xref: /freebsd/sys/dev/vge/if_vge.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/endian.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/module.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 #include <sys/taskqueue.h>
93 
94 #include <net/if.h>
95 #include <net/if_arp.h>
96 #include <net/ethernet.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/if_vlan_var.h>
101 
102 #include <net/bpf.h>
103 
104 #include <machine/bus.h>
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108 
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111 
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 
115 MODULE_DEPEND(vge, pci, 1, 1, 1);
116 MODULE_DEPEND(vge, ether, 1, 1, 1);
117 MODULE_DEPEND(vge, miibus, 1, 1, 1);
118 
119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
120 #include "miibus_if.h"
121 
122 #include <dev/vge/if_vgereg.h>
123 #include <dev/vge/if_vgevar.h>
124 
125 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
126 
127 /*
128  * Various supported device vendors/types and their names.
129  */
130 static struct vge_type vge_devs[] = {
131 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
132 		"VIA Networking Gigabit Ethernet" },
133 	{ 0, 0, NULL }
134 };
135 
136 static int vge_probe		(device_t);
137 static int vge_attach		(device_t);
138 static int vge_detach		(device_t);
139 
140 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
141 
142 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
143 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
144 				    bus_size_t, int);
145 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
146 				    bus_size_t, int);
147 static int vge_allocmem		(device_t, struct vge_softc *);
148 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
149 static int vge_rx_list_init	(struct vge_softc *);
150 static int vge_tx_list_init	(struct vge_softc *);
151 #ifdef VGE_FIXUP_RX
152 static __inline void vge_fixup_rx
153 				(struct mbuf *);
154 #endif
155 static void vge_rxeof		(struct vge_softc *);
156 static void vge_txeof		(struct vge_softc *);
157 static void vge_intr		(void *);
158 static void vge_tick		(void *);
159 static void vge_tx_task		(void *, int);
160 static void vge_start		(struct ifnet *);
161 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
162 static void vge_init		(void *);
163 static void vge_stop		(struct vge_softc *);
164 static void vge_watchdog	(struct ifnet *);
165 static int vge_suspend		(device_t);
166 static int vge_resume		(device_t);
167 static void vge_shutdown	(device_t);
168 static int vge_ifmedia_upd	(struct ifnet *);
169 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
170 
171 #ifdef VGE_EEPROM
172 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
173 #endif
174 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
175 
176 static void vge_miipoll_start	(struct vge_softc *);
177 static void vge_miipoll_stop	(struct vge_softc *);
178 static int vge_miibus_readreg	(device_t, int, int);
179 static int vge_miibus_writereg	(device_t, int, int, int);
180 static void vge_miibus_statchg	(device_t);
181 
182 static void vge_cam_clear	(struct vge_softc *);
183 static int vge_cam_set		(struct vge_softc *, uint8_t *);
184 #if __FreeBSD_version < 502113
185 static uint32_t vge_mchash	(uint8_t *);
186 #endif
187 static void vge_setmulti	(struct vge_softc *);
188 static void vge_reset		(struct vge_softc *);
189 
190 #define VGE_PCI_LOIO             0x10
191 #define VGE_PCI_LOMEM            0x14
192 
193 static device_method_t vge_methods[] = {
194 	/* Device interface */
195 	DEVMETHOD(device_probe,		vge_probe),
196 	DEVMETHOD(device_attach,	vge_attach),
197 	DEVMETHOD(device_detach,	vge_detach),
198 	DEVMETHOD(device_suspend,	vge_suspend),
199 	DEVMETHOD(device_resume,	vge_resume),
200 	DEVMETHOD(device_shutdown,	vge_shutdown),
201 
202 	/* bus interface */
203 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
204 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
205 
206 	/* MII interface */
207 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
208 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
209 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
210 
211 	{ 0, 0 }
212 };
213 
214 static driver_t vge_driver = {
215 	"vge",
216 	vge_methods,
217 	sizeof(struct vge_softc)
218 };
219 
220 static devclass_t vge_devclass;
221 
222 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
223 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225 
226 #ifdef VGE_EEPROM
227 /*
228  * Read a word of data stored in the EEPROM at address 'addr.'
229  */
230 static void
231 vge_eeprom_getword(sc, addr, dest)
232 	struct vge_softc	*sc;
233 	int			addr;
234 	u_int16_t		*dest;
235 {
236 	register int		i;
237 	u_int16_t		word = 0;
238 
239 	/*
240 	 * Enter EEPROM embedded programming mode. In order to
241 	 * access the EEPROM at all, we first have to set the
242 	 * EELOAD bit in the CHIPCFG2 register.
243 	 */
244 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246 
247 	/* Select the address of the word we want to read */
248 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249 
250 	/* Issue read command */
251 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252 
253 	/* Wait for the done bit to be set. */
254 	for (i = 0; i < VGE_TIMEOUT; i++) {
255 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256 			break;
257 	}
258 
259 	if (i == VGE_TIMEOUT) {
260 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261 		*dest = 0;
262 		return;
263 	}
264 
265 	/* Read the result */
266 	word = CSR_READ_2(sc, VGE_EERDDAT);
267 
268 	/* Turn off EEPROM access mode. */
269 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271 
272 	*dest = word;
273 
274 	return;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 #ifdef VGE_EEPROM
291 	u_int16_t		word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (u_int16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(sc)
309 	struct vge_softc	*sc;
310 {
311 	int			i;
312 
313 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314 
315 	for (i = 0; i < VGE_TIMEOUT; i++) {
316 		DELAY(1);
317 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 			break;
319 	}
320 
321 	if (i == VGE_TIMEOUT)
322 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 
324 	return;
325 }
326 
327 static void
328 vge_miipoll_start(sc)
329 	struct vge_softc	*sc;
330 {
331 	int			i;
332 
333 	/* First, make sure we're idle. */
334 
335 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337 
338 	for (i = 0; i < VGE_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341 			break;
342 	}
343 
344 	if (i == VGE_TIMEOUT) {
345 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346 		return;
347 	}
348 
349 	/* Now enable auto poll mode. */
350 
351 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352 
353 	/* And make sure it started. */
354 
355 	for (i = 0; i < VGE_TIMEOUT; i++) {
356 		DELAY(1);
357 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358 			break;
359 	}
360 
361 	if (i == VGE_TIMEOUT)
362 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363 
364 	return;
365 }
366 
367 static int
368 vge_miibus_readreg(dev, phy, reg)
369 	device_t		dev;
370 	int			phy, reg;
371 {
372 	struct vge_softc	*sc;
373 	int			i;
374 	u_int16_t		rval = 0;
375 
376 	sc = device_get_softc(dev);
377 
378 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379 		return(0);
380 
381 	VGE_LOCK(sc);
382 	vge_miipoll_stop(sc);
383 
384 	/* Specify the register we want to read. */
385 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386 
387 	/* Issue read command. */
388 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389 
390 	/* Wait for the read command bit to self-clear. */
391 	for (i = 0; i < VGE_TIMEOUT; i++) {
392 		DELAY(1);
393 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394 			break;
395 	}
396 
397 	if (i == VGE_TIMEOUT)
398 		device_printf(sc->vge_dev, "MII read timed out\n");
399 	else
400 		rval = CSR_READ_2(sc, VGE_MIIDATA);
401 
402 	vge_miipoll_start(sc);
403 	VGE_UNLOCK(sc);
404 
405 	return (rval);
406 }
407 
408 static int
409 vge_miibus_writereg(dev, phy, reg, data)
410 	device_t		dev;
411 	int			phy, reg, data;
412 {
413 	struct vge_softc	*sc;
414 	int			i, rval = 0;
415 
416 	sc = device_get_softc(dev);
417 
418 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
419 		return(0);
420 
421 	VGE_LOCK(sc);
422 	vge_miipoll_stop(sc);
423 
424 	/* Specify the register we want to write. */
425 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
426 
427 	/* Specify the data we want to write. */
428 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
429 
430 	/* Issue write command. */
431 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
432 
433 	/* Wait for the write command bit to self-clear. */
434 	for (i = 0; i < VGE_TIMEOUT; i++) {
435 		DELAY(1);
436 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
437 			break;
438 	}
439 
440 	if (i == VGE_TIMEOUT) {
441 		device_printf(sc->vge_dev, "MII write timed out\n");
442 		rval = EIO;
443 	}
444 
445 	vge_miipoll_start(sc);
446 	VGE_UNLOCK(sc);
447 
448 	return (rval);
449 }
450 
451 static void
452 vge_cam_clear(sc)
453 	struct vge_softc	*sc;
454 {
455 	int			i;
456 
457 	/*
458 	 * Turn off all the mask bits. This tells the chip
459 	 * that none of the entries in the CAM filter are valid.
460 	 * desired entries will be enabled as we fill the filter in.
461 	 */
462 
463 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
465 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
466 	for (i = 0; i < 8; i++)
467 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
468 
469 	/* Clear the VLAN filter too. */
470 
471 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
472 	for (i = 0; i < 8; i++)
473 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
474 
475 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
476 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
477 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
478 
479 	sc->vge_camidx = 0;
480 
481 	return;
482 }
483 
484 static int
485 vge_cam_set(sc, addr)
486 	struct vge_softc	*sc;
487 	uint8_t			*addr;
488 {
489 	int			i, error = 0;
490 
491 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
492 		return(ENOSPC);
493 
494 	/* Select the CAM data page. */
495 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
497 
498 	/* Set the filter entry we want to update and enable writing. */
499 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
500 
501 	/* Write the address to the CAM registers */
502 	for (i = 0; i < ETHER_ADDR_LEN; i++)
503 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
504 
505 	/* Issue a write command. */
506 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
507 
508 	/* Wake for it to clear. */
509 	for (i = 0; i < VGE_TIMEOUT; i++) {
510 		DELAY(1);
511 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
512 			break;
513 	}
514 
515 	if (i == VGE_TIMEOUT) {
516 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
517 		error = EIO;
518 		goto fail;
519 	}
520 
521 	/* Select the CAM mask page. */
522 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
523 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
524 
525 	/* Set the mask bit that enables this filter. */
526 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
527 	    1<<(sc->vge_camidx & 7));
528 
529 	sc->vge_camidx++;
530 
531 fail:
532 	/* Turn off access to CAM. */
533 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
534 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
535 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
536 
537 	return (error);
538 }
539 
540 #if __FreeBSD_version < 502113
541 static uint32_t
542 vge_mchash(addr)
543         uint8_t			*addr;
544 {
545 	uint32_t		crc, carry;
546 	int			idx, bit;
547 	uint8_t			data;
548 
549 	/* Compute CRC for the address value. */
550 	crc = 0xFFFFFFFF; /* initial value */
551 
552 	for (idx = 0; idx < 6; idx++) {
553 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
554 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
555 			crc <<= 1;
556 			if (carry)
557 				crc = (crc ^ 0x04c11db6) | carry;
558 		}
559 	}
560 
561 	return(crc);
562 }
563 #endif
564 
565 /*
566  * Program the multicast filter. We use the 64-entry CAM filter
567  * for perfect filtering. If there's more than 64 multicast addresses,
568  * we use the hash filter insted.
569  */
570 static void
571 vge_setmulti(sc)
572 	struct vge_softc	*sc;
573 {
574 	struct ifnet		*ifp;
575 	int			error = 0/*, h = 0*/;
576 	struct ifmultiaddr	*ifma;
577 	u_int32_t		h, hashes[2] = { 0, 0 };
578 
579 	ifp = sc->vge_ifp;
580 
581 	/* First, zot all the multicast entries. */
582 	vge_cam_clear(sc);
583 	CSR_WRITE_4(sc, VGE_MAR0, 0);
584 	CSR_WRITE_4(sc, VGE_MAR1, 0);
585 
586 	/*
587 	 * If the user wants allmulti or promisc mode, enable reception
588 	 * of all multicast frames.
589 	 */
590 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
591 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
592 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
593 		return;
594 	}
595 
596 	/* Now program new ones */
597 	IF_ADDR_LOCK(ifp);
598 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
599 		if (ifma->ifma_addr->sa_family != AF_LINK)
600 			continue;
601 		error = vge_cam_set(sc,
602 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
603 		if (error)
604 			break;
605 	}
606 
607 	/* If there were too many addresses, use the hash filter. */
608 	if (error) {
609 		vge_cam_clear(sc);
610 
611 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
612 			if (ifma->ifma_addr->sa_family != AF_LINK)
613 				continue;
614 #if __FreeBSD_version < 502113
615 			h = vge_mchash(LLADDR((struct sockaddr_dl *)
616 			    ifma->ifma_addr)) >> 26;
617 #else
618 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
619 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
620 #endif
621 			if (h < 32)
622 				hashes[0] |= (1 << h);
623 			else
624 				hashes[1] |= (1 << (h - 32));
625 		}
626 
627 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
628 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
629 	}
630 	IF_ADDR_UNLOCK(ifp);
631 
632 	return;
633 }
634 
635 static void
636 vge_reset(sc)
637 	struct vge_softc		*sc;
638 {
639 	register int		i;
640 
641 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
642 
643 	for (i = 0; i < VGE_TIMEOUT; i++) {
644 		DELAY(5);
645 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
646 			break;
647 	}
648 
649 	if (i == VGE_TIMEOUT) {
650 		device_printf(sc->vge_dev, "soft reset timed out");
651 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
652 		DELAY(2000);
653 	}
654 
655 	DELAY(5000);
656 
657 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
658 
659 	for (i = 0; i < VGE_TIMEOUT; i++) {
660 		DELAY(5);
661 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
662 			break;
663 	}
664 
665 	if (i == VGE_TIMEOUT) {
666 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
667 		return;
668 	}
669 
670 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
671 
672 	return;
673 }
674 
675 /*
676  * Probe for a VIA gigabit chip. Check the PCI vendor and device
677  * IDs against our list and return a device name if we find a match.
678  */
679 static int
680 vge_probe(dev)
681 	device_t		dev;
682 {
683 	struct vge_type		*t;
684 	struct vge_softc	*sc;
685 
686 	t = vge_devs;
687 	sc = device_get_softc(dev);
688 
689 	while (t->vge_name != NULL) {
690 		if ((pci_get_vendor(dev) == t->vge_vid) &&
691 		    (pci_get_device(dev) == t->vge_did)) {
692 			device_set_desc(dev, t->vge_name);
693 			return (BUS_PROBE_DEFAULT);
694 		}
695 		t++;
696 	}
697 
698 	return (ENXIO);
699 }
700 
701 static void
702 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
703 	void			*arg;
704 	bus_dma_segment_t	*segs;
705 	int			nseg;
706 	bus_size_t		mapsize;
707 	int			error;
708 {
709 
710 	struct vge_dmaload_arg	*ctx;
711 	struct vge_rx_desc	*d = NULL;
712 
713 	if (error)
714 		return;
715 
716 	ctx = arg;
717 
718 	/* Signal error to caller if there's too many segments */
719 	if (nseg > ctx->vge_maxsegs) {
720 		ctx->vge_maxsegs = 0;
721 		return;
722 	}
723 
724 	/*
725 	 * Map the segment array into descriptors.
726 	 */
727 
728 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
729 
730 	/* If this descriptor is still owned by the chip, bail. */
731 
732 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
733 		device_printf(ctx->sc->vge_dev,
734 		    "tried to map busy descriptor\n");
735 		ctx->vge_maxsegs = 0;
736 		return;
737 	}
738 
739 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
740 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
741 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
742 	d->vge_sts = 0;
743 	d->vge_ctl = 0;
744 
745 	ctx->vge_maxsegs = 1;
746 
747 	return;
748 }
749 
750 static void
751 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
752 	void			*arg;
753 	bus_dma_segment_t	*segs;
754 	int			nseg;
755 	bus_size_t		mapsize;
756 	int			error;
757 {
758 	struct vge_dmaload_arg	*ctx;
759 	struct vge_tx_desc	*d = NULL;
760 	struct vge_tx_frag	*f;
761 	int			i = 0;
762 
763 	if (error)
764 		return;
765 
766 	ctx = arg;
767 
768 	/* Signal error to caller if there's too many segments */
769 	if (nseg > ctx->vge_maxsegs) {
770 		ctx->vge_maxsegs = 0;
771 		return;
772 	}
773 
774 	/* Map the segment array into descriptors. */
775 
776 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
777 
778 	/* If this descriptor is still owned by the chip, bail. */
779 
780 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
781 		ctx->vge_maxsegs = 0;
782 		return;
783 	}
784 
785 	for (i = 0; i < nseg; i++) {
786 		f = &d->vge_frag[i];
787 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
788 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
789 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
790 	}
791 
792 	/* Argh. This chip does not autopad short frames */
793 
794 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
795 		f = &d->vge_frag[i];
796 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
797 		    ctx->vge_m0->m_pkthdr.len));
798 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
799 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
800 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
801 		i++;
802 	}
803 
804 	/*
805 	 * When telling the chip how many segments there are, we
806 	 * must use nsegs + 1 instead of just nsegs. Darned if I
807 	 * know why.
808 	 */
809 	i++;
810 
811 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
812 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
813 
814 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
815 		d->vge_ctl |= VGE_TDCTL_JUMBO;
816 
817 	ctx->vge_maxsegs = nseg;
818 
819 	return;
820 }
821 
822 /*
823  * Map a single buffer address.
824  */
825 
826 static void
827 vge_dma_map_addr(arg, segs, nseg, error)
828 	void			*arg;
829 	bus_dma_segment_t	*segs;
830 	int			nseg;
831 	int			error;
832 {
833 	bus_addr_t		*addr;
834 
835 	if (error)
836 		return;
837 
838 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
839 	addr = arg;
840 	*addr = segs->ds_addr;
841 
842 	return;
843 }
844 
845 static int
846 vge_allocmem(dev, sc)
847 	device_t		dev;
848 	struct vge_softc		*sc;
849 {
850 	int			error;
851 	int			nseg;
852 	int			i;
853 
854 	/*
855 	 * Allocate map for RX mbufs.
856 	 */
857 	nseg = 32;
858 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
859 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
860 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
861 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
862 	if (error) {
863 		device_printf(dev, "could not allocate dma tag\n");
864 		return (ENOMEM);
865 	}
866 
867 	/*
868 	 * Allocate map for TX descriptor list.
869 	 */
870 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
871 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
872 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
873 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
874 	if (error) {
875 		device_printf(dev, "could not allocate dma tag\n");
876 		return (ENOMEM);
877 	}
878 
879 	/* Allocate DMA'able memory for the TX ring */
880 
881 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
882 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
883 	    &sc->vge_ldata.vge_tx_list_map);
884 	if (error)
885 		return (ENOMEM);
886 
887 	/* Load the map for the TX ring. */
888 
889 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
890 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
891 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
892 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
893 
894 	/* Create DMA maps for TX buffers */
895 
896 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
897 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
898 			    &sc->vge_ldata.vge_tx_dmamap[i]);
899 		if (error) {
900 			device_printf(dev, "can't create DMA map for TX\n");
901 			return (ENOMEM);
902 		}
903 	}
904 
905 	/*
906 	 * Allocate map for RX descriptor list.
907 	 */
908 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
909 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
910 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
911 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
912 	if (error) {
913 		device_printf(dev, "could not allocate dma tag\n");
914 		return (ENOMEM);
915 	}
916 
917 	/* Allocate DMA'able memory for the RX ring */
918 
919 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
920 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
921 	    &sc->vge_ldata.vge_rx_list_map);
922 	if (error)
923 		return (ENOMEM);
924 
925 	/* Load the map for the RX ring. */
926 
927 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
928 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
929 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
930 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
931 
932 	/* Create DMA maps for RX buffers */
933 
934 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
935 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
936 			    &sc->vge_ldata.vge_rx_dmamap[i]);
937 		if (error) {
938 			device_printf(dev, "can't create DMA map for RX\n");
939 			return (ENOMEM);
940 		}
941 	}
942 
943 	return (0);
944 }
945 
946 /*
947  * Attach the interface. Allocate softc structures, do ifmedia
948  * setup and ethernet/BPF attach.
949  */
950 static int
951 vge_attach(dev)
952 	device_t		dev;
953 {
954 	u_char			eaddr[ETHER_ADDR_LEN];
955 	struct vge_softc	*sc;
956 	struct ifnet		*ifp;
957 	int			unit, error = 0, rid;
958 
959 	sc = device_get_softc(dev);
960 	unit = device_get_unit(dev);
961 	sc->vge_dev = dev;
962 
963 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
964 	    MTX_DEF | MTX_RECURSE);
965 	/*
966 	 * Map control/status registers.
967 	 */
968 	pci_enable_busmaster(dev);
969 
970 	rid = VGE_PCI_LOMEM;
971 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
972 	    0, ~0, 1, RF_ACTIVE);
973 
974 	if (sc->vge_res == NULL) {
975 		printf ("vge%d: couldn't map ports/memory\n", unit);
976 		error = ENXIO;
977 		goto fail;
978 	}
979 
980 	sc->vge_btag = rman_get_bustag(sc->vge_res);
981 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
982 
983 	/* Allocate interrupt */
984 	rid = 0;
985 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
986 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
987 
988 	if (sc->vge_irq == NULL) {
989 		printf("vge%d: couldn't map interrupt\n", unit);
990 		error = ENXIO;
991 		goto fail;
992 	}
993 
994 	/* Reset the adapter. */
995 	vge_reset(sc);
996 
997 	/*
998 	 * Get station address from the EEPROM.
999 	 */
1000 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1001 
1002 	sc->vge_unit = unit;
1003 
1004 #if __FreeBSD_version < 502113
1005 	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1006 #endif
1007 
1008 	/*
1009 	 * Allocate the parent bus DMA tag appropriate for PCI.
1010 	 */
1011 #define VGE_NSEG_NEW 32
1012 	error = bus_dma_tag_create(NULL,	/* parent */
1013 			1, 0,			/* alignment, boundary */
1014 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1015 			BUS_SPACE_MAXADDR,	/* highaddr */
1016 			NULL, NULL,		/* filter, filterarg */
1017 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1018 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1019 			BUS_DMA_ALLOCNOW,	/* flags */
1020 			NULL, NULL,		/* lockfunc, lockarg */
1021 			&sc->vge_parent_tag);
1022 	if (error)
1023 		goto fail;
1024 
1025 	error = vge_allocmem(dev, sc);
1026 
1027 	if (error)
1028 		goto fail;
1029 
1030 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1031 	if (ifp == NULL) {
1032 		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1033 		error = ENOSPC;
1034 		goto fail;
1035 	}
1036 
1037 	/* Do MII setup */
1038 	if (mii_phy_probe(dev, &sc->vge_miibus,
1039 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1040 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1041 		error = ENXIO;
1042 		goto fail;
1043 	}
1044 
1045 	ifp->if_softc = sc;
1046 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1047 	ifp->if_mtu = ETHERMTU;
1048 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1049 	ifp->if_ioctl = vge_ioctl;
1050 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1051 	ifp->if_start = vge_start;
1052 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1053 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1054 #ifdef DEVICE_POLLING
1055 #ifdef IFCAP_POLLING
1056 	ifp->if_capabilities |= IFCAP_POLLING;
1057 #endif
1058 #endif
1059 	ifp->if_watchdog = vge_watchdog;
1060 	ifp->if_init = vge_init;
1061 	ifp->if_baudrate = 1000000000;
1062 	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1063 	ifp->if_capenable = ifp->if_capabilities;
1064 
1065 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1066 
1067 	/*
1068 	 * Call MI attach routine.
1069 	 */
1070 	ether_ifattach(ifp, eaddr);
1071 
1072 	/* Hook interrupt last to avoid having to lock softc */
1073 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1074 	    vge_intr, sc, &sc->vge_intrhand);
1075 
1076 	if (error) {
1077 		printf("vge%d: couldn't set up irq\n", unit);
1078 		ether_ifdetach(ifp);
1079 		goto fail;
1080 	}
1081 
1082 fail:
1083 	if (error)
1084 		vge_detach(dev);
1085 
1086 	return (error);
1087 }
1088 
1089 /*
1090  * Shutdown hardware and free up resources. This can be called any
1091  * time after the mutex has been initialized. It is called in both
1092  * the error case in attach and the normal detach case so it needs
1093  * to be careful about only freeing resources that have actually been
1094  * allocated.
1095  */
1096 static int
1097 vge_detach(dev)
1098 	device_t		dev;
1099 {
1100 	struct vge_softc		*sc;
1101 	struct ifnet		*ifp;
1102 	int			i;
1103 
1104 	sc = device_get_softc(dev);
1105 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1106 	ifp = sc->vge_ifp;
1107 
1108 	/* These should only be active if attach succeeded */
1109 	if (device_is_attached(dev)) {
1110 		vge_stop(sc);
1111 		/*
1112 		 * Force off the IFF_UP flag here, in case someone
1113 		 * still had a BPF descriptor attached to this
1114 		 * interface. If they do, ether_ifattach() will cause
1115 		 * the BPF code to try and clear the promisc mode
1116 		 * flag, which will bubble down to vge_ioctl(),
1117 		 * which will try to call vge_init() again. This will
1118 		 * turn the NIC back on and restart the MII ticker,
1119 		 * which will panic the system when the kernel tries
1120 		 * to invoke the vge_tick() function that isn't there
1121 		 * anymore.
1122 		 */
1123 		ifp->if_flags &= ~IFF_UP;
1124 		ether_ifdetach(ifp);
1125 	}
1126 	if (sc->vge_miibus)
1127 		device_delete_child(dev, sc->vge_miibus);
1128 	bus_generic_detach(dev);
1129 
1130 	if (sc->vge_intrhand)
1131 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1132 	if (sc->vge_irq)
1133 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1134 	if (sc->vge_res)
1135 		bus_release_resource(dev, SYS_RES_MEMORY,
1136 		    VGE_PCI_LOMEM, sc->vge_res);
1137 	if (ifp)
1138 		if_free(ifp);
1139 
1140 	/* Unload and free the RX DMA ring memory and map */
1141 
1142 	if (sc->vge_ldata.vge_rx_list_tag) {
1143 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1144 		    sc->vge_ldata.vge_rx_list_map);
1145 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1146 		    sc->vge_ldata.vge_rx_list,
1147 		    sc->vge_ldata.vge_rx_list_map);
1148 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1149 	}
1150 
1151 	/* Unload and free the TX DMA ring memory and map */
1152 
1153 	if (sc->vge_ldata.vge_tx_list_tag) {
1154 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1155 		    sc->vge_ldata.vge_tx_list_map);
1156 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1157 		    sc->vge_ldata.vge_tx_list,
1158 		    sc->vge_ldata.vge_tx_list_map);
1159 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1160 	}
1161 
1162 	/* Destroy all the RX and TX buffer maps */
1163 
1164 	if (sc->vge_ldata.vge_mtag) {
1165 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1166 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1167 			    sc->vge_ldata.vge_tx_dmamap[i]);
1168 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1169 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1170 			    sc->vge_ldata.vge_rx_dmamap[i]);
1171 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1172 	}
1173 
1174 	if (sc->vge_parent_tag)
1175 		bus_dma_tag_destroy(sc->vge_parent_tag);
1176 
1177 	mtx_destroy(&sc->vge_mtx);
1178 
1179 	return (0);
1180 }
1181 
1182 static int
1183 vge_newbuf(sc, idx, m)
1184 	struct vge_softc	*sc;
1185 	int			idx;
1186 	struct mbuf		*m;
1187 {
1188 	struct vge_dmaload_arg	arg;
1189 	struct mbuf		*n = NULL;
1190 	int			i, error;
1191 
1192 	if (m == NULL) {
1193 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1194 		if (n == NULL)
1195 			return (ENOBUFS);
1196 		m = n;
1197 	} else
1198 		m->m_data = m->m_ext.ext_buf;
1199 
1200 
1201 #ifdef VGE_FIXUP_RX
1202 	/*
1203 	 * This is part of an evil trick to deal with non-x86 platforms.
1204 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1205 	 * boundaries, but that will hose non-x86 machines. To get around
1206 	 * this, we leave some empty space at the start of each buffer
1207 	 * and for non-x86 hosts, we copy the buffer back two bytes
1208 	 * to achieve word alignment. This is slightly more efficient
1209 	 * than allocating a new buffer, copying the contents, and
1210 	 * discarding the old buffer.
1211 	 */
1212 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1213 	m_adj(m, VGE_ETHER_ALIGN);
1214 #else
1215 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1216 #endif
1217 
1218 	arg.sc = sc;
1219 	arg.vge_idx = idx;
1220 	arg.vge_maxsegs = 1;
1221 	arg.vge_flags = 0;
1222 
1223 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1224 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1225 	    &arg, BUS_DMA_NOWAIT);
1226 	if (error || arg.vge_maxsegs != 1) {
1227 		if (n != NULL)
1228 			m_freem(n);
1229 		return (ENOMEM);
1230 	}
1231 
1232 	/*
1233 	 * Note: the manual fails to document the fact that for
1234 	 * proper opration, the driver needs to replentish the RX
1235 	 * DMA ring 4 descriptors at a time (rather than one at a
1236 	 * time, like most chips). We can allocate the new buffers
1237 	 * but we should not set the OWN bits until we're ready
1238 	 * to hand back 4 of them in one shot.
1239 	 */
1240 
1241 #define VGE_RXCHUNK 4
1242 	sc->vge_rx_consumed++;
1243 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1244 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1245 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1246 			    htole32(VGE_RDSTS_OWN);
1247 		sc->vge_rx_consumed = 0;
1248 	}
1249 
1250 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1251 
1252 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1253 	    sc->vge_ldata.vge_rx_dmamap[idx],
1254 	    BUS_DMASYNC_PREREAD);
1255 
1256 	return (0);
1257 }
1258 
1259 static int
1260 vge_tx_list_init(sc)
1261 	struct vge_softc		*sc;
1262 {
1263 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1264 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1265 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1266 
1267 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1268 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1269 	sc->vge_ldata.vge_tx_prodidx = 0;
1270 	sc->vge_ldata.vge_tx_considx = 0;
1271 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1272 
1273 	return (0);
1274 }
1275 
1276 static int
1277 vge_rx_list_init(sc)
1278 	struct vge_softc		*sc;
1279 {
1280 	int			i;
1281 
1282 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1283 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1284 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1285 
1286 	sc->vge_rx_consumed = 0;
1287 
1288 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1289 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1290 			return (ENOBUFS);
1291 	}
1292 
1293 	/* Flush the RX descriptors */
1294 
1295 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1296 	    sc->vge_ldata.vge_rx_list_map,
1297 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1298 
1299 	sc->vge_ldata.vge_rx_prodidx = 0;
1300 	sc->vge_rx_consumed = 0;
1301 	sc->vge_head = sc->vge_tail = NULL;
1302 
1303 	return (0);
1304 }
1305 
1306 #ifdef VGE_FIXUP_RX
1307 static __inline void
1308 vge_fixup_rx(m)
1309 	struct mbuf		*m;
1310 {
1311 	int			i;
1312 	uint16_t		*src, *dst;
1313 
1314 	src = mtod(m, uint16_t *);
1315 	dst = src - 1;
1316 
1317 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1318 		*dst++ = *src++;
1319 
1320 	m->m_data -= ETHER_ALIGN;
1321 
1322 	return;
1323 }
1324 #endif
1325 
1326 /*
1327  * RX handler. We support the reception of jumbo frames that have
1328  * been fragmented across multiple 2K mbuf cluster buffers.
1329  */
1330 static void
1331 vge_rxeof(sc)
1332 	struct vge_softc	*sc;
1333 {
1334 	struct mbuf		*m;
1335 	struct ifnet		*ifp;
1336 	int			i, total_len;
1337 	int			lim = 0;
1338 	struct vge_rx_desc	*cur_rx;
1339 	u_int32_t		rxstat, rxctl;
1340 
1341 	VGE_LOCK_ASSERT(sc);
1342 	ifp = sc->vge_ifp;
1343 	i = sc->vge_ldata.vge_rx_prodidx;
1344 
1345 	/* Invalidate the descriptor memory */
1346 
1347 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1348 	    sc->vge_ldata.vge_rx_list_map,
1349 	    BUS_DMASYNC_POSTREAD);
1350 
1351 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1352 
1353 #ifdef DEVICE_POLLING
1354 		if (ifp->if_flags & IFF_POLLING) {
1355 			if (sc->rxcycles <= 0)
1356 				break;
1357 			sc->rxcycles--;
1358 		}
1359 #endif /* DEVICE_POLLING */
1360 
1361 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1362 		m = sc->vge_ldata.vge_rx_mbuf[i];
1363 		total_len = VGE_RXBYTES(cur_rx);
1364 		rxstat = le32toh(cur_rx->vge_sts);
1365 		rxctl = le32toh(cur_rx->vge_ctl);
1366 
1367 		/* Invalidate the RX mbuf and unload its map */
1368 
1369 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1370 		    sc->vge_ldata.vge_rx_dmamap[i],
1371 		    BUS_DMASYNC_POSTWRITE);
1372 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1373 		    sc->vge_ldata.vge_rx_dmamap[i]);
1374 
1375 		/*
1376 		 * If the 'start of frame' bit is set, this indicates
1377 		 * either the first fragment in a multi-fragment receive,
1378 		 * or an intermediate fragment. Either way, we want to
1379 		 * accumulate the buffers.
1380 		 */
1381 		if (rxstat & VGE_RXPKT_SOF) {
1382 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1383 			if (sc->vge_head == NULL)
1384 				sc->vge_head = sc->vge_tail = m;
1385 			else {
1386 				m->m_flags &= ~M_PKTHDR;
1387 				sc->vge_tail->m_next = m;
1388 				sc->vge_tail = m;
1389 			}
1390 			vge_newbuf(sc, i, NULL);
1391 			VGE_RX_DESC_INC(i);
1392 			continue;
1393 		}
1394 
1395 		/*
1396 		 * Bad/error frames will have the RXOK bit cleared.
1397 		 * However, there's one error case we want to allow:
1398 		 * if a VLAN tagged frame arrives and the chip can't
1399 		 * match it against the CAM filter, it considers this
1400 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1401 		 * We don't want to drop the frame though: our VLAN
1402 		 * filtering is done in software.
1403 		 */
1404 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1405 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1406 			ifp->if_ierrors++;
1407 			/*
1408 			 * If this is part of a multi-fragment packet,
1409 			 * discard all the pieces.
1410 			 */
1411 			if (sc->vge_head != NULL) {
1412 				m_freem(sc->vge_head);
1413 				sc->vge_head = sc->vge_tail = NULL;
1414 			}
1415 			vge_newbuf(sc, i, m);
1416 			VGE_RX_DESC_INC(i);
1417 			continue;
1418 		}
1419 
1420 		/*
1421 		 * If allocating a replacement mbuf fails,
1422 		 * reload the current one.
1423 		 */
1424 
1425 		if (vge_newbuf(sc, i, NULL)) {
1426 			ifp->if_ierrors++;
1427 			if (sc->vge_head != NULL) {
1428 				m_freem(sc->vge_head);
1429 				sc->vge_head = sc->vge_tail = NULL;
1430 			}
1431 			vge_newbuf(sc, i, m);
1432 			VGE_RX_DESC_INC(i);
1433 			continue;
1434 		}
1435 
1436 		VGE_RX_DESC_INC(i);
1437 
1438 		if (sc->vge_head != NULL) {
1439 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1440 			/*
1441 			 * Special case: if there's 4 bytes or less
1442 			 * in this buffer, the mbuf can be discarded:
1443 			 * the last 4 bytes is the CRC, which we don't
1444 			 * care about anyway.
1445 			 */
1446 			if (m->m_len <= ETHER_CRC_LEN) {
1447 				sc->vge_tail->m_len -=
1448 				    (ETHER_CRC_LEN - m->m_len);
1449 				m_freem(m);
1450 			} else {
1451 				m->m_len -= ETHER_CRC_LEN;
1452 				m->m_flags &= ~M_PKTHDR;
1453 				sc->vge_tail->m_next = m;
1454 			}
1455 			m = sc->vge_head;
1456 			sc->vge_head = sc->vge_tail = NULL;
1457 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1458 		} else
1459 			m->m_pkthdr.len = m->m_len =
1460 			    (total_len - ETHER_CRC_LEN);
1461 
1462 #ifdef VGE_FIXUP_RX
1463 		vge_fixup_rx(m);
1464 #endif
1465 		ifp->if_ipackets++;
1466 		m->m_pkthdr.rcvif = ifp;
1467 
1468 		/* Do RX checksumming if enabled */
1469 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1470 
1471 			/* Check IP header checksum */
1472 			if (rxctl & VGE_RDCTL_IPPKT)
1473 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1474 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1475 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1476 
1477 			/* Check TCP/UDP checksum */
1478 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1479 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1480 				m->m_pkthdr.csum_flags |=
1481 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1482 				m->m_pkthdr.csum_data = 0xffff;
1483 			}
1484 		}
1485 
1486 		if (rxstat & VGE_RDSTS_VTAG)
1487 			VLAN_INPUT_TAG(ifp, m,
1488 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1489 
1490 		VGE_UNLOCK(sc);
1491 		(*ifp->if_input)(ifp, m);
1492 		VGE_LOCK(sc);
1493 
1494 		lim++;
1495 		if (lim == VGE_RX_DESC_CNT)
1496 			break;
1497 
1498 	}
1499 
1500 	/* Flush the RX DMA ring */
1501 
1502 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1503 	    sc->vge_ldata.vge_rx_list_map,
1504 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1505 
1506 	sc->vge_ldata.vge_rx_prodidx = i;
1507 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1508 
1509 
1510 	return;
1511 }
1512 
1513 static void
1514 vge_txeof(sc)
1515 	struct vge_softc		*sc;
1516 {
1517 	struct ifnet		*ifp;
1518 	u_int32_t		txstat;
1519 	int			idx;
1520 
1521 	ifp = sc->vge_ifp;
1522 	idx = sc->vge_ldata.vge_tx_considx;
1523 
1524 	/* Invalidate the TX descriptor list */
1525 
1526 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1527 	    sc->vge_ldata.vge_tx_list_map,
1528 	    BUS_DMASYNC_POSTREAD);
1529 
1530 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1531 
1532 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1533 		if (txstat & VGE_TDSTS_OWN)
1534 			break;
1535 
1536 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1537 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1538 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1539 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1540 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1541 			ifp->if_collisions++;
1542 		if (txstat & VGE_TDSTS_TXERR)
1543 			ifp->if_oerrors++;
1544 		else
1545 			ifp->if_opackets++;
1546 
1547 		sc->vge_ldata.vge_tx_free++;
1548 		VGE_TX_DESC_INC(idx);
1549 	}
1550 
1551 	/* No changes made to the TX ring, so no flush needed */
1552 
1553 	if (idx != sc->vge_ldata.vge_tx_considx) {
1554 		sc->vge_ldata.vge_tx_considx = idx;
1555 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1556 		ifp->if_timer = 0;
1557 	}
1558 
1559 	/*
1560 	 * If not all descriptors have been released reaped yet,
1561 	 * reload the timer so that we will eventually get another
1562 	 * interrupt that will cause us to re-enter this routine.
1563 	 * This is done in case the transmitter has gone idle.
1564 	 */
1565 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1566 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1567 	}
1568 
1569 	return;
1570 }
1571 
1572 static void
1573 vge_tick(xsc)
1574 	void			*xsc;
1575 {
1576 	struct vge_softc	*sc;
1577 	struct ifnet		*ifp;
1578 	struct mii_data		*mii;
1579 
1580 	sc = xsc;
1581 	ifp = sc->vge_ifp;
1582 	VGE_LOCK(sc);
1583 	mii = device_get_softc(sc->vge_miibus);
1584 
1585 	mii_tick(mii);
1586 	if (sc->vge_link) {
1587 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1588 			sc->vge_link = 0;
1589 			if_link_state_change(sc->vge_ifp,
1590 			    LINK_STATE_DOWN);
1591 		}
1592 	} else {
1593 		if (mii->mii_media_status & IFM_ACTIVE &&
1594 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1595 			sc->vge_link = 1;
1596 			if_link_state_change(sc->vge_ifp,
1597 			    LINK_STATE_UP);
1598 #if __FreeBSD_version < 502114
1599 			if (ifp->if_snd.ifq_head != NULL)
1600 #else
1601 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602 #endif
1603 				taskqueue_enqueue(taskqueue_swi,
1604 				    &sc->vge_txtask);
1605 		}
1606 	}
1607 
1608 	VGE_UNLOCK(sc);
1609 
1610 	return;
1611 }
1612 
1613 #ifdef DEVICE_POLLING
1614 static void
1615 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1616 {
1617 	struct vge_softc *sc = ifp->if_softc;
1618 
1619 	VGE_LOCK(sc);
1620 #ifdef IFCAP_POLLING
1621 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1622 		ether_poll_deregister(ifp);
1623 		cmd = POLL_DEREGISTER;
1624 	}
1625 #endif
1626 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1627 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1628 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1629 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1630 		goto done;
1631 	}
1632 
1633 	sc->rxcycles = count;
1634 	vge_rxeof(sc);
1635 	vge_txeof(sc);
1636 
1637 #if __FreeBSD_version < 502114
1638 	if (ifp->if_snd.ifq_head != NULL)
1639 #else
1640 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1641 #endif
1642 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1643 
1644 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1645 		u_int32_t       status;
1646 		status = CSR_READ_4(sc, VGE_ISR);
1647 		if (status == 0xFFFFFFFF)
1648 			goto done;
1649 		if (status)
1650 			CSR_WRITE_4(sc, VGE_ISR, status);
1651 
1652 		/*
1653 		 * XXX check behaviour on receiver stalls.
1654 		 */
1655 
1656 		if (status & VGE_ISR_TXDMA_STALL ||
1657 		    status & VGE_ISR_RXDMA_STALL)
1658 			vge_init(sc);
1659 
1660 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1661 			vge_rxeof(sc);
1662 			ifp->if_ierrors++;
1663 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1664 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1665 		}
1666 	}
1667 done:
1668 	VGE_UNLOCK(sc);
1669 }
1670 #endif /* DEVICE_POLLING */
1671 
1672 static void
1673 vge_intr(arg)
1674 	void			*arg;
1675 {
1676 	struct vge_softc	*sc;
1677 	struct ifnet		*ifp;
1678 	u_int32_t		status;
1679 
1680 	sc = arg;
1681 
1682 	if (sc->suspended) {
1683 		return;
1684 	}
1685 
1686 	VGE_LOCK(sc);
1687 	ifp = sc->vge_ifp;
1688 
1689 	if (!(ifp->if_flags & IFF_UP)) {
1690 		VGE_UNLOCK(sc);
1691 		return;
1692 	}
1693 
1694 #ifdef DEVICE_POLLING
1695 	if  (ifp->if_flags & IFF_POLLING)
1696 		goto done;
1697 	if (
1698 #ifdef IFCAP_POLLING
1699 	    (ifp->if_capenable & IFCAP_POLLING) &&
1700 #endif
1701 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1702 		CSR_WRITE_4(sc, VGE_IMR, 0);
1703 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1704 		vge_poll(ifp, 0, 1);
1705 		goto done;
1706 	}
1707 
1708 #endif /* DEVICE_POLLING */
1709 
1710 	/* Disable interrupts */
1711 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1712 
1713 	for (;;) {
1714 
1715 		status = CSR_READ_4(sc, VGE_ISR);
1716 		/* If the card has gone away the read returns 0xffff. */
1717 		if (status == 0xFFFFFFFF)
1718 			break;
1719 
1720 		if (status)
1721 			CSR_WRITE_4(sc, VGE_ISR, status);
1722 
1723 		if ((status & VGE_INTRS) == 0)
1724 			break;
1725 
1726 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1727 			vge_rxeof(sc);
1728 
1729 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1730 			vge_rxeof(sc);
1731 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1732 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1733 		}
1734 
1735 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1736 			vge_txeof(sc);
1737 
1738 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1739 			vge_init(sc);
1740 
1741 		if (status & VGE_ISR_LINKSTS)
1742 			vge_tick(sc);
1743 	}
1744 
1745 	/* Re-enable interrupts */
1746 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1747 
1748 #ifdef DEVICE_POLLING
1749 done:
1750 #endif
1751 	VGE_UNLOCK(sc);
1752 
1753 #if __FreeBSD_version < 502114
1754 	if (ifp->if_snd.ifq_head != NULL)
1755 #else
1756 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1757 #endif
1758 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1759 
1760 	return;
1761 }
1762 
1763 static int
1764 vge_encap(sc, m_head, idx)
1765 	struct vge_softc	*sc;
1766 	struct mbuf		*m_head;
1767 	int			idx;
1768 {
1769 	struct mbuf		*m_new = NULL;
1770 	struct vge_dmaload_arg	arg;
1771 	bus_dmamap_t		map;
1772 	int			error;
1773 	struct m_tag		*mtag;
1774 
1775 	if (sc->vge_ldata.vge_tx_free <= 2)
1776 		return (EFBIG);
1777 
1778 	arg.vge_flags = 0;
1779 
1780 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1781 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1782 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1783 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1784 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1785 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1786 
1787 	arg.sc = sc;
1788 	arg.vge_idx = idx;
1789 	arg.vge_m0 = m_head;
1790 	arg.vge_maxsegs = VGE_TX_FRAGS;
1791 
1792 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1793 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1794 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1795 
1796 	if (error && error != EFBIG) {
1797 		printf("vge%d: can't map mbuf (error %d)\n",
1798 		    sc->vge_unit, error);
1799 		return (ENOBUFS);
1800 	}
1801 
1802 	/* Too many segments to map, coalesce into a single mbuf */
1803 
1804 	if (error || arg.vge_maxsegs == 0) {
1805 		m_new = m_defrag(m_head, M_DONTWAIT);
1806 		if (m_new == NULL)
1807 			return (1);
1808 		else
1809 			m_head = m_new;
1810 
1811 		arg.sc = sc;
1812 		arg.vge_m0 = m_head;
1813 		arg.vge_idx = idx;
1814 		arg.vge_maxsegs = 1;
1815 
1816 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1817 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1818 		if (error) {
1819 			printf("vge%d: can't map mbuf (error %d)\n",
1820 			    sc->vge_unit, error);
1821 			return (EFBIG);
1822 		}
1823 	}
1824 
1825 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1826 	sc->vge_ldata.vge_tx_free--;
1827 
1828 	/*
1829 	 * Set up hardware VLAN tagging.
1830 	 */
1831 
1832 	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1833 	if (mtag != NULL)
1834 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1835 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1836 
1837 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1838 
1839 	return (0);
1840 }
1841 
1842 static void
1843 vge_tx_task(arg, npending)
1844 	void			*arg;
1845 	int			npending;
1846 {
1847 	struct ifnet		*ifp;
1848 
1849 	ifp = arg;
1850 	vge_start(ifp);
1851 
1852 	return;
1853 }
1854 
1855 /*
1856  * Main transmit routine.
1857  */
1858 
1859 static void
1860 vge_start(ifp)
1861 	struct ifnet		*ifp;
1862 {
1863 	struct vge_softc	*sc;
1864 	struct mbuf		*m_head = NULL;
1865 	int			idx, pidx = 0;
1866 
1867 	sc = ifp->if_softc;
1868 	VGE_LOCK(sc);
1869 
1870 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1871 		VGE_UNLOCK(sc);
1872 		return;
1873 	}
1874 
1875 #if __FreeBSD_version < 502114
1876 	if (ifp->if_snd.ifq_head == NULL) {
1877 #else
1878 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1879 #endif
1880 		VGE_UNLOCK(sc);
1881 		return;
1882 	}
1883 
1884 	idx = sc->vge_ldata.vge_tx_prodidx;
1885 
1886 	pidx = idx - 1;
1887 	if (pidx < 0)
1888 		pidx = VGE_TX_DESC_CNT - 1;
1889 
1890 
1891 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1892 #if __FreeBSD_version < 502114
1893 		IF_DEQUEUE(&ifp->if_snd, m_head);
1894 #else
1895 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1896 #endif
1897 		if (m_head == NULL)
1898 			break;
1899 
1900 		if (vge_encap(sc, m_head, idx)) {
1901 #if __FreeBSD_version >= 502114
1902 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1903 #else
1904 			IF_PREPEND(&ifp->if_snd, m_head);
1905 #endif
1906 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1907 			break;
1908 		}
1909 
1910 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1911 		    htole16(VGE_TXDESC_Q);
1912 
1913 		pidx = idx;
1914 		VGE_TX_DESC_INC(idx);
1915 
1916 		/*
1917 		 * If there's a BPF listener, bounce a copy of this frame
1918 		 * to him.
1919 		 */
1920 		BPF_MTAP(ifp, m_head);
1921 	}
1922 
1923 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1924 		VGE_UNLOCK(sc);
1925 		return;
1926 	}
1927 
1928 	/* Flush the TX descriptors */
1929 
1930 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1931 	    sc->vge_ldata.vge_tx_list_map,
1932 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1933 
1934 	/* Issue a transmit command. */
1935 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1936 
1937 	sc->vge_ldata.vge_tx_prodidx = idx;
1938 
1939 	/*
1940 	 * Use the countdown timer for interrupt moderation.
1941 	 * 'TX done' interrupts are disabled. Instead, we reset the
1942 	 * countdown timer, which will begin counting until it hits
1943 	 * the value in the SSTIMER register, and then trigger an
1944 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1945 	 * the timer count is reloaded. Only when the transmitter
1946 	 * is idle will the timer hit 0 and an interrupt fire.
1947 	 */
1948 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1949 
1950 	VGE_UNLOCK(sc);
1951 
1952 	/*
1953 	 * Set a timeout in case the chip goes out to lunch.
1954 	 */
1955 	ifp->if_timer = 5;
1956 
1957 	return;
1958 }
1959 
1960 static void
1961 vge_init(xsc)
1962 	void			*xsc;
1963 {
1964 	struct vge_softc	*sc = xsc;
1965 	struct ifnet		*ifp = sc->vge_ifp;
1966 	struct mii_data		*mii;
1967 	int			i;
1968 
1969 	VGE_LOCK(sc);
1970 	mii = device_get_softc(sc->vge_miibus);
1971 
1972 	/*
1973 	 * Cancel pending I/O and free all RX/TX buffers.
1974 	 */
1975 	vge_stop(sc);
1976 	vge_reset(sc);
1977 
1978 	/*
1979 	 * Initialize the RX and TX descriptors and mbufs.
1980 	 */
1981 
1982 	vge_rx_list_init(sc);
1983 	vge_tx_list_init(sc);
1984 
1985 	/* Set our station address */
1986 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1987 		CSR_WRITE_1(sc, VGE_PAR0 + i, IFP2ENADDR(sc->vge_ifp)[i]);
1988 
1989 	/*
1990 	 * Set receive FIFO threshold. Also allow transmission and
1991 	 * reception of VLAN tagged frames.
1992 	 */
1993 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1994 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1995 
1996 	/* Set DMA burst length */
1997 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1998 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1999 
2000 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2001 
2002 	/* Set collision backoff algorithm */
2003 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2004 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2005 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2006 
2007 	/* Disable LPSEL field in priority resolution */
2008 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2009 
2010 	/*
2011 	 * Load the addresses of the DMA queues into the chip.
2012 	 * Note that we only use one transmit queue.
2013 	 */
2014 
2015 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2016 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2017 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2018 
2019 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2020 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2021 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2022 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2023 
2024 	/* Enable and wake up the RX descriptor queue */
2025 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2026 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2027 
2028 	/* Enable the TX descriptor queue */
2029 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2030 
2031 	/* Set up the receive filter -- allow large frames for VLANs. */
2032 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2033 
2034 	/* If we want promiscuous mode, set the allframes bit. */
2035 	if (ifp->if_flags & IFF_PROMISC) {
2036 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2037 	}
2038 
2039 	/* Set capture broadcast bit to capture broadcast frames. */
2040 	if (ifp->if_flags & IFF_BROADCAST) {
2041 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2042 	}
2043 
2044 	/* Set multicast bit to capture multicast frames. */
2045 	if (ifp->if_flags & IFF_MULTICAST) {
2046 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2047 	}
2048 
2049 	/* Init the cam filter. */
2050 	vge_cam_clear(sc);
2051 
2052 	/* Init the multicast filter. */
2053 	vge_setmulti(sc);
2054 
2055 	/* Enable flow control */
2056 
2057 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2058 
2059 	/* Enable jumbo frame reception (if desired) */
2060 
2061 	/* Start the MAC. */
2062 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2063 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2064 	CSR_WRITE_1(sc, VGE_CRS0,
2065 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2066 
2067 	/*
2068 	 * Configure one-shot timer for microsecond
2069 	 * resulution and load it for 500 usecs.
2070 	 */
2071 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2072 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2073 
2074 	/*
2075 	 * Configure interrupt moderation for receive. Enable
2076 	 * the holdoff counter and load it, and set the RX
2077 	 * suppression count to the number of descriptors we
2078 	 * want to allow before triggering an interrupt.
2079 	 * The holdoff timer is in units of 20 usecs.
2080 	 */
2081 
2082 #ifdef notyet
2083 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2084 	/* Select the interrupt holdoff timer page. */
2085 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2086 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2087 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2088 
2089 	/* Enable use of the holdoff timer. */
2090 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2091 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2092 
2093 	/* Select the RX suppression threshold page. */
2094 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2095 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2096 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2097 
2098 	/* Restore the page select bits. */
2099 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2100 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2101 #endif
2102 
2103 #ifdef DEVICE_POLLING
2104 	/*
2105 	 * Disable interrupts if we are polling.
2106 	 */
2107 	if (ifp->if_flags & IFF_POLLING) {
2108 		CSR_WRITE_4(sc, VGE_IMR, 0);
2109 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2110 	} else	/* otherwise ... */
2111 #endif /* DEVICE_POLLING */
2112 	{
2113 	/*
2114 	 * Enable interrupts.
2115 	 */
2116 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2117 		CSR_WRITE_4(sc, VGE_ISR, 0);
2118 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2119 	}
2120 
2121 	mii_mediachg(mii);
2122 
2123 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2124 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2125 
2126 	sc->vge_if_flags = 0;
2127 	sc->vge_link = 0;
2128 
2129 	VGE_UNLOCK(sc);
2130 
2131 	return;
2132 }
2133 
2134 /*
2135  * Set media options.
2136  */
2137 static int
2138 vge_ifmedia_upd(ifp)
2139 	struct ifnet		*ifp;
2140 {
2141 	struct vge_softc	*sc;
2142 	struct mii_data		*mii;
2143 
2144 	sc = ifp->if_softc;
2145 	mii = device_get_softc(sc->vge_miibus);
2146 	mii_mediachg(mii);
2147 
2148 	return (0);
2149 }
2150 
2151 /*
2152  * Report current media status.
2153  */
2154 static void
2155 vge_ifmedia_sts(ifp, ifmr)
2156 	struct ifnet		*ifp;
2157 	struct ifmediareq	*ifmr;
2158 {
2159 	struct vge_softc	*sc;
2160 	struct mii_data		*mii;
2161 
2162 	sc = ifp->if_softc;
2163 	mii = device_get_softc(sc->vge_miibus);
2164 
2165 	mii_pollstat(mii);
2166 	ifmr->ifm_active = mii->mii_media_active;
2167 	ifmr->ifm_status = mii->mii_media_status;
2168 
2169 	return;
2170 }
2171 
2172 static void
2173 vge_miibus_statchg(dev)
2174 	device_t		dev;
2175 {
2176 	struct vge_softc	*sc;
2177 	struct mii_data		*mii;
2178 	struct ifmedia_entry	*ife;
2179 
2180 	sc = device_get_softc(dev);
2181 	mii = device_get_softc(sc->vge_miibus);
2182 	ife = mii->mii_media.ifm_cur;
2183 
2184 	/*
2185 	 * If the user manually selects a media mode, we need to turn
2186 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2187 	 * user happens to choose a full duplex mode, we also need to
2188 	 * set the 'force full duplex' bit. This applies only to
2189 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2190 	 * mode is disabled, and in 1000baseT mode, full duplex is
2191 	 * always implied, so we turn on the forced mode bit but leave
2192 	 * the FDX bit cleared.
2193 	 */
2194 
2195 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2196 	case IFM_AUTO:
2197 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2198 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199 		break;
2200 	case IFM_1000_T:
2201 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2202 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2203 		break;
2204 	case IFM_100_TX:
2205 	case IFM_10_T:
2206 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2207 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2208 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2209 		} else {
2210 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2211 		}
2212 		break;
2213 	default:
2214 		device_printf(dev, "unknown media type: %x\n",
2215 		    IFM_SUBTYPE(ife->ifm_media));
2216 		break;
2217 	}
2218 
2219 	return;
2220 }
2221 
2222 static int
2223 vge_ioctl(ifp, command, data)
2224 	struct ifnet		*ifp;
2225 	u_long			command;
2226 	caddr_t			data;
2227 {
2228 	struct vge_softc	*sc = ifp->if_softc;
2229 	struct ifreq		*ifr = (struct ifreq *) data;
2230 	struct mii_data		*mii;
2231 	int			error = 0;
2232 
2233 	switch (command) {
2234 	case SIOCSIFMTU:
2235 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2236 			error = EINVAL;
2237 		ifp->if_mtu = ifr->ifr_mtu;
2238 		break;
2239 	case SIOCSIFFLAGS:
2240 		if (ifp->if_flags & IFF_UP) {
2241 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2242 			    ifp->if_flags & IFF_PROMISC &&
2243 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2244 				CSR_SETBIT_1(sc, VGE_RXCTL,
2245 				    VGE_RXCTL_RX_PROMISC);
2246 				vge_setmulti(sc);
2247 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2248 			    !(ifp->if_flags & IFF_PROMISC) &&
2249 			    sc->vge_if_flags & IFF_PROMISC) {
2250 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2251 				    VGE_RXCTL_RX_PROMISC);
2252 				vge_setmulti(sc);
2253                         } else
2254 				vge_init(sc);
2255 		} else {
2256 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2257 				vge_stop(sc);
2258 		}
2259 		sc->vge_if_flags = ifp->if_flags;
2260 		break;
2261 	case SIOCADDMULTI:
2262 	case SIOCDELMULTI:
2263 		vge_setmulti(sc);
2264 		break;
2265 	case SIOCGIFMEDIA:
2266 	case SIOCSIFMEDIA:
2267 		mii = device_get_softc(sc->vge_miibus);
2268 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2269 		break;
2270 	case SIOCSIFCAP:
2271 #ifdef IFCAP_POLLING
2272 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2273 #else
2274 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2275 #endif
2276 		ifp->if_capenable |=
2277 #ifdef IFCAP_POLLING
2278 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2279 #else
2280 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2281 #endif
2282 		if (ifp->if_capenable & IFCAP_TXCSUM)
2283 			ifp->if_hwassist = VGE_CSUM_FEATURES;
2284 		else
2285 			ifp->if_hwassist = 0;
2286 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2287 			vge_init(sc);
2288 		break;
2289 	default:
2290 		error = ether_ioctl(ifp, command, data);
2291 		break;
2292 	}
2293 
2294 	return (error);
2295 }
2296 
2297 static void
2298 vge_watchdog(ifp)
2299 	struct ifnet		*ifp;
2300 {
2301 	struct vge_softc		*sc;
2302 
2303 	sc = ifp->if_softc;
2304 	VGE_LOCK(sc);
2305 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2306 	ifp->if_oerrors++;
2307 
2308 	vge_txeof(sc);
2309 	vge_rxeof(sc);
2310 
2311 	vge_init(sc);
2312 
2313 	VGE_UNLOCK(sc);
2314 
2315 	return;
2316 }
2317 
2318 /*
2319  * Stop the adapter and free any mbufs allocated to the
2320  * RX and TX lists.
2321  */
2322 static void
2323 vge_stop(sc)
2324 	struct vge_softc		*sc;
2325 {
2326 	register int		i;
2327 	struct ifnet		*ifp;
2328 
2329 	VGE_LOCK(sc);
2330 	ifp = sc->vge_ifp;
2331 	ifp->if_timer = 0;
2332 
2333 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2334 #ifdef DEVICE_POLLING
2335 	ether_poll_deregister(ifp);
2336 #endif /* DEVICE_POLLING */
2337 
2338 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2339 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2340 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2341 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2342 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2343 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2344 
2345 	if (sc->vge_head != NULL) {
2346 		m_freem(sc->vge_head);
2347 		sc->vge_head = sc->vge_tail = NULL;
2348 	}
2349 
2350 	/* Free the TX list buffers. */
2351 
2352 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2353 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2354 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2355 			    sc->vge_ldata.vge_tx_dmamap[i]);
2356 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2357 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2358 		}
2359 	}
2360 
2361 	/* Free the RX list buffers. */
2362 
2363 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2364 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2365 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2366 			    sc->vge_ldata.vge_rx_dmamap[i]);
2367 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2368 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2369 		}
2370 	}
2371 
2372 	VGE_UNLOCK(sc);
2373 
2374 	return;
2375 }
2376 
2377 /*
2378  * Device suspend routine.  Stop the interface and save some PCI
2379  * settings in case the BIOS doesn't restore them properly on
2380  * resume.
2381  */
2382 static int
2383 vge_suspend(dev)
2384 	device_t		dev;
2385 {
2386 	struct vge_softc	*sc;
2387 
2388 	sc = device_get_softc(dev);
2389 
2390 	vge_stop(sc);
2391 
2392 	sc->suspended = 1;
2393 
2394 	return (0);
2395 }
2396 
2397 /*
2398  * Device resume routine.  Restore some PCI settings in case the BIOS
2399  * doesn't, re-enable busmastering, and restart the interface if
2400  * appropriate.
2401  */
2402 static int
2403 vge_resume(dev)
2404 	device_t		dev;
2405 {
2406 	struct vge_softc	*sc;
2407 	struct ifnet		*ifp;
2408 
2409 	sc = device_get_softc(dev);
2410 	ifp = sc->vge_ifp;
2411 
2412 	/* reenable busmastering */
2413 	pci_enable_busmaster(dev);
2414 	pci_enable_io(dev, SYS_RES_MEMORY);
2415 
2416 	/* reinitialize interface if necessary */
2417 	if (ifp->if_flags & IFF_UP)
2418 		vge_init(sc);
2419 
2420 	sc->suspended = 0;
2421 
2422 	return (0);
2423 }
2424 
2425 /*
2426  * Stop all chip I/O so that the kernel's probe routines don't
2427  * get confused by errant DMAs when rebooting.
2428  */
2429 static void
2430 vge_shutdown(dev)
2431 	device_t		dev;
2432 {
2433 	struct vge_softc		*sc;
2434 
2435 	sc = device_get_softc(dev);
2436 
2437 	vge_stop(sc);
2438 }
2439