_LEN - m->m_len);
1532 				m_freem(m);
1533 			} else {
1534 				m->m_len -= ETHER_CRC_LEN;
1535 				m->m_flags &= ~M_PKTHDR;
1536 				sc->vge_cdata.vge_tail->m_next = m;
1537 			}
1538 			m = sc->vge_cdata.vge_head;
1539 			m->m_flags |= M_PKTHDR;
1540 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1541 		} else {
1542 			m->m_flags |= M_PKTHDR;
1543 			m->m_pkthdr.len = m->m_len =
1544 			    (total_len - ETHER_CRC_LEN);
1545 		}
1546 
1547 #ifndef	__NO_STRICT_ALIGNMENT
1548 		vge_fixup_rx(m);
1549 #endif
1550 		m->m_pkthdr.rcvif = ifp;
1551 
1552 		/* Do RX checksumming if enabled */
1553 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1554 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1555 			/* Check IP header checksum */
1556 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1557 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1558 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1559 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1560 
1561 			/* Check TCP/UDP checksum */
1562 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1563 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1564 				m->m_pkthdr.csum_flags |=
1565 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1566 				m->m_pkthdr.csum_data = 0xffff;
1567 			}
1568 		}
1569 
1570 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1571 			/*
1572 			 * The 32-bit rxctl register is stored in little-endian.
1573 			 * However, the 16-bit vlan tag is stored in big-endian,
1574 			 * so we have to byte swap it.
1575 			 */
1576 			m->m_pkthdr.ether_vtag =
1577 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1578 			m->m_flags |= M_VLANTAG;
1579 		}
1580 
1581 		VGE_UNLOCK(sc);
1582 		(*ifp->if_input)(ifp, m);
1583 		VGE_LOCK(sc);
1584 		sc->vge_cdata.vge_head = NULL;
1585 		sc->vge_cdata.vge_tail = NULL;
1586 	}
1587 
1588 	if (prog > 0) {
1589 		sc->vge_cdata.vge_rx_prodidx = prod;
1590 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1591 		    sc->vge_cdata.vge_rx_ring_map,
1592 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1593 		/* Update residue counter. */
1594 		if (sc->vge_cdata.vge_rx_commit != 0) {
1595 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1596 			    sc->vge_cdata.vge_rx_commit);
1597 			sc->vge_cdata.vge_rx_commit = 0;
1598 		}
1599 	}
1600 	return (prog);
1601 }
1602 
1603 static void
1604 vge_txeof(struct vge_softc *sc)
1605 {
1606 	struct ifnet *ifp;
1607 	struct vge_tx_desc *cur_tx;
1608 	struct vge_txdesc *txd;
1609 	uint32_t txstat;
1610 	int cons, prod;
1611 
1612 	VGE_LOCK_ASSERT(sc);
1613 
1614 	ifp = sc->vge_ifp;
1615 
1616 	if (sc->vge_cdata.vge_tx_cnt == 0)
1617 		return;
1618 
1619 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1620 	    sc->vge_cdata.vge_tx_ring_map,
1621 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1622 
1623 	/*
1624 	 * Go through our tx list and free mbufs for those
1625 	 * frames that have been transmitted.
1626 	 */
1627 	cons = sc->vge_cdata.vge_tx_considx;
1628 	prod = sc->vge_cdata.vge_tx_prodidx;
1629 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1630 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1631 		txstat = le32toh(cur_tx->vge_sts);
1632 		if ((txstat & VGE_TDSTS_OWN) != 0)
1633 			break;
1634 		sc->vge_cdata.vge_tx_cnt--;
1635 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1636 
1637 		txd = &sc->vge_cdata.vge_txdesc[cons];
1638 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1639 		    BUS_DMASYNC_POSTWRITE);
1640 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1641 
1642 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1643 		    __func__));
1644 		m_freem(txd->tx_m);
1645 		txd->tx_m = NULL;
1646 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1647 	}
1648 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1649 	    sc->vge_cdata.vge_tx_ring_map,
1650 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1651 	sc->vge_cdata.vge_tx_considx = cons;
1652 	if (sc->vge_cdata.vge_tx_cnt == 0)
1653 		sc->vge_timer = 0;
1654 }
1655 
1656 static void
1657 vge_link_statchg(void *xsc)
1658 {
1659 	struct vge_softc *sc;
1660 	struct ifnet *ifp;
1661 	uint8_t physts;
1662 
1663 	sc = xsc;
1664 	ifp = sc->vge_ifp;
1665 	VGE_LOCK_ASSERT(sc);
1666 
1667 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1668 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1669 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1670 			sc->vge_flags &= ~VGE_FLAG_LINK;
1671 			if_link_state_change(sc->vge_ifp,
1672 			    LINK_STATE_DOWN);
1673 		} else {
1674 			sc->vge_flags |= VGE_FLAG_LINK;
1675 			if_link_state_change(sc->vge_ifp,
1676 			    LINK_STATE_UP);
1677 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1678 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1679 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1680 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1681 					CSR_WRITE_1(sc, VGE_CRS2,
1682 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1683 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1684 					CSR_WRITE_1(sc, VGE_CRS2,
1685 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1686 			}
1687 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1688 				vge_start_locked(ifp);
1689 		}
1690 	}
1691 	/*
1692 	 * Restart MII auto-polling because link state change interrupt
1693 	 * will disable it.
1694 	 */
1695 	vge_miipoll_start(sc);
1696 }
1697 
1698 #ifdef DEVICE_POLLING
1699 static int
1700 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1701 {
1702 	struct vge_softc *sc = ifp->if_softc;
1703 	int rx_npkts = 0;
1704 
1705 	VGE_LOCK(sc);
1706 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1707 		goto done;
1708 
1709 	rx_npkts = vge_rxeof(sc, count);
1710 	vge_txeof(sc);
1711 
1712 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1713 		vge_start_locked(ifp);
1714 
1715 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1716 		uint32_t       status;
1717 		status = CSR_READ_4(sc, VGE_ISR);
1718 		if (status == 0xFFFFFFFF)
1719 			goto done;
1720 		if (status)
1721 			CSR_WRITE_4(sc, VGE_ISR, status);
1722 
1723 		/*
1724 		 * XXX check behaviour on receiver stalls.
1725 		 */
1726 
1727 		if (status & VGE_ISR_TXDMA_STALL ||
1728 		    status & VGE_ISR_RXDMA_STALL) {
1729 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1730 			vge_init_locked(sc);
1731 		}
1732 
1733 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1734 			vge_rxeof(sc, count);
1735 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1736 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1737 		}
1738 	}
1739 done:
1740 	VGE_UNLOCK(sc);
1741 	return (rx_npkts);
1742 }
1743 #endif /* DEVICE_POLLING */
1744 
1745 static void
1746 vge_intr(void *arg)
1747 {
1748 	struct vge_softc *sc;
1749 	struct ifnet *ifp;
1750 	uint32_t status;
1751 
1752 	sc = arg;
1753 	VGE_LOCK(sc);
1754 
1755 	ifp = sc->vge_ifp;
1756 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1757 	    (ifp->if_flags & IFF_UP) == 0) {
1758 		VGE_UNLOCK(sc);
1759 		return;
1760 	}
1761 
1762 #ifdef DEVICE_POLLING
1763 	if  (ifp->if_capenable & IFCAP_POLLING) {
1764 		status = CSR_READ_4(sc, VGE_ISR);
1765 		CSR_WRITE_4(sc, VGE_ISR, status);
1766 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1767 			vge_link_statchg(sc);
1768 		VGE_UNLOCK(sc);
1769 		return;
1770 	}
1771 #endif
1772 
1773 	/* Disable interrupts */
1774 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1775 	status = CSR_READ_4(sc, VGE_ISR);
1776 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1777 	/* If the card has gone away the read returns 0xffff. */
1778 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1779 		goto done;
1780 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1781 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1782 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1783 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1784 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1785 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1786 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1787 		}
1788 
1789 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1790 			vge_txeof(sc);
1791 
1792 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1793 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1794 			vge_init_locked(sc);
1795 		}
1796 
1797 		if (status & VGE_ISR_LINKSTS)
1798 			vge_link_statchg(sc);
1799 	}
1800 done:
1801 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1802 		/* Re-enable interrupts */
1803 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1804 
1805 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1806 			vge_start_locked(ifp);
1807 	}
1808 	VGE_UNLOCK(sc);
1809 }
1810 
1811 static int
1812 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1813 {
1814 	struct vge_txdesc *txd;
1815 	struct vge_tx_frag *frag;
1816 	struct mbuf *m;
1817 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1818 	int error, i, nsegs, padlen;
1819 	uint32_t cflags;
1820 
1821 	VGE_LOCK_ASSERT(sc);
1822 
1823 	M_ASSERTPKTHDR((*m_head));
1824 
1825 	/* Argh. This chip does not autopad short frames. */
1826 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1827 		m = *m_head;
1828 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1829 		if (M_WRITABLE(m) == 0) {
1830 			/* Get a writable copy. */
1831 			m = m_dup(*m_head, M_NOWAIT);
1832 			m_freem(*m_head);
1833 			if (m == NULL) {
1834 				*m_head = NULL;
1835 				return (ENOBUFS);
1836 			}
1837 			*m_head = m;
1838 		}
1839 		if (M_TRAILINGSPACE(m) < padlen) {
1840 			m = m_defrag(m, M_NOWAIT);
1841 			if (m == NULL) {
1842 				m_freem(*m_head);
1843 				*m_head = NULL;
1844 				return (ENOBUFS);
1845 			}
1846 		}
1847 		/*
1848 		 * Manually pad short frames, and zero the pad space
1849 		 * to avoid leaking data.
1850 		 */
1851 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1852 		m->m_pkthdr.len += padlen;
1853 		m->m_len = m->m_pkthdr.len;
1854 		*m_head = m;
1855 	}
1856 
1857 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1858 
1859 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1860 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1861 	if (error == EFBIG) {
1862 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1863 		if (m == NULL) {
1864 			m_freem(*m_head);
1865 			*m_head = NULL;
1866 			return (ENOMEM);
1867 		}
1868 		*m_head = m;
1869 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1870 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1871 		if (error != 0) {
1872 			m_freem(*m_head);
1873 			*m_head = NULL;
1874 			return (error);
1875 		}
1876 	} else if (error != 0)
1877 		return (error);
1878 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1879 	    BUS_DMASYNC_PREWRITE);
1880 
1881 	m = *m_head;
1882 	cflags = 0;
1883 
1884 	/* Configure checksum offload. */
1885 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1886 		cflags |= VGE_TDCTL_IPCSUM;
1887 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1888 		cflags |= VGE_TDCTL_TCPCSUM;
1889 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1890 		cflags |= VGE_TDCTL_UDPCSUM;
1891 
1892 	/* Configure VLAN. */
1893 	if ((m->m_flags & M_VLANTAG) != 0)
1894 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1895 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1896 	/*
1897 	 * XXX
1898 	 * Velocity family seems to support TSO but no information
1899 	 * for MSS configuration is available. Also the number of
1900 	 * fragments supported by a descriptor is too small to hold
1901 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1902 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1903 	 * longer chain of buffers but no additional information is
1904 	 * available.
1905 	 *
1906 	 * When telling the chip how many segments there are, we
1907 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1908 	 * know why. This also means we can't use the last fragment
1909 	 * field of Tx descriptor.
1910 	 */
1911 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1912 	    VGE_TD_LS_NORM);
1913 	for (i = 0; i < nsegs; i++) {
1914 		frag = &txd->tx_desc->vge_frag[i];
1915 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1916 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1917 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1918 	}
1919 
1920 	sc->vge_cdata.vge_tx_cnt++;
1921 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1922 
1923 	/*
1924 	 * Finally request interrupt and give the first descriptor
1925 	 * ownership to hardware.
1926 	 */
1927 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1928 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1929 	txd->tx_m = m;
1930 
1931 	return (0);
1932 }
1933 
1934 /*
1935  * Main transmit routine.
1936  */
1937 
1938 static void
1939 vge_start(struct ifnet *ifp)
1940 {
1941 	struct vge_softc *sc;
1942 
1943 	sc = ifp->if_softc;
1944 	VGE_LOCK(sc);
1945 	vge_start_locked(ifp);
1946 	VGE_UNLOCK(sc);
1947 }
1948 
1949 
1950 static void
1951 vge_start_locked(struct ifnet *ifp)
1952 {
1953 	struct vge_softc *sc;
1954 	struct vge_txdesc *txd;
1955 	struct mbuf *m_head;
1956 	int enq, idx;
1957 
1958 	sc = ifp->if_softc;
1959 
1960 	VGE_LOCK_ASSERT(sc);
1961 
1962 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1963 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1964 	    IFF_DRV_RUNNING)
1965 		return;
1966 
1967 	idx = sc->vge_cdata.vge_tx_prodidx;
1968 	VGE_TX_DESC_DEC(idx);
1969 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1970 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1971 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1972 		if (m_head == NULL)
1973 			break;
1974 		/*
1975 		 * Pack the data into the transmit ring. If we
1976 		 * don't have room, set the OACTIVE flag and wait
1977 		 * for the NIC to drain the ring.
1978 		 */
1979 		if (vge_encap(sc, &m_head)) {
1980 			if (m_head == NULL)
1981 				break;
1982 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1983 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1984 			break;
1985 		}
1986 
1987 		txd = &sc->vge_cdata.vge_txdesc[idx];
1988 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1989 		VGE_TX_DESC_INC(idx);
1990 
1991 		enq++;
1992 		/*
1993 		 * If there's a BPF listener, bounce a copy of this frame
1994 		 * to him.
1995 		 */
1996 		ETHER_BPF_MTAP(ifp, m_head);
1997 	}
1998 
1999 	if (enq > 0) {
2000 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2001 		    sc->vge_cdata.vge_tx_ring_map,
2002 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2003 		/* Issue a transmit command. */
2004 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2005 		/*
2006 		 * Set a timeout in case the chip goes out to lunch.
2007 		 */
2008 		sc->vge_timer = 5;
2009 	}
2010 }
2011 
2012 static void
2013 vge_init(void *xsc)
2014 {
2015 	struct vge_softc *sc = xsc;
2016 
2017 	VGE_LOCK(sc);
2018 	vge_init_locked(sc);
2019 	VGE_UNLOCK(sc);
2020 }
2021 
2022 static void
2023 vge_init_locked(struct vge_softc *sc)
2024 {
2025 	struct ifnet *ifp = sc->vge_ifp;
2026 	int error, i;
2027 
2028 	VGE_LOCK_ASSERT(sc);
2029 
2030 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2031 		return;
2032 
2033 	/*
2034 	 * Cancel pending I/O and free all RX/TX buffers.
2035 	 */
2036 	vge_stop(sc);
2037 	vge_reset(sc);
2038 	vge_miipoll_start(sc);
2039 
2040 	/*
2041 	 * Initialize the RX and TX descriptors and mbufs.
2042 	 */
2043 
2044 	error = vge_rx_list_init(sc);
2045 	if (error != 0) {
2046                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2047                 return;
2048 	}
2049 	vge_tx_list_init(sc);
2050 	/* Clear MAC statistics. */
2051 	vge_stats_clear(sc);
2052 	/* Set our station address */
2053 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2054 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2055 
2056 	/*
2057 	 * Set receive FIFO threshold. Also allow transmission and
2058 	 * reception of VLAN tagged frames.
2059 	 */
2060 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2061 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2062 
2063 	/* Set DMA burst length */
2064 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2065 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2066 
2067 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2068 
2069 	/* Set collision backoff algorithm */
2070 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2071 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2072 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2073 
2074 	/* Disable LPSEL field in priority resolution */
2075 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2076 
2077 	/*
2078 	 * Load the addresses of the DMA queues into the chip.
2079 	 * Note that we only use one transmit queue.
2080 	 */
2081 
2082 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2083 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2084 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2085 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2086 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2087 
2088 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2089 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2090 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2091 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2092 
2093 	/* Configure interrupt moderation. */
2094 	vge_intr_holdoff(sc);
2095 
2096 	/* Enable and wake up the RX descriptor queue */
2097 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2098 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2099 
2100 	/* Enable the TX descriptor queue */
2101 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2102 
2103 	/* Init the cam filter. */
2104 	vge_cam_clear(sc);
2105 
2106 	/* Set up receiver filter. */
2107 	vge_rxfilter(sc);
2108 	vge_setvlan(sc);
2109 
2110 	/* Initialize pause timer. */
2111 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2112 	/*
2113 	 * Initialize flow control parameters.
2114 	 *  TX XON high threshold : 48
2115 	 *  TX pause low threshold : 24
2116 	 *  Disable hald-duplex flow control
2117 	 */
2118 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2119 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2120 
2121 	/* Enable jumbo frame reception (if desired) */
2122 
2123 	/* Start the MAC. */
2124 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2125 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2126 	CSR_WRITE_1(sc, VGE_CRS0,
2127 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2128 
2129 #ifdef DEVICE_POLLING
2130 	/*
2131 	 * Disable interrupts except link state change if we are polling.
2132 	 */
2133 	if (ifp->if_capenable & IFCAP_POLLING) {
2134 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2135 	} else	/* otherwise ... */
2136 #endif
2137 	{
2138 	/*
2139 	 * Enable interrupts.
2140 	 */
2141 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2142 	}
2143 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2144 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2145 
2146 	sc->vge_flags &= ~VGE_FLAG_LINK;
2147 	vge_ifmedia_upd_locked(sc);
2148 
2149 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2150 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2151 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2152 }
2153 
2154 /*
2155  * Set media options.
2156  */
2157 static int
2158 vge_ifmedia_upd(struct ifnet *ifp)
2159 {
2160 	struct vge_softc *sc;
2161 	int error;
2162 
2163 	sc = ifp->if_softc;
2164 	VGE_LOCK(sc);
2165 	error = vge_ifmedia_upd_locked(sc);
2166 	VGE_UNLOCK(sc);
2167 
2168 	return (error);
2169 }
2170 
2171 static int
2172 vge_ifmedia_upd_locked(struct vge_softc *sc)
2173 {
2174 	struct mii_data *mii;
2175 	struct mii_softc *miisc;
2176 	int error;
2177 
2178 	mii = device_get_softc(sc->vge_miibus);
2179 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2180 		PHY_RESET(miisc);
2181 	vge_setmedia(sc);
2182 	error = mii_mediachg(mii);
2183 
2184 	return (error);
2185 }
2186 
2187 /*
2188  * Report current media status.
2189  */
2190 static void
2191 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2192 {
2193 	struct vge_softc *sc;
2194 	struct mii_data *mii;
2195 
2196 	sc = ifp->if_softc;
2197 	mii = device_get_softc(sc->vge_miibus);
2198 
2199 	VGE_LOCK(sc);
2200 	if ((ifp->if_flags & IFF_UP) == 0) {
2201 		VGE_UNLOCK(sc);
2202 		return;
2203 	}
2204 	mii_pollstat(mii);
2205 	ifmr->ifm_active = mii->mii_media_active;
2206 	ifmr->ifm_status = mii->mii_media_status;
2207 	VGE_UNLOCK(sc);
2208 }
2209 
2210 static void
2211 vge_setmedia(struct vge_softc *sc)
2212 {
2213 	struct mii_data *mii;
2214 	struct ifmedia_entry *ife;
2215 
2216 	mii = device_get_softc(sc->vge_miibus);
2217 	ife = mii->mii_media.ifm_cur;
2218 
2219 	/*
2220 	 * If the user manually selects a media mode, we need to turn
2221 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2222 	 * user happens to choose a full duplex mode, we also need to
2223 	 * set the 'force full duplex' bit. This applies only to
2224 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2225 	 * mode is disabled, and in 1000baseT mode, full duplex is
2226 	 * always implied, so we turn on the forced mode bit but leave
2227 	 * the FDX bit cleared.
2228 	 */
2229 
2230 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2231 	case IFM_AUTO:
2232 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2233 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2234 		break;
2235 	case IFM_1000_T:
2236 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2237 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2238 		break;
2239 	case IFM_100_TX:
2240 	case IFM_10_T:
2241 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2242 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2243 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244 		} else {
2245 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2246 		}
2247 		break;
2248 	default:
2249 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2250 		    IFM_SUBTYPE(ife->ifm_media));
2251 		break;
2252 	}
2253 }
2254 
2255 static int
2256 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2257 {
2258 	struct vge_softc *sc = ifp->if_softc;
2259 	struct ifreq *ifr = (struct ifreq *) data;
2260 	struct mii_data *mii;
2261 	int error = 0, mask;
2262 
2263 	switch (command) {
2264 	case SIOCSIFMTU:
2265 		VGE_LOCK(sc);
2266 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2267 			error = EINVAL;
2268 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2269 			if (ifr->ifr_mtu > ETHERMTU &&
2270 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2271 				error = EINVAL;
2272 			else
2273 				ifp->if_mtu = ifr->ifr_mtu;
2274 		}
2275 		VGE_UNLOCK(sc);
2276 		break;
2277 	case SIOCSIFFLAGS:
2278 		VGE_LOCK(sc);
2279 		if ((ifp->if_flags & IFF_UP) != 0) {
2280 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2281 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2282 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2283 				vge_rxfilter(sc);
2284 			else
2285 				vge_init_locked(sc);
2286 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2287 			vge_stop(sc);
2288 		sc->vge_if_flags = ifp->if_flags;
2289 		VGE_UNLOCK(sc);
2290 		break;
2291 	case SIOCADDMULTI:
2292 	case SIOCDELMULTI:
2293 		VGE_LOCK(sc);
2294 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2295 			vge_rxfilter(sc);
2296 		VGE_UNLOCK(sc);
2297 		break;
2298 	case SIOCGIFMEDIA:
2299 	case SIOCSIFMEDIA:
2300 		mii = device_get_softc(sc->vge_miibus);
2301 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2302 		break;
2303 	case SIOCSIFCAP:
2304 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2305 #ifdef DEVICE_POLLING
2306 		if (mask & IFCAP_POLLING) {
2307 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2308 				error = ether_poll_register(vge_poll, ifp);
2309 				if (error)
2310 					return (error);
2311 				VGE_LOCK(sc);
2312 					/* Disable interrupts */
2313 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2314 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2315 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2316 				ifp->if_capenable |= IFCAP_POLLING;
2317 				VGE_UNLOCK(sc);
2318 			} else {
2319 				error = ether_poll_deregister(ifp);
2320 				/* Enable interrupts. */
2321 				VGE_LOCK(sc);
2322 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2323 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2324 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2325 				ifp->if_capenable &= ~IFCAP_POLLING;
2326 				VGE_UNLOCK(sc);
2327 			}
2328 		}
2329 #endif /* DEVICE_POLLING */
2330 		VGE_LOCK(sc);
2331 		if ((mask & IFCAP_TXCSUM) != 0 &&
2332 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2333 			ifp->if_capenable ^= IFCAP_TXCSUM;
2334 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2335 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2336 			else
2337 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2338 		}
2339 		if ((mask & IFCAP_RXCSUM) != 0 &&
2340 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2341 			ifp->if_capenable ^= IFCAP_RXCSUM;
2342 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2343 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2344 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2345 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2346 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2347 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2348 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2349 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2350 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2351 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2352 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2353 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2354 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2355 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2356 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2357 			vge_setvlan(sc);
2358 		}
2359 		VGE_UNLOCK(sc);
2360 		VLAN_CAPABILITIES(ifp);
2361 		break;
2362 	default:
2363 		error = ether_ioctl(ifp, command, data);
2364 		break;
2365 	}
2366 
2367 	return (error);
2368 }
2369 
2370 static void
2371 vge_watchdog(void *arg)
2372 {
2373 	struct vge_softc *sc;
2374 	struct ifnet *ifp;
2375 
2376 	sc = arg;
2377 	VGE_LOCK_ASSERT(sc);
2378 	vge_stats_update(sc);
2379 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2380 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2381 		return;
2382 
2383 	ifp = sc->vge_ifp;
2384 	if_printf(ifp, "watchdog timeout\n");
2385 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2386 
2387 	vge_txeof(sc);
2388 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2389 
2390 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2391 	vge_init_locked(sc);
2392 }
2393 
2394 /*
2395  * Stop the adapter and free any mbufs allocated to the
2396  * RX and TX lists.
2397  */
2398 static void
2399 vge_stop(struct vge_softc *sc)
2400 {
2401 	struct ifnet *ifp;
2402 
2403 	VGE_LOCK_ASSERT(sc);
2404 	ifp = sc->vge_ifp;
2405 	sc->vge_timer = 0;
2406 	callout_stop(&sc->vge_watchdog);
2407 
2408 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2409 
2410 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2411 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2412 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2413 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2414 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2415 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2416 
2417 	vge_stats_update(sc);
2418 	VGE_CHAIN_RESET(sc);
2419 	vge_txeof(sc);
2420 	vge_freebufs(sc);
2421 }
2422 
2423 /*
2424  * Device suspend routine.  Stop the interface and save some PCI
2425  * settings in case the BIOS doesn't restore them properly on
2426  * resume.
2427  */
2428 static int
2429 vge_suspend(device_t dev)
2430 {
2431 	struct vge_softc *sc;
2432 
2433 	sc = device_get_softc(dev);
2434 
2435 	VGE_LOCK(sc);
2436 	vge_stop(sc);
2437 	vge_setwol(sc);
2438 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2439 	VGE_UNLOCK(sc);
2440 
2441 	return (0);
2442 }
2443 
2444 /*
2445  * Device resume routine.  Restore some PCI settings in case the BIOS
2446  * doesn't, re-enable busmastering, and restart the interface if
2447  * appropriate.
2448  */
2449 static int
2450 vge_resume(device_t dev)
2451 {
2452 	struct vge_softc *sc;
2453 	struct ifnet *ifp;
2454 	uint16_t pmstat;
2455 
2456 	sc = device_get_softc(dev);
2457 	VGE_LOCK(sc);
2458 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2459 		/* Disable PME and clear PME status. */
2460 		pmstat = pci_read_config(sc->vge_dev,
2461 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2462 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2463 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2464 			pci_write_config(sc->vge_dev,
2465 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2466 		}
2467 	}
2468 	vge_clrwol(sc);
2469 	/* Restart MII auto-polling. */
2470 	vge_miipoll_start(sc);
2471 	ifp = sc->vge_ifp;
2472 	/* Reinitialize interface if necessary. */
2473 	if ((ifp->if_flags & IFF_UP) != 0) {
2474 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2475 		vge_init_locked(sc);
2476 	}
2477 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2478 	VGE_UNLOCK(sc);
2479 
2480 	return (0);
2481 }
2482 
2483 /*
2484  * Stop all chip I/O so that the kernel's probe routines don't
2485  * get confused by errant DMAs when rebooting.
2486  */
2487 static int
2488 vge_shutdown(device_t dev)
2489 {
2490 
2491 	return (vge_suspend(dev));
2492 }
2493 
2494 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2495 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2496 
2497 static void
2498 vge_sysctl_node(struct vge_softc *sc)
2499 {
2500 	struct sysctl_ctx_list *ctx;
2501 	struct sysctl_oid_list *child, *parent;
2502 	struct sysctl_oid *tree;
2503 	struct vge_hw_stats *stats;
2504 
2505 	stats = &sc->vge_stats;
2506 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2507 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2508 
2509 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2510 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2511 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2512 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2513 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2514 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2515 
2516 	/* Pull in device tunables. */
2517 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2518 	resource_int_value(device_get_name(sc->vge_dev),
2519 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2520 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2521 	resource_int_value(device_get_name(sc->vge_dev),
2522 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2523 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2524 	resource_int_value(device_get_name(sc->vge_dev),
2525 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2526 
2527 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2528 	    NULL, "VGE statistics");
2529 	parent = SYSCTL_CHILDREN(tree);
2530 
2531 	/* Rx statistics. */
2532 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2533 	    NULL, "RX MAC statistics");
2534 	child = SYSCTL_CHILDREN(tree);
2535 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2536 	    &stats->rx_frames, "frames");
2537 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2538 	    &stats->rx_good_frames, "Good frames");
2539 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2540 	    &stats->rx_fifo_oflows, "FIFO overflows");
2541 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2542 	    &stats->rx_runts, "Too short frames");
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2544 	    &stats->rx_runts_errs, "Too short frames with errors");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2546 	    &stats->rx_pkts_64, "64 bytes frames");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2548 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2550 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2552 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2554 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2556 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2558 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2560 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2562 	    &stats->rx_jumbos, "Jumbo frames");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2564 	    &stats->rx_crcerrs, "CRC errors");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2566 	    &stats->rx_pause_frames, "CRC errors");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2568 	    &stats->rx_alignerrs, "Alignment errors");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2570 	    &stats->rx_nobufs, "Frames with no buffer event");
2571 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2572 	    &stats->rx_symerrs, "Frames with symbol errors");
2573 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2574 	    &stats->rx_lenerrs, "Frames with length mismatched");
2575 
2576 	/* Tx statistics. */
2577 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2578 	    NULL, "TX MAC statistics");
2579 	child = SYSCTL_CHILDREN(tree);
2580 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2581 	    &stats->tx_good_frames, "Good frames");
2582 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2583 	    &stats->tx_pkts_64, "64 bytes frames");
2584 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2585 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2586 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2587 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2588 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2589 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2590 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2591 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2592 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2593 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2594 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2595 	    &stats->tx_jumbos, "Jumbo frames");
2596 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2597 	    &stats->tx_colls, "Collisions");
2598 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2599 	    &stats->tx_latecolls, "Late collisions");
2600 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2601 	    &stats->tx_pause, "Pause frames");
2602 #ifdef VGE_ENABLE_SQEERR
2603 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2604 	    &stats->tx_sqeerrs, "SQE errors");
2605 #endif
2606 	/* Clear MAC statistics. */
2607 	vge_stats_clear(sc);
2608 }
2609 
2610 #undef	VGE_SYSCTL_STAT_ADD32
2611 
2612 static void
2613 vge_stats_clear(struct vge_softc *sc)
2614 {
2615 	int i;
2616 
2617 	CSR_WRITE_1(sc, VGE_MIBCSR,
2618 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2619 	CSR_WRITE_1(sc, VGE_MIBCSR,
2620 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2621 	for (i = VGE_TIMEOUT; i > 0; i--) {
2622 		DELAY(1);
2623 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2624 			break;
2625 	}
2626 	if (i == 0)
2627 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2628 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2629 	    ~VGE_MIBCSR_FREEZE);
2630 }
2631 
2632 static void
2633 vge_stats_update(struct vge_softc *sc)
2634 {
2635 	struct vge_hw_stats *stats;
2636 	struct ifnet *ifp;
2637 	uint32_t mib[VGE_MIB_CNT], val;
2638 	int i;
2639 
2640 	VGE_LOCK_ASSERT(sc);
2641 
2642 	stats = &sc->vge_stats;
2643 	ifp = sc->vge_ifp;
2644 
2645 	CSR_WRITE_1(sc, VGE_MIBCSR,
2646 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2647 	for (i = VGE_TIMEOUT; i > 0; i--) {
2648 		DELAY(1);
2649 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2650 			break;
2651 	}
2652 	if (i == 0) {
2653 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2654 		vge_stats_clear(sc);
2655 		return;
2656 	}
2657 
2658 	bzero(mib, sizeof(mib));
2659 reset_idx:
2660 	/* Set MIB read index to 0. */
2661 	CSR_WRITE_1(sc, VGE_MIBCSR,
2662 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2663 	for (i = 0; i < VGE_MIB_CNT; i++) {
2664 		val = CSR_READ_4(sc, VGE_MIBDATA);
2665 		if (i != VGE_MIB_DATA_IDX(val)) {
2666 			/* Reading interrupted. */
2667 			goto reset_idx;
2668 		}
2669 		mib[i] = val & VGE_MIB_DATA_MASK;
2670 	}
2671 
2672 	/* Rx stats. */
2673 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2674 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2675 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2676 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2677 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2678 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2679 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2680 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2681 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2682 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2683 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2684 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2685 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2686 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2687 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2688 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2689 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2690 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2691 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2692 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2693 
2694 	/* Tx stats. */
2695 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2696 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2697 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2698 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2699 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2700 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2701 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2702 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2703 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2704 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2705 #ifdef VGE_ENABLE_SQEERR
2706 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2707 #endif
2708 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2709 
2710 	/* Update counters in ifnet. */
2711 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2712 
2713 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2714 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2715 
2716 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2717 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2718 
2719 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2720 
2721 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2722 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2723 	    mib[VGE_MIB_RX_RUNTS] +
2724 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2725 	    mib[VGE_MIB_RX_CRCERRS] +
2726 	    mib[VGE_MIB_RX_ALIGNERRS] +
2727 	    mib[VGE_MIB_RX_NOBUFS] +
2728 	    mib[VGE_MIB_RX_SYMERRS] +
2729 	    mib[VGE_MIB_RX_LENERRS]);
2730 }
2731 
2732 static void
2733 vge_intr_holdoff(struct vge_softc *sc)
2734 {
2735 	uint8_t intctl;
2736 
2737 	VGE_LOCK_ASSERT(sc);
2738 
2739 	/*
2740 	 * Set Tx interrupt supression threshold.
2741 	 * It's possible to use single-shot timer in VGE_CRS1 register
2742 	 * in Tx path such that driver can remove most of Tx completion
2743 	 * interrupts. However this requires additional access to
2744 	 * VGE_CRS1 register to reload the timer in addintion to
2745 	 * activating Tx kick command. Another downside is we don't know
2746 	 * what single-shot timer value should be used in advance so
2747 	 * reclaiming transmitted mbufs could be delayed a lot which in
2748 	 * turn slows down Tx operation.
2749 	 */
2750 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2751 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2752 
2753 	/* Set Rx interrupt suppresion threshold. */
2754 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2755 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2756 
2757 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2758 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2759 	intctl |= VGE_INTCTL_HC_RELOAD;
2760 	if (sc->vge_tx_coal_pkt <= 0)
2761 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2762 	else
2763 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2764 	if (sc->vge_rx_coal_pkt <= 0)
2765 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2766 	else
2767 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2768 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2769 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2770 	if (sc->vge_int_holdoff > 0) {
2771 		/* Set interrupt holdoff timer. */
2772 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2773 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2774 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2775 		/* Enable holdoff timer. */
2776 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2777 	}
2778 }
2779 
2780 static void
2781 vge_setlinkspeed(struct vge_softc *sc)
2782 {
2783 	struct mii_data *mii;
2784 	int aneg, i;
2785 
2786 	VGE_LOCK_ASSERT(sc);
2787 
2788 	mii = device_get_softc(sc->vge_miibus);
2789 	mii_pollstat(mii);
2790 	aneg = 0;
2791 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2792 	    (IFM_ACTIVE | IFM_AVALID)) {
2793 		switch IFM_SUBTYPE(mii->mii_media_active) {
2794 		case IFM_10_T:
2795 		case IFM_100_TX:
2796 			return;
2797 		case IFM_1000_T:
2798 			aneg++;
2799 		default:
2800 			break;
2801 		}
2802 	}
2803 	/* Clear forced MAC speed/duplex configuration. */
2804 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2805 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2806 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2807 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2808 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2809 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2810 	    BMCR_AUTOEN | BMCR_STARTNEG);
2811 	DELAY(1000);
2812 	if (aneg != 0) {
2813 		/* Poll link state until vge(4) get a 10/100 link. */
2814 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2815 			mii_pollstat(mii);
2816 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2817 			    == (IFM_ACTIVE | IFM_AVALID)) {
2818 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2819 				case IFM_10_T:
2820 				case IFM_100_TX:
2821 					return;
2822 				default:
2823 					break;
2824 				}
2825 			}
2826 			VGE_UNLOCK(sc);
2827 			pause("vgelnk", hz);
2828 			VGE_LOCK(sc);
2829 		}
2830 		if (i == MII_ANEGTICKS_GIGE)
2831 			device_printf(sc->vge_dev, "establishing link failed, "
2832 			    "WOL may not work!");
2833 	}
2834 	/*
2835 	 * No link, force MAC to have 100Mbps, full-duplex link.
2836 	 * This is the last resort and may/may not work.
2837 	 */
2838 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2839 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2840 }
2841 
2842 static void
2843 vge_setwol(struct vge_softc *sc)
2844 {
2845 	struct ifnet *ifp;
2846 	uint16_t pmstat;
2847 	uint8_t val;
2848 
2849 	VGE_LOCK_ASSERT(sc);
2850 
2851 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2852 		/* No PME capability, PHY power down. */
2853 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2854 		    BMCR_PDOWN);
2855 		vge_miipoll_stop(sc);
2856 		return;
2857 	}
2858 
2859 	ifp = sc->vge_ifp;
2860 
2861 	/* Clear WOL on pattern match. */
2862 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2863 	/* Disable WOL on magic/unicast packet. */
2864 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2865 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2866 	    VGE_WOLCFG_PMEOVR);
2867 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2868 		vge_setlinkspeed(sc);
2869 		val = 0;
2870 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2871 			val |= VGE_WOLCR1_UCAST;
2872 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2873 			val |= VGE_WOLCR1_MAGIC;
2874 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2875 		val = 0;
2876 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2877 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2878 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2879 		/* Disable MII auto-polling. */
2880 		vge_miipoll_stop(sc);
2881 	}
2882 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2883 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2884 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2885 
2886 	/* Clear WOL status on pattern match. */
2887 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2888 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2889 
2890 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2891 	val |= VGE_STICKHW_SWPTAG;
2892 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2893 	/* Put hardware into sleep. */
2894 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2895 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2896 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2897 	/* Request PME if WOL is requested. */
2898 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2899 	    PCIR_POWER_STATUS, 2);
2900 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2901 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2902 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2903 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2904 	    pmstat, 2);
2905 }
2906 
2907 static void
2908 vge_clrwol(struct vge_softc *sc)
2909 {
2910 	uint8_t val;
2911 
2912 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2913 	val &= ~VGE_STICKHW_SWPTAG;
2914 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2915 	/* Disable WOL and clear power state indicator. */
2916 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2917 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2918 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2919 
2920 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2921 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2922 
2923 	/* Clear WOL on pattern match. */
2924 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2925 	/* Disable WOL on magic/unicast packet. */
2926 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2927 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2928 	    VGE_WOLCFG_PMEOVR);
2929 	/* Clear WOL status on pattern match. */
2930 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2931 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2932 }
2933