xref: /freebsd/sys/dev/vge/if_vge.c (revision 5022f21bd974c740b9052f149fb31745dc602965)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/if_vlan_var.h>
104 
105 #include <net/bpf.h>
106 
107 #include <machine/bus.h>
108 #include <machine/resource.h>
109 #include <sys/bus.h>
110 #include <sys/rman.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 
118 MODULE_DEPEND(vge, pci, 1, 1, 1);
119 MODULE_DEPEND(vge, ether, 1, 1, 1);
120 MODULE_DEPEND(vge, miibus, 1, 1, 1);
121 
122 /* "device miibus" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124 
125 #include <dev/vge/if_vgereg.h>
126 #include <dev/vge/if_vgevar.h>
127 
128 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
129 
130 /*
131  * Various supported device vendors/types and their names.
132  */
133 static struct vge_type vge_devs[] = {
134 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
135 		"VIA Networking Gigabit Ethernet" },
136 	{ 0, 0, NULL }
137 };
138 
139 static int vge_probe		(device_t);
140 static int vge_attach		(device_t);
141 static int vge_detach		(device_t);
142 
143 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
144 
145 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
146 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
147 				    bus_size_t, int);
148 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
149 				    bus_size_t, int);
150 static int vge_allocmem		(device_t, struct vge_softc *);
151 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
152 static int vge_rx_list_init	(struct vge_softc *);
153 static int vge_tx_list_init	(struct vge_softc *);
154 #ifdef VGE_FIXUP_RX
155 static __inline void vge_fixup_rx
156 				(struct mbuf *);
157 #endif
158 static int vge_rxeof		(struct vge_softc *);
159 static void vge_txeof		(struct vge_softc *);
160 static void vge_intr		(void *);
161 static void vge_tick		(void *);
162 static void vge_start		(struct ifnet *);
163 static void vge_start_locked	(struct ifnet *);
164 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
165 static void vge_init		(void *);
166 static void vge_init_locked	(struct vge_softc *);
167 static void vge_stop		(struct vge_softc *);
168 static void vge_watchdog	(void *);
169 static int vge_suspend		(device_t);
170 static int vge_resume		(device_t);
171 static int vge_shutdown		(device_t);
172 static int vge_ifmedia_upd	(struct ifnet *);
173 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179 
180 static void vge_miipoll_start	(struct vge_softc *);
181 static void vge_miipoll_stop	(struct vge_softc *);
182 static int vge_miibus_readreg	(device_t, int, int);
183 static int vge_miibus_writereg	(device_t, int, int, int);
184 static void vge_miibus_statchg	(device_t);
185 
186 static void vge_cam_clear	(struct vge_softc *);
187 static int vge_cam_set		(struct vge_softc *, uint8_t *);
188 static void vge_setmulti	(struct vge_softc *);
189 static void vge_reset		(struct vge_softc *);
190 
191 #define VGE_PCI_LOIO             0x10
192 #define VGE_PCI_LOMEM            0x14
193 
194 static device_method_t vge_methods[] = {
195 	/* Device interface */
196 	DEVMETHOD(device_probe,		vge_probe),
197 	DEVMETHOD(device_attach,	vge_attach),
198 	DEVMETHOD(device_detach,	vge_detach),
199 	DEVMETHOD(device_suspend,	vge_suspend),
200 	DEVMETHOD(device_resume,	vge_resume),
201 	DEVMETHOD(device_shutdown,	vge_shutdown),
202 
203 	/* bus interface */
204 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206 
207 	/* MII interface */
208 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211 
212 	{ 0, 0 }
213 };
214 
215 static driver_t vge_driver = {
216 	"vge",
217 	vge_methods,
218 	sizeof(struct vge_softc)
219 };
220 
221 static devclass_t vge_devclass;
222 
223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225 
226 #ifdef VGE_EEPROM
227 /*
228  * Read a word of data stored in the EEPROM at address 'addr.'
229  */
230 static void
231 vge_eeprom_getword(sc, addr, dest)
232 	struct vge_softc	*sc;
233 	int			addr;
234 	u_int16_t		*dest;
235 {
236 	register int		i;
237 	u_int16_t		word = 0;
238 
239 	/*
240 	 * Enter EEPROM embedded programming mode. In order to
241 	 * access the EEPROM at all, we first have to set the
242 	 * EELOAD bit in the CHIPCFG2 register.
243 	 */
244 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246 
247 	/* Select the address of the word we want to read */
248 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249 
250 	/* Issue read command */
251 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252 
253 	/* Wait for the done bit to be set. */
254 	for (i = 0; i < VGE_TIMEOUT; i++) {
255 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256 			break;
257 	}
258 
259 	if (i == VGE_TIMEOUT) {
260 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261 		*dest = 0;
262 		return;
263 	}
264 
265 	/* Read the result */
266 	word = CSR_READ_2(sc, VGE_EERDDAT);
267 
268 	/* Turn off EEPROM access mode. */
269 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271 
272 	*dest = word;
273 
274 	return;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 #ifdef VGE_EEPROM
291 	u_int16_t		word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (u_int16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(sc)
309 	struct vge_softc	*sc;
310 {
311 	int			i;
312 
313 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314 
315 	for (i = 0; i < VGE_TIMEOUT; i++) {
316 		DELAY(1);
317 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 			break;
319 	}
320 
321 	if (i == VGE_TIMEOUT)
322 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 
324 	return;
325 }
326 
327 static void
328 vge_miipoll_start(sc)
329 	struct vge_softc	*sc;
330 {
331 	int			i;
332 
333 	/* First, make sure we're idle. */
334 
335 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337 
338 	for (i = 0; i < VGE_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341 			break;
342 	}
343 
344 	if (i == VGE_TIMEOUT) {
345 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346 		return;
347 	}
348 
349 	/* Now enable auto poll mode. */
350 
351 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352 
353 	/* And make sure it started. */
354 
355 	for (i = 0; i < VGE_TIMEOUT; i++) {
356 		DELAY(1);
357 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358 			break;
359 	}
360 
361 	if (i == VGE_TIMEOUT)
362 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363 
364 	return;
365 }
366 
367 static int
368 vge_miibus_readreg(dev, phy, reg)
369 	device_t		dev;
370 	int			phy, reg;
371 {
372 	struct vge_softc	*sc;
373 	int			i;
374 	u_int16_t		rval = 0;
375 
376 	sc = device_get_softc(dev);
377 
378 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379 		return(0);
380 
381 	VGE_LOCK_ASSERT(sc);
382 	vge_miipoll_stop(sc);
383 
384 	/* Specify the register we want to read. */
385 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386 
387 	/* Issue read command. */
388 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389 
390 	/* Wait for the read command bit to self-clear. */
391 	for (i = 0; i < VGE_TIMEOUT; i++) {
392 		DELAY(1);
393 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394 			break;
395 	}
396 
397 	if (i == VGE_TIMEOUT)
398 		device_printf(sc->vge_dev, "MII read timed out\n");
399 	else
400 		rval = CSR_READ_2(sc, VGE_MIIDATA);
401 
402 	vge_miipoll_start(sc);
403 
404 	return (rval);
405 }
406 
407 static int
408 vge_miibus_writereg(dev, phy, reg, data)
409 	device_t		dev;
410 	int			phy, reg, data;
411 {
412 	struct vge_softc	*sc;
413 	int			i, rval = 0;
414 
415 	sc = device_get_softc(dev);
416 
417 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
418 		return(0);
419 
420 	VGE_LOCK_ASSERT(sc);
421 	vge_miipoll_stop(sc);
422 
423 	/* Specify the register we want to write. */
424 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
425 
426 	/* Specify the data we want to write. */
427 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
428 
429 	/* Issue write command. */
430 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
431 
432 	/* Wait for the write command bit to self-clear. */
433 	for (i = 0; i < VGE_TIMEOUT; i++) {
434 		DELAY(1);
435 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
436 			break;
437 	}
438 
439 	if (i == VGE_TIMEOUT) {
440 		device_printf(sc->vge_dev, "MII write timed out\n");
441 		rval = EIO;
442 	}
443 
444 	vge_miipoll_start(sc);
445 
446 	return (rval);
447 }
448 
449 static void
450 vge_cam_clear(sc)
451 	struct vge_softc	*sc;
452 {
453 	int			i;
454 
455 	/*
456 	 * Turn off all the mask bits. This tells the chip
457 	 * that none of the entries in the CAM filter are valid.
458 	 * desired entries will be enabled as we fill the filter in.
459 	 */
460 
461 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
462 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
463 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
464 	for (i = 0; i < 8; i++)
465 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
466 
467 	/* Clear the VLAN filter too. */
468 
469 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
470 	for (i = 0; i < 8; i++)
471 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472 
473 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
474 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
475 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
476 
477 	sc->vge_camidx = 0;
478 
479 	return;
480 }
481 
482 static int
483 vge_cam_set(sc, addr)
484 	struct vge_softc	*sc;
485 	uint8_t			*addr;
486 {
487 	int			i, error = 0;
488 
489 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
490 		return(ENOSPC);
491 
492 	/* Select the CAM data page. */
493 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
494 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
495 
496 	/* Set the filter entry we want to update and enable writing. */
497 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
498 
499 	/* Write the address to the CAM registers */
500 	for (i = 0; i < ETHER_ADDR_LEN; i++)
501 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
502 
503 	/* Issue a write command. */
504 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
505 
506 	/* Wake for it to clear. */
507 	for (i = 0; i < VGE_TIMEOUT; i++) {
508 		DELAY(1);
509 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
510 			break;
511 	}
512 
513 	if (i == VGE_TIMEOUT) {
514 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
515 		error = EIO;
516 		goto fail;
517 	}
518 
519 	/* Select the CAM mask page. */
520 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
521 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
522 
523 	/* Set the mask bit that enables this filter. */
524 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
525 	    1<<(sc->vge_camidx & 7));
526 
527 	sc->vge_camidx++;
528 
529 fail:
530 	/* Turn off access to CAM. */
531 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
532 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
533 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
534 
535 	return (error);
536 }
537 
538 /*
539  * Program the multicast filter. We use the 64-entry CAM filter
540  * for perfect filtering. If there's more than 64 multicast addresses,
541  * we use the hash filter insted.
542  */
543 static void
544 vge_setmulti(sc)
545 	struct vge_softc	*sc;
546 {
547 	struct ifnet		*ifp;
548 	int			error = 0/*, h = 0*/;
549 	struct ifmultiaddr	*ifma;
550 	u_int32_t		h, hashes[2] = { 0, 0 };
551 
552 	ifp = sc->vge_ifp;
553 
554 	/* First, zot all the multicast entries. */
555 	vge_cam_clear(sc);
556 	CSR_WRITE_4(sc, VGE_MAR0, 0);
557 	CSR_WRITE_4(sc, VGE_MAR1, 0);
558 
559 	/*
560 	 * If the user wants allmulti or promisc mode, enable reception
561 	 * of all multicast frames.
562 	 */
563 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
564 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
565 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
566 		return;
567 	}
568 
569 	/* Now program new ones */
570 	if_maddr_rlock(ifp);
571 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
572 		if (ifma->ifma_addr->sa_family != AF_LINK)
573 			continue;
574 		error = vge_cam_set(sc,
575 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
576 		if (error)
577 			break;
578 	}
579 
580 	/* If there were too many addresses, use the hash filter. */
581 	if (error) {
582 		vge_cam_clear(sc);
583 
584 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
585 			if (ifma->ifma_addr->sa_family != AF_LINK)
586 				continue;
587 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
588 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
589 			if (h < 32)
590 				hashes[0] |= (1 << h);
591 			else
592 				hashes[1] |= (1 << (h - 32));
593 		}
594 
595 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
596 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
597 	}
598 	if_maddr_runlock(ifp);
599 
600 	return;
601 }
602 
603 static void
604 vge_reset(sc)
605 	struct vge_softc		*sc;
606 {
607 	register int		i;
608 
609 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
610 
611 	for (i = 0; i < VGE_TIMEOUT; i++) {
612 		DELAY(5);
613 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
614 			break;
615 	}
616 
617 	if (i == VGE_TIMEOUT) {
618 		device_printf(sc->vge_dev, "soft reset timed out");
619 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
620 		DELAY(2000);
621 	}
622 
623 	DELAY(5000);
624 
625 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
626 
627 	for (i = 0; i < VGE_TIMEOUT; i++) {
628 		DELAY(5);
629 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
630 			break;
631 	}
632 
633 	if (i == VGE_TIMEOUT) {
634 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
635 		return;
636 	}
637 
638 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
639 
640 	return;
641 }
642 
643 /*
644  * Probe for a VIA gigabit chip. Check the PCI vendor and device
645  * IDs against our list and return a device name if we find a match.
646  */
647 static int
648 vge_probe(dev)
649 	device_t		dev;
650 {
651 	struct vge_type		*t;
652 
653 	t = vge_devs;
654 
655 	while (t->vge_name != NULL) {
656 		if ((pci_get_vendor(dev) == t->vge_vid) &&
657 		    (pci_get_device(dev) == t->vge_did)) {
658 			device_set_desc(dev, t->vge_name);
659 			return (BUS_PROBE_DEFAULT);
660 		}
661 		t++;
662 	}
663 
664 	return (ENXIO);
665 }
666 
667 static void
668 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
669 	void			*arg;
670 	bus_dma_segment_t	*segs;
671 	int			nseg;
672 	bus_size_t		mapsize;
673 	int			error;
674 {
675 
676 	struct vge_dmaload_arg	*ctx;
677 	struct vge_rx_desc	*d = NULL;
678 
679 	if (error)
680 		return;
681 
682 	ctx = arg;
683 
684 	/* Signal error to caller if there's too many segments */
685 	if (nseg > ctx->vge_maxsegs) {
686 		ctx->vge_maxsegs = 0;
687 		return;
688 	}
689 
690 	/*
691 	 * Map the segment array into descriptors.
692 	 */
693 
694 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
695 
696 	/* If this descriptor is still owned by the chip, bail. */
697 
698 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
699 		device_printf(ctx->sc->vge_dev,
700 		    "tried to map busy descriptor\n");
701 		ctx->vge_maxsegs = 0;
702 		return;
703 	}
704 
705 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
706 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
707 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
708 	d->vge_sts = 0;
709 	d->vge_ctl = 0;
710 
711 	ctx->vge_maxsegs = 1;
712 
713 	return;
714 }
715 
716 static void
717 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
718 	void			*arg;
719 	bus_dma_segment_t	*segs;
720 	int			nseg;
721 	bus_size_t		mapsize;
722 	int			error;
723 {
724 	struct vge_dmaload_arg	*ctx;
725 	struct vge_tx_desc	*d = NULL;
726 	struct vge_tx_frag	*f;
727 	int			i = 0;
728 
729 	if (error)
730 		return;
731 
732 	ctx = arg;
733 
734 	/* Signal error to caller if there's too many segments */
735 	if (nseg > ctx->vge_maxsegs) {
736 		ctx->vge_maxsegs = 0;
737 		return;
738 	}
739 
740 	/* Map the segment array into descriptors. */
741 
742 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
743 
744 	/* If this descriptor is still owned by the chip, bail. */
745 
746 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
747 		ctx->vge_maxsegs = 0;
748 		return;
749 	}
750 
751 	for (i = 0; i < nseg; i++) {
752 		f = &d->vge_frag[i];
753 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
754 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
755 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
756 	}
757 
758 	/* Argh. This chip does not autopad short frames */
759 
760 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
761 		f = &d->vge_frag[i];
762 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
763 		    ctx->vge_m0->m_pkthdr.len));
764 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
765 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
766 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
767 		i++;
768 	}
769 
770 	/*
771 	 * When telling the chip how many segments there are, we
772 	 * must use nsegs + 1 instead of just nsegs. Darned if I
773 	 * know why.
774 	 */
775 	i++;
776 
777 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
778 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
779 
780 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
781 		d->vge_ctl |= VGE_TDCTL_JUMBO;
782 
783 	ctx->vge_maxsegs = nseg;
784 
785 	return;
786 }
787 
788 /*
789  * Map a single buffer address.
790  */
791 
792 static void
793 vge_dma_map_addr(arg, segs, nseg, error)
794 	void			*arg;
795 	bus_dma_segment_t	*segs;
796 	int			nseg;
797 	int			error;
798 {
799 	bus_addr_t		*addr;
800 
801 	if (error)
802 		return;
803 
804 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
805 	addr = arg;
806 	*addr = segs->ds_addr;
807 
808 	return;
809 }
810 
811 static int
812 vge_allocmem(dev, sc)
813 	device_t		dev;
814 	struct vge_softc		*sc;
815 {
816 	int			error;
817 	int			nseg;
818 	int			i;
819 
820 	/*
821 	 * Allocate map for RX mbufs.
822 	 */
823 	nseg = 32;
824 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
825 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
826 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
827 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
828 	if (error) {
829 		device_printf(dev, "could not allocate dma tag\n");
830 		return (ENOMEM);
831 	}
832 
833 	/*
834 	 * Allocate map for TX descriptor list.
835 	 */
836 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
837 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
838 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
839 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
840 	if (error) {
841 		device_printf(dev, "could not allocate dma tag\n");
842 		return (ENOMEM);
843 	}
844 
845 	/* Allocate DMA'able memory for the TX ring */
846 
847 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
848 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
849 	    &sc->vge_ldata.vge_tx_list_map);
850 	if (error)
851 		return (ENOMEM);
852 
853 	/* Load the map for the TX ring. */
854 
855 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
856 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
857 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
858 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
859 
860 	/* Create DMA maps for TX buffers */
861 
862 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
863 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
864 			    &sc->vge_ldata.vge_tx_dmamap[i]);
865 		if (error) {
866 			device_printf(dev, "can't create DMA map for TX\n");
867 			return (ENOMEM);
868 		}
869 	}
870 
871 	/*
872 	 * Allocate map for RX descriptor list.
873 	 */
874 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
878 	if (error) {
879 		device_printf(dev, "could not allocate dma tag\n");
880 		return (ENOMEM);
881 	}
882 
883 	/* Allocate DMA'able memory for the RX ring */
884 
885 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
886 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887 	    &sc->vge_ldata.vge_rx_list_map);
888 	if (error)
889 		return (ENOMEM);
890 
891 	/* Load the map for the RX ring. */
892 
893 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
894 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
895 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
897 
898 	/* Create DMA maps for RX buffers */
899 
900 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
901 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902 			    &sc->vge_ldata.vge_rx_dmamap[i]);
903 		if (error) {
904 			device_printf(dev, "can't create DMA map for RX\n");
905 			return (ENOMEM);
906 		}
907 	}
908 
909 	return (0);
910 }
911 
912 /*
913  * Attach the interface. Allocate softc structures, do ifmedia
914  * setup and ethernet/BPF attach.
915  */
916 static int
917 vge_attach(dev)
918 	device_t		dev;
919 {
920 	u_char			eaddr[ETHER_ADDR_LEN];
921 	struct vge_softc	*sc;
922 	struct ifnet		*ifp;
923 	int			unit, error = 0, rid;
924 
925 	sc = device_get_softc(dev);
926 	unit = device_get_unit(dev);
927 	sc->vge_dev = dev;
928 
929 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
930 	    MTX_DEF);
931 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
932 
933 	/*
934 	 * Map control/status registers.
935 	 */
936 	pci_enable_busmaster(dev);
937 
938 	rid = VGE_PCI_LOMEM;
939 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
940 	    0, ~0, 1, RF_ACTIVE);
941 
942 	if (sc->vge_res == NULL) {
943 		printf ("vge%d: couldn't map ports/memory\n", unit);
944 		error = ENXIO;
945 		goto fail;
946 	}
947 
948 	/* Allocate interrupt */
949 	rid = 0;
950 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
951 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
952 
953 	if (sc->vge_irq == NULL) {
954 		printf("vge%d: couldn't map interrupt\n", unit);
955 		error = ENXIO;
956 		goto fail;
957 	}
958 
959 	/* Reset the adapter. */
960 	vge_reset(sc);
961 
962 	/*
963 	 * Get station address from the EEPROM.
964 	 */
965 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
966 
967 	/*
968 	 * Allocate the parent bus DMA tag appropriate for PCI.
969 	 */
970 #define VGE_NSEG_NEW 32
971 	error = bus_dma_tag_create(NULL,	/* parent */
972 			1, 0,			/* alignment, boundary */
973 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
974 			BUS_SPACE_MAXADDR,	/* highaddr */
975 			NULL, NULL,		/* filter, filterarg */
976 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
977 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
978 			BUS_DMA_ALLOCNOW,	/* flags */
979 			NULL, NULL,		/* lockfunc, lockarg */
980 			&sc->vge_parent_tag);
981 	if (error)
982 		goto fail;
983 
984 	error = vge_allocmem(dev, sc);
985 
986 	if (error)
987 		goto fail;
988 
989 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
990 	if (ifp == NULL) {
991 		device_printf(dev, "can not if_alloc()\n");
992 		error = ENOSPC;
993 		goto fail;
994 	}
995 
996 	/* Do MII setup */
997 	if (mii_phy_probe(dev, &sc->vge_miibus,
998 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
999 		device_printf(dev, "MII without any phy!\n");
1000 		error = ENXIO;
1001 		goto fail;
1002 	}
1003 
1004 	ifp->if_softc = sc;
1005 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1006 	ifp->if_mtu = ETHERMTU;
1007 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1008 	ifp->if_ioctl = vge_ioctl;
1009 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1010 	ifp->if_start = vge_start;
1011 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1012 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1013 	ifp->if_capenable = ifp->if_capabilities;
1014 #ifdef DEVICE_POLLING
1015 	ifp->if_capabilities |= IFCAP_POLLING;
1016 #endif
1017 	ifp->if_init = vge_init;
1018 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1019 	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1020 	IFQ_SET_READY(&ifp->if_snd);
1021 
1022 	/*
1023 	 * Call MI attach routine.
1024 	 */
1025 	ether_ifattach(ifp, eaddr);
1026 
1027 	/* Hook interrupt last to avoid having to lock softc */
1028 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1029 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1030 
1031 	if (error) {
1032 		printf("vge%d: couldn't set up irq\n", unit);
1033 		ether_ifdetach(ifp);
1034 		goto fail;
1035 	}
1036 
1037 fail:
1038 	if (error)
1039 		vge_detach(dev);
1040 
1041 	return (error);
1042 }
1043 
1044 /*
1045  * Shutdown hardware and free up resources. This can be called any
1046  * time after the mutex has been initialized. It is called in both
1047  * the error case in attach and the normal detach case so it needs
1048  * to be careful about only freeing resources that have actually been
1049  * allocated.
1050  */
1051 static int
1052 vge_detach(dev)
1053 	device_t		dev;
1054 {
1055 	struct vge_softc		*sc;
1056 	struct ifnet		*ifp;
1057 	int			i;
1058 
1059 	sc = device_get_softc(dev);
1060 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1061 	ifp = sc->vge_ifp;
1062 
1063 #ifdef DEVICE_POLLING
1064 	if (ifp->if_capenable & IFCAP_POLLING)
1065 		ether_poll_deregister(ifp);
1066 #endif
1067 
1068 	/* These should only be active if attach succeeded */
1069 	if (device_is_attached(dev)) {
1070 		ether_ifdetach(ifp);
1071 		VGE_LOCK(sc);
1072 		vge_stop(sc);
1073 		VGE_UNLOCK(sc);
1074 		callout_drain(&sc->vge_watchdog);
1075 	}
1076 	if (sc->vge_miibus)
1077 		device_delete_child(dev, sc->vge_miibus);
1078 	bus_generic_detach(dev);
1079 
1080 	if (sc->vge_intrhand)
1081 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1082 	if (sc->vge_irq)
1083 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1084 	if (sc->vge_res)
1085 		bus_release_resource(dev, SYS_RES_MEMORY,
1086 		    VGE_PCI_LOMEM, sc->vge_res);
1087 	if (ifp)
1088 		if_free(ifp);
1089 
1090 	/* Unload and free the RX DMA ring memory and map */
1091 
1092 	if (sc->vge_ldata.vge_rx_list_tag) {
1093 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1094 		    sc->vge_ldata.vge_rx_list_map);
1095 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1096 		    sc->vge_ldata.vge_rx_list,
1097 		    sc->vge_ldata.vge_rx_list_map);
1098 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1099 	}
1100 
1101 	/* Unload and free the TX DMA ring memory and map */
1102 
1103 	if (sc->vge_ldata.vge_tx_list_tag) {
1104 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1105 		    sc->vge_ldata.vge_tx_list_map);
1106 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1107 		    sc->vge_ldata.vge_tx_list,
1108 		    sc->vge_ldata.vge_tx_list_map);
1109 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1110 	}
1111 
1112 	/* Destroy all the RX and TX buffer maps */
1113 
1114 	if (sc->vge_ldata.vge_mtag) {
1115 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1116 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1117 			    sc->vge_ldata.vge_tx_dmamap[i]);
1118 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1119 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1120 			    sc->vge_ldata.vge_rx_dmamap[i]);
1121 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1122 	}
1123 
1124 	if (sc->vge_parent_tag)
1125 		bus_dma_tag_destroy(sc->vge_parent_tag);
1126 
1127 	mtx_destroy(&sc->vge_mtx);
1128 
1129 	return (0);
1130 }
1131 
1132 static int
1133 vge_newbuf(sc, idx, m)
1134 	struct vge_softc	*sc;
1135 	int			idx;
1136 	struct mbuf		*m;
1137 {
1138 	struct vge_dmaload_arg	arg;
1139 	struct mbuf		*n = NULL;
1140 	int			i, error;
1141 
1142 	if (m == NULL) {
1143 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1144 		if (n == NULL)
1145 			return (ENOBUFS);
1146 		m = n;
1147 	} else
1148 		m->m_data = m->m_ext.ext_buf;
1149 
1150 
1151 #ifdef VGE_FIXUP_RX
1152 	/*
1153 	 * This is part of an evil trick to deal with non-x86 platforms.
1154 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1155 	 * boundaries, but that will hose non-x86 machines. To get around
1156 	 * this, we leave some empty space at the start of each buffer
1157 	 * and for non-x86 hosts, we copy the buffer back two bytes
1158 	 * to achieve word alignment. This is slightly more efficient
1159 	 * than allocating a new buffer, copying the contents, and
1160 	 * discarding the old buffer.
1161 	 */
1162 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1163 	m_adj(m, VGE_ETHER_ALIGN);
1164 #else
1165 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1166 #endif
1167 
1168 	arg.sc = sc;
1169 	arg.vge_idx = idx;
1170 	arg.vge_maxsegs = 1;
1171 	arg.vge_flags = 0;
1172 
1173 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1174 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1175 	    &arg, BUS_DMA_NOWAIT);
1176 	if (error || arg.vge_maxsegs != 1) {
1177 		if (n != NULL)
1178 			m_freem(n);
1179 		return (ENOMEM);
1180 	}
1181 
1182 	/*
1183 	 * Note: the manual fails to document the fact that for
1184 	 * proper opration, the driver needs to replentish the RX
1185 	 * DMA ring 4 descriptors at a time (rather than one at a
1186 	 * time, like most chips). We can allocate the new buffers
1187 	 * but we should not set the OWN bits until we're ready
1188 	 * to hand back 4 of them in one shot.
1189 	 */
1190 
1191 #define VGE_RXCHUNK 4
1192 	sc->vge_rx_consumed++;
1193 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1194 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1195 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1196 			    htole32(VGE_RDSTS_OWN);
1197 		sc->vge_rx_consumed = 0;
1198 	}
1199 
1200 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1201 
1202 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1203 	    sc->vge_ldata.vge_rx_dmamap[idx],
1204 	    BUS_DMASYNC_PREREAD);
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 vge_tx_list_init(sc)
1211 	struct vge_softc		*sc;
1212 {
1213 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1214 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1215 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1216 
1217 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1218 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1219 	sc->vge_ldata.vge_tx_prodidx = 0;
1220 	sc->vge_ldata.vge_tx_considx = 0;
1221 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1222 
1223 	return (0);
1224 }
1225 
1226 static int
1227 vge_rx_list_init(sc)
1228 	struct vge_softc		*sc;
1229 {
1230 	int			i;
1231 
1232 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1233 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1234 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1235 
1236 	sc->vge_rx_consumed = 0;
1237 
1238 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1239 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1240 			return (ENOBUFS);
1241 	}
1242 
1243 	/* Flush the RX descriptors */
1244 
1245 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1246 	    sc->vge_ldata.vge_rx_list_map,
1247 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1248 
1249 	sc->vge_ldata.vge_rx_prodidx = 0;
1250 	sc->vge_rx_consumed = 0;
1251 	sc->vge_head = sc->vge_tail = NULL;
1252 
1253 	return (0);
1254 }
1255 
1256 #ifdef VGE_FIXUP_RX
1257 static __inline void
1258 vge_fixup_rx(m)
1259 	struct mbuf		*m;
1260 {
1261 	int			i;
1262 	uint16_t		*src, *dst;
1263 
1264 	src = mtod(m, uint16_t *);
1265 	dst = src - 1;
1266 
1267 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1268 		*dst++ = *src++;
1269 
1270 	m->m_data -= ETHER_ALIGN;
1271 
1272 	return;
1273 }
1274 #endif
1275 
1276 /*
1277  * RX handler. We support the reception of jumbo frames that have
1278  * been fragmented across multiple 2K mbuf cluster buffers.
1279  */
1280 static int
1281 vge_rxeof(sc)
1282 	struct vge_softc	*sc;
1283 {
1284 	struct mbuf		*m;
1285 	struct ifnet		*ifp;
1286 	int			i, total_len;
1287 	int			lim = 0;
1288 	struct vge_rx_desc	*cur_rx;
1289 	u_int32_t		rxstat, rxctl;
1290 
1291 	VGE_LOCK_ASSERT(sc);
1292 	ifp = sc->vge_ifp;
1293 	i = sc->vge_ldata.vge_rx_prodidx;
1294 
1295 	/* Invalidate the descriptor memory */
1296 
1297 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1298 	    sc->vge_ldata.vge_rx_list_map,
1299 	    BUS_DMASYNC_POSTREAD);
1300 
1301 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1302 
1303 #ifdef DEVICE_POLLING
1304 		if (ifp->if_capenable & IFCAP_POLLING) {
1305 			if (sc->rxcycles <= 0)
1306 				break;
1307 			sc->rxcycles--;
1308 		}
1309 #endif
1310 
1311 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1312 		m = sc->vge_ldata.vge_rx_mbuf[i];
1313 		total_len = VGE_RXBYTES(cur_rx);
1314 		rxstat = le32toh(cur_rx->vge_sts);
1315 		rxctl = le32toh(cur_rx->vge_ctl);
1316 
1317 		/* Invalidate the RX mbuf and unload its map */
1318 
1319 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1320 		    sc->vge_ldata.vge_rx_dmamap[i],
1321 		    BUS_DMASYNC_POSTWRITE);
1322 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1323 		    sc->vge_ldata.vge_rx_dmamap[i]);
1324 
1325 		/*
1326 		 * If the 'start of frame' bit is set, this indicates
1327 		 * either the first fragment in a multi-fragment receive,
1328 		 * or an intermediate fragment. Either way, we want to
1329 		 * accumulate the buffers.
1330 		 */
1331 		if (rxstat & VGE_RXPKT_SOF) {
1332 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1333 			if (sc->vge_head == NULL)
1334 				sc->vge_head = sc->vge_tail = m;
1335 			else {
1336 				m->m_flags &= ~M_PKTHDR;
1337 				sc->vge_tail->m_next = m;
1338 				sc->vge_tail = m;
1339 			}
1340 			vge_newbuf(sc, i, NULL);
1341 			VGE_RX_DESC_INC(i);
1342 			continue;
1343 		}
1344 
1345 		/*
1346 		 * Bad/error frames will have the RXOK bit cleared.
1347 		 * However, there's one error case we want to allow:
1348 		 * if a VLAN tagged frame arrives and the chip can't
1349 		 * match it against the CAM filter, it considers this
1350 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1351 		 * We don't want to drop the frame though: our VLAN
1352 		 * filtering is done in software.
1353 		 */
1354 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1355 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1356 			ifp->if_ierrors++;
1357 			/*
1358 			 * If this is part of a multi-fragment packet,
1359 			 * discard all the pieces.
1360 			 */
1361 			if (sc->vge_head != NULL) {
1362 				m_freem(sc->vge_head);
1363 				sc->vge_head = sc->vge_tail = NULL;
1364 			}
1365 			vge_newbuf(sc, i, m);
1366 			VGE_RX_DESC_INC(i);
1367 			continue;
1368 		}
1369 
1370 		/*
1371 		 * If allocating a replacement mbuf fails,
1372 		 * reload the current one.
1373 		 */
1374 
1375 		if (vge_newbuf(sc, i, NULL)) {
1376 			ifp->if_ierrors++;
1377 			if (sc->vge_head != NULL) {
1378 				m_freem(sc->vge_head);
1379 				sc->vge_head = sc->vge_tail = NULL;
1380 			}
1381 			vge_newbuf(sc, i, m);
1382 			VGE_RX_DESC_INC(i);
1383 			continue;
1384 		}
1385 
1386 		VGE_RX_DESC_INC(i);
1387 
1388 		if (sc->vge_head != NULL) {
1389 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1390 			/*
1391 			 * Special case: if there's 4 bytes or less
1392 			 * in this buffer, the mbuf can be discarded:
1393 			 * the last 4 bytes is the CRC, which we don't
1394 			 * care about anyway.
1395 			 */
1396 			if (m->m_len <= ETHER_CRC_LEN) {
1397 				sc->vge_tail->m_len -=
1398 				    (ETHER_CRC_LEN - m->m_len);
1399 				m_freem(m);
1400 			} else {
1401 				m->m_len -= ETHER_CRC_LEN;
1402 				m->m_flags &= ~M_PKTHDR;
1403 				sc->vge_tail->m_next = m;
1404 			}
1405 			m = sc->vge_head;
1406 			sc->vge_head = sc->vge_tail = NULL;
1407 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1408 		} else
1409 			m->m_pkthdr.len = m->m_len =
1410 			    (total_len - ETHER_CRC_LEN);
1411 
1412 #ifdef VGE_FIXUP_RX
1413 		vge_fixup_rx(m);
1414 #endif
1415 		ifp->if_ipackets++;
1416 		m->m_pkthdr.rcvif = ifp;
1417 
1418 		/* Do RX checksumming if enabled */
1419 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1420 
1421 			/* Check IP header checksum */
1422 			if (rxctl & VGE_RDCTL_IPPKT)
1423 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1424 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1425 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1426 
1427 			/* Check TCP/UDP checksum */
1428 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1429 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1430 				m->m_pkthdr.csum_flags |=
1431 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1432 				m->m_pkthdr.csum_data = 0xffff;
1433 			}
1434 		}
1435 
1436 		if (rxstat & VGE_RDSTS_VTAG) {
1437 			/*
1438 			 * The 32-bit rxctl register is stored in little-endian.
1439 			 * However, the 16-bit vlan tag is stored in big-endian,
1440 			 * so we have to byte swap it.
1441 			 */
1442 			m->m_pkthdr.ether_vtag =
1443 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1444 			m->m_flags |= M_VLANTAG;
1445 		}
1446 
1447 		VGE_UNLOCK(sc);
1448 		(*ifp->if_input)(ifp, m);
1449 		VGE_LOCK(sc);
1450 
1451 		lim++;
1452 		if (lim == VGE_RX_DESC_CNT)
1453 			break;
1454 
1455 	}
1456 
1457 	/* Flush the RX DMA ring */
1458 
1459 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1460 	    sc->vge_ldata.vge_rx_list_map,
1461 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1462 
1463 	sc->vge_ldata.vge_rx_prodidx = i;
1464 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1465 
1466 
1467 	return (lim);
1468 }
1469 
1470 static void
1471 vge_txeof(sc)
1472 	struct vge_softc		*sc;
1473 {
1474 	struct ifnet		*ifp;
1475 	u_int32_t		txstat;
1476 	int			idx;
1477 
1478 	ifp = sc->vge_ifp;
1479 	idx = sc->vge_ldata.vge_tx_considx;
1480 
1481 	/* Invalidate the TX descriptor list */
1482 
1483 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1484 	    sc->vge_ldata.vge_tx_list_map,
1485 	    BUS_DMASYNC_POSTREAD);
1486 
1487 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1488 
1489 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1490 		if (txstat & VGE_TDSTS_OWN)
1491 			break;
1492 
1493 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1494 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1495 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1496 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1497 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1498 			ifp->if_collisions++;
1499 		if (txstat & VGE_TDSTS_TXERR)
1500 			ifp->if_oerrors++;
1501 		else
1502 			ifp->if_opackets++;
1503 
1504 		sc->vge_ldata.vge_tx_free++;
1505 		VGE_TX_DESC_INC(idx);
1506 	}
1507 
1508 	/* No changes made to the TX ring, so no flush needed */
1509 
1510 	if (idx != sc->vge_ldata.vge_tx_considx) {
1511 		sc->vge_ldata.vge_tx_considx = idx;
1512 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1513 		sc->vge_timer = 0;
1514 	}
1515 
1516 	/*
1517 	 * If not all descriptors have been released reaped yet,
1518 	 * reload the timer so that we will eventually get another
1519 	 * interrupt that will cause us to re-enter this routine.
1520 	 * This is done in case the transmitter has gone idle.
1521 	 */
1522 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1523 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1524 	}
1525 
1526 	return;
1527 }
1528 
1529 static void
1530 vge_tick(xsc)
1531 	void			*xsc;
1532 {
1533 	struct vge_softc	*sc;
1534 	struct ifnet		*ifp;
1535 	struct mii_data		*mii;
1536 
1537 	sc = xsc;
1538 	ifp = sc->vge_ifp;
1539 	VGE_LOCK_ASSERT(sc);
1540 	mii = device_get_softc(sc->vge_miibus);
1541 
1542 	mii_tick(mii);
1543 	if (sc->vge_link) {
1544 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1545 			sc->vge_link = 0;
1546 			if_link_state_change(sc->vge_ifp,
1547 			    LINK_STATE_DOWN);
1548 		}
1549 	} else {
1550 		if (mii->mii_media_status & IFM_ACTIVE &&
1551 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1552 			sc->vge_link = 1;
1553 			if_link_state_change(sc->vge_ifp,
1554 			    LINK_STATE_UP);
1555 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1556 				vge_start_locked(ifp);
1557 		}
1558 	}
1559 
1560 	return;
1561 }
1562 
1563 #ifdef DEVICE_POLLING
1564 static int
1565 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1566 {
1567 	struct vge_softc *sc = ifp->if_softc;
1568 	int rx_npkts = 0;
1569 
1570 	VGE_LOCK(sc);
1571 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1572 		goto done;
1573 
1574 	sc->rxcycles = count;
1575 	rx_npkts = vge_rxeof(sc);
1576 	vge_txeof(sc);
1577 
1578 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1579 		vge_start_locked(ifp);
1580 
1581 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1582 		u_int32_t       status;
1583 		status = CSR_READ_4(sc, VGE_ISR);
1584 		if (status == 0xFFFFFFFF)
1585 			goto done;
1586 		if (status)
1587 			CSR_WRITE_4(sc, VGE_ISR, status);
1588 
1589 		/*
1590 		 * XXX check behaviour on receiver stalls.
1591 		 */
1592 
1593 		if (status & VGE_ISR_TXDMA_STALL ||
1594 		    status & VGE_ISR_RXDMA_STALL)
1595 			vge_init_locked(sc);
1596 
1597 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1598 			vge_rxeof(sc);
1599 			ifp->if_ierrors++;
1600 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1601 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1602 		}
1603 	}
1604 done:
1605 	VGE_UNLOCK(sc);
1606 	return (rx_npkts);
1607 }
1608 #endif /* DEVICE_POLLING */
1609 
1610 static void
1611 vge_intr(arg)
1612 	void			*arg;
1613 {
1614 	struct vge_softc	*sc;
1615 	struct ifnet		*ifp;
1616 	u_int32_t		status;
1617 
1618 	sc = arg;
1619 
1620 	if (sc->suspended) {
1621 		return;
1622 	}
1623 
1624 	VGE_LOCK(sc);
1625 	ifp = sc->vge_ifp;
1626 
1627 	if (!(ifp->if_flags & IFF_UP)) {
1628 		VGE_UNLOCK(sc);
1629 		return;
1630 	}
1631 
1632 #ifdef DEVICE_POLLING
1633 	if  (ifp->if_capenable & IFCAP_POLLING) {
1634 		VGE_UNLOCK(sc);
1635 		return;
1636 	}
1637 #endif
1638 
1639 	/* Disable interrupts */
1640 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1641 
1642 	for (;;) {
1643 
1644 		status = CSR_READ_4(sc, VGE_ISR);
1645 		/* If the card has gone away the read returns 0xffff. */
1646 		if (status == 0xFFFFFFFF)
1647 			break;
1648 
1649 		if (status)
1650 			CSR_WRITE_4(sc, VGE_ISR, status);
1651 
1652 		if ((status & VGE_INTRS) == 0)
1653 			break;
1654 
1655 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1656 			vge_rxeof(sc);
1657 
1658 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1659 			vge_rxeof(sc);
1660 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1661 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1662 		}
1663 
1664 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1665 			vge_txeof(sc);
1666 
1667 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1668 			vge_init_locked(sc);
1669 
1670 		if (status & VGE_ISR_LINKSTS)
1671 			vge_tick(sc);
1672 	}
1673 
1674 	/* Re-enable interrupts */
1675 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1676 
1677 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1678 		vge_start_locked(ifp);
1679 
1680 	VGE_UNLOCK(sc);
1681 
1682 	return;
1683 }
1684 
1685 static int
1686 vge_encap(sc, m_head, idx)
1687 	struct vge_softc	*sc;
1688 	struct mbuf		*m_head;
1689 	int			idx;
1690 {
1691 	struct mbuf		*m_new = NULL;
1692 	struct vge_dmaload_arg	arg;
1693 	bus_dmamap_t		map;
1694 	int			error;
1695 
1696 	if (sc->vge_ldata.vge_tx_free <= 2)
1697 		return (EFBIG);
1698 
1699 	arg.vge_flags = 0;
1700 
1701 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1702 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1703 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1704 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1705 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1706 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1707 
1708 	arg.sc = sc;
1709 	arg.vge_idx = idx;
1710 	arg.vge_m0 = m_head;
1711 	arg.vge_maxsegs = VGE_TX_FRAGS;
1712 
1713 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1714 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1715 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1716 
1717 	if (error && error != EFBIG) {
1718 		if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
1719 		return (ENOBUFS);
1720 	}
1721 
1722 	/* Too many segments to map, coalesce into a single mbuf */
1723 
1724 	if (error || arg.vge_maxsegs == 0) {
1725 		m_new = m_defrag(m_head, M_DONTWAIT);
1726 		if (m_new == NULL)
1727 			return (1);
1728 		else
1729 			m_head = m_new;
1730 
1731 		arg.sc = sc;
1732 		arg.vge_m0 = m_head;
1733 		arg.vge_idx = idx;
1734 		arg.vge_maxsegs = 1;
1735 
1736 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1737 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1738 		if (error) {
1739 			if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
1740 			    error);
1741 			return (EFBIG);
1742 		}
1743 	}
1744 
1745 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1746 	sc->vge_ldata.vge_tx_free--;
1747 
1748 	/*
1749 	 * Set up hardware VLAN tagging.
1750 	 */
1751 
1752 	if (m_head->m_flags & M_VLANTAG)
1753 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1754 		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1755 
1756 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1757 
1758 	return (0);
1759 }
1760 
1761 /*
1762  * Main transmit routine.
1763  */
1764 
1765 static void
1766 vge_start(ifp)
1767 	struct ifnet		*ifp;
1768 {
1769 	struct vge_softc	*sc;
1770 
1771 	sc = ifp->if_softc;
1772 	VGE_LOCK(sc);
1773 	vge_start_locked(ifp);
1774 	VGE_UNLOCK(sc);
1775 }
1776 
1777 static void
1778 vge_start_locked(ifp)
1779 	struct ifnet		*ifp;
1780 {
1781 	struct vge_softc	*sc;
1782 	struct mbuf		*m_head = NULL;
1783 	int			idx, pidx = 0;
1784 
1785 	sc = ifp->if_softc;
1786 	VGE_LOCK_ASSERT(sc);
1787 
1788 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE)
1789 		return;
1790 
1791 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1792 		return;
1793 
1794 	idx = sc->vge_ldata.vge_tx_prodidx;
1795 
1796 	pidx = idx - 1;
1797 	if (pidx < 0)
1798 		pidx = VGE_TX_DESC_CNT - 1;
1799 
1800 
1801 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1802 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1803 		if (m_head == NULL)
1804 			break;
1805 
1806 		if (vge_encap(sc, m_head, idx)) {
1807 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1808 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1809 			break;
1810 		}
1811 
1812 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1813 		    htole16(VGE_TXDESC_Q);
1814 
1815 		pidx = idx;
1816 		VGE_TX_DESC_INC(idx);
1817 
1818 		/*
1819 		 * If there's a BPF listener, bounce a copy of this frame
1820 		 * to him.
1821 		 */
1822 		ETHER_BPF_MTAP(ifp, m_head);
1823 	}
1824 
1825 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1826 		return;
1827 
1828 	/* Flush the TX descriptors */
1829 
1830 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1831 	    sc->vge_ldata.vge_tx_list_map,
1832 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1833 
1834 	/* Issue a transmit command. */
1835 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1836 
1837 	sc->vge_ldata.vge_tx_prodidx = idx;
1838 
1839 	/*
1840 	 * Use the countdown timer for interrupt moderation.
1841 	 * 'TX done' interrupts are disabled. Instead, we reset the
1842 	 * countdown timer, which will begin counting until it hits
1843 	 * the value in the SSTIMER register, and then trigger an
1844 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1845 	 * the timer count is reloaded. Only when the transmitter
1846 	 * is idle will the timer hit 0 and an interrupt fire.
1847 	 */
1848 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1849 
1850 	/*
1851 	 * Set a timeout in case the chip goes out to lunch.
1852 	 */
1853 	sc->vge_timer = 5;
1854 
1855 	return;
1856 }
1857 
1858 static void
1859 vge_init(xsc)
1860 	void			*xsc;
1861 {
1862 	struct vge_softc	*sc = xsc;
1863 
1864 	VGE_LOCK(sc);
1865 	vge_init_locked(sc);
1866 	VGE_UNLOCK(sc);
1867 }
1868 
1869 static void
1870 vge_init_locked(struct vge_softc *sc)
1871 {
1872 	struct ifnet		*ifp = sc->vge_ifp;
1873 	struct mii_data		*mii;
1874 	int			i;
1875 
1876 	VGE_LOCK_ASSERT(sc);
1877 	mii = device_get_softc(sc->vge_miibus);
1878 
1879 	/*
1880 	 * Cancel pending I/O and free all RX/TX buffers.
1881 	 */
1882 	vge_stop(sc);
1883 	vge_reset(sc);
1884 
1885 	/*
1886 	 * Initialize the RX and TX descriptors and mbufs.
1887 	 */
1888 
1889 	vge_rx_list_init(sc);
1890 	vge_tx_list_init(sc);
1891 
1892 	/* Set our station address */
1893 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1894 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1895 
1896 	/*
1897 	 * Set receive FIFO threshold. Also allow transmission and
1898 	 * reception of VLAN tagged frames.
1899 	 */
1900 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1901 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1902 
1903 	/* Set DMA burst length */
1904 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1905 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1906 
1907 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1908 
1909 	/* Set collision backoff algorithm */
1910 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1911 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1912 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1913 
1914 	/* Disable LPSEL field in priority resolution */
1915 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1916 
1917 	/*
1918 	 * Load the addresses of the DMA queues into the chip.
1919 	 * Note that we only use one transmit queue.
1920 	 */
1921 
1922 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1923 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1924 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1925 
1926 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1927 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1928 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1929 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1930 
1931 	/* Enable and wake up the RX descriptor queue */
1932 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1933 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1934 
1935 	/* Enable the TX descriptor queue */
1936 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1937 
1938 	/* Set up the receive filter -- allow large frames for VLANs. */
1939 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1940 
1941 	/* If we want promiscuous mode, set the allframes bit. */
1942 	if (ifp->if_flags & IFF_PROMISC) {
1943 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1944 	}
1945 
1946 	/* Set capture broadcast bit to capture broadcast frames. */
1947 	if (ifp->if_flags & IFF_BROADCAST) {
1948 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1949 	}
1950 
1951 	/* Set multicast bit to capture multicast frames. */
1952 	if (ifp->if_flags & IFF_MULTICAST) {
1953 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1954 	}
1955 
1956 	/* Init the cam filter. */
1957 	vge_cam_clear(sc);
1958 
1959 	/* Init the multicast filter. */
1960 	vge_setmulti(sc);
1961 
1962 	/* Enable flow control */
1963 
1964 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1965 
1966 	/* Enable jumbo frame reception (if desired) */
1967 
1968 	/* Start the MAC. */
1969 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1970 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1971 	CSR_WRITE_1(sc, VGE_CRS0,
1972 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1973 
1974 	/*
1975 	 * Configure one-shot timer for microsecond
1976 	 * resulution and load it for 500 usecs.
1977 	 */
1978 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1979 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1980 
1981 	/*
1982 	 * Configure interrupt moderation for receive. Enable
1983 	 * the holdoff counter and load it, and set the RX
1984 	 * suppression count to the number of descriptors we
1985 	 * want to allow before triggering an interrupt.
1986 	 * The holdoff timer is in units of 20 usecs.
1987 	 */
1988 
1989 #ifdef notyet
1990 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1991 	/* Select the interrupt holdoff timer page. */
1992 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1993 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1994 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1995 
1996 	/* Enable use of the holdoff timer. */
1997 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1998 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1999 
2000 	/* Select the RX suppression threshold page. */
2001 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2002 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2003 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2004 
2005 	/* Restore the page select bits. */
2006 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2007 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2008 #endif
2009 
2010 #ifdef DEVICE_POLLING
2011 	/*
2012 	 * Disable interrupts if we are polling.
2013 	 */
2014 	if (ifp->if_capenable & IFCAP_POLLING) {
2015 		CSR_WRITE_4(sc, VGE_IMR, 0);
2016 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2017 	} else	/* otherwise ... */
2018 #endif
2019 	{
2020 	/*
2021 	 * Enable interrupts.
2022 	 */
2023 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2024 		CSR_WRITE_4(sc, VGE_ISR, 0);
2025 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2026 	}
2027 
2028 	mii_mediachg(mii);
2029 
2030 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2031 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2032 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2033 
2034 	sc->vge_if_flags = 0;
2035 	sc->vge_link = 0;
2036 
2037 	return;
2038 }
2039 
2040 /*
2041  * Set media options.
2042  */
2043 static int
2044 vge_ifmedia_upd(ifp)
2045 	struct ifnet		*ifp;
2046 {
2047 	struct vge_softc	*sc;
2048 	struct mii_data		*mii;
2049 
2050 	sc = ifp->if_softc;
2051 	VGE_LOCK(sc);
2052 	mii = device_get_softc(sc->vge_miibus);
2053 	mii_mediachg(mii);
2054 	VGE_UNLOCK(sc);
2055 
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Report current media status.
2061  */
2062 static void
2063 vge_ifmedia_sts(ifp, ifmr)
2064 	struct ifnet		*ifp;
2065 	struct ifmediareq	*ifmr;
2066 {
2067 	struct vge_softc	*sc;
2068 	struct mii_data		*mii;
2069 
2070 	sc = ifp->if_softc;
2071 	mii = device_get_softc(sc->vge_miibus);
2072 
2073 	VGE_LOCK(sc);
2074 	mii_pollstat(mii);
2075 	VGE_UNLOCK(sc);
2076 	ifmr->ifm_active = mii->mii_media_active;
2077 	ifmr->ifm_status = mii->mii_media_status;
2078 
2079 	return;
2080 }
2081 
2082 static void
2083 vge_miibus_statchg(dev)
2084 	device_t		dev;
2085 {
2086 	struct vge_softc	*sc;
2087 	struct mii_data		*mii;
2088 	struct ifmedia_entry	*ife;
2089 
2090 	sc = device_get_softc(dev);
2091 	mii = device_get_softc(sc->vge_miibus);
2092 	ife = mii->mii_media.ifm_cur;
2093 
2094 	/*
2095 	 * If the user manually selects a media mode, we need to turn
2096 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2097 	 * user happens to choose a full duplex mode, we also need to
2098 	 * set the 'force full duplex' bit. This applies only to
2099 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2100 	 * mode is disabled, and in 1000baseT mode, full duplex is
2101 	 * always implied, so we turn on the forced mode bit but leave
2102 	 * the FDX bit cleared.
2103 	 */
2104 
2105 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2106 	case IFM_AUTO:
2107 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2108 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2109 		break;
2110 	case IFM_1000_T:
2111 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2112 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2113 		break;
2114 	case IFM_100_TX:
2115 	case IFM_10_T:
2116 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2117 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2118 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2119 		} else {
2120 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2121 		}
2122 		break;
2123 	default:
2124 		device_printf(dev, "unknown media type: %x\n",
2125 		    IFM_SUBTYPE(ife->ifm_media));
2126 		break;
2127 	}
2128 
2129 	return;
2130 }
2131 
2132 static int
2133 vge_ioctl(ifp, command, data)
2134 	struct ifnet		*ifp;
2135 	u_long			command;
2136 	caddr_t			data;
2137 {
2138 	struct vge_softc	*sc = ifp->if_softc;
2139 	struct ifreq		*ifr = (struct ifreq *) data;
2140 	struct mii_data		*mii;
2141 	int			error = 0;
2142 
2143 	switch (command) {
2144 	case SIOCSIFMTU:
2145 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2146 			error = EINVAL;
2147 		ifp->if_mtu = ifr->ifr_mtu;
2148 		break;
2149 	case SIOCSIFFLAGS:
2150 		VGE_LOCK(sc);
2151 		if (ifp->if_flags & IFF_UP) {
2152 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2153 			    ifp->if_flags & IFF_PROMISC &&
2154 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2155 				CSR_SETBIT_1(sc, VGE_RXCTL,
2156 				    VGE_RXCTL_RX_PROMISC);
2157 				vge_setmulti(sc);
2158 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2159 			    !(ifp->if_flags & IFF_PROMISC) &&
2160 			    sc->vge_if_flags & IFF_PROMISC) {
2161 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2162 				    VGE_RXCTL_RX_PROMISC);
2163 				vge_setmulti(sc);
2164                         } else
2165 				vge_init_locked(sc);
2166 		} else {
2167 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2168 				vge_stop(sc);
2169 		}
2170 		sc->vge_if_flags = ifp->if_flags;
2171 		VGE_UNLOCK(sc);
2172 		break;
2173 	case SIOCADDMULTI:
2174 	case SIOCDELMULTI:
2175 		VGE_LOCK(sc);
2176 		vge_setmulti(sc);
2177 		VGE_UNLOCK(sc);
2178 		break;
2179 	case SIOCGIFMEDIA:
2180 	case SIOCSIFMEDIA:
2181 		mii = device_get_softc(sc->vge_miibus);
2182 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2183 		break;
2184 	case SIOCSIFCAP:
2185 	    {
2186 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2187 #ifdef DEVICE_POLLING
2188 		if (mask & IFCAP_POLLING) {
2189 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2190 				error = ether_poll_register(vge_poll, ifp);
2191 				if (error)
2192 					return(error);
2193 				VGE_LOCK(sc);
2194 					/* Disable interrupts */
2195 				CSR_WRITE_4(sc, VGE_IMR, 0);
2196 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2197 				ifp->if_capenable |= IFCAP_POLLING;
2198 				VGE_UNLOCK(sc);
2199 			} else {
2200 				error = ether_poll_deregister(ifp);
2201 				/* Enable interrupts. */
2202 				VGE_LOCK(sc);
2203 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2204 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2205 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2206 				ifp->if_capenable &= ~IFCAP_POLLING;
2207 				VGE_UNLOCK(sc);
2208 			}
2209 		}
2210 #endif /* DEVICE_POLLING */
2211 		VGE_LOCK(sc);
2212 		if ((mask & IFCAP_TXCSUM) != 0 &&
2213 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2214 			ifp->if_capenable ^= IFCAP_TXCSUM;
2215 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2216 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2217 			else
2218 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2219 		}
2220 		if ((mask & IFCAP_RXCSUM) != 0 &&
2221 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2222 			ifp->if_capenable ^= IFCAP_RXCSUM;
2223 		VGE_UNLOCK(sc);
2224 	    }
2225 		break;
2226 	default:
2227 		error = ether_ioctl(ifp, command, data);
2228 		break;
2229 	}
2230 
2231 	return (error);
2232 }
2233 
2234 static void
2235 vge_watchdog(void *arg)
2236 {
2237 	struct vge_softc *sc;
2238 	struct ifnet *ifp;
2239 
2240 	sc = arg;
2241 	VGE_LOCK_ASSERT(sc);
2242 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2243 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2244 		return;
2245 
2246 	ifp = sc->vge_ifp;
2247 	if_printf(ifp, "watchdog timeout\n");
2248 	ifp->if_oerrors++;
2249 
2250 	vge_txeof(sc);
2251 	vge_rxeof(sc);
2252 
2253 	vge_init_locked(sc);
2254 
2255 	return;
2256 }
2257 
2258 /*
2259  * Stop the adapter and free any mbufs allocated to the
2260  * RX and TX lists.
2261  */
2262 static void
2263 vge_stop(sc)
2264 	struct vge_softc		*sc;
2265 {
2266 	register int		i;
2267 	struct ifnet		*ifp;
2268 
2269 	VGE_LOCK_ASSERT(sc);
2270 	ifp = sc->vge_ifp;
2271 	sc->vge_timer = 0;
2272 	callout_stop(&sc->vge_watchdog);
2273 
2274 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2275 
2276 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2277 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2278 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2279 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2280 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2281 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2282 
2283 	if (sc->vge_head != NULL) {
2284 		m_freem(sc->vge_head);
2285 		sc->vge_head = sc->vge_tail = NULL;
2286 	}
2287 
2288 	/* Free the TX list buffers. */
2289 
2290 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2291 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2292 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2293 			    sc->vge_ldata.vge_tx_dmamap[i]);
2294 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2295 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2296 		}
2297 	}
2298 
2299 	/* Free the RX list buffers. */
2300 
2301 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2302 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2303 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2304 			    sc->vge_ldata.vge_rx_dmamap[i]);
2305 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2306 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2307 		}
2308 	}
2309 
2310 	return;
2311 }
2312 
2313 /*
2314  * Device suspend routine.  Stop the interface and save some PCI
2315  * settings in case the BIOS doesn't restore them properly on
2316  * resume.
2317  */
2318 static int
2319 vge_suspend(dev)
2320 	device_t		dev;
2321 {
2322 	struct vge_softc	*sc;
2323 
2324 	sc = device_get_softc(dev);
2325 
2326 	VGE_LOCK(sc);
2327 	vge_stop(sc);
2328 
2329 	sc->suspended = 1;
2330 	VGE_UNLOCK(sc);
2331 
2332 	return (0);
2333 }
2334 
2335 /*
2336  * Device resume routine.  Restore some PCI settings in case the BIOS
2337  * doesn't, re-enable busmastering, and restart the interface if
2338  * appropriate.
2339  */
2340 static int
2341 vge_resume(dev)
2342 	device_t		dev;
2343 {
2344 	struct vge_softc	*sc;
2345 	struct ifnet		*ifp;
2346 
2347 	sc = device_get_softc(dev);
2348 	ifp = sc->vge_ifp;
2349 
2350 	/* reenable busmastering */
2351 	pci_enable_busmaster(dev);
2352 	pci_enable_io(dev, SYS_RES_MEMORY);
2353 
2354 	/* reinitialize interface if necessary */
2355 	VGE_LOCK(sc);
2356 	if (ifp->if_flags & IFF_UP)
2357 		vge_init_locked(sc);
2358 
2359 	sc->suspended = 0;
2360 	VGE_UNLOCK(sc);
2361 
2362 	return (0);
2363 }
2364 
2365 /*
2366  * Stop all chip I/O so that the kernel's probe routines don't
2367  * get confused by errant DMAs when rebooting.
2368  */
2369 static int
2370 vge_shutdown(dev)
2371 	device_t		dev;
2372 {
2373 	struct vge_softc		*sc;
2374 
2375 	sc = device_get_softc(dev);
2376 
2377 	VGE_LOCK(sc);
2378 	vge_stop(sc);
2379 	VGE_UNLOCK(sc);
2380 
2381 	return (0);
2382 }
2383