xref: /freebsd/sys/dev/vge/if_vge.c (revision 6137b5f7b8c183ee8806d79b3f1d8e5e3ddb3df3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_var.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106 
107 #include <net/bpf.h>
108 
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 
120 MODULE_DEPEND(vge, pci, 1, 1, 1);
121 MODULE_DEPEND(vge, ether, 1, 1, 1);
122 MODULE_DEPEND(vge, miibus, 1, 1, 1);
123 
124 /* "device miibus" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126 
127 #include <dev/vge/if_vgereg.h>
128 #include <dev/vge/if_vgevar.h>
129 
130 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131 
132 /* Tunables */
133 static int msi_disable = 0;
134 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135 
136 /*
137  * The SQE error counter of MIB seems to report bogus value.
138  * Vendor's workaround does not seem to work on PCIe based
139  * controllers. Disable it until we find better workaround.
140  */
141 #undef VGE_ENABLE_SQEERR
142 
143 /*
144  * Various supported device vendors/types and their names.
145  */
146 static struct vge_type vge_devs[] = {
147 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148 		"VIA Networking Velocity Gigabit Ethernet" },
149 	{ 0, 0, NULL }
150 };
151 
152 static int	vge_attach(device_t);
153 static int	vge_detach(device_t);
154 static int	vge_probe(device_t);
155 static int	vge_resume(device_t);
156 static int	vge_shutdown(device_t);
157 static int	vge_suspend(device_t);
158 
159 static void	vge_cam_clear(struct vge_softc *);
160 static int	vge_cam_set(struct vge_softc *, uint8_t *);
161 static void	vge_clrwol(struct vge_softc *);
162 static void	vge_discard_rxbuf(struct vge_softc *, int);
163 static int	vge_dma_alloc(struct vge_softc *);
164 static void	vge_dma_free(struct vge_softc *);
165 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166 #ifdef VGE_EEPROM
167 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168 #endif
169 static int	vge_encap(struct vge_softc *, struct mbuf **);
170 #ifndef __NO_STRICT_ALIGNMENT
171 static __inline void
172 		vge_fixup_rx(struct mbuf *);
173 #endif
174 static void	vge_freebufs(struct vge_softc *);
175 static void	vge_ifmedia_sts(if_t, struct ifmediareq *);
176 static int	vge_ifmedia_upd(if_t);
177 static int	vge_ifmedia_upd_locked(struct vge_softc *);
178 static void	vge_init(void *);
179 static void	vge_init_locked(struct vge_softc *);
180 static void	vge_intr(void *);
181 static void	vge_intr_holdoff(struct vge_softc *);
182 static int	vge_ioctl(if_t, u_long, caddr_t);
183 static void	vge_link_statchg(void *);
184 static int	vge_miibus_readreg(device_t, int, int);
185 static int	vge_miibus_writereg(device_t, int, int, int);
186 static void	vge_miipoll_start(struct vge_softc *);
187 static void	vge_miipoll_stop(struct vge_softc *);
188 static int	vge_newbuf(struct vge_softc *, int);
189 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190 static void	vge_reset(struct vge_softc *);
191 static int	vge_rx_list_init(struct vge_softc *);
192 static int	vge_rxeof(struct vge_softc *, int);
193 static void	vge_rxfilter(struct vge_softc *);
194 static void	vge_setmedia(struct vge_softc *);
195 static void	vge_setvlan(struct vge_softc *);
196 static void	vge_setwol(struct vge_softc *);
197 static void	vge_start(if_t);
198 static void	vge_start_locked(if_t);
199 static void	vge_stats_clear(struct vge_softc *);
200 static void	vge_stats_update(struct vge_softc *);
201 static void	vge_stop(struct vge_softc *);
202 static void	vge_sysctl_node(struct vge_softc *);
203 static int	vge_tx_list_init(struct vge_softc *);
204 static void	vge_txeof(struct vge_softc *);
205 static void	vge_watchdog(void *);
206 
207 static device_method_t vge_methods[] = {
208 	/* Device interface */
209 	DEVMETHOD(device_probe,		vge_probe),
210 	DEVMETHOD(device_attach,	vge_attach),
211 	DEVMETHOD(device_detach,	vge_detach),
212 	DEVMETHOD(device_suspend,	vge_suspend),
213 	DEVMETHOD(device_resume,	vge_resume),
214 	DEVMETHOD(device_shutdown,	vge_shutdown),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t vge_driver = {
224 	"vge",
225 	vge_methods,
226 	sizeof(struct vge_softc)
227 };
228 
229 DRIVER_MODULE(vge, pci, vge_driver, 0, 0);
230 DRIVER_MODULE(miibus, vge, miibus_driver, 0, 0);
231 
232 #ifdef VGE_EEPROM
233 /*
234  * Read a word of data stored in the EEPROM at address 'addr.'
235  */
236 static void
237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
238 {
239 	int i;
240 	uint16_t word = 0;
241 
242 	/*
243 	 * Enter EEPROM embedded programming mode. In order to
244 	 * access the EEPROM at all, we first have to set the
245 	 * EELOAD bit in the CHIPCFG2 register.
246 	 */
247 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249 
250 	/* Select the address of the word we want to read */
251 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252 
253 	/* Issue read command */
254 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255 
256 	/* Wait for the done bit to be set. */
257 	for (i = 0; i < VGE_TIMEOUT; i++) {
258 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259 			break;
260 	}
261 
262 	if (i == VGE_TIMEOUT) {
263 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
264 		*dest = 0;
265 		return;
266 	}
267 
268 	/* Read the result */
269 	word = CSR_READ_2(sc, VGE_EERDDAT);
270 
271 	/* Turn off EEPROM access mode. */
272 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
273 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
274 
275 	*dest = word;
276 }
277 #endif
278 
279 /*
280  * Read a sequence of words from the EEPROM.
281  */
282 static void
283 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
284 {
285 	int i;
286 #ifdef VGE_EEPROM
287 	uint16_t word = 0, *ptr;
288 
289 	for (i = 0; i < cnt; i++) {
290 		vge_eeprom_getword(sc, off + i, &word);
291 		ptr = (uint16_t *)(dest + (i * 2));
292 		if (swap)
293 			*ptr = ntohs(word);
294 		else
295 			*ptr = word;
296 	}
297 #else
298 	for (i = 0; i < ETHER_ADDR_LEN; i++)
299 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
300 #endif
301 }
302 
303 static void
304 vge_miipoll_stop(struct vge_softc *sc)
305 {
306 	int i;
307 
308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 
310 	for (i = 0; i < VGE_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 			break;
314 	}
315 
316 	if (i == VGE_TIMEOUT)
317 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
318 }
319 
320 static void
321 vge_miipoll_start(struct vge_softc *sc)
322 {
323 	int i;
324 
325 	/* First, make sure we're idle. */
326 
327 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
328 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
329 
330 	for (i = 0; i < VGE_TIMEOUT; i++) {
331 		DELAY(1);
332 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
333 			break;
334 	}
335 
336 	if (i == VGE_TIMEOUT) {
337 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
338 		return;
339 	}
340 
341 	/* Now enable auto poll mode. */
342 
343 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
344 
345 	/* And make sure it started. */
346 
347 	for (i = 0; i < VGE_TIMEOUT; i++) {
348 		DELAY(1);
349 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
350 			break;
351 	}
352 
353 	if (i == VGE_TIMEOUT)
354 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
355 }
356 
357 static int
358 vge_miibus_readreg(device_t dev, int phy, int reg)
359 {
360 	struct vge_softc *sc;
361 	int i;
362 	uint16_t rval = 0;
363 
364 	sc = device_get_softc(dev);
365 
366 	vge_miipoll_stop(sc);
367 
368 	/* Specify the register we want to read. */
369 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
370 
371 	/* Issue read command. */
372 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
373 
374 	/* Wait for the read command bit to self-clear. */
375 	for (i = 0; i < VGE_TIMEOUT; i++) {
376 		DELAY(1);
377 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
378 			break;
379 	}
380 
381 	if (i == VGE_TIMEOUT)
382 		device_printf(sc->vge_dev, "MII read timed out\n");
383 	else
384 		rval = CSR_READ_2(sc, VGE_MIIDATA);
385 
386 	vge_miipoll_start(sc);
387 
388 	return (rval);
389 }
390 
391 static int
392 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
393 {
394 	struct vge_softc *sc;
395 	int i, rval = 0;
396 
397 	sc = device_get_softc(dev);
398 
399 	vge_miipoll_stop(sc);
400 
401 	/* Specify the register we want to write. */
402 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
403 
404 	/* Specify the data we want to write. */
405 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
406 
407 	/* Issue write command. */
408 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
409 
410 	/* Wait for the write command bit to self-clear. */
411 	for (i = 0; i < VGE_TIMEOUT; i++) {
412 		DELAY(1);
413 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
414 			break;
415 	}
416 
417 	if (i == VGE_TIMEOUT) {
418 		device_printf(sc->vge_dev, "MII write timed out\n");
419 		rval = EIO;
420 	}
421 
422 	vge_miipoll_start(sc);
423 
424 	return (rval);
425 }
426 
427 static void
428 vge_cam_clear(struct vge_softc *sc)
429 {
430 	int i;
431 
432 	/*
433 	 * Turn off all the mask bits. This tells the chip
434 	 * that none of the entries in the CAM filter are valid.
435 	 * desired entries will be enabled as we fill the filter in.
436 	 */
437 
438 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
439 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
440 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
441 	for (i = 0; i < 8; i++)
442 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
443 
444 	/* Clear the VLAN filter too. */
445 
446 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
447 	for (i = 0; i < 8; i++)
448 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
451 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
453 
454 	sc->vge_camidx = 0;
455 }
456 
457 static int
458 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
459 {
460 	int i, error = 0;
461 
462 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
463 		return (ENOSPC);
464 
465 	/* Select the CAM data page. */
466 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
467 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
468 
469 	/* Set the filter entry we want to update and enable writing. */
470 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
471 
472 	/* Write the address to the CAM registers */
473 	for (i = 0; i < ETHER_ADDR_LEN; i++)
474 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
475 
476 	/* Issue a write command. */
477 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
478 
479 	/* Wake for it to clear. */
480 	for (i = 0; i < VGE_TIMEOUT; i++) {
481 		DELAY(1);
482 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
483 			break;
484 	}
485 
486 	if (i == VGE_TIMEOUT) {
487 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
488 		error = EIO;
489 		goto fail;
490 	}
491 
492 	/* Select the CAM mask page. */
493 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
494 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
495 
496 	/* Set the mask bit that enables this filter. */
497 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
498 	    1<<(sc->vge_camidx & 7));
499 
500 	sc->vge_camidx++;
501 
502 fail:
503 	/* Turn off access to CAM. */
504 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
505 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
506 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
507 
508 	return (error);
509 }
510 
511 static void
512 vge_setvlan(struct vge_softc *sc)
513 {
514 	if_t ifp;
515 	uint8_t cfg;
516 
517 	VGE_LOCK_ASSERT(sc);
518 
519 	ifp = sc->vge_ifp;
520 	cfg = CSR_READ_1(sc, VGE_RXCFG);
521 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
522 		cfg |= VGE_VTAG_OPT2;
523 	else
524 		cfg &= ~VGE_VTAG_OPT2;
525 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
526 }
527 
528 static u_int
529 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
530 {
531 	struct vge_softc *sc = arg;
532 
533         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
534 		return (0);
535 
536 	(void )vge_cam_set(sc, LLADDR(sdl));
537 
538 	return (1);
539 }
540 
541 static u_int
542 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
543 {
544 	uint32_t h, *hashes = arg;
545 
546 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
547 	if (h < 32)
548 		hashes[0] |= (1 << h);
549 	else
550 		hashes[1] |= (1 << (h - 32));
551 
552 	return (1);
553 }
554 
555 /*
556  * Program the multicast filter. We use the 64-entry CAM filter
557  * for perfect filtering. If there's more than 64 multicast addresses,
558  * we use the hash filter instead.
559  */
560 static void
561 vge_rxfilter(struct vge_softc *sc)
562 {
563 	if_t ifp;
564 	uint32_t hashes[2];
565 	uint8_t rxcfg;
566 
567 	VGE_LOCK_ASSERT(sc);
568 
569 	/* First, zot all the multicast entries. */
570 	hashes[0] = 0;
571 	hashes[1] = 0;
572 
573 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
574 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
575 	    VGE_RXCTL_RX_PROMISC);
576 	/*
577 	 * Always allow VLAN oversized frames and frames for
578 	 * this host.
579 	 */
580 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
581 
582 	ifp = sc->vge_ifp;
583 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
584 		rxcfg |= VGE_RXCTL_RX_BCAST;
585 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
586 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
587 			rxcfg |= VGE_RXCTL_RX_PROMISC;
588 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
589 			hashes[0] = 0xFFFFFFFF;
590 			hashes[1] = 0xFFFFFFFF;
591 		}
592 		goto done;
593 	}
594 
595 	vge_cam_clear(sc);
596 
597 	/* Now program new ones */
598 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
599 
600 	/* If there were too many addresses, use the hash filter. */
601         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
602 		vge_cam_clear(sc);
603 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
604 	}
605 
606 done:
607 	if (hashes[0] != 0 || hashes[1] != 0)
608 		rxcfg |= VGE_RXCTL_RX_MCAST;
609 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
610 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
611 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
612 }
613 
614 static void
615 vge_reset(struct vge_softc *sc)
616 {
617 	int i;
618 
619 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
620 
621 	for (i = 0; i < VGE_TIMEOUT; i++) {
622 		DELAY(5);
623 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
624 			break;
625 	}
626 
627 	if (i == VGE_TIMEOUT) {
628 		device_printf(sc->vge_dev, "soft reset timed out\n");
629 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
630 		DELAY(2000);
631 	}
632 
633 	DELAY(5000);
634 }
635 
636 /*
637  * Probe for a VIA gigabit chip. Check the PCI vendor and device
638  * IDs against our list and return a device name if we find a match.
639  */
640 static int
641 vge_probe(device_t dev)
642 {
643 	struct vge_type	*t;
644 
645 	t = vge_devs;
646 
647 	while (t->vge_name != NULL) {
648 		if ((pci_get_vendor(dev) == t->vge_vid) &&
649 		    (pci_get_device(dev) == t->vge_did)) {
650 			device_set_desc(dev, t->vge_name);
651 			return (BUS_PROBE_DEFAULT);
652 		}
653 		t++;
654 	}
655 
656 	return (ENXIO);
657 }
658 
659 /*
660  * Map a single buffer address.
661  */
662 
663 struct vge_dmamap_arg {
664 	bus_addr_t	vge_busaddr;
665 };
666 
667 static void
668 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
669 {
670 	struct vge_dmamap_arg *ctx;
671 
672 	if (error != 0)
673 		return;
674 
675 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
676 
677 	ctx = (struct vge_dmamap_arg *)arg;
678 	ctx->vge_busaddr = segs[0].ds_addr;
679 }
680 
681 static int
682 vge_dma_alloc(struct vge_softc *sc)
683 {
684 	struct vge_dmamap_arg ctx;
685 	struct vge_txdesc *txd;
686 	struct vge_rxdesc *rxd;
687 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
688 	int error, i;
689 
690 	/*
691 	 * It seems old PCI controllers do not support DAC.  DAC
692 	 * configuration can be enabled by accessing VGE_CHIPCFG3
693 	 * register but honor EEPROM configuration instead of
694 	 * blindly overriding DAC configuration.  PCIe based
695 	 * controllers are supposed to support 64bit DMA so enable
696 	 * 64bit DMA on these controllers.
697 	 */
698 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
699 		lowaddr = BUS_SPACE_MAXADDR;
700 	else
701 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
702 
703 again:
704 	/* Create parent ring tag. */
705 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
706 	    1, 0,			/* algnmnt, boundary */
707 	    lowaddr,			/* lowaddr */
708 	    BUS_SPACE_MAXADDR,		/* highaddr */
709 	    NULL, NULL,			/* filter, filterarg */
710 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
711 	    0,				/* nsegments */
712 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
713 	    0,				/* flags */
714 	    NULL, NULL,			/* lockfunc, lockarg */
715 	    &sc->vge_cdata.vge_ring_tag);
716 	if (error != 0) {
717 		device_printf(sc->vge_dev,
718 		    "could not create parent DMA tag.\n");
719 		goto fail;
720 	}
721 
722 	/* Create tag for Tx ring. */
723 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
724 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
725 	    BUS_SPACE_MAXADDR,		/* lowaddr */
726 	    BUS_SPACE_MAXADDR,		/* highaddr */
727 	    NULL, NULL,			/* filter, filterarg */
728 	    VGE_TX_LIST_SZ,		/* maxsize */
729 	    1,				/* nsegments */
730 	    VGE_TX_LIST_SZ,		/* maxsegsize */
731 	    0,				/* flags */
732 	    NULL, NULL,			/* lockfunc, lockarg */
733 	    &sc->vge_cdata.vge_tx_ring_tag);
734 	if (error != 0) {
735 		device_printf(sc->vge_dev,
736 		    "could not allocate Tx ring DMA tag.\n");
737 		goto fail;
738 	}
739 
740 	/* Create tag for Rx ring. */
741 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
742 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
743 	    BUS_SPACE_MAXADDR,		/* lowaddr */
744 	    BUS_SPACE_MAXADDR,		/* highaddr */
745 	    NULL, NULL,			/* filter, filterarg */
746 	    VGE_RX_LIST_SZ,		/* maxsize */
747 	    1,				/* nsegments */
748 	    VGE_RX_LIST_SZ,		/* maxsegsize */
749 	    0,				/* flags */
750 	    NULL, NULL,			/* lockfunc, lockarg */
751 	    &sc->vge_cdata.vge_rx_ring_tag);
752 	if (error != 0) {
753 		device_printf(sc->vge_dev,
754 		    "could not allocate Rx ring DMA tag.\n");
755 		goto fail;
756 	}
757 
758 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
759 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
760 	    (void **)&sc->vge_rdata.vge_tx_ring,
761 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
762 	    &sc->vge_cdata.vge_tx_ring_map);
763 	if (error != 0) {
764 		device_printf(sc->vge_dev,
765 		    "could not allocate DMA'able memory for Tx ring.\n");
766 		goto fail;
767 	}
768 
769 	ctx.vge_busaddr = 0;
770 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
771 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
772 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
773 	if (error != 0 || ctx.vge_busaddr == 0) {
774 		device_printf(sc->vge_dev,
775 		    "could not load DMA'able memory for Tx ring.\n");
776 		goto fail;
777 	}
778 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
779 
780 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
781 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
782 	    (void **)&sc->vge_rdata.vge_rx_ring,
783 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
784 	    &sc->vge_cdata.vge_rx_ring_map);
785 	if (error != 0) {
786 		device_printf(sc->vge_dev,
787 		    "could not allocate DMA'able memory for Rx ring.\n");
788 		goto fail;
789 	}
790 
791 	ctx.vge_busaddr = 0;
792 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
793 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
794 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
795 	if (error != 0 || ctx.vge_busaddr == 0) {
796 		device_printf(sc->vge_dev,
797 		    "could not load DMA'able memory for Rx ring.\n");
798 		goto fail;
799 	}
800 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
801 
802 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
803 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
804 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
805 	if ((VGE_ADDR_HI(tx_ring_end) !=
806 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
807 	    (VGE_ADDR_HI(rx_ring_end) !=
808 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
809 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
810 		device_printf(sc->vge_dev, "4GB boundary crossed, "
811 		    "switching to 32bit DMA address mode.\n");
812 		vge_dma_free(sc);
813 		/* Limit DMA address space to 32bit and try again. */
814 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
815 		goto again;
816 	}
817 
818 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
819 		lowaddr = VGE_BUF_DMA_MAXADDR;
820 	else
821 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
822 	/* Create parent buffer tag. */
823 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
824 	    1, 0,			/* algnmnt, boundary */
825 	    lowaddr,			/* lowaddr */
826 	    BUS_SPACE_MAXADDR,		/* highaddr */
827 	    NULL, NULL,			/* filter, filterarg */
828 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
829 	    0,				/* nsegments */
830 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
831 	    0,				/* flags */
832 	    NULL, NULL,			/* lockfunc, lockarg */
833 	    &sc->vge_cdata.vge_buffer_tag);
834 	if (error != 0) {
835 		device_printf(sc->vge_dev,
836 		    "could not create parent buffer DMA tag.\n");
837 		goto fail;
838 	}
839 
840 	/* Create tag for Tx buffers. */
841 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
842 	    1, 0,			/* algnmnt, boundary */
843 	    BUS_SPACE_MAXADDR,		/* lowaddr */
844 	    BUS_SPACE_MAXADDR,		/* highaddr */
845 	    NULL, NULL,			/* filter, filterarg */
846 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
847 	    VGE_MAXTXSEGS,		/* nsegments */
848 	    MCLBYTES,			/* maxsegsize */
849 	    0,				/* flags */
850 	    NULL, NULL,			/* lockfunc, lockarg */
851 	    &sc->vge_cdata.vge_tx_tag);
852 	if (error != 0) {
853 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
854 		goto fail;
855 	}
856 
857 	/* Create tag for Rx buffers. */
858 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
859 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
860 	    BUS_SPACE_MAXADDR,		/* lowaddr */
861 	    BUS_SPACE_MAXADDR,		/* highaddr */
862 	    NULL, NULL,			/* filter, filterarg */
863 	    MCLBYTES,			/* maxsize */
864 	    1,				/* nsegments */
865 	    MCLBYTES,			/* maxsegsize */
866 	    0,				/* flags */
867 	    NULL, NULL,			/* lockfunc, lockarg */
868 	    &sc->vge_cdata.vge_rx_tag);
869 	if (error != 0) {
870 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
871 		goto fail;
872 	}
873 
874 	/* Create DMA maps for Tx buffers. */
875 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
876 		txd = &sc->vge_cdata.vge_txdesc[i];
877 		txd->tx_m = NULL;
878 		txd->tx_dmamap = NULL;
879 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
880 		    &txd->tx_dmamap);
881 		if (error != 0) {
882 			device_printf(sc->vge_dev,
883 			    "could not create Tx dmamap.\n");
884 			goto fail;
885 		}
886 	}
887 	/* Create DMA maps for Rx buffers. */
888 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
889 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
890 		device_printf(sc->vge_dev,
891 		    "could not create spare Rx dmamap.\n");
892 		goto fail;
893 	}
894 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
895 		rxd = &sc->vge_cdata.vge_rxdesc[i];
896 		rxd->rx_m = NULL;
897 		rxd->rx_dmamap = NULL;
898 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
899 		    &rxd->rx_dmamap);
900 		if (error != 0) {
901 			device_printf(sc->vge_dev,
902 			    "could not create Rx dmamap.\n");
903 			goto fail;
904 		}
905 	}
906 
907 fail:
908 	return (error);
909 }
910 
911 static void
912 vge_dma_free(struct vge_softc *sc)
913 {
914 	struct vge_txdesc *txd;
915 	struct vge_rxdesc *rxd;
916 	int i;
917 
918 	/* Tx ring. */
919 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
920 		if (sc->vge_rdata.vge_tx_ring_paddr)
921 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
922 			    sc->vge_cdata.vge_tx_ring_map);
923 		if (sc->vge_rdata.vge_tx_ring)
924 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
925 			    sc->vge_rdata.vge_tx_ring,
926 			    sc->vge_cdata.vge_tx_ring_map);
927 		sc->vge_rdata.vge_tx_ring = NULL;
928 		sc->vge_rdata.vge_tx_ring_paddr = 0;
929 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
930 		sc->vge_cdata.vge_tx_ring_tag = NULL;
931 	}
932 	/* Rx ring. */
933 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
934 		if (sc->vge_rdata.vge_rx_ring_paddr)
935 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
936 			    sc->vge_cdata.vge_rx_ring_map);
937 		if (sc->vge_rdata.vge_rx_ring)
938 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939 			    sc->vge_rdata.vge_rx_ring,
940 			    sc->vge_cdata.vge_rx_ring_map);
941 		sc->vge_rdata.vge_rx_ring = NULL;
942 		sc->vge_rdata.vge_rx_ring_paddr = 0;
943 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944 		sc->vge_cdata.vge_rx_ring_tag = NULL;
945 	}
946 	/* Tx buffers. */
947 	if (sc->vge_cdata.vge_tx_tag != NULL) {
948 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949 			txd = &sc->vge_cdata.vge_txdesc[i];
950 			if (txd->tx_dmamap != NULL) {
951 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952 				    txd->tx_dmamap);
953 				txd->tx_dmamap = NULL;
954 			}
955 		}
956 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957 		sc->vge_cdata.vge_tx_tag = NULL;
958 	}
959 	/* Rx buffers. */
960 	if (sc->vge_cdata.vge_rx_tag != NULL) {
961 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962 			rxd = &sc->vge_cdata.vge_rxdesc[i];
963 			if (rxd->rx_dmamap != NULL) {
964 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965 				    rxd->rx_dmamap);
966 				rxd->rx_dmamap = NULL;
967 			}
968 		}
969 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971 			    sc->vge_cdata.vge_rx_sparemap);
972 			sc->vge_cdata.vge_rx_sparemap = NULL;
973 		}
974 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975 		sc->vge_cdata.vge_rx_tag = NULL;
976 	}
977 
978 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980 		sc->vge_cdata.vge_buffer_tag = NULL;
981 	}
982 	if (sc->vge_cdata.vge_ring_tag != NULL) {
983 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984 		sc->vge_cdata.vge_ring_tag = NULL;
985 	}
986 }
987 
988 /*
989  * Attach the interface. Allocate softc structures, do ifmedia
990  * setup and ethernet/BPF attach.
991  */
992 static int
993 vge_attach(device_t dev)
994 {
995 	u_char eaddr[ETHER_ADDR_LEN];
996 	struct vge_softc *sc;
997 	if_t ifp;
998 	int error = 0, cap, i, msic, rid;
999 
1000 	sc = device_get_softc(dev);
1001 	sc->vge_dev = dev;
1002 
1003 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004 	    MTX_DEF);
1005 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006 
1007 	/*
1008 	 * Map control/status registers.
1009 	 */
1010 	pci_enable_busmaster(dev);
1011 
1012 	rid = PCIR_BAR(1);
1013 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014 	    RF_ACTIVE);
1015 
1016 	if (sc->vge_res == NULL) {
1017 		device_printf(dev, "couldn't map ports/memory\n");
1018 		error = ENXIO;
1019 		goto fail;
1020 	}
1021 
1022 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023 		sc->vge_flags |= VGE_FLAG_PCIE;
1024 		sc->vge_expcap = cap;
1025 	} else
1026 		sc->vge_flags |= VGE_FLAG_JUMBO;
1027 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028 		sc->vge_flags |= VGE_FLAG_PMCAP;
1029 		sc->vge_pmcap = cap;
1030 	}
1031 	rid = 0;
1032 	msic = pci_msi_count(dev);
1033 	if (msi_disable == 0 && msic > 0) {
1034 		msic = 1;
1035 		if (pci_alloc_msi(dev, &msic) == 0) {
1036 			if (msic == 1) {
1037 				sc->vge_flags |= VGE_FLAG_MSI;
1038 				device_printf(dev, "Using %d MSI message\n",
1039 				    msic);
1040 				rid = 1;
1041 			} else
1042 				pci_release_msi(dev);
1043 		}
1044 	}
1045 
1046 	/* Allocate interrupt */
1047 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049 	if (sc->vge_irq == NULL) {
1050 		device_printf(dev, "couldn't map interrupt\n");
1051 		error = ENXIO;
1052 		goto fail;
1053 	}
1054 
1055 	/* Reset the adapter. */
1056 	vge_reset(sc);
1057 	/* Reload EEPROM. */
1058 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059 	for (i = 0; i < VGE_TIMEOUT; i++) {
1060 		DELAY(5);
1061 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062 			break;
1063 	}
1064 	if (i == VGE_TIMEOUT)
1065 		device_printf(dev, "EEPROM reload timed out\n");
1066 	/*
1067 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068 	 * MAC will receive magic packet which in turn confuses
1069 	 * controller.
1070 	 */
1071 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072 
1073 	/*
1074 	 * Get station address from the EEPROM.
1075 	 */
1076 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077 	/*
1078 	 * Save configured PHY address.
1079 	 * It seems the PHY address of PCIe controllers just
1080 	 * reflects media jump strapping status so we assume the
1081 	 * internal PHY address of PCIe controller is at 1.
1082 	 */
1083 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084 		sc->vge_phyaddr = 1;
1085 	else
1086 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087 		    VGE_MIICFG_PHYADDR;
1088 	/* Clear WOL and take hardware from powerdown. */
1089 	vge_clrwol(sc);
1090 	vge_sysctl_node(sc);
1091 	error = vge_dma_alloc(sc);
1092 	if (error)
1093 		goto fail;
1094 
1095 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096 	if (ifp == NULL) {
1097 		device_printf(dev, "can not if_alloc()\n");
1098 		error = ENOSPC;
1099 		goto fail;
1100 	}
1101 
1102 	vge_miipoll_start(sc);
1103 	/* Do MII setup */
1104 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1105 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1106 	    MIIF_DOPAUSE);
1107 	if (error != 0) {
1108 		device_printf(dev, "attaching PHYs failed\n");
1109 		goto fail;
1110 	}
1111 
1112 	if_setsoftc(ifp, sc);
1113 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1114 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1115 	if_setioctlfn(ifp, vge_ioctl);
1116 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
1117 	if_setstartfn(ifp, vge_start);
1118 	if_sethwassist(ifp, VGE_CSUM_FEATURES);
1119 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1120 	    IFCAP_VLAN_HWTAGGING, 0);
1121 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1122 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1123 	if_setcapenable(ifp, if_getcapabilities(ifp));
1124 #ifdef DEVICE_POLLING
1125 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1126 #endif
1127 	if_setinitfn(ifp, vge_init);
1128 	if_setsendqlen(ifp, VGE_TX_DESC_CNT - 1);
1129 	if_setsendqready(ifp);
1130 
1131 	/*
1132 	 * Call MI attach routine.
1133 	 */
1134 	ether_ifattach(ifp, eaddr);
1135 
1136 	/* Tell the upper layer(s) we support long frames. */
1137 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1138 
1139 	/* Hook interrupt last to avoid having to lock softc */
1140 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1141 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1142 
1143 	if (error) {
1144 		device_printf(dev, "couldn't set up irq\n");
1145 		ether_ifdetach(ifp);
1146 		goto fail;
1147 	}
1148 
1149 fail:
1150 	if (error)
1151 		vge_detach(dev);
1152 
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Shutdown hardware and free up resources. This can be called any
1158  * time after the mutex has been initialized. It is called in both
1159  * the error case in attach and the normal detach case so it needs
1160  * to be careful about only freeing resources that have actually been
1161  * allocated.
1162  */
1163 static int
1164 vge_detach(device_t dev)
1165 {
1166 	struct vge_softc *sc;
1167 	if_t ifp;
1168 
1169 	sc = device_get_softc(dev);
1170 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1171 	ifp = sc->vge_ifp;
1172 
1173 #ifdef DEVICE_POLLING
1174 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1175 		ether_poll_deregister(ifp);
1176 #endif
1177 
1178 	/* These should only be active if attach succeeded */
1179 	if (device_is_attached(dev)) {
1180 		ether_ifdetach(ifp);
1181 		VGE_LOCK(sc);
1182 		vge_stop(sc);
1183 		VGE_UNLOCK(sc);
1184 		callout_drain(&sc->vge_watchdog);
1185 	}
1186 	if (sc->vge_miibus)
1187 		device_delete_child(dev, sc->vge_miibus);
1188 	bus_generic_detach(dev);
1189 
1190 	if (sc->vge_intrhand)
1191 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1192 	if (sc->vge_irq)
1193 		bus_release_resource(dev, SYS_RES_IRQ,
1194 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1195 	if (sc->vge_flags & VGE_FLAG_MSI)
1196 		pci_release_msi(dev);
1197 	if (sc->vge_res)
1198 		bus_release_resource(dev, SYS_RES_MEMORY,
1199 		    PCIR_BAR(1), sc->vge_res);
1200 	if (ifp)
1201 		if_free(ifp);
1202 
1203 	vge_dma_free(sc);
1204 	mtx_destroy(&sc->vge_mtx);
1205 
1206 	return (0);
1207 }
1208 
1209 static void
1210 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1211 {
1212 	struct vge_rxdesc *rxd;
1213 	int i;
1214 
1215 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1216 	rxd->rx_desc->vge_sts = 0;
1217 	rxd->rx_desc->vge_ctl = 0;
1218 
1219 	/*
1220 	 * Note: the manual fails to document the fact that for
1221 	 * proper opration, the driver needs to replentish the RX
1222 	 * DMA ring 4 descriptors at a time (rather than one at a
1223 	 * time, like most chips). We can allocate the new buffers
1224 	 * but we should not set the OWN bits until we're ready
1225 	 * to hand back 4 of them in one shot.
1226 	 */
1227 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1228 		for (i = VGE_RXCHUNK; i > 0; i--) {
1229 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1230 			rxd = rxd->rxd_prev;
1231 		}
1232 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1233 	}
1234 }
1235 
1236 static int
1237 vge_newbuf(struct vge_softc *sc, int prod)
1238 {
1239 	struct vge_rxdesc *rxd;
1240 	struct mbuf *m;
1241 	bus_dma_segment_t segs[1];
1242 	bus_dmamap_t map;
1243 	int i, nsegs;
1244 
1245 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1246 	if (m == NULL)
1247 		return (ENOBUFS);
1248 	/*
1249 	 * This is part of an evil trick to deal with strict-alignment
1250 	 * architectures. The VIA chip requires RX buffers to be aligned
1251 	 * on 32-bit boundaries, but that will hose strict-alignment
1252 	 * architectures. To get around this, we leave some empty space
1253 	 * at the start of each buffer and for non-strict-alignment hosts,
1254 	 * we copy the buffer back two bytes to achieve word alignment.
1255 	 * This is slightly more efficient than allocating a new buffer,
1256 	 * copying the contents, and discarding the old buffer.
1257 	 */
1258 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1259 	m_adj(m, VGE_RX_BUF_ALIGN);
1260 
1261 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1262 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1263 		m_freem(m);
1264 		return (ENOBUFS);
1265 	}
1266 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267 
1268 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1269 	if (rxd->rx_m != NULL) {
1270 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1271 		    BUS_DMASYNC_POSTREAD);
1272 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1273 	}
1274 	map = rxd->rx_dmamap;
1275 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1276 	sc->vge_cdata.vge_rx_sparemap = map;
1277 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1278 	    BUS_DMASYNC_PREREAD);
1279 	rxd->rx_m = m;
1280 
1281 	rxd->rx_desc->vge_sts = 0;
1282 	rxd->rx_desc->vge_ctl = 0;
1283 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1284 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1285 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1286 
1287 	/*
1288 	 * Note: the manual fails to document the fact that for
1289 	 * proper operation, the driver needs to replenish the RX
1290 	 * DMA ring 4 descriptors at a time (rather than one at a
1291 	 * time, like most chips). We can allocate the new buffers
1292 	 * but we should not set the OWN bits until we're ready
1293 	 * to hand back 4 of them in one shot.
1294 	 */
1295 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1296 		for (i = VGE_RXCHUNK; i > 0; i--) {
1297 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1298 			rxd = rxd->rxd_prev;
1299 		}
1300 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1301 	}
1302 
1303 	return (0);
1304 }
1305 
1306 static int
1307 vge_tx_list_init(struct vge_softc *sc)
1308 {
1309 	struct vge_ring_data *rd;
1310 	struct vge_txdesc *txd;
1311 	int i;
1312 
1313 	VGE_LOCK_ASSERT(sc);
1314 
1315 	sc->vge_cdata.vge_tx_prodidx = 0;
1316 	sc->vge_cdata.vge_tx_considx = 0;
1317 	sc->vge_cdata.vge_tx_cnt = 0;
1318 
1319 	rd = &sc->vge_rdata;
1320 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1321 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1322 		txd = &sc->vge_cdata.vge_txdesc[i];
1323 		txd->tx_m = NULL;
1324 		txd->tx_desc = &rd->vge_tx_ring[i];
1325 	}
1326 
1327 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1328 	    sc->vge_cdata.vge_tx_ring_map,
1329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330 
1331 	return (0);
1332 }
1333 
1334 static int
1335 vge_rx_list_init(struct vge_softc *sc)
1336 {
1337 	struct vge_ring_data *rd;
1338 	struct vge_rxdesc *rxd;
1339 	int i;
1340 
1341 	VGE_LOCK_ASSERT(sc);
1342 
1343 	sc->vge_cdata.vge_rx_prodidx = 0;
1344 	sc->vge_cdata.vge_head = NULL;
1345 	sc->vge_cdata.vge_tail = NULL;
1346 	sc->vge_cdata.vge_rx_commit = 0;
1347 
1348 	rd = &sc->vge_rdata;
1349 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1350 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1351 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1352 		rxd->rx_m = NULL;
1353 		rxd->rx_desc = &rd->vge_rx_ring[i];
1354 		if (i == 0)
1355 			rxd->rxd_prev =
1356 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1357 		else
1358 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1359 		if (vge_newbuf(sc, i) != 0)
1360 			return (ENOBUFS);
1361 	}
1362 
1363 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1364 	    sc->vge_cdata.vge_rx_ring_map,
1365 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366 
1367 	sc->vge_cdata.vge_rx_commit = 0;
1368 
1369 	return (0);
1370 }
1371 
1372 static void
1373 vge_freebufs(struct vge_softc *sc)
1374 {
1375 	struct vge_txdesc *txd;
1376 	struct vge_rxdesc *rxd;
1377 	if_t ifp;
1378 	int i;
1379 
1380 	VGE_LOCK_ASSERT(sc);
1381 
1382 	ifp = sc->vge_ifp;
1383 	/*
1384 	 * Free RX and TX mbufs still in the queues.
1385 	 */
1386 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1387 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1388 		if (rxd->rx_m != NULL) {
1389 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1390 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1391 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1392 			    rxd->rx_dmamap);
1393 			m_freem(rxd->rx_m);
1394 			rxd->rx_m = NULL;
1395 		}
1396 	}
1397 
1398 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1399 		txd = &sc->vge_cdata.vge_txdesc[i];
1400 		if (txd->tx_m != NULL) {
1401 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1402 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1403 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1404 			    txd->tx_dmamap);
1405 			m_freem(txd->tx_m);
1406 			txd->tx_m = NULL;
1407 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1408 		}
1409 	}
1410 }
1411 
1412 #ifndef	__NO_STRICT_ALIGNMENT
1413 static __inline void
1414 vge_fixup_rx(struct mbuf *m)
1415 {
1416 	int i;
1417 	uint16_t *src, *dst;
1418 
1419 	src = mtod(m, uint16_t *);
1420 	dst = src - 1;
1421 
1422 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1423 		*dst++ = *src++;
1424 
1425 	m->m_data -= ETHER_ALIGN;
1426 }
1427 #endif
1428 
1429 /*
1430  * RX handler. We support the reception of jumbo frames that have
1431  * been fragmented across multiple 2K mbuf cluster buffers.
1432  */
1433 static int
1434 vge_rxeof(struct vge_softc *sc, int count)
1435 {
1436 	struct mbuf *m;
1437 	if_t ifp;
1438 	int prod, prog, total_len;
1439 	struct vge_rxdesc *rxd;
1440 	struct vge_rx_desc *cur_rx;
1441 	uint32_t rxstat, rxctl;
1442 
1443 	VGE_LOCK_ASSERT(sc);
1444 
1445 	ifp = sc->vge_ifp;
1446 
1447 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1448 	    sc->vge_cdata.vge_rx_ring_map,
1449 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450 
1451 	prod = sc->vge_cdata.vge_rx_prodidx;
1452 	for (prog = 0; count > 0 &&
1453 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1454 	    VGE_RX_DESC_INC(prod)) {
1455 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1456 		rxstat = le32toh(cur_rx->vge_sts);
1457 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1458 			break;
1459 		count--;
1460 		prog++;
1461 		rxctl = le32toh(cur_rx->vge_ctl);
1462 		total_len = VGE_RXBYTES(rxstat);
1463 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1464 		m = rxd->rx_m;
1465 
1466 		/*
1467 		 * If the 'start of frame' bit is set, this indicates
1468 		 * either the first fragment in a multi-fragment receive,
1469 		 * or an intermediate fragment. Either way, we want to
1470 		 * accumulate the buffers.
1471 		 */
1472 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1473 			if (vge_newbuf(sc, prod) != 0) {
1474 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1475 				VGE_CHAIN_RESET(sc);
1476 				vge_discard_rxbuf(sc, prod);
1477 				continue;
1478 			}
1479 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1480 			if (sc->vge_cdata.vge_head == NULL) {
1481 				sc->vge_cdata.vge_head = m;
1482 				sc->vge_cdata.vge_tail = m;
1483 			} else {
1484 				m->m_flags &= ~M_PKTHDR;
1485 				sc->vge_cdata.vge_tail->m_next = m;
1486 				sc->vge_cdata.vge_tail = m;
1487 			}
1488 			continue;
1489 		}
1490 
1491 		/*
1492 		 * Bad/error frames will have the RXOK bit cleared.
1493 		 * However, there's one error case we want to allow:
1494 		 * if a VLAN tagged frame arrives and the chip can't
1495 		 * match it against the CAM filter, it considers this
1496 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1497 		 * We don't want to drop the frame though: our VLAN
1498 		 * filtering is done in software.
1499 		 * We also want to receive bad-checksummed frames and
1500 		 * and frames with bad-length.
1501 		 */
1502 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1503 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1504 		    VGE_RDSTS_CSUMERR)) == 0) {
1505 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1506 			/*
1507 			 * If this is part of a multi-fragment packet,
1508 			 * discard all the pieces.
1509 			 */
1510 			VGE_CHAIN_RESET(sc);
1511 			vge_discard_rxbuf(sc, prod);
1512 			continue;
1513 		}
1514 
1515 		if (vge_newbuf(sc, prod) != 0) {
1516 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1517 			VGE_CHAIN_RESET(sc);
1518 			vge_discard_rxbuf(sc, prod);
1519 			continue;
1520 		}
1521 
1522 		/* Chain received mbufs. */
1523 		if (sc->vge_cdata.vge_head != NULL) {
1524 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1525 			/*
1526 			 * Special case: if there's 4 bytes or less
1527 			 * in this buffer, the mbuf can be discarded:
1528 			 * the last 4 bytes is the CRC, which we don't
1529 			 * care about anyway.
1530 			 */
1531 			if (m->m_len <= ETHER_CRC_LEN) {
1532 				sc->vge_cdata.vge_tail->m_len -=
1533 				    (ETHER_CRC_LEN - m->m_len);
1534 				m_freem(m);
1535 			} else {
1536 				m->m_len -= ETHER_CRC_LEN;
1537 				m->m_flags &= ~M_PKTHDR;
1538 				sc->vge_cdata.vge_tail->m_next = m;
1539 			}
1540 			m = sc->vge_cdata.vge_head;
1541 			m->m_flags |= M_PKTHDR;
1542 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1543 		} else {
1544 			m->m_flags |= M_PKTHDR;
1545 			m->m_pkthdr.len = m->m_len =
1546 			    (total_len - ETHER_CRC_LEN);
1547 		}
1548 
1549 #ifndef	__NO_STRICT_ALIGNMENT
1550 		vge_fixup_rx(m);
1551 #endif
1552 		m->m_pkthdr.rcvif = ifp;
1553 
1554 		/* Do RX checksumming if enabled */
1555 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1556 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1557 			/* Check IP header checksum */
1558 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1559 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1560 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1561 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1562 
1563 			/* Check TCP/UDP checksum */
1564 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1565 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1566 				m->m_pkthdr.csum_flags |=
1567 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1568 				m->m_pkthdr.csum_data = 0xffff;
1569 			}
1570 		}
1571 
1572 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1573 			/*
1574 			 * The 32-bit rxctl register is stored in little-endian.
1575 			 * However, the 16-bit vlan tag is stored in big-endian,
1576 			 * so we have to byte swap it.
1577 			 */
1578 			m->m_pkthdr.ether_vtag =
1579 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1580 			m->m_flags |= M_VLANTAG;
1581 		}
1582 
1583 		VGE_UNLOCK(sc);
1584 		if_input(ifp, m);
1585 		VGE_LOCK(sc);
1586 		sc->vge_cdata.vge_head = NULL;
1587 		sc->vge_cdata.vge_tail = NULL;
1588 	}
1589 
1590 	if (prog > 0) {
1591 		sc->vge_cdata.vge_rx_prodidx = prod;
1592 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1593 		    sc->vge_cdata.vge_rx_ring_map,
1594 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595 		/* Update residue counter. */
1596 		if (sc->vge_cdata.vge_rx_commit != 0) {
1597 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1598 			    sc->vge_cdata.vge_rx_commit);
1599 			sc->vge_cdata.vge_rx_commit = 0;
1600 		}
1601 	}
1602 	return (prog);
1603 }
1604 
1605 static void
1606 vge_txeof(struct vge_softc *sc)
1607 {
1608 	if_t ifp;
1609 	struct vge_tx_desc *cur_tx;
1610 	struct vge_txdesc *txd;
1611 	uint32_t txstat;
1612 	int cons, prod;
1613 
1614 	VGE_LOCK_ASSERT(sc);
1615 
1616 	ifp = sc->vge_ifp;
1617 
1618 	if (sc->vge_cdata.vge_tx_cnt == 0)
1619 		return;
1620 
1621 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1622 	    sc->vge_cdata.vge_tx_ring_map,
1623 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624 
1625 	/*
1626 	 * Go through our tx list and free mbufs for those
1627 	 * frames that have been transmitted.
1628 	 */
1629 	cons = sc->vge_cdata.vge_tx_considx;
1630 	prod = sc->vge_cdata.vge_tx_prodidx;
1631 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1632 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1633 		txstat = le32toh(cur_tx->vge_sts);
1634 		if ((txstat & VGE_TDSTS_OWN) != 0)
1635 			break;
1636 		sc->vge_cdata.vge_tx_cnt--;
1637 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1638 
1639 		txd = &sc->vge_cdata.vge_txdesc[cons];
1640 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1641 		    BUS_DMASYNC_POSTWRITE);
1642 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1643 
1644 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1645 		    __func__));
1646 		m_freem(txd->tx_m);
1647 		txd->tx_m = NULL;
1648 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1649 	}
1650 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1651 	    sc->vge_cdata.vge_tx_ring_map,
1652 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1653 	sc->vge_cdata.vge_tx_considx = cons;
1654 	if (sc->vge_cdata.vge_tx_cnt == 0)
1655 		sc->vge_timer = 0;
1656 }
1657 
1658 static void
1659 vge_link_statchg(void *xsc)
1660 {
1661 	struct vge_softc *sc;
1662 	if_t ifp;
1663 	uint8_t physts;
1664 
1665 	sc = xsc;
1666 	ifp = sc->vge_ifp;
1667 	VGE_LOCK_ASSERT(sc);
1668 
1669 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1670 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1671 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1672 			sc->vge_flags &= ~VGE_FLAG_LINK;
1673 			if_link_state_change(sc->vge_ifp,
1674 			    LINK_STATE_DOWN);
1675 		} else {
1676 			sc->vge_flags |= VGE_FLAG_LINK;
1677 			if_link_state_change(sc->vge_ifp,
1678 			    LINK_STATE_UP);
1679 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1680 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1681 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1682 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1683 					CSR_WRITE_1(sc, VGE_CRS2,
1684 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1685 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1686 					CSR_WRITE_1(sc, VGE_CRS2,
1687 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1688 			}
1689 			if (!if_sendq_empty(ifp))
1690 				vge_start_locked(ifp);
1691 		}
1692 	}
1693 	/*
1694 	 * Restart MII auto-polling because link state change interrupt
1695 	 * will disable it.
1696 	 */
1697 	vge_miipoll_start(sc);
1698 }
1699 
1700 #ifdef DEVICE_POLLING
1701 static int
1702 vge_poll (if_t ifp, enum poll_cmd cmd, int count)
1703 {
1704 	struct vge_softc *sc = if_getsoftc(ifp);
1705 	int rx_npkts = 0;
1706 
1707 	VGE_LOCK(sc);
1708 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
1709 		goto done;
1710 
1711 	rx_npkts = vge_rxeof(sc, count);
1712 	vge_txeof(sc);
1713 
1714 	if (!if_sendq_empty(ifp))
1715 		vge_start_locked(ifp);
1716 
1717 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1718 		uint32_t       status;
1719 		status = CSR_READ_4(sc, VGE_ISR);
1720 		if (status == 0xFFFFFFFF)
1721 			goto done;
1722 		if (status)
1723 			CSR_WRITE_4(sc, VGE_ISR, status);
1724 
1725 		/*
1726 		 * XXX check behaviour on receiver stalls.
1727 		 */
1728 
1729 		if (status & VGE_ISR_TXDMA_STALL ||
1730 		    status & VGE_ISR_RXDMA_STALL) {
1731 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1732 			vge_init_locked(sc);
1733 		}
1734 
1735 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1736 			vge_rxeof(sc, count);
1737 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1738 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1739 		}
1740 	}
1741 done:
1742 	VGE_UNLOCK(sc);
1743 	return (rx_npkts);
1744 }
1745 #endif /* DEVICE_POLLING */
1746 
1747 static void
1748 vge_intr(void *arg)
1749 {
1750 	struct vge_softc *sc;
1751 	if_t ifp;
1752 	uint32_t status;
1753 
1754 	sc = arg;
1755 	VGE_LOCK(sc);
1756 
1757 	ifp = sc->vge_ifp;
1758 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1759 	    (if_getflags(ifp) & IFF_UP) == 0) {
1760 		VGE_UNLOCK(sc);
1761 		return;
1762 	}
1763 
1764 #ifdef DEVICE_POLLING
1765 	if  (if_getcapenable(ifp) & IFCAP_POLLING) {
1766 		status = CSR_READ_4(sc, VGE_ISR);
1767 		CSR_WRITE_4(sc, VGE_ISR, status);
1768 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1769 			vge_link_statchg(sc);
1770 		VGE_UNLOCK(sc);
1771 		return;
1772 	}
1773 #endif
1774 
1775 	/* Disable interrupts */
1776 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1777 	status = CSR_READ_4(sc, VGE_ISR);
1778 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1779 	/* If the card has gone away the read returns 0xffff. */
1780 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1781 		goto done;
1782 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1783 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1784 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1785 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1786 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1787 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1788 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1789 		}
1790 
1791 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1792 			vge_txeof(sc);
1793 
1794 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1795 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1796 			vge_init_locked(sc);
1797 		}
1798 
1799 		if (status & VGE_ISR_LINKSTS)
1800 			vge_link_statchg(sc);
1801 	}
1802 done:
1803 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1804 		/* Re-enable interrupts */
1805 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1806 
1807 		if (!if_sendq_empty(ifp))
1808 			vge_start_locked(ifp);
1809 	}
1810 	VGE_UNLOCK(sc);
1811 }
1812 
1813 static int
1814 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1815 {
1816 	struct vge_txdesc *txd;
1817 	struct vge_tx_frag *frag;
1818 	struct mbuf *m;
1819 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1820 	int error, i, nsegs, padlen;
1821 	uint32_t cflags;
1822 
1823 	VGE_LOCK_ASSERT(sc);
1824 
1825 	M_ASSERTPKTHDR((*m_head));
1826 
1827 	/* Argh. This chip does not autopad short frames. */
1828 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1829 		m = *m_head;
1830 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1831 		if (M_WRITABLE(m) == 0) {
1832 			/* Get a writable copy. */
1833 			m = m_dup(*m_head, M_NOWAIT);
1834 			m_freem(*m_head);
1835 			if (m == NULL) {
1836 				*m_head = NULL;
1837 				return (ENOBUFS);
1838 			}
1839 			*m_head = m;
1840 		}
1841 		if (M_TRAILINGSPACE(m) < padlen) {
1842 			m = m_defrag(m, M_NOWAIT);
1843 			if (m == NULL) {
1844 				m_freem(*m_head);
1845 				*m_head = NULL;
1846 				return (ENOBUFS);
1847 			}
1848 		}
1849 		/*
1850 		 * Manually pad short frames, and zero the pad space
1851 		 * to avoid leaking data.
1852 		 */
1853 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1854 		m->m_pkthdr.len += padlen;
1855 		m->m_len = m->m_pkthdr.len;
1856 		*m_head = m;
1857 	}
1858 
1859 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1860 
1861 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1862 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1863 	if (error == EFBIG) {
1864 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1865 		if (m == NULL) {
1866 			m_freem(*m_head);
1867 			*m_head = NULL;
1868 			return (ENOMEM);
1869 		}
1870 		*m_head = m;
1871 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1872 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1873 		if (error != 0) {
1874 			m_freem(*m_head);
1875 			*m_head = NULL;
1876 			return (error);
1877 		}
1878 	} else if (error != 0)
1879 		return (error);
1880 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1881 	    BUS_DMASYNC_PREWRITE);
1882 
1883 	m = *m_head;
1884 	cflags = 0;
1885 
1886 	/* Configure checksum offload. */
1887 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1888 		cflags |= VGE_TDCTL_IPCSUM;
1889 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1890 		cflags |= VGE_TDCTL_TCPCSUM;
1891 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1892 		cflags |= VGE_TDCTL_UDPCSUM;
1893 
1894 	/* Configure VLAN. */
1895 	if ((m->m_flags & M_VLANTAG) != 0)
1896 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1897 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1898 	/*
1899 	 * XXX
1900 	 * Velocity family seems to support TSO but no information
1901 	 * for MSS configuration is available. Also the number of
1902 	 * fragments supported by a descriptor is too small to hold
1903 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1904 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1905 	 * longer chain of buffers but no additional information is
1906 	 * available.
1907 	 *
1908 	 * When telling the chip how many segments there are, we
1909 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1910 	 * know why. This also means we can't use the last fragment
1911 	 * field of Tx descriptor.
1912 	 */
1913 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1914 	    VGE_TD_LS_NORM);
1915 	for (i = 0; i < nsegs; i++) {
1916 		frag = &txd->tx_desc->vge_frag[i];
1917 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1918 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1919 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1920 	}
1921 
1922 	sc->vge_cdata.vge_tx_cnt++;
1923 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1924 
1925 	/*
1926 	 * Finally request interrupt and give the first descriptor
1927 	 * ownership to hardware.
1928 	 */
1929 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1930 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1931 	txd->tx_m = m;
1932 
1933 	return (0);
1934 }
1935 
1936 /*
1937  * Main transmit routine.
1938  */
1939 
1940 static void
1941 vge_start(if_t ifp)
1942 {
1943 	struct vge_softc *sc;
1944 
1945 	sc = if_getsoftc(ifp);
1946 	VGE_LOCK(sc);
1947 	vge_start_locked(ifp);
1948 	VGE_UNLOCK(sc);
1949 }
1950 
1951 static void
1952 vge_start_locked(if_t ifp)
1953 {
1954 	struct vge_softc *sc;
1955 	struct vge_txdesc *txd;
1956 	struct mbuf *m_head;
1957 	int enq, idx;
1958 
1959 	sc = if_getsoftc(ifp);
1960 
1961 	VGE_LOCK_ASSERT(sc);
1962 
1963 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1964 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1965 	    IFF_DRV_RUNNING)
1966 		return;
1967 
1968 	idx = sc->vge_cdata.vge_tx_prodidx;
1969 	VGE_TX_DESC_DEC(idx);
1970 	for (enq = 0; !if_sendq_empty(ifp) &&
1971 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1972 		m_head = if_dequeue(ifp);
1973 		if (m_head == NULL)
1974 			break;
1975 		/*
1976 		 * Pack the data into the transmit ring. If we
1977 		 * don't have room, set the OACTIVE flag and wait
1978 		 * for the NIC to drain the ring.
1979 		 */
1980 		if (vge_encap(sc, &m_head)) {
1981 			if (m_head == NULL)
1982 				break;
1983 			if_sendq_prepend(ifp, m_head);
1984 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1985 			break;
1986 		}
1987 
1988 		txd = &sc->vge_cdata.vge_txdesc[idx];
1989 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1990 		VGE_TX_DESC_INC(idx);
1991 
1992 		enq++;
1993 		/*
1994 		 * If there's a BPF listener, bounce a copy of this frame
1995 		 * to him.
1996 		 */
1997 		ETHER_BPF_MTAP(ifp, m_head);
1998 	}
1999 
2000 	if (enq > 0) {
2001 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2002 		    sc->vge_cdata.vge_tx_ring_map,
2003 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2004 		/* Issue a transmit command. */
2005 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2006 		/*
2007 		 * Set a timeout in case the chip goes out to lunch.
2008 		 */
2009 		sc->vge_timer = 5;
2010 	}
2011 }
2012 
2013 static void
2014 vge_init(void *xsc)
2015 {
2016 	struct vge_softc *sc = xsc;
2017 
2018 	VGE_LOCK(sc);
2019 	vge_init_locked(sc);
2020 	VGE_UNLOCK(sc);
2021 }
2022 
2023 static void
2024 vge_init_locked(struct vge_softc *sc)
2025 {
2026 	if_t ifp = sc->vge_ifp;
2027 	int error, i;
2028 
2029 	VGE_LOCK_ASSERT(sc);
2030 
2031 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2032 		return;
2033 
2034 	/*
2035 	 * Cancel pending I/O and free all RX/TX buffers.
2036 	 */
2037 	vge_stop(sc);
2038 	vge_reset(sc);
2039 	vge_miipoll_start(sc);
2040 
2041 	/*
2042 	 * Initialize the RX and TX descriptors and mbufs.
2043 	 */
2044 
2045 	error = vge_rx_list_init(sc);
2046 	if (error != 0) {
2047                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2048                 return;
2049 	}
2050 	vge_tx_list_init(sc);
2051 	/* Clear MAC statistics. */
2052 	vge_stats_clear(sc);
2053 	/* Set our station address */
2054 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2055 		CSR_WRITE_1(sc, VGE_PAR0 + i, if_getlladdr(sc->vge_ifp)[i]);
2056 
2057 	/*
2058 	 * Set receive FIFO threshold. Also allow transmission and
2059 	 * reception of VLAN tagged frames.
2060 	 */
2061 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2062 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2063 
2064 	/* Set DMA burst length */
2065 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2066 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2067 
2068 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2069 
2070 	/* Set collision backoff algorithm */
2071 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2072 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2073 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2074 
2075 	/* Disable LPSEL field in priority resolution */
2076 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2077 
2078 	/*
2079 	 * Load the addresses of the DMA queues into the chip.
2080 	 * Note that we only use one transmit queue.
2081 	 */
2082 
2083 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2084 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2085 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2086 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2087 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2088 
2089 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2090 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2091 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2092 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2093 
2094 	/* Configure interrupt moderation. */
2095 	vge_intr_holdoff(sc);
2096 
2097 	/* Enable and wake up the RX descriptor queue */
2098 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2099 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2100 
2101 	/* Enable the TX descriptor queue */
2102 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2103 
2104 	/* Init the cam filter. */
2105 	vge_cam_clear(sc);
2106 
2107 	/* Set up receiver filter. */
2108 	vge_rxfilter(sc);
2109 	vge_setvlan(sc);
2110 
2111 	/* Initialize pause timer. */
2112 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2113 	/*
2114 	 * Initialize flow control parameters.
2115 	 *  TX XON high threshold : 48
2116 	 *  TX pause low threshold : 24
2117 	 *  Disable hald-duplex flow control
2118 	 */
2119 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2120 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2121 
2122 	/* Enable jumbo frame reception (if desired) */
2123 
2124 	/* Start the MAC. */
2125 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2126 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2127 	CSR_WRITE_1(sc, VGE_CRS0,
2128 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2129 
2130 #ifdef DEVICE_POLLING
2131 	/*
2132 	 * Disable interrupts except link state change if we are polling.
2133 	 */
2134 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
2135 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2136 	} else	/* otherwise ... */
2137 #endif
2138 	{
2139 	/*
2140 	 * Enable interrupts.
2141 	 */
2142 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2143 	}
2144 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2145 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2146 
2147 	sc->vge_flags &= ~VGE_FLAG_LINK;
2148 	vge_ifmedia_upd_locked(sc);
2149 
2150 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2151 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2152 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2153 }
2154 
2155 /*
2156  * Set media options.
2157  */
2158 static int
2159 vge_ifmedia_upd(if_t ifp)
2160 {
2161 	struct vge_softc *sc;
2162 	int error;
2163 
2164 	sc = if_getsoftc(ifp);
2165 	VGE_LOCK(sc);
2166 	error = vge_ifmedia_upd_locked(sc);
2167 	VGE_UNLOCK(sc);
2168 
2169 	return (error);
2170 }
2171 
2172 static int
2173 vge_ifmedia_upd_locked(struct vge_softc *sc)
2174 {
2175 	struct mii_data *mii;
2176 	struct mii_softc *miisc;
2177 	int error;
2178 
2179 	mii = device_get_softc(sc->vge_miibus);
2180 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2181 		PHY_RESET(miisc);
2182 	vge_setmedia(sc);
2183 	error = mii_mediachg(mii);
2184 
2185 	return (error);
2186 }
2187 
2188 /*
2189  * Report current media status.
2190  */
2191 static void
2192 vge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2193 {
2194 	struct vge_softc *sc;
2195 	struct mii_data *mii;
2196 
2197 	sc = if_getsoftc(ifp);
2198 	mii = device_get_softc(sc->vge_miibus);
2199 
2200 	VGE_LOCK(sc);
2201 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2202 		VGE_UNLOCK(sc);
2203 		return;
2204 	}
2205 	mii_pollstat(mii);
2206 	ifmr->ifm_active = mii->mii_media_active;
2207 	ifmr->ifm_status = mii->mii_media_status;
2208 	VGE_UNLOCK(sc);
2209 }
2210 
2211 static void
2212 vge_setmedia(struct vge_softc *sc)
2213 {
2214 	struct mii_data *mii;
2215 	struct ifmedia_entry *ife;
2216 
2217 	mii = device_get_softc(sc->vge_miibus);
2218 	ife = mii->mii_media.ifm_cur;
2219 
2220 	/*
2221 	 * If the user manually selects a media mode, we need to turn
2222 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2223 	 * user happens to choose a full duplex mode, we also need to
2224 	 * set the 'force full duplex' bit. This applies only to
2225 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2226 	 * mode is disabled, and in 1000baseT mode, full duplex is
2227 	 * always implied, so we turn on the forced mode bit but leave
2228 	 * the FDX bit cleared.
2229 	 */
2230 
2231 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2232 	case IFM_AUTO:
2233 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2234 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2235 		break;
2236 	case IFM_1000_T:
2237 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2238 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2239 		break;
2240 	case IFM_100_TX:
2241 	case IFM_10_T:
2242 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2243 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2244 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245 		} else {
2246 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2247 		}
2248 		break;
2249 	default:
2250 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2251 		    IFM_SUBTYPE(ife->ifm_media));
2252 		break;
2253 	}
2254 }
2255 
2256 static int
2257 vge_ioctl(if_t ifp, u_long command, caddr_t data)
2258 {
2259 	struct vge_softc *sc = if_getsoftc(ifp);
2260 	struct ifreq *ifr = (struct ifreq *) data;
2261 	struct mii_data *mii;
2262 	int error = 0, mask;
2263 
2264 	switch (command) {
2265 	case SIOCSIFMTU:
2266 		VGE_LOCK(sc);
2267 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2268 			error = EINVAL;
2269 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2270 			if (ifr->ifr_mtu > ETHERMTU &&
2271 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2272 				error = EINVAL;
2273 			else
2274 				if_setmtu(ifp, ifr->ifr_mtu);
2275 		}
2276 		VGE_UNLOCK(sc);
2277 		break;
2278 	case SIOCSIFFLAGS:
2279 		VGE_LOCK(sc);
2280 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2281 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2282 			    ((if_getflags(ifp) ^ sc->vge_if_flags) &
2283 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2284 				vge_rxfilter(sc);
2285 			else
2286 				vge_init_locked(sc);
2287 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2288 			vge_stop(sc);
2289 		sc->vge_if_flags = if_getflags(ifp);
2290 		VGE_UNLOCK(sc);
2291 		break;
2292 	case SIOCADDMULTI:
2293 	case SIOCDELMULTI:
2294 		VGE_LOCK(sc);
2295 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2296 			vge_rxfilter(sc);
2297 		VGE_UNLOCK(sc);
2298 		break;
2299 	case SIOCGIFMEDIA:
2300 	case SIOCSIFMEDIA:
2301 		mii = device_get_softc(sc->vge_miibus);
2302 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2303 		break;
2304 	case SIOCSIFCAP:
2305 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2306 #ifdef DEVICE_POLLING
2307 		if (mask & IFCAP_POLLING) {
2308 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2309 				error = ether_poll_register(vge_poll, ifp);
2310 				if (error)
2311 					return (error);
2312 				VGE_LOCK(sc);
2313 					/* Disable interrupts */
2314 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2315 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2316 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2317 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2318 				VGE_UNLOCK(sc);
2319 			} else {
2320 				error = ether_poll_deregister(ifp);
2321 				/* Enable interrupts. */
2322 				VGE_LOCK(sc);
2323 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2324 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2325 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2326 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2327 				VGE_UNLOCK(sc);
2328 			}
2329 		}
2330 #endif /* DEVICE_POLLING */
2331 		VGE_LOCK(sc);
2332 		if ((mask & IFCAP_TXCSUM) != 0 &&
2333 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2334 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2335 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2336 				if_sethwassistbits(ifp, VGE_CSUM_FEATURES, 0);
2337 			else
2338 				if_sethwassistbits(ifp, 0, VGE_CSUM_FEATURES);
2339 		}
2340 		if ((mask & IFCAP_RXCSUM) != 0 &&
2341 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2342 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2343 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2344 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2345 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2346 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2347 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2348 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2349 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2350 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2351 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2352 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2353 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2354 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2355 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2356 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2357 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2358 			vge_setvlan(sc);
2359 		}
2360 		VGE_UNLOCK(sc);
2361 		VLAN_CAPABILITIES(ifp);
2362 		break;
2363 	default:
2364 		error = ether_ioctl(ifp, command, data);
2365 		break;
2366 	}
2367 
2368 	return (error);
2369 }
2370 
2371 static void
2372 vge_watchdog(void *arg)
2373 {
2374 	struct vge_softc *sc;
2375 	if_t ifp;
2376 
2377 	sc = arg;
2378 	VGE_LOCK_ASSERT(sc);
2379 	vge_stats_update(sc);
2380 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2381 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2382 		return;
2383 
2384 	ifp = sc->vge_ifp;
2385 	if_printf(ifp, "watchdog timeout\n");
2386 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2387 
2388 	vge_txeof(sc);
2389 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2390 
2391 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2392 	vge_init_locked(sc);
2393 }
2394 
2395 /*
2396  * Stop the adapter and free any mbufs allocated to the
2397  * RX and TX lists.
2398  */
2399 static void
2400 vge_stop(struct vge_softc *sc)
2401 {
2402 	if_t ifp;
2403 
2404 	VGE_LOCK_ASSERT(sc);
2405 	ifp = sc->vge_ifp;
2406 	sc->vge_timer = 0;
2407 	callout_stop(&sc->vge_watchdog);
2408 
2409 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2410 
2411 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2412 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2413 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2414 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2415 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2416 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2417 
2418 	vge_stats_update(sc);
2419 	VGE_CHAIN_RESET(sc);
2420 	vge_txeof(sc);
2421 	vge_freebufs(sc);
2422 }
2423 
2424 /*
2425  * Device suspend routine.  Stop the interface and save some PCI
2426  * settings in case the BIOS doesn't restore them properly on
2427  * resume.
2428  */
2429 static int
2430 vge_suspend(device_t dev)
2431 {
2432 	struct vge_softc *sc;
2433 
2434 	sc = device_get_softc(dev);
2435 
2436 	VGE_LOCK(sc);
2437 	vge_stop(sc);
2438 	vge_setwol(sc);
2439 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2440 	VGE_UNLOCK(sc);
2441 
2442 	return (0);
2443 }
2444 
2445 /*
2446  * Device resume routine.  Restore some PCI settings in case the BIOS
2447  * doesn't, re-enable busmastering, and restart the interface if
2448  * appropriate.
2449  */
2450 static int
2451 vge_resume(device_t dev)
2452 {
2453 	struct vge_softc *sc;
2454 	if_t ifp;
2455 	uint16_t pmstat;
2456 
2457 	sc = device_get_softc(dev);
2458 	VGE_LOCK(sc);
2459 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2460 		/* Disable PME and clear PME status. */
2461 		pmstat = pci_read_config(sc->vge_dev,
2462 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2463 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2464 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2465 			pci_write_config(sc->vge_dev,
2466 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2467 		}
2468 	}
2469 	vge_clrwol(sc);
2470 	/* Restart MII auto-polling. */
2471 	vge_miipoll_start(sc);
2472 	ifp = sc->vge_ifp;
2473 	/* Reinitialize interface if necessary. */
2474 	if ((if_getflags(ifp) & IFF_UP) != 0) {
2475 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2476 		vge_init_locked(sc);
2477 	}
2478 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2479 	VGE_UNLOCK(sc);
2480 
2481 	return (0);
2482 }
2483 
2484 /*
2485  * Stop all chip I/O so that the kernel's probe routines don't
2486  * get confused by errant DMAs when rebooting.
2487  */
2488 static int
2489 vge_shutdown(device_t dev)
2490 {
2491 
2492 	return (vge_suspend(dev));
2493 }
2494 
2495 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2496 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2497 
2498 static void
2499 vge_sysctl_node(struct vge_softc *sc)
2500 {
2501 	struct sysctl_ctx_list *ctx;
2502 	struct sysctl_oid_list *child, *parent;
2503 	struct sysctl_oid *tree;
2504 	struct vge_hw_stats *stats;
2505 
2506 	stats = &sc->vge_stats;
2507 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2508 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2509 
2510 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2511 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2512 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2513 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2514 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2515 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2516 
2517 	/* Pull in device tunables. */
2518 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2519 	resource_int_value(device_get_name(sc->vge_dev),
2520 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2521 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2522 	resource_int_value(device_get_name(sc->vge_dev),
2523 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2524 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2525 	resource_int_value(device_get_name(sc->vge_dev),
2526 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2527 
2528 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2529 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2530 	parent = SYSCTL_CHILDREN(tree);
2531 
2532 	/* Rx statistics. */
2533 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2534 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2535 	child = SYSCTL_CHILDREN(tree);
2536 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2537 	    &stats->rx_frames, "frames");
2538 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2539 	    &stats->rx_good_frames, "Good frames");
2540 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2541 	    &stats->rx_fifo_oflows, "FIFO overflows");
2542 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2543 	    &stats->rx_runts, "Too short frames");
2544 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2545 	    &stats->rx_runts_errs, "Too short frames with errors");
2546 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2547 	    &stats->rx_pkts_64, "64 bytes frames");
2548 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2549 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2550 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2551 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2552 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2553 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2554 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2555 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2556 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2557 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2558 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2559 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2560 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2561 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2562 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2563 	    &stats->rx_jumbos, "Jumbo frames");
2564 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2565 	    &stats->rx_crcerrs, "CRC errors");
2566 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2567 	    &stats->rx_pause_frames, "Pause frames");
2568 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2569 	    &stats->rx_alignerrs, "Alignment errors");
2570 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2571 	    &stats->rx_nobufs, "Frames with no buffer event");
2572 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2573 	    &stats->rx_symerrs, "Frames with symbol errors");
2574 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2575 	    &stats->rx_lenerrs, "Frames with length mismatched");
2576 
2577 	/* Tx statistics. */
2578 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2579 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2580 	child = SYSCTL_CHILDREN(tree);
2581 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2582 	    &stats->tx_good_frames, "Good frames");
2583 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2584 	    &stats->tx_pkts_64, "64 bytes frames");
2585 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2586 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2587 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2588 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2589 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2590 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2591 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2592 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2593 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2594 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2595 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2596 	    &stats->tx_jumbos, "Jumbo frames");
2597 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2598 	    &stats->tx_colls, "Collisions");
2599 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2600 	    &stats->tx_latecolls, "Late collisions");
2601 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2602 	    &stats->tx_pause, "Pause frames");
2603 #ifdef VGE_ENABLE_SQEERR
2604 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2605 	    &stats->tx_sqeerrs, "SQE errors");
2606 #endif
2607 	/* Clear MAC statistics. */
2608 	vge_stats_clear(sc);
2609 }
2610 
2611 #undef	VGE_SYSCTL_STAT_ADD32
2612 
2613 static void
2614 vge_stats_clear(struct vge_softc *sc)
2615 {
2616 	int i;
2617 
2618 	CSR_WRITE_1(sc, VGE_MIBCSR,
2619 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2620 	CSR_WRITE_1(sc, VGE_MIBCSR,
2621 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2622 	for (i = VGE_TIMEOUT; i > 0; i--) {
2623 		DELAY(1);
2624 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2625 			break;
2626 	}
2627 	if (i == 0)
2628 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2629 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2630 	    ~VGE_MIBCSR_FREEZE);
2631 }
2632 
2633 static void
2634 vge_stats_update(struct vge_softc *sc)
2635 {
2636 	struct vge_hw_stats *stats;
2637 	if_t ifp;
2638 	uint32_t mib[VGE_MIB_CNT], val;
2639 	int i;
2640 
2641 	VGE_LOCK_ASSERT(sc);
2642 
2643 	stats = &sc->vge_stats;
2644 	ifp = sc->vge_ifp;
2645 
2646 	CSR_WRITE_1(sc, VGE_MIBCSR,
2647 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2648 	for (i = VGE_TIMEOUT; i > 0; i--) {
2649 		DELAY(1);
2650 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2651 			break;
2652 	}
2653 	if (i == 0) {
2654 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2655 		vge_stats_clear(sc);
2656 		return;
2657 	}
2658 
2659 	bzero(mib, sizeof(mib));
2660 reset_idx:
2661 	/* Set MIB read index to 0. */
2662 	CSR_WRITE_1(sc, VGE_MIBCSR,
2663 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2664 	for (i = 0; i < VGE_MIB_CNT; i++) {
2665 		val = CSR_READ_4(sc, VGE_MIBDATA);
2666 		if (i != VGE_MIB_DATA_IDX(val)) {
2667 			/* Reading interrupted. */
2668 			goto reset_idx;
2669 		}
2670 		mib[i] = val & VGE_MIB_DATA_MASK;
2671 	}
2672 
2673 	/* Rx stats. */
2674 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2675 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2676 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2677 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2678 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2679 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2680 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2681 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2682 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2683 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2684 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2685 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2686 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2687 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2688 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2689 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2690 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2691 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2692 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2693 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2694 
2695 	/* Tx stats. */
2696 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2697 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2698 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2699 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2700 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2701 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2702 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2703 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2704 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2705 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2706 #ifdef VGE_ENABLE_SQEERR
2707 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2708 #endif
2709 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2710 
2711 	/* Update counters in ifnet. */
2712 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2713 
2714 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2715 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2716 
2717 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2718 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2719 
2720 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2721 
2722 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2723 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2724 	    mib[VGE_MIB_RX_RUNTS] +
2725 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2726 	    mib[VGE_MIB_RX_CRCERRS] +
2727 	    mib[VGE_MIB_RX_ALIGNERRS] +
2728 	    mib[VGE_MIB_RX_NOBUFS] +
2729 	    mib[VGE_MIB_RX_SYMERRS] +
2730 	    mib[VGE_MIB_RX_LENERRS]);
2731 }
2732 
2733 static void
2734 vge_intr_holdoff(struct vge_softc *sc)
2735 {
2736 	uint8_t intctl;
2737 
2738 	VGE_LOCK_ASSERT(sc);
2739 
2740 	/*
2741 	 * Set Tx interrupt supression threshold.
2742 	 * It's possible to use single-shot timer in VGE_CRS1 register
2743 	 * in Tx path such that driver can remove most of Tx completion
2744 	 * interrupts. However this requires additional access to
2745 	 * VGE_CRS1 register to reload the timer in addintion to
2746 	 * activating Tx kick command. Another downside is we don't know
2747 	 * what single-shot timer value should be used in advance so
2748 	 * reclaiming transmitted mbufs could be delayed a lot which in
2749 	 * turn slows down Tx operation.
2750 	 */
2751 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2752 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2753 
2754 	/* Set Rx interrupt suppresion threshold. */
2755 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2756 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2757 
2758 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2759 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2760 	intctl |= VGE_INTCTL_HC_RELOAD;
2761 	if (sc->vge_tx_coal_pkt <= 0)
2762 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2763 	else
2764 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2765 	if (sc->vge_rx_coal_pkt <= 0)
2766 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2767 	else
2768 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2769 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2770 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2771 	if (sc->vge_int_holdoff > 0) {
2772 		/* Set interrupt holdoff timer. */
2773 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2774 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2775 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2776 		/* Enable holdoff timer. */
2777 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2778 	}
2779 }
2780 
2781 static void
2782 vge_setlinkspeed(struct vge_softc *sc)
2783 {
2784 	struct mii_data *mii;
2785 	int aneg, i;
2786 
2787 	VGE_LOCK_ASSERT(sc);
2788 
2789 	mii = device_get_softc(sc->vge_miibus);
2790 	mii_pollstat(mii);
2791 	aneg = 0;
2792 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2793 	    (IFM_ACTIVE | IFM_AVALID)) {
2794 		switch IFM_SUBTYPE(mii->mii_media_active) {
2795 		case IFM_10_T:
2796 		case IFM_100_TX:
2797 			return;
2798 		case IFM_1000_T:
2799 			aneg++;
2800 		default:
2801 			break;
2802 		}
2803 	}
2804 	/* Clear forced MAC speed/duplex configuration. */
2805 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2806 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2807 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2808 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2809 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2810 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2811 	    BMCR_AUTOEN | BMCR_STARTNEG);
2812 	DELAY(1000);
2813 	if (aneg != 0) {
2814 		/* Poll link state until vge(4) get a 10/100 link. */
2815 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2816 			mii_pollstat(mii);
2817 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2818 			    == (IFM_ACTIVE | IFM_AVALID)) {
2819 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2820 				case IFM_10_T:
2821 				case IFM_100_TX:
2822 					return;
2823 				default:
2824 					break;
2825 				}
2826 			}
2827 			VGE_UNLOCK(sc);
2828 			pause("vgelnk", hz);
2829 			VGE_LOCK(sc);
2830 		}
2831 		if (i == MII_ANEGTICKS_GIGE)
2832 			device_printf(sc->vge_dev, "establishing link failed, "
2833 			    "WOL may not work!");
2834 	}
2835 	/*
2836 	 * No link, force MAC to have 100Mbps, full-duplex link.
2837 	 * This is the last resort and may/may not work.
2838 	 */
2839 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2840 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2841 }
2842 
2843 static void
2844 vge_setwol(struct vge_softc *sc)
2845 {
2846 	if_t ifp;
2847 	uint16_t pmstat;
2848 	uint8_t val;
2849 
2850 	VGE_LOCK_ASSERT(sc);
2851 
2852 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2853 		/* No PME capability, PHY power down. */
2854 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2855 		    BMCR_PDOWN);
2856 		vge_miipoll_stop(sc);
2857 		return;
2858 	}
2859 
2860 	ifp = sc->vge_ifp;
2861 
2862 	/* Clear WOL on pattern match. */
2863 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2864 	/* Disable WOL on magic/unicast packet. */
2865 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2866 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2867 	    VGE_WOLCFG_PMEOVR);
2868 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2869 		vge_setlinkspeed(sc);
2870 		val = 0;
2871 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2872 			val |= VGE_WOLCR1_UCAST;
2873 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2874 			val |= VGE_WOLCR1_MAGIC;
2875 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2876 		val = 0;
2877 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2878 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2879 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2880 		/* Disable MII auto-polling. */
2881 		vge_miipoll_stop(sc);
2882 	}
2883 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2884 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2885 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2886 
2887 	/* Clear WOL status on pattern match. */
2888 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2889 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2890 
2891 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2892 	val |= VGE_STICKHW_SWPTAG;
2893 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2894 	/* Put hardware into sleep. */
2895 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2896 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2897 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2898 	/* Request PME if WOL is requested. */
2899 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2900 	    PCIR_POWER_STATUS, 2);
2901 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2902 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2903 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2904 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2905 	    pmstat, 2);
2906 }
2907 
2908 static void
2909 vge_clrwol(struct vge_softc *sc)
2910 {
2911 	uint8_t val;
2912 
2913 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2914 	val &= ~VGE_STICKHW_SWPTAG;
2915 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2916 	/* Disable WOL and clear power state indicator. */
2917 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2918 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2919 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2920 
2921 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2922 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2923 
2924 	/* Clear WOL on pattern match. */
2925 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2926 	/* Disable WOL on magic/unicast packet. */
2927 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2928 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2929 	    VGE_WOLCFG_PMEOVR);
2930 	/* Clear WOL status on pattern match. */
2931 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2932 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2933 }
2934