xref: /freebsd/sys/dev/vge/if_vge.c (revision 3f0164abf32b9b761e0a2cb4bdca3a8b84f156d4)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /* Tunables */
132 static int msi_disable = 0;
133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134 
135 /*
136  * The SQE error counter of MIB seems to report bogus value.
137  * Vendor's workaround does not seem to work on PCIe based
138  * controllers. Disable it until we find better workaround.
139  */
140 #undef VGE_ENABLE_SQEERR
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct vge_type vge_devs[] = {
146 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147 		"VIA Networking Velocity Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int	vge_attach(device_t);
152 static int	vge_detach(device_t);
153 static int	vge_probe(device_t);
154 static int	vge_resume(device_t);
155 static int	vge_shutdown(device_t);
156 static int	vge_suspend(device_t);
157 
158 static void	vge_cam_clear(struct vge_softc *);
159 static int	vge_cam_set(struct vge_softc *, uint8_t *);
160 static void	vge_clrwol(struct vge_softc *);
161 static void	vge_discard_rxbuf(struct vge_softc *, int);
162 static int	vge_dma_alloc(struct vge_softc *);
163 static void	vge_dma_free(struct vge_softc *);
164 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165 #ifdef VGE_EEPROM
166 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167 #endif
168 static int	vge_encap(struct vge_softc *, struct mbuf **);
169 #ifndef __NO_STRICT_ALIGNMENT
170 static __inline void
171 		vge_fixup_rx(struct mbuf *);
172 #endif
173 static void	vge_freebufs(struct vge_softc *);
174 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 static int	vge_ifmedia_upd(struct ifnet *);
176 static int	vge_ifmedia_upd_locked(struct vge_softc *);
177 static void	vge_init(void *);
178 static void	vge_init_locked(struct vge_softc *);
179 static void	vge_intr(void *);
180 static void	vge_intr_holdoff(struct vge_softc *);
181 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
182 static void	vge_link_statchg(void *);
183 static int	vge_miibus_readreg(device_t, int, int);
184 static int	vge_miibus_writereg(device_t, int, int, int);
185 static void	vge_miipoll_start(struct vge_softc *);
186 static void	vge_miipoll_stop(struct vge_softc *);
187 static int	vge_newbuf(struct vge_softc *, int);
188 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189 static void	vge_reset(struct vge_softc *);
190 static int	vge_rx_list_init(struct vge_softc *);
191 static int	vge_rxeof(struct vge_softc *, int);
192 static void	vge_rxfilter(struct vge_softc *);
193 static void	vge_setmedia(struct vge_softc *);
194 static void	vge_setvlan(struct vge_softc *);
195 static void	vge_setwol(struct vge_softc *);
196 static void	vge_start(struct ifnet *);
197 static void	vge_start_locked(struct ifnet *);
198 static void	vge_stats_clear(struct vge_softc *);
199 static void	vge_stats_update(struct vge_softc *);
200 static void	vge_stop(struct vge_softc *);
201 static void	vge_sysctl_node(struct vge_softc *);
202 static int	vge_tx_list_init(struct vge_softc *);
203 static void	vge_txeof(struct vge_softc *);
204 static void	vge_watchdog(void *);
205 
206 static device_method_t vge_methods[] = {
207 	/* Device interface */
208 	DEVMETHOD(device_probe,		vge_probe),
209 	DEVMETHOD(device_attach,	vge_attach),
210 	DEVMETHOD(device_detach,	vge_detach),
211 	DEVMETHOD(device_suspend,	vge_suspend),
212 	DEVMETHOD(device_resume,	vge_resume),
213 	DEVMETHOD(device_shutdown,	vge_shutdown),
214 
215 	/* MII interface */
216 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
218 
219 	DEVMETHOD_END
220 };
221 
222 static driver_t vge_driver = {
223 	"vge",
224 	vge_methods,
225 	sizeof(struct vge_softc)
226 };
227 
228 static devclass_t vge_devclass;
229 
230 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
231 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
232 
233 #ifdef VGE_EEPROM
234 /*
235  * Read a word of data stored in the EEPROM at address 'addr.'
236  */
237 static void
238 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
239 {
240 	int i;
241 	uint16_t word = 0;
242 
243 	/*
244 	 * Enter EEPROM embedded programming mode. In order to
245 	 * access the EEPROM at all, we first have to set the
246 	 * EELOAD bit in the CHIPCFG2 register.
247 	 */
248 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250 
251 	/* Select the address of the word we want to read */
252 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253 
254 	/* Issue read command */
255 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256 
257 	/* Wait for the done bit to be set. */
258 	for (i = 0; i < VGE_TIMEOUT; i++) {
259 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260 			break;
261 	}
262 
263 	if (i == VGE_TIMEOUT) {
264 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265 		*dest = 0;
266 		return;
267 	}
268 
269 	/* Read the result */
270 	word = CSR_READ_2(sc, VGE_EERDDAT);
271 
272 	/* Turn off EEPROM access mode. */
273 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275 
276 	*dest = word;
277 }
278 #endif
279 
280 /*
281  * Read a sequence of words from the EEPROM.
282  */
283 static void
284 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
285 {
286 	int i;
287 #ifdef VGE_EEPROM
288 	uint16_t word = 0, *ptr;
289 
290 	for (i = 0; i < cnt; i++) {
291 		vge_eeprom_getword(sc, off + i, &word);
292 		ptr = (uint16_t *)(dest + (i * 2));
293 		if (swap)
294 			*ptr = ntohs(word);
295 		else
296 			*ptr = word;
297 	}
298 #else
299 	for (i = 0; i < ETHER_ADDR_LEN; i++)
300 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
301 #endif
302 }
303 
304 static void
305 vge_miipoll_stop(struct vge_softc *sc)
306 {
307 	int i;
308 
309 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
310 
311 	for (i = 0; i < VGE_TIMEOUT; i++) {
312 		DELAY(1);
313 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
314 			break;
315 	}
316 
317 	if (i == VGE_TIMEOUT)
318 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
319 }
320 
321 static void
322 vge_miipoll_start(struct vge_softc *sc)
323 {
324 	int i;
325 
326 	/* First, make sure we're idle. */
327 
328 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
329 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330 
331 	for (i = 0; i < VGE_TIMEOUT; i++) {
332 		DELAY(1);
333 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334 			break;
335 	}
336 
337 	if (i == VGE_TIMEOUT) {
338 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339 		return;
340 	}
341 
342 	/* Now enable auto poll mode. */
343 
344 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345 
346 	/* And make sure it started. */
347 
348 	for (i = 0; i < VGE_TIMEOUT; i++) {
349 		DELAY(1);
350 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351 			break;
352 	}
353 
354 	if (i == VGE_TIMEOUT)
355 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356 }
357 
358 static int
359 vge_miibus_readreg(device_t dev, int phy, int reg)
360 {
361 	struct vge_softc *sc;
362 	int i;
363 	uint16_t rval = 0;
364 
365 	sc = device_get_softc(dev);
366 
367 	vge_miipoll_stop(sc);
368 
369 	/* Specify the register we want to read. */
370 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
371 
372 	/* Issue read command. */
373 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
374 
375 	/* Wait for the read command bit to self-clear. */
376 	for (i = 0; i < VGE_TIMEOUT; i++) {
377 		DELAY(1);
378 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
379 			break;
380 	}
381 
382 	if (i == VGE_TIMEOUT)
383 		device_printf(sc->vge_dev, "MII read timed out\n");
384 	else
385 		rval = CSR_READ_2(sc, VGE_MIIDATA);
386 
387 	vge_miipoll_start(sc);
388 
389 	return (rval);
390 }
391 
392 static int
393 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
394 {
395 	struct vge_softc *sc;
396 	int i, rval = 0;
397 
398 	sc = device_get_softc(dev);
399 
400 	vge_miipoll_stop(sc);
401 
402 	/* Specify the register we want to write. */
403 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
404 
405 	/* Specify the data we want to write. */
406 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
407 
408 	/* Issue write command. */
409 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
410 
411 	/* Wait for the write command bit to self-clear. */
412 	for (i = 0; i < VGE_TIMEOUT; i++) {
413 		DELAY(1);
414 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
415 			break;
416 	}
417 
418 	if (i == VGE_TIMEOUT) {
419 		device_printf(sc->vge_dev, "MII write timed out\n");
420 		rval = EIO;
421 	}
422 
423 	vge_miipoll_start(sc);
424 
425 	return (rval);
426 }
427 
428 static void
429 vge_cam_clear(struct vge_softc *sc)
430 {
431 	int i;
432 
433 	/*
434 	 * Turn off all the mask bits. This tells the chip
435 	 * that none of the entries in the CAM filter are valid.
436 	 * desired entries will be enabled as we fill the filter in.
437 	 */
438 
439 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
440 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
441 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
442 	for (i = 0; i < 8; i++)
443 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444 
445 	/* Clear the VLAN filter too. */
446 
447 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
448 	for (i = 0; i < 8; i++)
449 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
450 
451 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
452 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
454 
455 	sc->vge_camidx = 0;
456 }
457 
458 static int
459 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
460 {
461 	int i, error = 0;
462 
463 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
464 		return (ENOSPC);
465 
466 	/* Select the CAM data page. */
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
469 
470 	/* Set the filter entry we want to update and enable writing. */
471 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
472 
473 	/* Write the address to the CAM registers */
474 	for (i = 0; i < ETHER_ADDR_LEN; i++)
475 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
476 
477 	/* Issue a write command. */
478 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
479 
480 	/* Wake for it to clear. */
481 	for (i = 0; i < VGE_TIMEOUT; i++) {
482 		DELAY(1);
483 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
484 			break;
485 	}
486 
487 	if (i == VGE_TIMEOUT) {
488 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
489 		error = EIO;
490 		goto fail;
491 	}
492 
493 	/* Select the CAM mask page. */
494 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
496 
497 	/* Set the mask bit that enables this filter. */
498 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
499 	    1<<(sc->vge_camidx & 7));
500 
501 	sc->vge_camidx++;
502 
503 fail:
504 	/* Turn off access to CAM. */
505 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
506 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
507 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
508 
509 	return (error);
510 }
511 
512 static void
513 vge_setvlan(struct vge_softc *sc)
514 {
515 	struct ifnet *ifp;
516 	uint8_t cfg;
517 
518 	VGE_LOCK_ASSERT(sc);
519 
520 	ifp = sc->vge_ifp;
521 	cfg = CSR_READ_1(sc, VGE_RXCFG);
522 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
523 		cfg |= VGE_VTAG_OPT2;
524 	else
525 		cfg &= ~VGE_VTAG_OPT2;
526 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
527 }
528 
529 /*
530  * Program the multicast filter. We use the 64-entry CAM filter
531  * for perfect filtering. If there's more than 64 multicast addresses,
532  * we use the hash filter instead.
533  */
534 static void
535 vge_rxfilter(struct vge_softc *sc)
536 {
537 	struct ifnet *ifp;
538 	struct ifmultiaddr *ifma;
539 	uint32_t h, hashes[2];
540 	uint8_t rxcfg;
541 	int error = 0;
542 
543 	VGE_LOCK_ASSERT(sc);
544 
545 	/* First, zot all the multicast entries. */
546 	hashes[0] = 0;
547 	hashes[1] = 0;
548 
549 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
550 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
551 	    VGE_RXCTL_RX_PROMISC);
552 	/*
553 	 * Always allow VLAN oversized frames and frames for
554 	 * this host.
555 	 */
556 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
557 
558 	ifp = sc->vge_ifp;
559 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
560 		rxcfg |= VGE_RXCTL_RX_BCAST;
561 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
562 		if ((ifp->if_flags & IFF_PROMISC) != 0)
563 			rxcfg |= VGE_RXCTL_RX_PROMISC;
564 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
565 			hashes[0] = 0xFFFFFFFF;
566 			hashes[1] = 0xFFFFFFFF;
567 		}
568 		goto done;
569 	}
570 
571 	vge_cam_clear(sc);
572 	/* Now program new ones */
573 	if_maddr_rlock(ifp);
574 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575 		if (ifma->ifma_addr->sa_family != AF_LINK)
576 			continue;
577 		error = vge_cam_set(sc,
578 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579 		if (error)
580 			break;
581 	}
582 
583 	/* If there were too many addresses, use the hash filter. */
584 	if (error) {
585 		vge_cam_clear(sc);
586 
587 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588 			if (ifma->ifma_addr->sa_family != AF_LINK)
589 				continue;
590 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592 			if (h < 32)
593 				hashes[0] |= (1 << h);
594 			else
595 				hashes[1] |= (1 << (h - 32));
596 		}
597 	}
598 	if_maddr_runlock(ifp);
599 
600 done:
601 	if (hashes[0] != 0 || hashes[1] != 0)
602 		rxcfg |= VGE_RXCTL_RX_MCAST;
603 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
606 }
607 
608 static void
609 vge_reset(struct vge_softc *sc)
610 {
611 	int i;
612 
613 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
614 
615 	for (i = 0; i < VGE_TIMEOUT; i++) {
616 		DELAY(5);
617 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
618 			break;
619 	}
620 
621 	if (i == VGE_TIMEOUT) {
622 		device_printf(sc->vge_dev, "soft reset timed out\n");
623 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
624 		DELAY(2000);
625 	}
626 
627 	DELAY(5000);
628 }
629 
630 /*
631  * Probe for a VIA gigabit chip. Check the PCI vendor and device
632  * IDs against our list and return a device name if we find a match.
633  */
634 static int
635 vge_probe(device_t dev)
636 {
637 	struct vge_type	*t;
638 
639 	t = vge_devs;
640 
641 	while (t->vge_name != NULL) {
642 		if ((pci_get_vendor(dev) == t->vge_vid) &&
643 		    (pci_get_device(dev) == t->vge_did)) {
644 			device_set_desc(dev, t->vge_name);
645 			return (BUS_PROBE_DEFAULT);
646 		}
647 		t++;
648 	}
649 
650 	return (ENXIO);
651 }
652 
653 /*
654  * Map a single buffer address.
655  */
656 
657 struct vge_dmamap_arg {
658 	bus_addr_t	vge_busaddr;
659 };
660 
661 static void
662 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
663 {
664 	struct vge_dmamap_arg *ctx;
665 
666 	if (error != 0)
667 		return;
668 
669 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
670 
671 	ctx = (struct vge_dmamap_arg *)arg;
672 	ctx->vge_busaddr = segs[0].ds_addr;
673 }
674 
675 static int
676 vge_dma_alloc(struct vge_softc *sc)
677 {
678 	struct vge_dmamap_arg ctx;
679 	struct vge_txdesc *txd;
680 	struct vge_rxdesc *rxd;
681 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
682 	int error, i;
683 
684 	/*
685 	 * It seems old PCI controllers do not support DAC.  DAC
686 	 * configuration can be enabled by accessing VGE_CHIPCFG3
687 	 * register but honor EEPROM configuration instead of
688 	 * blindly overriding DAC configuration.  PCIe based
689 	 * controllers are supposed to support 64bit DMA so enable
690 	 * 64bit DMA on these controllers.
691 	 */
692 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
693 		lowaddr = BUS_SPACE_MAXADDR;
694 	else
695 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
696 
697 again:
698 	/* Create parent ring tag. */
699 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
700 	    1, 0,			/* algnmnt, boundary */
701 	    lowaddr,			/* lowaddr */
702 	    BUS_SPACE_MAXADDR,		/* highaddr */
703 	    NULL, NULL,			/* filter, filterarg */
704 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
705 	    0,				/* nsegments */
706 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
707 	    0,				/* flags */
708 	    NULL, NULL,			/* lockfunc, lockarg */
709 	    &sc->vge_cdata.vge_ring_tag);
710 	if (error != 0) {
711 		device_printf(sc->vge_dev,
712 		    "could not create parent DMA tag.\n");
713 		goto fail;
714 	}
715 
716 	/* Create tag for Tx ring. */
717 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
718 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
719 	    BUS_SPACE_MAXADDR,		/* lowaddr */
720 	    BUS_SPACE_MAXADDR,		/* highaddr */
721 	    NULL, NULL,			/* filter, filterarg */
722 	    VGE_TX_LIST_SZ,		/* maxsize */
723 	    1,				/* nsegments */
724 	    VGE_TX_LIST_SZ,		/* maxsegsize */
725 	    0,				/* flags */
726 	    NULL, NULL,			/* lockfunc, lockarg */
727 	    &sc->vge_cdata.vge_tx_ring_tag);
728 	if (error != 0) {
729 		device_printf(sc->vge_dev,
730 		    "could not allocate Tx ring DMA tag.\n");
731 		goto fail;
732 	}
733 
734 	/* Create tag for Rx ring. */
735 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
736 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
737 	    BUS_SPACE_MAXADDR,		/* lowaddr */
738 	    BUS_SPACE_MAXADDR,		/* highaddr */
739 	    NULL, NULL,			/* filter, filterarg */
740 	    VGE_RX_LIST_SZ,		/* maxsize */
741 	    1,				/* nsegments */
742 	    VGE_RX_LIST_SZ,		/* maxsegsize */
743 	    0,				/* flags */
744 	    NULL, NULL,			/* lockfunc, lockarg */
745 	    &sc->vge_cdata.vge_rx_ring_tag);
746 	if (error != 0) {
747 		device_printf(sc->vge_dev,
748 		    "could not allocate Rx ring DMA tag.\n");
749 		goto fail;
750 	}
751 
752 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
753 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
754 	    (void **)&sc->vge_rdata.vge_tx_ring,
755 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
756 	    &sc->vge_cdata.vge_tx_ring_map);
757 	if (error != 0) {
758 		device_printf(sc->vge_dev,
759 		    "could not allocate DMA'able memory for Tx ring.\n");
760 		goto fail;
761 	}
762 
763 	ctx.vge_busaddr = 0;
764 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
765 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
766 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
767 	if (error != 0 || ctx.vge_busaddr == 0) {
768 		device_printf(sc->vge_dev,
769 		    "could not load DMA'able memory for Tx ring.\n");
770 		goto fail;
771 	}
772 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
773 
774 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
775 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
776 	    (void **)&sc->vge_rdata.vge_rx_ring,
777 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
778 	    &sc->vge_cdata.vge_rx_ring_map);
779 	if (error != 0) {
780 		device_printf(sc->vge_dev,
781 		    "could not allocate DMA'able memory for Rx ring.\n");
782 		goto fail;
783 	}
784 
785 	ctx.vge_busaddr = 0;
786 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
787 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
788 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
789 	if (error != 0 || ctx.vge_busaddr == 0) {
790 		device_printf(sc->vge_dev,
791 		    "could not load DMA'able memory for Rx ring.\n");
792 		goto fail;
793 	}
794 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
795 
796 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
797 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
798 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
799 	if ((VGE_ADDR_HI(tx_ring_end) !=
800 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
801 	    (VGE_ADDR_HI(rx_ring_end) !=
802 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
803 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
804 		device_printf(sc->vge_dev, "4GB boundary crossed, "
805 		    "switching to 32bit DMA address mode.\n");
806 		vge_dma_free(sc);
807 		/* Limit DMA address space to 32bit and try again. */
808 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
809 		goto again;
810 	}
811 
812 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
813 		lowaddr = VGE_BUF_DMA_MAXADDR;
814 	else
815 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
816 	/* Create parent buffer tag. */
817 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
818 	    1, 0,			/* algnmnt, boundary */
819 	    lowaddr,			/* lowaddr */
820 	    BUS_SPACE_MAXADDR,		/* highaddr */
821 	    NULL, NULL,			/* filter, filterarg */
822 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
823 	    0,				/* nsegments */
824 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
825 	    0,				/* flags */
826 	    NULL, NULL,			/* lockfunc, lockarg */
827 	    &sc->vge_cdata.vge_buffer_tag);
828 	if (error != 0) {
829 		device_printf(sc->vge_dev,
830 		    "could not create parent buffer DMA tag.\n");
831 		goto fail;
832 	}
833 
834 	/* Create tag for Tx buffers. */
835 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
836 	    1, 0,			/* algnmnt, boundary */
837 	    BUS_SPACE_MAXADDR,		/* lowaddr */
838 	    BUS_SPACE_MAXADDR,		/* highaddr */
839 	    NULL, NULL,			/* filter, filterarg */
840 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
841 	    VGE_MAXTXSEGS,		/* nsegments */
842 	    MCLBYTES,			/* maxsegsize */
843 	    0,				/* flags */
844 	    NULL, NULL,			/* lockfunc, lockarg */
845 	    &sc->vge_cdata.vge_tx_tag);
846 	if (error != 0) {
847 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
848 		goto fail;
849 	}
850 
851 	/* Create tag for Rx buffers. */
852 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
853 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
854 	    BUS_SPACE_MAXADDR,		/* lowaddr */
855 	    BUS_SPACE_MAXADDR,		/* highaddr */
856 	    NULL, NULL,			/* filter, filterarg */
857 	    MCLBYTES,			/* maxsize */
858 	    1,				/* nsegments */
859 	    MCLBYTES,			/* maxsegsize */
860 	    0,				/* flags */
861 	    NULL, NULL,			/* lockfunc, lockarg */
862 	    &sc->vge_cdata.vge_rx_tag);
863 	if (error != 0) {
864 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
865 		goto fail;
866 	}
867 
868 	/* Create DMA maps for Tx buffers. */
869 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
870 		txd = &sc->vge_cdata.vge_txdesc[i];
871 		txd->tx_m = NULL;
872 		txd->tx_dmamap = NULL;
873 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
874 		    &txd->tx_dmamap);
875 		if (error != 0) {
876 			device_printf(sc->vge_dev,
877 			    "could not create Tx dmamap.\n");
878 			goto fail;
879 		}
880 	}
881 	/* Create DMA maps for Rx buffers. */
882 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
883 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
884 		device_printf(sc->vge_dev,
885 		    "could not create spare Rx dmamap.\n");
886 		goto fail;
887 	}
888 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
889 		rxd = &sc->vge_cdata.vge_rxdesc[i];
890 		rxd->rx_m = NULL;
891 		rxd->rx_dmamap = NULL;
892 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893 		    &rxd->rx_dmamap);
894 		if (error != 0) {
895 			device_printf(sc->vge_dev,
896 			    "could not create Rx dmamap.\n");
897 			goto fail;
898 		}
899 	}
900 
901 fail:
902 	return (error);
903 }
904 
905 static void
906 vge_dma_free(struct vge_softc *sc)
907 {
908 	struct vge_txdesc *txd;
909 	struct vge_rxdesc *rxd;
910 	int i;
911 
912 	/* Tx ring. */
913 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
914 		if (sc->vge_cdata.vge_tx_ring_map)
915 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
916 			    sc->vge_cdata.vge_tx_ring_map);
917 		if (sc->vge_cdata.vge_tx_ring_map &&
918 		    sc->vge_rdata.vge_tx_ring)
919 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920 			    sc->vge_rdata.vge_tx_ring,
921 			    sc->vge_cdata.vge_tx_ring_map);
922 		sc->vge_rdata.vge_tx_ring = NULL;
923 		sc->vge_cdata.vge_tx_ring_map = NULL;
924 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925 		sc->vge_cdata.vge_tx_ring_tag = NULL;
926 	}
927 	/* Rx ring. */
928 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929 		if (sc->vge_cdata.vge_rx_ring_map)
930 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931 			    sc->vge_cdata.vge_rx_ring_map);
932 		if (sc->vge_cdata.vge_rx_ring_map &&
933 		    sc->vge_rdata.vge_rx_ring)
934 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
935 			    sc->vge_rdata.vge_rx_ring,
936 			    sc->vge_cdata.vge_rx_ring_map);
937 		sc->vge_rdata.vge_rx_ring = NULL;
938 		sc->vge_cdata.vge_rx_ring_map = NULL;
939 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
940 		sc->vge_cdata.vge_rx_ring_tag = NULL;
941 	}
942 	/* Tx buffers. */
943 	if (sc->vge_cdata.vge_tx_tag != NULL) {
944 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
945 			txd = &sc->vge_cdata.vge_txdesc[i];
946 			if (txd->tx_dmamap != NULL) {
947 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
948 				    txd->tx_dmamap);
949 				txd->tx_dmamap = NULL;
950 			}
951 		}
952 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
953 		sc->vge_cdata.vge_tx_tag = NULL;
954 	}
955 	/* Rx buffers. */
956 	if (sc->vge_cdata.vge_rx_tag != NULL) {
957 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
958 			rxd = &sc->vge_cdata.vge_rxdesc[i];
959 			if (rxd->rx_dmamap != NULL) {
960 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
961 				    rxd->rx_dmamap);
962 				rxd->rx_dmamap = NULL;
963 			}
964 		}
965 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
966 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967 			    sc->vge_cdata.vge_rx_sparemap);
968 			sc->vge_cdata.vge_rx_sparemap = NULL;
969 		}
970 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
971 		sc->vge_cdata.vge_rx_tag = NULL;
972 	}
973 
974 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
975 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
976 		sc->vge_cdata.vge_buffer_tag = NULL;
977 	}
978 	if (sc->vge_cdata.vge_ring_tag != NULL) {
979 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
980 		sc->vge_cdata.vge_ring_tag = NULL;
981 	}
982 }
983 
984 /*
985  * Attach the interface. Allocate softc structures, do ifmedia
986  * setup and ethernet/BPF attach.
987  */
988 static int
989 vge_attach(device_t dev)
990 {
991 	u_char eaddr[ETHER_ADDR_LEN];
992 	struct vge_softc *sc;
993 	struct ifnet *ifp;
994 	int error = 0, cap, i, msic, rid;
995 
996 	sc = device_get_softc(dev);
997 	sc->vge_dev = dev;
998 
999 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1000 	    MTX_DEF);
1001 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1002 
1003 	/*
1004 	 * Map control/status registers.
1005 	 */
1006 	pci_enable_busmaster(dev);
1007 
1008 	rid = PCIR_BAR(1);
1009 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1010 	    RF_ACTIVE);
1011 
1012 	if (sc->vge_res == NULL) {
1013 		device_printf(dev, "couldn't map ports/memory\n");
1014 		error = ENXIO;
1015 		goto fail;
1016 	}
1017 
1018 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1019 		sc->vge_flags |= VGE_FLAG_PCIE;
1020 		sc->vge_expcap = cap;
1021 	} else
1022 		sc->vge_flags |= VGE_FLAG_JUMBO;
1023 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1024 		sc->vge_flags |= VGE_FLAG_PMCAP;
1025 		sc->vge_pmcap = cap;
1026 	}
1027 	rid = 0;
1028 	msic = pci_msi_count(dev);
1029 	if (msi_disable == 0 && msic > 0) {
1030 		msic = 1;
1031 		if (pci_alloc_msi(dev, &msic) == 0) {
1032 			if (msic == 1) {
1033 				sc->vge_flags |= VGE_FLAG_MSI;
1034 				device_printf(dev, "Using %d MSI message\n",
1035 				    msic);
1036 				rid = 1;
1037 			} else
1038 				pci_release_msi(dev);
1039 		}
1040 	}
1041 
1042 	/* Allocate interrupt */
1043 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1044 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1045 	if (sc->vge_irq == NULL) {
1046 		device_printf(dev, "couldn't map interrupt\n");
1047 		error = ENXIO;
1048 		goto fail;
1049 	}
1050 
1051 	/* Reset the adapter. */
1052 	vge_reset(sc);
1053 	/* Reload EEPROM. */
1054 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1055 	for (i = 0; i < VGE_TIMEOUT; i++) {
1056 		DELAY(5);
1057 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1058 			break;
1059 	}
1060 	if (i == VGE_TIMEOUT)
1061 		device_printf(dev, "EEPROM reload timed out\n");
1062 	/*
1063 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1064 	 * MAC will receive magic packet which in turn confuses
1065 	 * controller.
1066 	 */
1067 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1068 
1069 	/*
1070 	 * Get station address from the EEPROM.
1071 	 */
1072 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1073 	/*
1074 	 * Save configured PHY address.
1075 	 * It seems the PHY address of PCIe controllers just
1076 	 * reflects media jump strapping status so we assume the
1077 	 * internal PHY address of PCIe controller is at 1.
1078 	 */
1079 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1080 		sc->vge_phyaddr = 1;
1081 	else
1082 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1083 		    VGE_MIICFG_PHYADDR;
1084 	/* Clear WOL and take hardware from powerdown. */
1085 	vge_clrwol(sc);
1086 	vge_sysctl_node(sc);
1087 	error = vge_dma_alloc(sc);
1088 	if (error)
1089 		goto fail;
1090 
1091 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1092 	if (ifp == NULL) {
1093 		device_printf(dev, "can not if_alloc()\n");
1094 		error = ENOSPC;
1095 		goto fail;
1096 	}
1097 
1098 	vge_miipoll_start(sc);
1099 	/* Do MII setup */
1100 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1101 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1102 	    MIIF_DOPAUSE);
1103 	if (error != 0) {
1104 		device_printf(dev, "attaching PHYs failed\n");
1105 		goto fail;
1106 	}
1107 
1108 	ifp->if_softc = sc;
1109 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1110 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1111 	ifp->if_ioctl = vge_ioctl;
1112 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1113 	ifp->if_start = vge_start;
1114 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1115 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1116 	    IFCAP_VLAN_HWTAGGING;
1117 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1118 		ifp->if_capabilities |= IFCAP_WOL;
1119 	ifp->if_capenable = ifp->if_capabilities;
1120 #ifdef DEVICE_POLLING
1121 	ifp->if_capabilities |= IFCAP_POLLING;
1122 #endif
1123 	ifp->if_init = vge_init;
1124 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1125 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1126 	IFQ_SET_READY(&ifp->if_snd);
1127 
1128 	/*
1129 	 * Call MI attach routine.
1130 	 */
1131 	ether_ifattach(ifp, eaddr);
1132 
1133 	/* Tell the upper layer(s) we support long frames. */
1134 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1135 
1136 	/* Hook interrupt last to avoid having to lock softc */
1137 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1138 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1139 
1140 	if (error) {
1141 		device_printf(dev, "couldn't set up irq\n");
1142 		ether_ifdetach(ifp);
1143 		goto fail;
1144 	}
1145 
1146 fail:
1147 	if (error)
1148 		vge_detach(dev);
1149 
1150 	return (error);
1151 }
1152 
1153 /*
1154  * Shutdown hardware and free up resources. This can be called any
1155  * time after the mutex has been initialized. It is called in both
1156  * the error case in attach and the normal detach case so it needs
1157  * to be careful about only freeing resources that have actually been
1158  * allocated.
1159  */
1160 static int
1161 vge_detach(device_t dev)
1162 {
1163 	struct vge_softc *sc;
1164 	struct ifnet *ifp;
1165 
1166 	sc = device_get_softc(dev);
1167 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1168 	ifp = sc->vge_ifp;
1169 
1170 #ifdef DEVICE_POLLING
1171 	if (ifp->if_capenable & IFCAP_POLLING)
1172 		ether_poll_deregister(ifp);
1173 #endif
1174 
1175 	/* These should only be active if attach succeeded */
1176 	if (device_is_attached(dev)) {
1177 		ether_ifdetach(ifp);
1178 		VGE_LOCK(sc);
1179 		vge_stop(sc);
1180 		VGE_UNLOCK(sc);
1181 		callout_drain(&sc->vge_watchdog);
1182 	}
1183 	if (sc->vge_miibus)
1184 		device_delete_child(dev, sc->vge_miibus);
1185 	bus_generic_detach(dev);
1186 
1187 	if (sc->vge_intrhand)
1188 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1189 	if (sc->vge_irq)
1190 		bus_release_resource(dev, SYS_RES_IRQ,
1191 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1192 	if (sc->vge_flags & VGE_FLAG_MSI)
1193 		pci_release_msi(dev);
1194 	if (sc->vge_res)
1195 		bus_release_resource(dev, SYS_RES_MEMORY,
1196 		    PCIR_BAR(1), sc->vge_res);
1197 	if (ifp)
1198 		if_free(ifp);
1199 
1200 	vge_dma_free(sc);
1201 	mtx_destroy(&sc->vge_mtx);
1202 
1203 	return (0);
1204 }
1205 
1206 static void
1207 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1208 {
1209 	struct vge_rxdesc *rxd;
1210 	int i;
1211 
1212 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1213 	rxd->rx_desc->vge_sts = 0;
1214 	rxd->rx_desc->vge_ctl = 0;
1215 
1216 	/*
1217 	 * Note: the manual fails to document the fact that for
1218 	 * proper opration, the driver needs to replentish the RX
1219 	 * DMA ring 4 descriptors at a time (rather than one at a
1220 	 * time, like most chips). We can allocate the new buffers
1221 	 * but we should not set the OWN bits until we're ready
1222 	 * to hand back 4 of them in one shot.
1223 	 */
1224 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1225 		for (i = VGE_RXCHUNK; i > 0; i--) {
1226 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1227 			rxd = rxd->rxd_prev;
1228 		}
1229 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1230 	}
1231 }
1232 
1233 static int
1234 vge_newbuf(struct vge_softc *sc, int prod)
1235 {
1236 	struct vge_rxdesc *rxd;
1237 	struct mbuf *m;
1238 	bus_dma_segment_t segs[1];
1239 	bus_dmamap_t map;
1240 	int i, nsegs;
1241 
1242 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1243 	if (m == NULL)
1244 		return (ENOBUFS);
1245 	/*
1246 	 * This is part of an evil trick to deal with strict-alignment
1247 	 * architectures. The VIA chip requires RX buffers to be aligned
1248 	 * on 32-bit boundaries, but that will hose strict-alignment
1249 	 * architectures. To get around this, we leave some empty space
1250 	 * at the start of each buffer and for non-strict-alignment hosts,
1251 	 * we copy the buffer back two bytes to achieve word alignment.
1252 	 * This is slightly more efficient than allocating a new buffer,
1253 	 * copying the contents, and discarding the old buffer.
1254 	 */
1255 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1256 	m_adj(m, VGE_RX_BUF_ALIGN);
1257 
1258 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1259 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1260 		m_freem(m);
1261 		return (ENOBUFS);
1262 	}
1263 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1264 
1265 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1266 	if (rxd->rx_m != NULL) {
1267 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268 		    BUS_DMASYNC_POSTREAD);
1269 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1270 	}
1271 	map = rxd->rx_dmamap;
1272 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1273 	sc->vge_cdata.vge_rx_sparemap = map;
1274 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1275 	    BUS_DMASYNC_PREREAD);
1276 	rxd->rx_m = m;
1277 
1278 	rxd->rx_desc->vge_sts = 0;
1279 	rxd->rx_desc->vge_ctl = 0;
1280 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1281 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1282 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1283 
1284 	/*
1285 	 * Note: the manual fails to document the fact that for
1286 	 * proper operation, the driver needs to replenish the RX
1287 	 * DMA ring 4 descriptors at a time (rather than one at a
1288 	 * time, like most chips). We can allocate the new buffers
1289 	 * but we should not set the OWN bits until we're ready
1290 	 * to hand back 4 of them in one shot.
1291 	 */
1292 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1293 		for (i = VGE_RXCHUNK; i > 0; i--) {
1294 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1295 			rxd = rxd->rxd_prev;
1296 		}
1297 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1298 	}
1299 
1300 	return (0);
1301 }
1302 
1303 static int
1304 vge_tx_list_init(struct vge_softc *sc)
1305 {
1306 	struct vge_ring_data *rd;
1307 	struct vge_txdesc *txd;
1308 	int i;
1309 
1310 	VGE_LOCK_ASSERT(sc);
1311 
1312 	sc->vge_cdata.vge_tx_prodidx = 0;
1313 	sc->vge_cdata.vge_tx_considx = 0;
1314 	sc->vge_cdata.vge_tx_cnt = 0;
1315 
1316 	rd = &sc->vge_rdata;
1317 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1318 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1319 		txd = &sc->vge_cdata.vge_txdesc[i];
1320 		txd->tx_m = NULL;
1321 		txd->tx_desc = &rd->vge_tx_ring[i];
1322 	}
1323 
1324 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1325 	    sc->vge_cdata.vge_tx_ring_map,
1326 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327 
1328 	return (0);
1329 }
1330 
1331 static int
1332 vge_rx_list_init(struct vge_softc *sc)
1333 {
1334 	struct vge_ring_data *rd;
1335 	struct vge_rxdesc *rxd;
1336 	int i;
1337 
1338 	VGE_LOCK_ASSERT(sc);
1339 
1340 	sc->vge_cdata.vge_rx_prodidx = 0;
1341 	sc->vge_cdata.vge_head = NULL;
1342 	sc->vge_cdata.vge_tail = NULL;
1343 	sc->vge_cdata.vge_rx_commit = 0;
1344 
1345 	rd = &sc->vge_rdata;
1346 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1347 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1348 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1349 		rxd->rx_m = NULL;
1350 		rxd->rx_desc = &rd->vge_rx_ring[i];
1351 		if (i == 0)
1352 			rxd->rxd_prev =
1353 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1354 		else
1355 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1356 		if (vge_newbuf(sc, i) != 0)
1357 			return (ENOBUFS);
1358 	}
1359 
1360 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1361 	    sc->vge_cdata.vge_rx_ring_map,
1362 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1363 
1364 	sc->vge_cdata.vge_rx_commit = 0;
1365 
1366 	return (0);
1367 }
1368 
1369 static void
1370 vge_freebufs(struct vge_softc *sc)
1371 {
1372 	struct vge_txdesc *txd;
1373 	struct vge_rxdesc *rxd;
1374 	struct ifnet *ifp;
1375 	int i;
1376 
1377 	VGE_LOCK_ASSERT(sc);
1378 
1379 	ifp = sc->vge_ifp;
1380 	/*
1381 	 * Free RX and TX mbufs still in the queues.
1382 	 */
1383 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1384 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1385 		if (rxd->rx_m != NULL) {
1386 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1387 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1388 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1389 			    rxd->rx_dmamap);
1390 			m_freem(rxd->rx_m);
1391 			rxd->rx_m = NULL;
1392 		}
1393 	}
1394 
1395 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1396 		txd = &sc->vge_cdata.vge_txdesc[i];
1397 		if (txd->tx_m != NULL) {
1398 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1399 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1400 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1401 			    txd->tx_dmamap);
1402 			m_freem(txd->tx_m);
1403 			txd->tx_m = NULL;
1404 			ifp->if_oerrors++;
1405 		}
1406 	}
1407 }
1408 
1409 #ifndef	__NO_STRICT_ALIGNMENT
1410 static __inline void
1411 vge_fixup_rx(struct mbuf *m)
1412 {
1413 	int i;
1414 	uint16_t *src, *dst;
1415 
1416 	src = mtod(m, uint16_t *);
1417 	dst = src - 1;
1418 
1419 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1420 		*dst++ = *src++;
1421 
1422 	m->m_data -= ETHER_ALIGN;
1423 }
1424 #endif
1425 
1426 /*
1427  * RX handler. We support the reception of jumbo frames that have
1428  * been fragmented across multiple 2K mbuf cluster buffers.
1429  */
1430 static int
1431 vge_rxeof(struct vge_softc *sc, int count)
1432 {
1433 	struct mbuf *m;
1434 	struct ifnet *ifp;
1435 	int prod, prog, total_len;
1436 	struct vge_rxdesc *rxd;
1437 	struct vge_rx_desc *cur_rx;
1438 	uint32_t rxstat, rxctl;
1439 
1440 	VGE_LOCK_ASSERT(sc);
1441 
1442 	ifp = sc->vge_ifp;
1443 
1444 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1445 	    sc->vge_cdata.vge_rx_ring_map,
1446 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447 
1448 	prod = sc->vge_cdata.vge_rx_prodidx;
1449 	for (prog = 0; count > 0 &&
1450 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1451 	    VGE_RX_DESC_INC(prod)) {
1452 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1453 		rxstat = le32toh(cur_rx->vge_sts);
1454 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1455 			break;
1456 		count--;
1457 		prog++;
1458 		rxctl = le32toh(cur_rx->vge_ctl);
1459 		total_len = VGE_RXBYTES(rxstat);
1460 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1461 		m = rxd->rx_m;
1462 
1463 		/*
1464 		 * If the 'start of frame' bit is set, this indicates
1465 		 * either the first fragment in a multi-fragment receive,
1466 		 * or an intermediate fragment. Either way, we want to
1467 		 * accumulate the buffers.
1468 		 */
1469 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1470 			if (vge_newbuf(sc, prod) != 0) {
1471 				ifp->if_iqdrops++;
1472 				VGE_CHAIN_RESET(sc);
1473 				vge_discard_rxbuf(sc, prod);
1474 				continue;
1475 			}
1476 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1477 			if (sc->vge_cdata.vge_head == NULL) {
1478 				sc->vge_cdata.vge_head = m;
1479 				sc->vge_cdata.vge_tail = m;
1480 			} else {
1481 				m->m_flags &= ~M_PKTHDR;
1482 				sc->vge_cdata.vge_tail->m_next = m;
1483 				sc->vge_cdata.vge_tail = m;
1484 			}
1485 			continue;
1486 		}
1487 
1488 		/*
1489 		 * Bad/error frames will have the RXOK bit cleared.
1490 		 * However, there's one error case we want to allow:
1491 		 * if a VLAN tagged frame arrives and the chip can't
1492 		 * match it against the CAM filter, it considers this
1493 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1494 		 * We don't want to drop the frame though: our VLAN
1495 		 * filtering is done in software.
1496 		 * We also want to receive bad-checksummed frames and
1497 		 * and frames with bad-length.
1498 		 */
1499 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1500 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1501 		    VGE_RDSTS_CSUMERR)) == 0) {
1502 			ifp->if_ierrors++;
1503 			/*
1504 			 * If this is part of a multi-fragment packet,
1505 			 * discard all the pieces.
1506 			 */
1507 			VGE_CHAIN_RESET(sc);
1508 			vge_discard_rxbuf(sc, prod);
1509 			continue;
1510 		}
1511 
1512 		if (vge_newbuf(sc, prod) != 0) {
1513 			ifp->if_iqdrops++;
1514 			VGE_CHAIN_RESET(sc);
1515 			vge_discard_rxbuf(sc, prod);
1516 			continue;
1517 		}
1518 
1519 		/* Chain received mbufs. */
1520 		if (sc->vge_cdata.vge_head != NULL) {
1521 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1522 			/*
1523 			 * Special case: if there's 4 bytes or less
1524 			 * in this buffer, the mbuf can be discarded:
1525 			 * the last 4 bytes is the CRC, which we don't
1526 			 * care about anyway.
1527 			 */
1528 			if (m->m_len <= ETHER_CRC_LEN) {
1529 				sc->vge_cdata.vge_tail->m_len -=
1530 				    (ETHER_CRC_LEN - m->m_len);
1531 				m_freem(m);
1532 			} else {
1533 				m->m_len -= ETHER_CRC_LEN;
1534 				m->m_flags &= ~M_PKTHDR;
1535 				sc->vge_cdata.vge_tail->m_next = m;
1536 			}
1537 			m = sc->vge_cdata.vge_head;
1538 			m->m_flags |= M_PKTHDR;
1539 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1540 		} else {
1541 			m->m_flags |= M_PKTHDR;
1542 			m->m_pkthdr.len = m->m_len =
1543 			    (total_len - ETHER_CRC_LEN);
1544 		}
1545 
1546 #ifndef	__NO_STRICT_ALIGNMENT
1547 		vge_fixup_rx(m);
1548 #endif
1549 		m->m_pkthdr.rcvif = ifp;
1550 
1551 		/* Do RX checksumming if enabled */
1552 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1553 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1554 			/* Check IP header checksum */
1555 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1556 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1557 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1558 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1559 
1560 			/* Check TCP/UDP checksum */
1561 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1562 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1563 				m->m_pkthdr.csum_flags |=
1564 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1565 				m->m_pkthdr.csum_data = 0xffff;
1566 			}
1567 		}
1568 
1569 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1570 			/*
1571 			 * The 32-bit rxctl register is stored in little-endian.
1572 			 * However, the 16-bit vlan tag is stored in big-endian,
1573 			 * so we have to byte swap it.
1574 			 */
1575 			m->m_pkthdr.ether_vtag =
1576 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1577 			m->m_flags |= M_VLANTAG;
1578 		}
1579 
1580 		VGE_UNLOCK(sc);
1581 		(*ifp->if_input)(ifp, m);
1582 		VGE_LOCK(sc);
1583 		sc->vge_cdata.vge_head = NULL;
1584 		sc->vge_cdata.vge_tail = NULL;
1585 	}
1586 
1587 	if (prog > 0) {
1588 		sc->vge_cdata.vge_rx_prodidx = prod;
1589 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1590 		    sc->vge_cdata.vge_rx_ring_map,
1591 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1592 		/* Update residue counter. */
1593 		if (sc->vge_cdata.vge_rx_commit != 0) {
1594 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1595 			    sc->vge_cdata.vge_rx_commit);
1596 			sc->vge_cdata.vge_rx_commit = 0;
1597 		}
1598 	}
1599 	return (prog);
1600 }
1601 
1602 static void
1603 vge_txeof(struct vge_softc *sc)
1604 {
1605 	struct ifnet *ifp;
1606 	struct vge_tx_desc *cur_tx;
1607 	struct vge_txdesc *txd;
1608 	uint32_t txstat;
1609 	int cons, prod;
1610 
1611 	VGE_LOCK_ASSERT(sc);
1612 
1613 	ifp = sc->vge_ifp;
1614 
1615 	if (sc->vge_cdata.vge_tx_cnt == 0)
1616 		return;
1617 
1618 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1619 	    sc->vge_cdata.vge_tx_ring_map,
1620 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1621 
1622 	/*
1623 	 * Go through our tx list and free mbufs for those
1624 	 * frames that have been transmitted.
1625 	 */
1626 	cons = sc->vge_cdata.vge_tx_considx;
1627 	prod = sc->vge_cdata.vge_tx_prodidx;
1628 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1629 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1630 		txstat = le32toh(cur_tx->vge_sts);
1631 		if ((txstat & VGE_TDSTS_OWN) != 0)
1632 			break;
1633 		sc->vge_cdata.vge_tx_cnt--;
1634 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1635 
1636 		txd = &sc->vge_cdata.vge_txdesc[cons];
1637 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1638 		    BUS_DMASYNC_POSTWRITE);
1639 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1640 
1641 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1642 		    __func__));
1643 		m_freem(txd->tx_m);
1644 		txd->tx_m = NULL;
1645 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1646 	}
1647 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1648 	    sc->vge_cdata.vge_tx_ring_map,
1649 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1650 	sc->vge_cdata.vge_tx_considx = cons;
1651 	if (sc->vge_cdata.vge_tx_cnt == 0)
1652 		sc->vge_timer = 0;
1653 }
1654 
1655 static void
1656 vge_link_statchg(void *xsc)
1657 {
1658 	struct vge_softc *sc;
1659 	struct ifnet *ifp;
1660 	uint8_t physts;
1661 
1662 	sc = xsc;
1663 	ifp = sc->vge_ifp;
1664 	VGE_LOCK_ASSERT(sc);
1665 
1666 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1667 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1668 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1669 			sc->vge_flags &= ~VGE_FLAG_LINK;
1670 			if_link_state_change(sc->vge_ifp,
1671 			    LINK_STATE_DOWN);
1672 		} else {
1673 			sc->vge_flags |= VGE_FLAG_LINK;
1674 			if_link_state_change(sc->vge_ifp,
1675 			    LINK_STATE_UP);
1676 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1677 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1678 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1679 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1680 					CSR_WRITE_1(sc, VGE_CRS2,
1681 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1682 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1683 					CSR_WRITE_1(sc, VGE_CRS2,
1684 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1685 			}
1686 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1687 				vge_start_locked(ifp);
1688 		}
1689 	}
1690 	/*
1691 	 * Restart MII auto-polling because link state change interrupt
1692 	 * will disable it.
1693 	 */
1694 	vge_miipoll_start(sc);
1695 }
1696 
1697 #ifdef DEVICE_POLLING
1698 static int
1699 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1700 {
1701 	struct vge_softc *sc = ifp->if_softc;
1702 	int rx_npkts = 0;
1703 
1704 	VGE_LOCK(sc);
1705 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1706 		goto done;
1707 
1708 	rx_npkts = vge_rxeof(sc, count);
1709 	vge_txeof(sc);
1710 
1711 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1712 		vge_start_locked(ifp);
1713 
1714 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1715 		uint32_t       status;
1716 		status = CSR_READ_4(sc, VGE_ISR);
1717 		if (status == 0xFFFFFFFF)
1718 			goto done;
1719 		if (status)
1720 			CSR_WRITE_4(sc, VGE_ISR, status);
1721 
1722 		/*
1723 		 * XXX check behaviour on receiver stalls.
1724 		 */
1725 
1726 		if (status & VGE_ISR_TXDMA_STALL ||
1727 		    status & VGE_ISR_RXDMA_STALL) {
1728 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1729 			vge_init_locked(sc);
1730 		}
1731 
1732 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1733 			vge_rxeof(sc, count);
1734 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1735 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1736 		}
1737 	}
1738 done:
1739 	VGE_UNLOCK(sc);
1740 	return (rx_npkts);
1741 }
1742 #endif /* DEVICE_POLLING */
1743 
1744 static void
1745 vge_intr(void *arg)
1746 {
1747 	struct vge_softc *sc;
1748 	struct ifnet *ifp;
1749 	uint32_t status;
1750 
1751 	sc = arg;
1752 	VGE_LOCK(sc);
1753 
1754 	ifp = sc->vge_ifp;
1755 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1756 	    (ifp->if_flags & IFF_UP) == 0) {
1757 		VGE_UNLOCK(sc);
1758 		return;
1759 	}
1760 
1761 #ifdef DEVICE_POLLING
1762 	if  (ifp->if_capenable & IFCAP_POLLING) {
1763 		status = CSR_READ_4(sc, VGE_ISR);
1764 		CSR_WRITE_4(sc, VGE_ISR, status);
1765 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1766 			vge_link_statchg(sc);
1767 		VGE_UNLOCK(sc);
1768 		return;
1769 	}
1770 #endif
1771 
1772 	/* Disable interrupts */
1773 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1774 	status = CSR_READ_4(sc, VGE_ISR);
1775 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1776 	/* If the card has gone away the read returns 0xffff. */
1777 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1778 		goto done;
1779 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1780 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1781 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1782 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1783 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1784 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1785 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1786 		}
1787 
1788 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1789 			vge_txeof(sc);
1790 
1791 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1792 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793 			vge_init_locked(sc);
1794 		}
1795 
1796 		if (status & VGE_ISR_LINKSTS)
1797 			vge_link_statchg(sc);
1798 	}
1799 done:
1800 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1801 		/* Re-enable interrupts */
1802 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1803 
1804 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805 			vge_start_locked(ifp);
1806 	}
1807 	VGE_UNLOCK(sc);
1808 }
1809 
1810 static int
1811 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1812 {
1813 	struct vge_txdesc *txd;
1814 	struct vge_tx_frag *frag;
1815 	struct mbuf *m;
1816 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1817 	int error, i, nsegs, padlen;
1818 	uint32_t cflags;
1819 
1820 	VGE_LOCK_ASSERT(sc);
1821 
1822 	M_ASSERTPKTHDR((*m_head));
1823 
1824 	/* Argh. This chip does not autopad short frames. */
1825 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1826 		m = *m_head;
1827 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1828 		if (M_WRITABLE(m) == 0) {
1829 			/* Get a writable copy. */
1830 			m = m_dup(*m_head, M_NOWAIT);
1831 			m_freem(*m_head);
1832 			if (m == NULL) {
1833 				*m_head = NULL;
1834 				return (ENOBUFS);
1835 			}
1836 			*m_head = m;
1837 		}
1838 		if (M_TRAILINGSPACE(m) < padlen) {
1839 			m = m_defrag(m, M_NOWAIT);
1840 			if (m == NULL) {
1841 				m_freem(*m_head);
1842 				*m_head = NULL;
1843 				return (ENOBUFS);
1844 			}
1845 		}
1846 		/*
1847 		 * Manually pad short frames, and zero the pad space
1848 		 * to avoid leaking data.
1849 		 */
1850 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1851 		m->m_pkthdr.len += padlen;
1852 		m->m_len = m->m_pkthdr.len;
1853 		*m_head = m;
1854 	}
1855 
1856 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1857 
1858 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1859 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1860 	if (error == EFBIG) {
1861 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1862 		if (m == NULL) {
1863 			m_freem(*m_head);
1864 			*m_head = NULL;
1865 			return (ENOMEM);
1866 		}
1867 		*m_head = m;
1868 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1869 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1870 		if (error != 0) {
1871 			m_freem(*m_head);
1872 			*m_head = NULL;
1873 			return (error);
1874 		}
1875 	} else if (error != 0)
1876 		return (error);
1877 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1878 	    BUS_DMASYNC_PREWRITE);
1879 
1880 	m = *m_head;
1881 	cflags = 0;
1882 
1883 	/* Configure checksum offload. */
1884 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1885 		cflags |= VGE_TDCTL_IPCSUM;
1886 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1887 		cflags |= VGE_TDCTL_TCPCSUM;
1888 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1889 		cflags |= VGE_TDCTL_UDPCSUM;
1890 
1891 	/* Configure VLAN. */
1892 	if ((m->m_flags & M_VLANTAG) != 0)
1893 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1894 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1895 	/*
1896 	 * XXX
1897 	 * Velocity family seems to support TSO but no information
1898 	 * for MSS configuration is available. Also the number of
1899 	 * fragments supported by a descriptor is too small to hold
1900 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1901 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1902 	 * longer chain of buffers but no additional information is
1903 	 * available.
1904 	 *
1905 	 * When telling the chip how many segments there are, we
1906 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1907 	 * know why. This also means we can't use the last fragment
1908 	 * field of Tx descriptor.
1909 	 */
1910 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1911 	    VGE_TD_LS_NORM);
1912 	for (i = 0; i < nsegs; i++) {
1913 		frag = &txd->tx_desc->vge_frag[i];
1914 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1915 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1916 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1917 	}
1918 
1919 	sc->vge_cdata.vge_tx_cnt++;
1920 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1921 
1922 	/*
1923 	 * Finally request interrupt and give the first descriptor
1924 	 * ownership to hardware.
1925 	 */
1926 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1927 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1928 	txd->tx_m = m;
1929 
1930 	return (0);
1931 }
1932 
1933 /*
1934  * Main transmit routine.
1935  */
1936 
1937 static void
1938 vge_start(struct ifnet *ifp)
1939 {
1940 	struct vge_softc *sc;
1941 
1942 	sc = ifp->if_softc;
1943 	VGE_LOCK(sc);
1944 	vge_start_locked(ifp);
1945 	VGE_UNLOCK(sc);
1946 }
1947 
1948 
1949 static void
1950 vge_start_locked(struct ifnet *ifp)
1951 {
1952 	struct vge_softc *sc;
1953 	struct vge_txdesc *txd;
1954 	struct mbuf *m_head;
1955 	int enq, idx;
1956 
1957 	sc = ifp->if_softc;
1958 
1959 	VGE_LOCK_ASSERT(sc);
1960 
1961 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1962 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1963 	    IFF_DRV_RUNNING)
1964 		return;
1965 
1966 	idx = sc->vge_cdata.vge_tx_prodidx;
1967 	VGE_TX_DESC_DEC(idx);
1968 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1969 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1970 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1971 		if (m_head == NULL)
1972 			break;
1973 		/*
1974 		 * Pack the data into the transmit ring. If we
1975 		 * don't have room, set the OACTIVE flag and wait
1976 		 * for the NIC to drain the ring.
1977 		 */
1978 		if (vge_encap(sc, &m_head)) {
1979 			if (m_head == NULL)
1980 				break;
1981 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1982 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1983 			break;
1984 		}
1985 
1986 		txd = &sc->vge_cdata.vge_txdesc[idx];
1987 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1988 		VGE_TX_DESC_INC(idx);
1989 
1990 		enq++;
1991 		/*
1992 		 * If there's a BPF listener, bounce a copy of this frame
1993 		 * to him.
1994 		 */
1995 		ETHER_BPF_MTAP(ifp, m_head);
1996 	}
1997 
1998 	if (enq > 0) {
1999 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2000 		    sc->vge_cdata.vge_tx_ring_map,
2001 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002 		/* Issue a transmit command. */
2003 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2004 		/*
2005 		 * Set a timeout in case the chip goes out to lunch.
2006 		 */
2007 		sc->vge_timer = 5;
2008 	}
2009 }
2010 
2011 static void
2012 vge_init(void *xsc)
2013 {
2014 	struct vge_softc *sc = xsc;
2015 
2016 	VGE_LOCK(sc);
2017 	vge_init_locked(sc);
2018 	VGE_UNLOCK(sc);
2019 }
2020 
2021 static void
2022 vge_init_locked(struct vge_softc *sc)
2023 {
2024 	struct ifnet *ifp = sc->vge_ifp;
2025 	int error, i;
2026 
2027 	VGE_LOCK_ASSERT(sc);
2028 
2029 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030 		return;
2031 
2032 	/*
2033 	 * Cancel pending I/O and free all RX/TX buffers.
2034 	 */
2035 	vge_stop(sc);
2036 	vge_reset(sc);
2037 	vge_miipoll_start(sc);
2038 
2039 	/*
2040 	 * Initialize the RX and TX descriptors and mbufs.
2041 	 */
2042 
2043 	error = vge_rx_list_init(sc);
2044 	if (error != 0) {
2045                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2046                 return;
2047 	}
2048 	vge_tx_list_init(sc);
2049 	/* Clear MAC statistics. */
2050 	vge_stats_clear(sc);
2051 	/* Set our station address */
2052 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2053 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2054 
2055 	/*
2056 	 * Set receive FIFO threshold. Also allow transmission and
2057 	 * reception of VLAN tagged frames.
2058 	 */
2059 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2060 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2061 
2062 	/* Set DMA burst length */
2063 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2064 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2065 
2066 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2067 
2068 	/* Set collision backoff algorithm */
2069 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2070 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2071 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2072 
2073 	/* Disable LPSEL field in priority resolution */
2074 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2075 
2076 	/*
2077 	 * Load the addresses of the DMA queues into the chip.
2078 	 * Note that we only use one transmit queue.
2079 	 */
2080 
2081 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2082 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2083 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2084 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2085 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2086 
2087 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2088 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2089 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2090 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2091 
2092 	/* Configure interrupt moderation. */
2093 	vge_intr_holdoff(sc);
2094 
2095 	/* Enable and wake up the RX descriptor queue */
2096 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2097 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2098 
2099 	/* Enable the TX descriptor queue */
2100 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2101 
2102 	/* Init the cam filter. */
2103 	vge_cam_clear(sc);
2104 
2105 	/* Set up receiver filter. */
2106 	vge_rxfilter(sc);
2107 	vge_setvlan(sc);
2108 
2109 	/* Initialize pause timer. */
2110 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2111 	/*
2112 	 * Initialize flow control parameters.
2113 	 *  TX XON high threshold : 48
2114 	 *  TX pause low threshold : 24
2115 	 *  Disable hald-duplex flow control
2116 	 */
2117 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2118 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2119 
2120 	/* Enable jumbo frame reception (if desired) */
2121 
2122 	/* Start the MAC. */
2123 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2124 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2125 	CSR_WRITE_1(sc, VGE_CRS0,
2126 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2127 
2128 #ifdef DEVICE_POLLING
2129 	/*
2130 	 * Disable interrupts except link state change if we are polling.
2131 	 */
2132 	if (ifp->if_capenable & IFCAP_POLLING) {
2133 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2134 	} else	/* otherwise ... */
2135 #endif
2136 	{
2137 	/*
2138 	 * Enable interrupts.
2139 	 */
2140 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2141 	}
2142 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2143 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2144 
2145 	sc->vge_flags &= ~VGE_FLAG_LINK;
2146 	vge_ifmedia_upd_locked(sc);
2147 
2148 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2150 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2151 }
2152 
2153 /*
2154  * Set media options.
2155  */
2156 static int
2157 vge_ifmedia_upd(struct ifnet *ifp)
2158 {
2159 	struct vge_softc *sc;
2160 	int error;
2161 
2162 	sc = ifp->if_softc;
2163 	VGE_LOCK(sc);
2164 	error = vge_ifmedia_upd_locked(sc);
2165 	VGE_UNLOCK(sc);
2166 
2167 	return (error);
2168 }
2169 
2170 static int
2171 vge_ifmedia_upd_locked(struct vge_softc *sc)
2172 {
2173 	struct mii_data *mii;
2174 	struct mii_softc *miisc;
2175 	int error;
2176 
2177 	mii = device_get_softc(sc->vge_miibus);
2178 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2179 		PHY_RESET(miisc);
2180 	vge_setmedia(sc);
2181 	error = mii_mediachg(mii);
2182 
2183 	return (error);
2184 }
2185 
2186 /*
2187  * Report current media status.
2188  */
2189 static void
2190 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2191 {
2192 	struct vge_softc *sc;
2193 	struct mii_data *mii;
2194 
2195 	sc = ifp->if_softc;
2196 	mii = device_get_softc(sc->vge_miibus);
2197 
2198 	VGE_LOCK(sc);
2199 	if ((ifp->if_flags & IFF_UP) == 0) {
2200 		VGE_UNLOCK(sc);
2201 		return;
2202 	}
2203 	mii_pollstat(mii);
2204 	ifmr->ifm_active = mii->mii_media_active;
2205 	ifmr->ifm_status = mii->mii_media_status;
2206 	VGE_UNLOCK(sc);
2207 }
2208 
2209 static void
2210 vge_setmedia(struct vge_softc *sc)
2211 {
2212 	struct mii_data *mii;
2213 	struct ifmedia_entry *ife;
2214 
2215 	mii = device_get_softc(sc->vge_miibus);
2216 	ife = mii->mii_media.ifm_cur;
2217 
2218 	/*
2219 	 * If the user manually selects a media mode, we need to turn
2220 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2221 	 * user happens to choose a full duplex mode, we also need to
2222 	 * set the 'force full duplex' bit. This applies only to
2223 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2224 	 * mode is disabled, and in 1000baseT mode, full duplex is
2225 	 * always implied, so we turn on the forced mode bit but leave
2226 	 * the FDX bit cleared.
2227 	 */
2228 
2229 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2230 	case IFM_AUTO:
2231 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2232 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2233 		break;
2234 	case IFM_1000_T:
2235 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2236 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2237 		break;
2238 	case IFM_100_TX:
2239 	case IFM_10_T:
2240 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2242 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2243 		} else {
2244 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245 		}
2246 		break;
2247 	default:
2248 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2249 		    IFM_SUBTYPE(ife->ifm_media));
2250 		break;
2251 	}
2252 }
2253 
2254 static int
2255 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2256 {
2257 	struct vge_softc *sc = ifp->if_softc;
2258 	struct ifreq *ifr = (struct ifreq *) data;
2259 	struct mii_data *mii;
2260 	int error = 0, mask;
2261 
2262 	switch (command) {
2263 	case SIOCSIFMTU:
2264 		VGE_LOCK(sc);
2265 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2266 			error = EINVAL;
2267 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2268 			if (ifr->ifr_mtu > ETHERMTU &&
2269 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2270 				error = EINVAL;
2271 			else
2272 				ifp->if_mtu = ifr->ifr_mtu;
2273 		}
2274 		VGE_UNLOCK(sc);
2275 		break;
2276 	case SIOCSIFFLAGS:
2277 		VGE_LOCK(sc);
2278 		if ((ifp->if_flags & IFF_UP) != 0) {
2279 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2280 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2281 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2282 				vge_rxfilter(sc);
2283 			else
2284 				vge_init_locked(sc);
2285 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2286 			vge_stop(sc);
2287 		sc->vge_if_flags = ifp->if_flags;
2288 		VGE_UNLOCK(sc);
2289 		break;
2290 	case SIOCADDMULTI:
2291 	case SIOCDELMULTI:
2292 		VGE_LOCK(sc);
2293 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2294 			vge_rxfilter(sc);
2295 		VGE_UNLOCK(sc);
2296 		break;
2297 	case SIOCGIFMEDIA:
2298 	case SIOCSIFMEDIA:
2299 		mii = device_get_softc(sc->vge_miibus);
2300 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2301 		break;
2302 	case SIOCSIFCAP:
2303 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2304 #ifdef DEVICE_POLLING
2305 		if (mask & IFCAP_POLLING) {
2306 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2307 				error = ether_poll_register(vge_poll, ifp);
2308 				if (error)
2309 					return (error);
2310 				VGE_LOCK(sc);
2311 					/* Disable interrupts */
2312 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2313 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2314 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2315 				ifp->if_capenable |= IFCAP_POLLING;
2316 				VGE_UNLOCK(sc);
2317 			} else {
2318 				error = ether_poll_deregister(ifp);
2319 				/* Enable interrupts. */
2320 				VGE_LOCK(sc);
2321 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2322 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2323 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2324 				ifp->if_capenable &= ~IFCAP_POLLING;
2325 				VGE_UNLOCK(sc);
2326 			}
2327 		}
2328 #endif /* DEVICE_POLLING */
2329 		VGE_LOCK(sc);
2330 		if ((mask & IFCAP_TXCSUM) != 0 &&
2331 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2332 			ifp->if_capenable ^= IFCAP_TXCSUM;
2333 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2334 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2335 			else
2336 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2337 		}
2338 		if ((mask & IFCAP_RXCSUM) != 0 &&
2339 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2340 			ifp->if_capenable ^= IFCAP_RXCSUM;
2341 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2342 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2343 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2344 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2345 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2346 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2347 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2348 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2349 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2350 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2351 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2352 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2353 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2354 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2355 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2356 			vge_setvlan(sc);
2357 		}
2358 		VGE_UNLOCK(sc);
2359 		VLAN_CAPABILITIES(ifp);
2360 		break;
2361 	default:
2362 		error = ether_ioctl(ifp, command, data);
2363 		break;
2364 	}
2365 
2366 	return (error);
2367 }
2368 
2369 static void
2370 vge_watchdog(void *arg)
2371 {
2372 	struct vge_softc *sc;
2373 	struct ifnet *ifp;
2374 
2375 	sc = arg;
2376 	VGE_LOCK_ASSERT(sc);
2377 	vge_stats_update(sc);
2378 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2379 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2380 		return;
2381 
2382 	ifp = sc->vge_ifp;
2383 	if_printf(ifp, "watchdog timeout\n");
2384 	ifp->if_oerrors++;
2385 
2386 	vge_txeof(sc);
2387 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2388 
2389 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2390 	vge_init_locked(sc);
2391 }
2392 
2393 /*
2394  * Stop the adapter and free any mbufs allocated to the
2395  * RX and TX lists.
2396  */
2397 static void
2398 vge_stop(struct vge_softc *sc)
2399 {
2400 	struct ifnet *ifp;
2401 
2402 	VGE_LOCK_ASSERT(sc);
2403 	ifp = sc->vge_ifp;
2404 	sc->vge_timer = 0;
2405 	callout_stop(&sc->vge_watchdog);
2406 
2407 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2408 
2409 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2410 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2411 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2412 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2413 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2414 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2415 
2416 	vge_stats_update(sc);
2417 	VGE_CHAIN_RESET(sc);
2418 	vge_txeof(sc);
2419 	vge_freebufs(sc);
2420 }
2421 
2422 /*
2423  * Device suspend routine.  Stop the interface and save some PCI
2424  * settings in case the BIOS doesn't restore them properly on
2425  * resume.
2426  */
2427 static int
2428 vge_suspend(device_t dev)
2429 {
2430 	struct vge_softc *sc;
2431 
2432 	sc = device_get_softc(dev);
2433 
2434 	VGE_LOCK(sc);
2435 	vge_stop(sc);
2436 	vge_setwol(sc);
2437 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2438 	VGE_UNLOCK(sc);
2439 
2440 	return (0);
2441 }
2442 
2443 /*
2444  * Device resume routine.  Restore some PCI settings in case the BIOS
2445  * doesn't, re-enable busmastering, and restart the interface if
2446  * appropriate.
2447  */
2448 static int
2449 vge_resume(device_t dev)
2450 {
2451 	struct vge_softc *sc;
2452 	struct ifnet *ifp;
2453 	uint16_t pmstat;
2454 
2455 	sc = device_get_softc(dev);
2456 	VGE_LOCK(sc);
2457 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2458 		/* Disable PME and clear PME status. */
2459 		pmstat = pci_read_config(sc->vge_dev,
2460 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2461 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2462 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2463 			pci_write_config(sc->vge_dev,
2464 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2465 		}
2466 	}
2467 	vge_clrwol(sc);
2468 	/* Restart MII auto-polling. */
2469 	vge_miipoll_start(sc);
2470 	ifp = sc->vge_ifp;
2471 	/* Reinitialize interface if necessary. */
2472 	if ((ifp->if_flags & IFF_UP) != 0) {
2473 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2474 		vge_init_locked(sc);
2475 	}
2476 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2477 	VGE_UNLOCK(sc);
2478 
2479 	return (0);
2480 }
2481 
2482 /*
2483  * Stop all chip I/O so that the kernel's probe routines don't
2484  * get confused by errant DMAs when rebooting.
2485  */
2486 static int
2487 vge_shutdown(device_t dev)
2488 {
2489 
2490 	return (vge_suspend(dev));
2491 }
2492 
2493 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2494 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2495 
2496 static void
2497 vge_sysctl_node(struct vge_softc *sc)
2498 {
2499 	struct sysctl_ctx_list *ctx;
2500 	struct sysctl_oid_list *child, *parent;
2501 	struct sysctl_oid *tree;
2502 	struct vge_hw_stats *stats;
2503 
2504 	stats = &sc->vge_stats;
2505 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2506 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2507 
2508 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2509 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2510 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2511 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2512 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2513 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2514 
2515 	/* Pull in device tunables. */
2516 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2517 	resource_int_value(device_get_name(sc->vge_dev),
2518 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2519 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2520 	resource_int_value(device_get_name(sc->vge_dev),
2521 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2522 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2523 	resource_int_value(device_get_name(sc->vge_dev),
2524 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2525 
2526 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2527 	    NULL, "VGE statistics");
2528 	parent = SYSCTL_CHILDREN(tree);
2529 
2530 	/* Rx statistics. */
2531 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2532 	    NULL, "RX MAC statistics");
2533 	child = SYSCTL_CHILDREN(tree);
2534 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2535 	    &stats->rx_frames, "frames");
2536 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2537 	    &stats->rx_good_frames, "Good frames");
2538 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2539 	    &stats->rx_fifo_oflows, "FIFO overflows");
2540 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2541 	    &stats->rx_runts, "Too short frames");
2542 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2543 	    &stats->rx_runts_errs, "Too short frames with errors");
2544 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2545 	    &stats->rx_pkts_64, "64 bytes frames");
2546 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2547 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2548 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2549 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2550 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2551 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2552 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2553 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2554 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2555 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2556 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2557 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2558 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2559 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2560 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2561 	    &stats->rx_jumbos, "Jumbo frames");
2562 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2563 	    &stats->rx_crcerrs, "CRC errors");
2564 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2565 	    &stats->rx_pause_frames, "CRC errors");
2566 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2567 	    &stats->rx_alignerrs, "Alignment errors");
2568 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2569 	    &stats->rx_nobufs, "Frames with no buffer event");
2570 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2571 	    &stats->rx_symerrs, "Frames with symbol errors");
2572 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2573 	    &stats->rx_lenerrs, "Frames with length mismatched");
2574 
2575 	/* Tx statistics. */
2576 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2577 	    NULL, "TX MAC statistics");
2578 	child = SYSCTL_CHILDREN(tree);
2579 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2580 	    &stats->tx_good_frames, "Good frames");
2581 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2582 	    &stats->tx_pkts_64, "64 bytes frames");
2583 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2584 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2585 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2586 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2587 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2588 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2589 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2590 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2591 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2592 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2593 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2594 	    &stats->tx_jumbos, "Jumbo frames");
2595 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2596 	    &stats->tx_colls, "Collisions");
2597 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2598 	    &stats->tx_latecolls, "Late collisions");
2599 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2600 	    &stats->tx_pause, "Pause frames");
2601 #ifdef VGE_ENABLE_SQEERR
2602 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2603 	    &stats->tx_sqeerrs, "SQE errors");
2604 #endif
2605 	/* Clear MAC statistics. */
2606 	vge_stats_clear(sc);
2607 }
2608 
2609 #undef	VGE_SYSCTL_STAT_ADD32
2610 
2611 static void
2612 vge_stats_clear(struct vge_softc *sc)
2613 {
2614 	int i;
2615 
2616 	CSR_WRITE_1(sc, VGE_MIBCSR,
2617 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2618 	CSR_WRITE_1(sc, VGE_MIBCSR,
2619 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2620 	for (i = VGE_TIMEOUT; i > 0; i--) {
2621 		DELAY(1);
2622 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2623 			break;
2624 	}
2625 	if (i == 0)
2626 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2627 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2628 	    ~VGE_MIBCSR_FREEZE);
2629 }
2630 
2631 static void
2632 vge_stats_update(struct vge_softc *sc)
2633 {
2634 	struct vge_hw_stats *stats;
2635 	struct ifnet *ifp;
2636 	uint32_t mib[VGE_MIB_CNT], val;
2637 	int i;
2638 
2639 	VGE_LOCK_ASSERT(sc);
2640 
2641 	stats = &sc->vge_stats;
2642 	ifp = sc->vge_ifp;
2643 
2644 	CSR_WRITE_1(sc, VGE_MIBCSR,
2645 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2646 	for (i = VGE_TIMEOUT; i > 0; i--) {
2647 		DELAY(1);
2648 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2649 			break;
2650 	}
2651 	if (i == 0) {
2652 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2653 		vge_stats_clear(sc);
2654 		return;
2655 	}
2656 
2657 	bzero(mib, sizeof(mib));
2658 reset_idx:
2659 	/* Set MIB read index to 0. */
2660 	CSR_WRITE_1(sc, VGE_MIBCSR,
2661 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2662 	for (i = 0; i < VGE_MIB_CNT; i++) {
2663 		val = CSR_READ_4(sc, VGE_MIBDATA);
2664 		if (i != VGE_MIB_DATA_IDX(val)) {
2665 			/* Reading interrupted. */
2666 			goto reset_idx;
2667 		}
2668 		mib[i] = val & VGE_MIB_DATA_MASK;
2669 	}
2670 
2671 	/* Rx stats. */
2672 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2673 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2674 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2675 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2676 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2677 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2678 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2679 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2680 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2681 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2682 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2683 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2684 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2685 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2686 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2687 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2688 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2689 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2690 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2691 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2692 
2693 	/* Tx stats. */
2694 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2695 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2696 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2697 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2698 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2699 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2700 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2701 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2702 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2703 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2704 #ifdef VGE_ENABLE_SQEERR
2705 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2706 #endif
2707 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2708 
2709 	/* Update counters in ifnet. */
2710 	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2711 
2712 	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2713 	    mib[VGE_MIB_TX_LATECOLLS];
2714 
2715 	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2716 	    mib[VGE_MIB_TX_LATECOLLS];
2717 
2718 	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2719 
2720 	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721 	    mib[VGE_MIB_RX_RUNTS] +
2722 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2723 	    mib[VGE_MIB_RX_CRCERRS] +
2724 	    mib[VGE_MIB_RX_ALIGNERRS] +
2725 	    mib[VGE_MIB_RX_NOBUFS] +
2726 	    mib[VGE_MIB_RX_SYMERRS] +
2727 	    mib[VGE_MIB_RX_LENERRS];
2728 }
2729 
2730 static void
2731 vge_intr_holdoff(struct vge_softc *sc)
2732 {
2733 	uint8_t intctl;
2734 
2735 	VGE_LOCK_ASSERT(sc);
2736 
2737 	/*
2738 	 * Set Tx interrupt supression threshold.
2739 	 * It's possible to use single-shot timer in VGE_CRS1 register
2740 	 * in Tx path such that driver can remove most of Tx completion
2741 	 * interrupts. However this requires additional access to
2742 	 * VGE_CRS1 register to reload the timer in addintion to
2743 	 * activating Tx kick command. Another downside is we don't know
2744 	 * what single-shot timer value should be used in advance so
2745 	 * reclaiming transmitted mbufs could be delayed a lot which in
2746 	 * turn slows down Tx operation.
2747 	 */
2748 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750 
2751 	/* Set Rx interrupt suppresion threshold. */
2752 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754 
2755 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2757 	intctl |= VGE_INTCTL_HC_RELOAD;
2758 	if (sc->vge_tx_coal_pkt <= 0)
2759 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760 	else
2761 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762 	if (sc->vge_rx_coal_pkt <= 0)
2763 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764 	else
2765 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768 	if (sc->vge_int_holdoff > 0) {
2769 		/* Set interrupt holdoff timer. */
2770 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773 		/* Enable holdoff timer. */
2774 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775 	}
2776 }
2777 
2778 static void
2779 vge_setlinkspeed(struct vge_softc *sc)
2780 {
2781 	struct mii_data *mii;
2782 	int aneg, i;
2783 
2784 	VGE_LOCK_ASSERT(sc);
2785 
2786 	mii = device_get_softc(sc->vge_miibus);
2787 	mii_pollstat(mii);
2788 	aneg = 0;
2789 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790 	    (IFM_ACTIVE | IFM_AVALID)) {
2791 		switch IFM_SUBTYPE(mii->mii_media_active) {
2792 		case IFM_10_T:
2793 		case IFM_100_TX:
2794 			return;
2795 		case IFM_1000_T:
2796 			aneg++;
2797 		default:
2798 			break;
2799 		}
2800 	}
2801 	/* Clear forced MAC speed/duplex configuration. */
2802 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808 	    BMCR_AUTOEN | BMCR_STARTNEG);
2809 	DELAY(1000);
2810 	if (aneg != 0) {
2811 		/* Poll link state until vge(4) get a 10/100 link. */
2812 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813 			mii_pollstat(mii);
2814 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815 			    == (IFM_ACTIVE | IFM_AVALID)) {
2816 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817 				case IFM_10_T:
2818 				case IFM_100_TX:
2819 					return;
2820 				default:
2821 					break;
2822 				}
2823 			}
2824 			VGE_UNLOCK(sc);
2825 			pause("vgelnk", hz);
2826 			VGE_LOCK(sc);
2827 		}
2828 		if (i == MII_ANEGTICKS_GIGE)
2829 			device_printf(sc->vge_dev, "establishing link failed, "
2830 			    "WOL may not work!");
2831 	}
2832 	/*
2833 	 * No link, force MAC to have 100Mbps, full-duplex link.
2834 	 * This is the last resort and may/may not work.
2835 	 */
2836 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838 }
2839 
2840 static void
2841 vge_setwol(struct vge_softc *sc)
2842 {
2843 	struct ifnet *ifp;
2844 	uint16_t pmstat;
2845 	uint8_t val;
2846 
2847 	VGE_LOCK_ASSERT(sc);
2848 
2849 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850 		/* No PME capability, PHY power down. */
2851 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852 		    BMCR_PDOWN);
2853 		vge_miipoll_stop(sc);
2854 		return;
2855 	}
2856 
2857 	ifp = sc->vge_ifp;
2858 
2859 	/* Clear WOL on pattern match. */
2860 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861 	/* Disable WOL on magic/unicast packet. */
2862 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864 	    VGE_WOLCFG_PMEOVR);
2865 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866 		vge_setlinkspeed(sc);
2867 		val = 0;
2868 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869 			val |= VGE_WOLCR1_UCAST;
2870 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871 			val |= VGE_WOLCR1_MAGIC;
2872 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873 		val = 0;
2874 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877 		/* Disable MII auto-polling. */
2878 		vge_miipoll_stop(sc);
2879 	}
2880 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883 
2884 	/* Clear WOL status on pattern match. */
2885 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887 
2888 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2889 	val |= VGE_STICKHW_SWPTAG;
2890 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891 	/* Put hardware into sleep. */
2892 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2893 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895 	/* Request PME if WOL is requested. */
2896 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897 	    PCIR_POWER_STATUS, 2);
2898 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902 	    pmstat, 2);
2903 }
2904 
2905 static void
2906 vge_clrwol(struct vge_softc *sc)
2907 {
2908 	uint8_t val;
2909 
2910 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2911 	val &= ~VGE_STICKHW_SWPTAG;
2912 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913 	/* Disable WOL and clear power state indicator. */
2914 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2915 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917 
2918 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920 
2921 	/* Clear WOL on pattern match. */
2922 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923 	/* Disable WOL on magic/unicast packet. */
2924 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926 	    VGE_WOLCFG_PMEOVR);
2927 	/* Clear WOL status on pattern match. */
2928 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930 }
2931