xref: /freebsd/sys/dev/vge/if_vge.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/taskqueue.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct vge_type vge_devs[] = {
135 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136 		"VIA Networking Gigabit Ethernet" },
137 	{ 0, 0, NULL }
138 };
139 
140 static int vge_probe		(device_t);
141 static int vge_attach		(device_t);
142 static int vge_detach		(device_t);
143 
144 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145 
146 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148 				    bus_size_t, int);
149 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150 				    bus_size_t, int);
151 static int vge_allocmem		(device_t, struct vge_softc *);
152 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153 static int vge_rx_list_init	(struct vge_softc *);
154 static int vge_tx_list_init	(struct vge_softc *);
155 #ifdef VGE_FIXUP_RX
156 static __inline void vge_fixup_rx
157 				(struct mbuf *);
158 #endif
159 static int vge_rxeof		(struct vge_softc *);
160 static void vge_txeof		(struct vge_softc *);
161 static void vge_intr		(void *);
162 static void vge_tick		(void *);
163 static void vge_tx_task		(void *, int);
164 static void vge_start		(struct ifnet *);
165 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166 static void vge_init		(void *);
167 static void vge_stop		(struct vge_softc *);
168 static void vge_watchdog	(struct ifnet *);
169 static int vge_suspend		(device_t);
170 static int vge_resume		(device_t);
171 static int vge_shutdown		(device_t);
172 static int vge_ifmedia_upd	(struct ifnet *);
173 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179 
180 static void vge_miipoll_start	(struct vge_softc *);
181 static void vge_miipoll_stop	(struct vge_softc *);
182 static int vge_miibus_readreg	(device_t, int, int);
183 static int vge_miibus_writereg	(device_t, int, int, int);
184 static void vge_miibus_statchg	(device_t);
185 
186 static void vge_cam_clear	(struct vge_softc *);
187 static int vge_cam_set		(struct vge_softc *, uint8_t *);
188 static void vge_setmulti	(struct vge_softc *);
189 static void vge_reset		(struct vge_softc *);
190 
191 #define VGE_PCI_LOIO             0x10
192 #define VGE_PCI_LOMEM            0x14
193 
194 static device_method_t vge_methods[] = {
195 	/* Device interface */
196 	DEVMETHOD(device_probe,		vge_probe),
197 	DEVMETHOD(device_attach,	vge_attach),
198 	DEVMETHOD(device_detach,	vge_detach),
199 	DEVMETHOD(device_suspend,	vge_suspend),
200 	DEVMETHOD(device_resume,	vge_resume),
201 	DEVMETHOD(device_shutdown,	vge_shutdown),
202 
203 	/* bus interface */
204 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206 
207 	/* MII interface */
208 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211 
212 	{ 0, 0 }
213 };
214 
215 static driver_t vge_driver = {
216 	"vge",
217 	vge_methods,
218 	sizeof(struct vge_softc)
219 };
220 
221 static devclass_t vge_devclass;
222 
223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225 
226 #ifdef VGE_EEPROM
227 /*
228  * Read a word of data stored in the EEPROM at address 'addr.'
229  */
230 static void
231 vge_eeprom_getword(sc, addr, dest)
232 	struct vge_softc	*sc;
233 	int			addr;
234 	u_int16_t		*dest;
235 {
236 	register int		i;
237 	u_int16_t		word = 0;
238 
239 	/*
240 	 * Enter EEPROM embedded programming mode. In order to
241 	 * access the EEPROM at all, we first have to set the
242 	 * EELOAD bit in the CHIPCFG2 register.
243 	 */
244 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246 
247 	/* Select the address of the word we want to read */
248 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249 
250 	/* Issue read command */
251 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252 
253 	/* Wait for the done bit to be set. */
254 	for (i = 0; i < VGE_TIMEOUT; i++) {
255 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256 			break;
257 	}
258 
259 	if (i == VGE_TIMEOUT) {
260 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261 		*dest = 0;
262 		return;
263 	}
264 
265 	/* Read the result */
266 	word = CSR_READ_2(sc, VGE_EERDDAT);
267 
268 	/* Turn off EEPROM access mode. */
269 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271 
272 	*dest = word;
273 
274 	return;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 #ifdef VGE_EEPROM
291 	u_int16_t		word = 0, *ptr;
292 
293 	for (i = 0; i < cnt; i++) {
294 		vge_eeprom_getword(sc, off + i, &word);
295 		ptr = (u_int16_t *)(dest + (i * 2));
296 		if (swap)
297 			*ptr = ntohs(word);
298 		else
299 			*ptr = word;
300 	}
301 #else
302 	for (i = 0; i < ETHER_ADDR_LEN; i++)
303 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304 #endif
305 }
306 
307 static void
308 vge_miipoll_stop(sc)
309 	struct vge_softc	*sc;
310 {
311 	int			i;
312 
313 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314 
315 	for (i = 0; i < VGE_TIMEOUT; i++) {
316 		DELAY(1);
317 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 			break;
319 	}
320 
321 	if (i == VGE_TIMEOUT)
322 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 
324 	return;
325 }
326 
327 static void
328 vge_miipoll_start(sc)
329 	struct vge_softc	*sc;
330 {
331 	int			i;
332 
333 	/* First, make sure we're idle. */
334 
335 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337 
338 	for (i = 0; i < VGE_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341 			break;
342 	}
343 
344 	if (i == VGE_TIMEOUT) {
345 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346 		return;
347 	}
348 
349 	/* Now enable auto poll mode. */
350 
351 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352 
353 	/* And make sure it started. */
354 
355 	for (i = 0; i < VGE_TIMEOUT; i++) {
356 		DELAY(1);
357 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358 			break;
359 	}
360 
361 	if (i == VGE_TIMEOUT)
362 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363 
364 	return;
365 }
366 
367 static int
368 vge_miibus_readreg(dev, phy, reg)
369 	device_t		dev;
370 	int			phy, reg;
371 {
372 	struct vge_softc	*sc;
373 	int			i;
374 	u_int16_t		rval = 0;
375 
376 	sc = device_get_softc(dev);
377 
378 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379 		return(0);
380 
381 	VGE_LOCK(sc);
382 	vge_miipoll_stop(sc);
383 
384 	/* Specify the register we want to read. */
385 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386 
387 	/* Issue read command. */
388 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389 
390 	/* Wait for the read command bit to self-clear. */
391 	for (i = 0; i < VGE_TIMEOUT; i++) {
392 		DELAY(1);
393 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394 			break;
395 	}
396 
397 	if (i == VGE_TIMEOUT)
398 		device_printf(sc->vge_dev, "MII read timed out\n");
399 	else
400 		rval = CSR_READ_2(sc, VGE_MIIDATA);
401 
402 	vge_miipoll_start(sc);
403 	VGE_UNLOCK(sc);
404 
405 	return (rval);
406 }
407 
408 static int
409 vge_miibus_writereg(dev, phy, reg, data)
410 	device_t		dev;
411 	int			phy, reg, data;
412 {
413 	struct vge_softc	*sc;
414 	int			i, rval = 0;
415 
416 	sc = device_get_softc(dev);
417 
418 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
419 		return(0);
420 
421 	VGE_LOCK(sc);
422 	vge_miipoll_stop(sc);
423 
424 	/* Specify the register we want to write. */
425 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
426 
427 	/* Specify the data we want to write. */
428 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
429 
430 	/* Issue write command. */
431 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
432 
433 	/* Wait for the write command bit to self-clear. */
434 	for (i = 0; i < VGE_TIMEOUT; i++) {
435 		DELAY(1);
436 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
437 			break;
438 	}
439 
440 	if (i == VGE_TIMEOUT) {
441 		device_printf(sc->vge_dev, "MII write timed out\n");
442 		rval = EIO;
443 	}
444 
445 	vge_miipoll_start(sc);
446 	VGE_UNLOCK(sc);
447 
448 	return (rval);
449 }
450 
451 static void
452 vge_cam_clear(sc)
453 	struct vge_softc	*sc;
454 {
455 	int			i;
456 
457 	/*
458 	 * Turn off all the mask bits. This tells the chip
459 	 * that none of the entries in the CAM filter are valid.
460 	 * desired entries will be enabled as we fill the filter in.
461 	 */
462 
463 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
465 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
466 	for (i = 0; i < 8; i++)
467 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
468 
469 	/* Clear the VLAN filter too. */
470 
471 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
472 	for (i = 0; i < 8; i++)
473 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
474 
475 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
476 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
477 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
478 
479 	sc->vge_camidx = 0;
480 
481 	return;
482 }
483 
484 static int
485 vge_cam_set(sc, addr)
486 	struct vge_softc	*sc;
487 	uint8_t			*addr;
488 {
489 	int			i, error = 0;
490 
491 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
492 		return(ENOSPC);
493 
494 	/* Select the CAM data page. */
495 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
497 
498 	/* Set the filter entry we want to update and enable writing. */
499 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
500 
501 	/* Write the address to the CAM registers */
502 	for (i = 0; i < ETHER_ADDR_LEN; i++)
503 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
504 
505 	/* Issue a write command. */
506 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
507 
508 	/* Wake for it to clear. */
509 	for (i = 0; i < VGE_TIMEOUT; i++) {
510 		DELAY(1);
511 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
512 			break;
513 	}
514 
515 	if (i == VGE_TIMEOUT) {
516 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
517 		error = EIO;
518 		goto fail;
519 	}
520 
521 	/* Select the CAM mask page. */
522 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
523 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
524 
525 	/* Set the mask bit that enables this filter. */
526 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
527 	    1<<(sc->vge_camidx & 7));
528 
529 	sc->vge_camidx++;
530 
531 fail:
532 	/* Turn off access to CAM. */
533 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
534 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
535 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
536 
537 	return (error);
538 }
539 
540 /*
541  * Program the multicast filter. We use the 64-entry CAM filter
542  * for perfect filtering. If there's more than 64 multicast addresses,
543  * we use the hash filter insted.
544  */
545 static void
546 vge_setmulti(sc)
547 	struct vge_softc	*sc;
548 {
549 	struct ifnet		*ifp;
550 	int			error = 0/*, h = 0*/;
551 	struct ifmultiaddr	*ifma;
552 	u_int32_t		h, hashes[2] = { 0, 0 };
553 
554 	ifp = sc->vge_ifp;
555 
556 	/* First, zot all the multicast entries. */
557 	vge_cam_clear(sc);
558 	CSR_WRITE_4(sc, VGE_MAR0, 0);
559 	CSR_WRITE_4(sc, VGE_MAR1, 0);
560 
561 	/*
562 	 * If the user wants allmulti or promisc mode, enable reception
563 	 * of all multicast frames.
564 	 */
565 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
566 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
567 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
568 		return;
569 	}
570 
571 	/* Now program new ones */
572 	IF_ADDR_LOCK(ifp);
573 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
574 		if (ifma->ifma_addr->sa_family != AF_LINK)
575 			continue;
576 		error = vge_cam_set(sc,
577 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
578 		if (error)
579 			break;
580 	}
581 
582 	/* If there were too many addresses, use the hash filter. */
583 	if (error) {
584 		vge_cam_clear(sc);
585 
586 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
587 			if (ifma->ifma_addr->sa_family != AF_LINK)
588 				continue;
589 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
590 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
591 			if (h < 32)
592 				hashes[0] |= (1 << h);
593 			else
594 				hashes[1] |= (1 << (h - 32));
595 		}
596 
597 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
598 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
599 	}
600 	IF_ADDR_UNLOCK(ifp);
601 
602 	return;
603 }
604 
605 static void
606 vge_reset(sc)
607 	struct vge_softc		*sc;
608 {
609 	register int		i;
610 
611 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
612 
613 	for (i = 0; i < VGE_TIMEOUT; i++) {
614 		DELAY(5);
615 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
616 			break;
617 	}
618 
619 	if (i == VGE_TIMEOUT) {
620 		device_printf(sc->vge_dev, "soft reset timed out");
621 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
622 		DELAY(2000);
623 	}
624 
625 	DELAY(5000);
626 
627 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
628 
629 	for (i = 0; i < VGE_TIMEOUT; i++) {
630 		DELAY(5);
631 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
632 			break;
633 	}
634 
635 	if (i == VGE_TIMEOUT) {
636 		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
637 		return;
638 	}
639 
640 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
641 
642 	return;
643 }
644 
645 /*
646  * Probe for a VIA gigabit chip. Check the PCI vendor and device
647  * IDs against our list and return a device name if we find a match.
648  */
649 static int
650 vge_probe(dev)
651 	device_t		dev;
652 {
653 	struct vge_type		*t;
654 
655 	t = vge_devs;
656 
657 	while (t->vge_name != NULL) {
658 		if ((pci_get_vendor(dev) == t->vge_vid) &&
659 		    (pci_get_device(dev) == t->vge_did)) {
660 			device_set_desc(dev, t->vge_name);
661 			return (BUS_PROBE_DEFAULT);
662 		}
663 		t++;
664 	}
665 
666 	return (ENXIO);
667 }
668 
669 static void
670 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
671 	void			*arg;
672 	bus_dma_segment_t	*segs;
673 	int			nseg;
674 	bus_size_t		mapsize;
675 	int			error;
676 {
677 
678 	struct vge_dmaload_arg	*ctx;
679 	struct vge_rx_desc	*d = NULL;
680 
681 	if (error)
682 		return;
683 
684 	ctx = arg;
685 
686 	/* Signal error to caller if there's too many segments */
687 	if (nseg > ctx->vge_maxsegs) {
688 		ctx->vge_maxsegs = 0;
689 		return;
690 	}
691 
692 	/*
693 	 * Map the segment array into descriptors.
694 	 */
695 
696 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
697 
698 	/* If this descriptor is still owned by the chip, bail. */
699 
700 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
701 		device_printf(ctx->sc->vge_dev,
702 		    "tried to map busy descriptor\n");
703 		ctx->vge_maxsegs = 0;
704 		return;
705 	}
706 
707 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
708 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
709 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
710 	d->vge_sts = 0;
711 	d->vge_ctl = 0;
712 
713 	ctx->vge_maxsegs = 1;
714 
715 	return;
716 }
717 
718 static void
719 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
720 	void			*arg;
721 	bus_dma_segment_t	*segs;
722 	int			nseg;
723 	bus_size_t		mapsize;
724 	int			error;
725 {
726 	struct vge_dmaload_arg	*ctx;
727 	struct vge_tx_desc	*d = NULL;
728 	struct vge_tx_frag	*f;
729 	int			i = 0;
730 
731 	if (error)
732 		return;
733 
734 	ctx = arg;
735 
736 	/* Signal error to caller if there's too many segments */
737 	if (nseg > ctx->vge_maxsegs) {
738 		ctx->vge_maxsegs = 0;
739 		return;
740 	}
741 
742 	/* Map the segment array into descriptors. */
743 
744 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
745 
746 	/* If this descriptor is still owned by the chip, bail. */
747 
748 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
749 		ctx->vge_maxsegs = 0;
750 		return;
751 	}
752 
753 	for (i = 0; i < nseg; i++) {
754 		f = &d->vge_frag[i];
755 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
756 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
757 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
758 	}
759 
760 	/* Argh. This chip does not autopad short frames */
761 
762 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
763 		f = &d->vge_frag[i];
764 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
765 		    ctx->vge_m0->m_pkthdr.len));
766 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
767 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
768 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
769 		i++;
770 	}
771 
772 	/*
773 	 * When telling the chip how many segments there are, we
774 	 * must use nsegs + 1 instead of just nsegs. Darned if I
775 	 * know why.
776 	 */
777 	i++;
778 
779 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
780 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
781 
782 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
783 		d->vge_ctl |= VGE_TDCTL_JUMBO;
784 
785 	ctx->vge_maxsegs = nseg;
786 
787 	return;
788 }
789 
790 /*
791  * Map a single buffer address.
792  */
793 
794 static void
795 vge_dma_map_addr(arg, segs, nseg, error)
796 	void			*arg;
797 	bus_dma_segment_t	*segs;
798 	int			nseg;
799 	int			error;
800 {
801 	bus_addr_t		*addr;
802 
803 	if (error)
804 		return;
805 
806 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
807 	addr = arg;
808 	*addr = segs->ds_addr;
809 
810 	return;
811 }
812 
813 static int
814 vge_allocmem(dev, sc)
815 	device_t		dev;
816 	struct vge_softc		*sc;
817 {
818 	int			error;
819 	int			nseg;
820 	int			i;
821 
822 	/*
823 	 * Allocate map for RX mbufs.
824 	 */
825 	nseg = 32;
826 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
827 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
828 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
829 	    NULL, NULL, &sc->vge_ldata.vge_mtag);
830 	if (error) {
831 		device_printf(dev, "could not allocate dma tag\n");
832 		return (ENOMEM);
833 	}
834 
835 	/*
836 	 * Allocate map for TX descriptor list.
837 	 */
838 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
839 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
840 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
841 	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
842 	if (error) {
843 		device_printf(dev, "could not allocate dma tag\n");
844 		return (ENOMEM);
845 	}
846 
847 	/* Allocate DMA'able memory for the TX ring */
848 
849 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
850 	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
851 	    &sc->vge_ldata.vge_tx_list_map);
852 	if (error)
853 		return (ENOMEM);
854 
855 	/* Load the map for the TX ring. */
856 
857 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
858 	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
859 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
860 	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
861 
862 	/* Create DMA maps for TX buffers */
863 
864 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
865 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
866 			    &sc->vge_ldata.vge_tx_dmamap[i]);
867 		if (error) {
868 			device_printf(dev, "can't create DMA map for TX\n");
869 			return (ENOMEM);
870 		}
871 	}
872 
873 	/*
874 	 * Allocate map for RX descriptor list.
875 	 */
876 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
877 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
878 	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
879 	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
880 	if (error) {
881 		device_printf(dev, "could not allocate dma tag\n");
882 		return (ENOMEM);
883 	}
884 
885 	/* Allocate DMA'able memory for the RX ring */
886 
887 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
888 	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
889 	    &sc->vge_ldata.vge_rx_list_map);
890 	if (error)
891 		return (ENOMEM);
892 
893 	/* Load the map for the RX ring. */
894 
895 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
896 	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
897 	     VGE_TX_LIST_SZ, vge_dma_map_addr,
898 	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
899 
900 	/* Create DMA maps for RX buffers */
901 
902 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
903 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
904 			    &sc->vge_ldata.vge_rx_dmamap[i]);
905 		if (error) {
906 			device_printf(dev, "can't create DMA map for RX\n");
907 			return (ENOMEM);
908 		}
909 	}
910 
911 	return (0);
912 }
913 
914 /*
915  * Attach the interface. Allocate softc structures, do ifmedia
916  * setup and ethernet/BPF attach.
917  */
918 static int
919 vge_attach(dev)
920 	device_t		dev;
921 {
922 	u_char			eaddr[ETHER_ADDR_LEN];
923 	struct vge_softc	*sc;
924 	struct ifnet		*ifp;
925 	int			unit, error = 0, rid;
926 
927 	sc = device_get_softc(dev);
928 	unit = device_get_unit(dev);
929 	sc->vge_dev = dev;
930 
931 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
932 	    MTX_DEF | MTX_RECURSE);
933 	/*
934 	 * Map control/status registers.
935 	 */
936 	pci_enable_busmaster(dev);
937 
938 	rid = VGE_PCI_LOMEM;
939 	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
940 	    0, ~0, 1, RF_ACTIVE);
941 
942 	if (sc->vge_res == NULL) {
943 		printf ("vge%d: couldn't map ports/memory\n", unit);
944 		error = ENXIO;
945 		goto fail;
946 	}
947 
948 	sc->vge_btag = rman_get_bustag(sc->vge_res);
949 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
950 
951 	/* Allocate interrupt */
952 	rid = 0;
953 	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
954 	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
955 
956 	if (sc->vge_irq == NULL) {
957 		printf("vge%d: couldn't map interrupt\n", unit);
958 		error = ENXIO;
959 		goto fail;
960 	}
961 
962 	/* Reset the adapter. */
963 	vge_reset(sc);
964 
965 	/*
966 	 * Get station address from the EEPROM.
967 	 */
968 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
969 
970 	sc->vge_unit = unit;
971 
972 	/*
973 	 * Allocate the parent bus DMA tag appropriate for PCI.
974 	 */
975 #define VGE_NSEG_NEW 32
976 	error = bus_dma_tag_create(NULL,	/* parent */
977 			1, 0,			/* alignment, boundary */
978 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
979 			BUS_SPACE_MAXADDR,	/* highaddr */
980 			NULL, NULL,		/* filter, filterarg */
981 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
982 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
983 			BUS_DMA_ALLOCNOW,	/* flags */
984 			NULL, NULL,		/* lockfunc, lockarg */
985 			&sc->vge_parent_tag);
986 	if (error)
987 		goto fail;
988 
989 	error = vge_allocmem(dev, sc);
990 
991 	if (error)
992 		goto fail;
993 
994 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
995 	if (ifp == NULL) {
996 		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
997 		error = ENOSPC;
998 		goto fail;
999 	}
1000 
1001 	/* Do MII setup */
1002 	if (mii_phy_probe(dev, &sc->vge_miibus,
1003 	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1004 		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1005 		error = ENXIO;
1006 		goto fail;
1007 	}
1008 
1009 	ifp->if_softc = sc;
1010 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1011 	ifp->if_mtu = ETHERMTU;
1012 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1013 	ifp->if_ioctl = vge_ioctl;
1014 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1015 	ifp->if_start = vge_start;
1016 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1017 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1018 	ifp->if_capenable = ifp->if_capabilities;
1019 #ifdef DEVICE_POLLING
1020 	ifp->if_capabilities |= IFCAP_POLLING;
1021 #endif
1022 	ifp->if_watchdog = vge_watchdog;
1023 	ifp->if_init = vge_init;
1024 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1025 	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1026 	IFQ_SET_READY(&ifp->if_snd);
1027 
1028 	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1029 
1030 	/*
1031 	 * Call MI attach routine.
1032 	 */
1033 	ether_ifattach(ifp, eaddr);
1034 
1035 	/* Hook interrupt last to avoid having to lock softc */
1036 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1037 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1038 
1039 	if (error) {
1040 		printf("vge%d: couldn't set up irq\n", unit);
1041 		ether_ifdetach(ifp);
1042 		goto fail;
1043 	}
1044 
1045 fail:
1046 	if (error)
1047 		vge_detach(dev);
1048 
1049 	return (error);
1050 }
1051 
1052 /*
1053  * Shutdown hardware and free up resources. This can be called any
1054  * time after the mutex has been initialized. It is called in both
1055  * the error case in attach and the normal detach case so it needs
1056  * to be careful about only freeing resources that have actually been
1057  * allocated.
1058  */
1059 static int
1060 vge_detach(dev)
1061 	device_t		dev;
1062 {
1063 	struct vge_softc		*sc;
1064 	struct ifnet		*ifp;
1065 	int			i;
1066 
1067 	sc = device_get_softc(dev);
1068 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1069 	ifp = sc->vge_ifp;
1070 
1071 #ifdef DEVICE_POLLING
1072 	if (ifp->if_capenable & IFCAP_POLLING)
1073 		ether_poll_deregister(ifp);
1074 #endif
1075 
1076 	/* These should only be active if attach succeeded */
1077 	if (device_is_attached(dev)) {
1078 		vge_stop(sc);
1079 		/*
1080 		 * Force off the IFF_UP flag here, in case someone
1081 		 * still had a BPF descriptor attached to this
1082 		 * interface. If they do, ether_ifattach() will cause
1083 		 * the BPF code to try and clear the promisc mode
1084 		 * flag, which will bubble down to vge_ioctl(),
1085 		 * which will try to call vge_init() again. This will
1086 		 * turn the NIC back on and restart the MII ticker,
1087 		 * which will panic the system when the kernel tries
1088 		 * to invoke the vge_tick() function that isn't there
1089 		 * anymore.
1090 		 */
1091 		ifp->if_flags &= ~IFF_UP;
1092 		ether_ifdetach(ifp);
1093 	}
1094 	if (sc->vge_miibus)
1095 		device_delete_child(dev, sc->vge_miibus);
1096 	bus_generic_detach(dev);
1097 
1098 	if (sc->vge_intrhand)
1099 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1100 	if (sc->vge_irq)
1101 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1102 	if (sc->vge_res)
1103 		bus_release_resource(dev, SYS_RES_MEMORY,
1104 		    VGE_PCI_LOMEM, sc->vge_res);
1105 	if (ifp)
1106 		if_free(ifp);
1107 
1108 	/* Unload and free the RX DMA ring memory and map */
1109 
1110 	if (sc->vge_ldata.vge_rx_list_tag) {
1111 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1112 		    sc->vge_ldata.vge_rx_list_map);
1113 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1114 		    sc->vge_ldata.vge_rx_list,
1115 		    sc->vge_ldata.vge_rx_list_map);
1116 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1117 	}
1118 
1119 	/* Unload and free the TX DMA ring memory and map */
1120 
1121 	if (sc->vge_ldata.vge_tx_list_tag) {
1122 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1123 		    sc->vge_ldata.vge_tx_list_map);
1124 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1125 		    sc->vge_ldata.vge_tx_list,
1126 		    sc->vge_ldata.vge_tx_list_map);
1127 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1128 	}
1129 
1130 	/* Destroy all the RX and TX buffer maps */
1131 
1132 	if (sc->vge_ldata.vge_mtag) {
1133 		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1134 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1135 			    sc->vge_ldata.vge_tx_dmamap[i]);
1136 		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1137 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1138 			    sc->vge_ldata.vge_rx_dmamap[i]);
1139 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1140 	}
1141 
1142 	if (sc->vge_parent_tag)
1143 		bus_dma_tag_destroy(sc->vge_parent_tag);
1144 
1145 	mtx_destroy(&sc->vge_mtx);
1146 
1147 	return (0);
1148 }
1149 
1150 static int
1151 vge_newbuf(sc, idx, m)
1152 	struct vge_softc	*sc;
1153 	int			idx;
1154 	struct mbuf		*m;
1155 {
1156 	struct vge_dmaload_arg	arg;
1157 	struct mbuf		*n = NULL;
1158 	int			i, error;
1159 
1160 	if (m == NULL) {
1161 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1162 		if (n == NULL)
1163 			return (ENOBUFS);
1164 		m = n;
1165 	} else
1166 		m->m_data = m->m_ext.ext_buf;
1167 
1168 
1169 #ifdef VGE_FIXUP_RX
1170 	/*
1171 	 * This is part of an evil trick to deal with non-x86 platforms.
1172 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1173 	 * boundaries, but that will hose non-x86 machines. To get around
1174 	 * this, we leave some empty space at the start of each buffer
1175 	 * and for non-x86 hosts, we copy the buffer back two bytes
1176 	 * to achieve word alignment. This is slightly more efficient
1177 	 * than allocating a new buffer, copying the contents, and
1178 	 * discarding the old buffer.
1179 	 */
1180 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1181 	m_adj(m, VGE_ETHER_ALIGN);
1182 #else
1183 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1184 #endif
1185 
1186 	arg.sc = sc;
1187 	arg.vge_idx = idx;
1188 	arg.vge_maxsegs = 1;
1189 	arg.vge_flags = 0;
1190 
1191 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1192 	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1193 	    &arg, BUS_DMA_NOWAIT);
1194 	if (error || arg.vge_maxsegs != 1) {
1195 		if (n != NULL)
1196 			m_freem(n);
1197 		return (ENOMEM);
1198 	}
1199 
1200 	/*
1201 	 * Note: the manual fails to document the fact that for
1202 	 * proper opration, the driver needs to replentish the RX
1203 	 * DMA ring 4 descriptors at a time (rather than one at a
1204 	 * time, like most chips). We can allocate the new buffers
1205 	 * but we should not set the OWN bits until we're ready
1206 	 * to hand back 4 of them in one shot.
1207 	 */
1208 
1209 #define VGE_RXCHUNK 4
1210 	sc->vge_rx_consumed++;
1211 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1212 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1213 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1214 			    htole32(VGE_RDSTS_OWN);
1215 		sc->vge_rx_consumed = 0;
1216 	}
1217 
1218 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1219 
1220 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1221 	    sc->vge_ldata.vge_rx_dmamap[idx],
1222 	    BUS_DMASYNC_PREREAD);
1223 
1224 	return (0);
1225 }
1226 
1227 static int
1228 vge_tx_list_init(sc)
1229 	struct vge_softc		*sc;
1230 {
1231 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1232 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1233 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1234 
1235 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1236 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1237 	sc->vge_ldata.vge_tx_prodidx = 0;
1238 	sc->vge_ldata.vge_tx_considx = 0;
1239 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1240 
1241 	return (0);
1242 }
1243 
1244 static int
1245 vge_rx_list_init(sc)
1246 	struct vge_softc		*sc;
1247 {
1248 	int			i;
1249 
1250 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1251 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1252 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1253 
1254 	sc->vge_rx_consumed = 0;
1255 
1256 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1257 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1258 			return (ENOBUFS);
1259 	}
1260 
1261 	/* Flush the RX descriptors */
1262 
1263 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1264 	    sc->vge_ldata.vge_rx_list_map,
1265 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1266 
1267 	sc->vge_ldata.vge_rx_prodidx = 0;
1268 	sc->vge_rx_consumed = 0;
1269 	sc->vge_head = sc->vge_tail = NULL;
1270 
1271 	return (0);
1272 }
1273 
1274 #ifdef VGE_FIXUP_RX
1275 static __inline void
1276 vge_fixup_rx(m)
1277 	struct mbuf		*m;
1278 {
1279 	int			i;
1280 	uint16_t		*src, *dst;
1281 
1282 	src = mtod(m, uint16_t *);
1283 	dst = src - 1;
1284 
1285 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1286 		*dst++ = *src++;
1287 
1288 	m->m_data -= ETHER_ALIGN;
1289 
1290 	return;
1291 }
1292 #endif
1293 
1294 /*
1295  * RX handler. We support the reception of jumbo frames that have
1296  * been fragmented across multiple 2K mbuf cluster buffers.
1297  */
1298 static int
1299 vge_rxeof(sc)
1300 	struct vge_softc	*sc;
1301 {
1302 	struct mbuf		*m;
1303 	struct ifnet		*ifp;
1304 	int			i, total_len;
1305 	int			lim = 0;
1306 	struct vge_rx_desc	*cur_rx;
1307 	u_int32_t		rxstat, rxctl;
1308 
1309 	VGE_LOCK_ASSERT(sc);
1310 	ifp = sc->vge_ifp;
1311 	i = sc->vge_ldata.vge_rx_prodidx;
1312 
1313 	/* Invalidate the descriptor memory */
1314 
1315 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1316 	    sc->vge_ldata.vge_rx_list_map,
1317 	    BUS_DMASYNC_POSTREAD);
1318 
1319 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1320 
1321 #ifdef DEVICE_POLLING
1322 		if (ifp->if_capenable & IFCAP_POLLING) {
1323 			if (sc->rxcycles <= 0)
1324 				break;
1325 			sc->rxcycles--;
1326 		}
1327 #endif
1328 
1329 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1330 		m = sc->vge_ldata.vge_rx_mbuf[i];
1331 		total_len = VGE_RXBYTES(cur_rx);
1332 		rxstat = le32toh(cur_rx->vge_sts);
1333 		rxctl = le32toh(cur_rx->vge_ctl);
1334 
1335 		/* Invalidate the RX mbuf and unload its map */
1336 
1337 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1338 		    sc->vge_ldata.vge_rx_dmamap[i],
1339 		    BUS_DMASYNC_POSTWRITE);
1340 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1341 		    sc->vge_ldata.vge_rx_dmamap[i]);
1342 
1343 		/*
1344 		 * If the 'start of frame' bit is set, this indicates
1345 		 * either the first fragment in a multi-fragment receive,
1346 		 * or an intermediate fragment. Either way, we want to
1347 		 * accumulate the buffers.
1348 		 */
1349 		if (rxstat & VGE_RXPKT_SOF) {
1350 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1351 			if (sc->vge_head == NULL)
1352 				sc->vge_head = sc->vge_tail = m;
1353 			else {
1354 				m->m_flags &= ~M_PKTHDR;
1355 				sc->vge_tail->m_next = m;
1356 				sc->vge_tail = m;
1357 			}
1358 			vge_newbuf(sc, i, NULL);
1359 			VGE_RX_DESC_INC(i);
1360 			continue;
1361 		}
1362 
1363 		/*
1364 		 * Bad/error frames will have the RXOK bit cleared.
1365 		 * However, there's one error case we want to allow:
1366 		 * if a VLAN tagged frame arrives and the chip can't
1367 		 * match it against the CAM filter, it considers this
1368 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1369 		 * We don't want to drop the frame though: our VLAN
1370 		 * filtering is done in software.
1371 		 */
1372 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1373 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1374 			ifp->if_ierrors++;
1375 			/*
1376 			 * If this is part of a multi-fragment packet,
1377 			 * discard all the pieces.
1378 			 */
1379 			if (sc->vge_head != NULL) {
1380 				m_freem(sc->vge_head);
1381 				sc->vge_head = sc->vge_tail = NULL;
1382 			}
1383 			vge_newbuf(sc, i, m);
1384 			VGE_RX_DESC_INC(i);
1385 			continue;
1386 		}
1387 
1388 		/*
1389 		 * If allocating a replacement mbuf fails,
1390 		 * reload the current one.
1391 		 */
1392 
1393 		if (vge_newbuf(sc, i, NULL)) {
1394 			ifp->if_ierrors++;
1395 			if (sc->vge_head != NULL) {
1396 				m_freem(sc->vge_head);
1397 				sc->vge_head = sc->vge_tail = NULL;
1398 			}
1399 			vge_newbuf(sc, i, m);
1400 			VGE_RX_DESC_INC(i);
1401 			continue;
1402 		}
1403 
1404 		VGE_RX_DESC_INC(i);
1405 
1406 		if (sc->vge_head != NULL) {
1407 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1408 			/*
1409 			 * Special case: if there's 4 bytes or less
1410 			 * in this buffer, the mbuf can be discarded:
1411 			 * the last 4 bytes is the CRC, which we don't
1412 			 * care about anyway.
1413 			 */
1414 			if (m->m_len <= ETHER_CRC_LEN) {
1415 				sc->vge_tail->m_len -=
1416 				    (ETHER_CRC_LEN - m->m_len);
1417 				m_freem(m);
1418 			} else {
1419 				m->m_len -= ETHER_CRC_LEN;
1420 				m->m_flags &= ~M_PKTHDR;
1421 				sc->vge_tail->m_next = m;
1422 			}
1423 			m = sc->vge_head;
1424 			sc->vge_head = sc->vge_tail = NULL;
1425 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1426 		} else
1427 			m->m_pkthdr.len = m->m_len =
1428 			    (total_len - ETHER_CRC_LEN);
1429 
1430 #ifdef VGE_FIXUP_RX
1431 		vge_fixup_rx(m);
1432 #endif
1433 		ifp->if_ipackets++;
1434 		m->m_pkthdr.rcvif = ifp;
1435 
1436 		/* Do RX checksumming if enabled */
1437 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1438 
1439 			/* Check IP header checksum */
1440 			if (rxctl & VGE_RDCTL_IPPKT)
1441 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1442 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1443 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1444 
1445 			/* Check TCP/UDP checksum */
1446 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1447 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1448 				m->m_pkthdr.csum_flags |=
1449 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1450 				m->m_pkthdr.csum_data = 0xffff;
1451 			}
1452 		}
1453 
1454 		if (rxstat & VGE_RDSTS_VTAG) {
1455 			/*
1456 			 * The 32-bit rxctl register is stored in little-endian.
1457 			 * However, the 16-bit vlan tag is stored in big-endian,
1458 			 * so we have to byte swap it.
1459 			 */
1460 			m->m_pkthdr.ether_vtag =
1461 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1462 			m->m_flags |= M_VLANTAG;
1463 		}
1464 
1465 		VGE_UNLOCK(sc);
1466 		(*ifp->if_input)(ifp, m);
1467 		VGE_LOCK(sc);
1468 
1469 		lim++;
1470 		if (lim == VGE_RX_DESC_CNT)
1471 			break;
1472 
1473 	}
1474 
1475 	/* Flush the RX DMA ring */
1476 
1477 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1478 	    sc->vge_ldata.vge_rx_list_map,
1479 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1480 
1481 	sc->vge_ldata.vge_rx_prodidx = i;
1482 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1483 
1484 
1485 	return (lim);
1486 }
1487 
1488 static void
1489 vge_txeof(sc)
1490 	struct vge_softc		*sc;
1491 {
1492 	struct ifnet		*ifp;
1493 	u_int32_t		txstat;
1494 	int			idx;
1495 
1496 	ifp = sc->vge_ifp;
1497 	idx = sc->vge_ldata.vge_tx_considx;
1498 
1499 	/* Invalidate the TX descriptor list */
1500 
1501 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1502 	    sc->vge_ldata.vge_tx_list_map,
1503 	    BUS_DMASYNC_POSTREAD);
1504 
1505 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1506 
1507 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1508 		if (txstat & VGE_TDSTS_OWN)
1509 			break;
1510 
1511 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1512 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1513 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1514 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1515 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1516 			ifp->if_collisions++;
1517 		if (txstat & VGE_TDSTS_TXERR)
1518 			ifp->if_oerrors++;
1519 		else
1520 			ifp->if_opackets++;
1521 
1522 		sc->vge_ldata.vge_tx_free++;
1523 		VGE_TX_DESC_INC(idx);
1524 	}
1525 
1526 	/* No changes made to the TX ring, so no flush needed */
1527 
1528 	if (idx != sc->vge_ldata.vge_tx_considx) {
1529 		sc->vge_ldata.vge_tx_considx = idx;
1530 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1531 		ifp->if_timer = 0;
1532 	}
1533 
1534 	/*
1535 	 * If not all descriptors have been released reaped yet,
1536 	 * reload the timer so that we will eventually get another
1537 	 * interrupt that will cause us to re-enter this routine.
1538 	 * This is done in case the transmitter has gone idle.
1539 	 */
1540 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1541 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1542 	}
1543 
1544 	return;
1545 }
1546 
1547 static void
1548 vge_tick(xsc)
1549 	void			*xsc;
1550 {
1551 	struct vge_softc	*sc;
1552 	struct ifnet		*ifp;
1553 	struct mii_data		*mii;
1554 
1555 	sc = xsc;
1556 	ifp = sc->vge_ifp;
1557 	VGE_LOCK(sc);
1558 	mii = device_get_softc(sc->vge_miibus);
1559 
1560 	mii_tick(mii);
1561 	if (sc->vge_link) {
1562 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1563 			sc->vge_link = 0;
1564 			if_link_state_change(sc->vge_ifp,
1565 			    LINK_STATE_DOWN);
1566 		}
1567 	} else {
1568 		if (mii->mii_media_status & IFM_ACTIVE &&
1569 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1570 			sc->vge_link = 1;
1571 			if_link_state_change(sc->vge_ifp,
1572 			    LINK_STATE_UP);
1573 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1574 				taskqueue_enqueue(taskqueue_swi,
1575 				    &sc->vge_txtask);
1576 		}
1577 	}
1578 
1579 	VGE_UNLOCK(sc);
1580 
1581 	return;
1582 }
1583 
1584 #ifdef DEVICE_POLLING
1585 static int
1586 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1587 {
1588 	struct vge_softc *sc = ifp->if_softc;
1589 	int rx_npkts = 0;
1590 
1591 	VGE_LOCK(sc);
1592 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1593 		goto done;
1594 
1595 	sc->rxcycles = count;
1596 	rx_npkts = vge_rxeof(sc);
1597 	vge_txeof(sc);
1598 
1599 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1601 
1602 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1603 		u_int32_t       status;
1604 		status = CSR_READ_4(sc, VGE_ISR);
1605 		if (status == 0xFFFFFFFF)
1606 			goto done;
1607 		if (status)
1608 			CSR_WRITE_4(sc, VGE_ISR, status);
1609 
1610 		/*
1611 		 * XXX check behaviour on receiver stalls.
1612 		 */
1613 
1614 		if (status & VGE_ISR_TXDMA_STALL ||
1615 		    status & VGE_ISR_RXDMA_STALL)
1616 			vge_init(sc);
1617 
1618 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1619 			vge_rxeof(sc);
1620 			ifp->if_ierrors++;
1621 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1622 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1623 		}
1624 	}
1625 done:
1626 	VGE_UNLOCK(sc);
1627 	return (rx_npkts);
1628 }
1629 #endif /* DEVICE_POLLING */
1630 
1631 static void
1632 vge_intr(arg)
1633 	void			*arg;
1634 {
1635 	struct vge_softc	*sc;
1636 	struct ifnet		*ifp;
1637 	u_int32_t		status;
1638 
1639 	sc = arg;
1640 
1641 	if (sc->suspended) {
1642 		return;
1643 	}
1644 
1645 	VGE_LOCK(sc);
1646 	ifp = sc->vge_ifp;
1647 
1648 	if (!(ifp->if_flags & IFF_UP)) {
1649 		VGE_UNLOCK(sc);
1650 		return;
1651 	}
1652 
1653 #ifdef DEVICE_POLLING
1654 	if  (ifp->if_capenable & IFCAP_POLLING) {
1655 		VGE_UNLOCK(sc);
1656 		return;
1657 	}
1658 #endif
1659 
1660 	/* Disable interrupts */
1661 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1662 
1663 	for (;;) {
1664 
1665 		status = CSR_READ_4(sc, VGE_ISR);
1666 		/* If the card has gone away the read returns 0xffff. */
1667 		if (status == 0xFFFFFFFF)
1668 			break;
1669 
1670 		if (status)
1671 			CSR_WRITE_4(sc, VGE_ISR, status);
1672 
1673 		if ((status & VGE_INTRS) == 0)
1674 			break;
1675 
1676 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1677 			vge_rxeof(sc);
1678 
1679 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1680 			vge_rxeof(sc);
1681 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1682 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1683 		}
1684 
1685 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1686 			vge_txeof(sc);
1687 
1688 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1689 			vge_init(sc);
1690 
1691 		if (status & VGE_ISR_LINKSTS)
1692 			vge_tick(sc);
1693 	}
1694 
1695 	/* Re-enable interrupts */
1696 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1697 
1698 	VGE_UNLOCK(sc);
1699 
1700 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1701 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1702 
1703 	return;
1704 }
1705 
1706 static int
1707 vge_encap(sc, m_head, idx)
1708 	struct vge_softc	*sc;
1709 	struct mbuf		*m_head;
1710 	int			idx;
1711 {
1712 	struct mbuf		*m_new = NULL;
1713 	struct vge_dmaload_arg	arg;
1714 	bus_dmamap_t		map;
1715 	int			error;
1716 
1717 	if (sc->vge_ldata.vge_tx_free <= 2)
1718 		return (EFBIG);
1719 
1720 	arg.vge_flags = 0;
1721 
1722 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1723 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1724 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1725 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1726 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1727 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1728 
1729 	arg.sc = sc;
1730 	arg.vge_idx = idx;
1731 	arg.vge_m0 = m_head;
1732 	arg.vge_maxsegs = VGE_TX_FRAGS;
1733 
1734 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1735 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1736 	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1737 
1738 	if (error && error != EFBIG) {
1739 		printf("vge%d: can't map mbuf (error %d)\n",
1740 		    sc->vge_unit, error);
1741 		return (ENOBUFS);
1742 	}
1743 
1744 	/* Too many segments to map, coalesce into a single mbuf */
1745 
1746 	if (error || arg.vge_maxsegs == 0) {
1747 		m_new = m_defrag(m_head, M_DONTWAIT);
1748 		if (m_new == NULL)
1749 			return (1);
1750 		else
1751 			m_head = m_new;
1752 
1753 		arg.sc = sc;
1754 		arg.vge_m0 = m_head;
1755 		arg.vge_idx = idx;
1756 		arg.vge_maxsegs = 1;
1757 
1758 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1759 		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1760 		if (error) {
1761 			printf("vge%d: can't map mbuf (error %d)\n",
1762 			    sc->vge_unit, error);
1763 			return (EFBIG);
1764 		}
1765 	}
1766 
1767 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1768 	sc->vge_ldata.vge_tx_free--;
1769 
1770 	/*
1771 	 * Set up hardware VLAN tagging.
1772 	 */
1773 
1774 	if (m_head->m_flags & M_VLANTAG)
1775 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1776 		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1777 
1778 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1779 
1780 	return (0);
1781 }
1782 
1783 static void
1784 vge_tx_task(arg, npending)
1785 	void			*arg;
1786 	int			npending;
1787 {
1788 	struct ifnet		*ifp;
1789 
1790 	ifp = arg;
1791 	vge_start(ifp);
1792 
1793 	return;
1794 }
1795 
1796 /*
1797  * Main transmit routine.
1798  */
1799 
1800 static void
1801 vge_start(ifp)
1802 	struct ifnet		*ifp;
1803 {
1804 	struct vge_softc	*sc;
1805 	struct mbuf		*m_head = NULL;
1806 	int			idx, pidx = 0;
1807 
1808 	sc = ifp->if_softc;
1809 	VGE_LOCK(sc);
1810 
1811 	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1812 		VGE_UNLOCK(sc);
1813 		return;
1814 	}
1815 
1816 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1817 		VGE_UNLOCK(sc);
1818 		return;
1819 	}
1820 
1821 	idx = sc->vge_ldata.vge_tx_prodidx;
1822 
1823 	pidx = idx - 1;
1824 	if (pidx < 0)
1825 		pidx = VGE_TX_DESC_CNT - 1;
1826 
1827 
1828 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1829 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1830 		if (m_head == NULL)
1831 			break;
1832 
1833 		if (vge_encap(sc, m_head, idx)) {
1834 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1835 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1836 			break;
1837 		}
1838 
1839 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1840 		    htole16(VGE_TXDESC_Q);
1841 
1842 		pidx = idx;
1843 		VGE_TX_DESC_INC(idx);
1844 
1845 		/*
1846 		 * If there's a BPF listener, bounce a copy of this frame
1847 		 * to him.
1848 		 */
1849 		ETHER_BPF_MTAP(ifp, m_head);
1850 	}
1851 
1852 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1853 		VGE_UNLOCK(sc);
1854 		return;
1855 	}
1856 
1857 	/* Flush the TX descriptors */
1858 
1859 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1860 	    sc->vge_ldata.vge_tx_list_map,
1861 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1862 
1863 	/* Issue a transmit command. */
1864 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1865 
1866 	sc->vge_ldata.vge_tx_prodidx = idx;
1867 
1868 	/*
1869 	 * Use the countdown timer for interrupt moderation.
1870 	 * 'TX done' interrupts are disabled. Instead, we reset the
1871 	 * countdown timer, which will begin counting until it hits
1872 	 * the value in the SSTIMER register, and then trigger an
1873 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1874 	 * the timer count is reloaded. Only when the transmitter
1875 	 * is idle will the timer hit 0 and an interrupt fire.
1876 	 */
1877 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1878 
1879 	VGE_UNLOCK(sc);
1880 
1881 	/*
1882 	 * Set a timeout in case the chip goes out to lunch.
1883 	 */
1884 	ifp->if_timer = 5;
1885 
1886 	return;
1887 }
1888 
1889 static void
1890 vge_init(xsc)
1891 	void			*xsc;
1892 {
1893 	struct vge_softc	*sc = xsc;
1894 	struct ifnet		*ifp = sc->vge_ifp;
1895 	struct mii_data		*mii;
1896 	int			i;
1897 
1898 	VGE_LOCK(sc);
1899 	mii = device_get_softc(sc->vge_miibus);
1900 
1901 	/*
1902 	 * Cancel pending I/O and free all RX/TX buffers.
1903 	 */
1904 	vge_stop(sc);
1905 	vge_reset(sc);
1906 
1907 	/*
1908 	 * Initialize the RX and TX descriptors and mbufs.
1909 	 */
1910 
1911 	vge_rx_list_init(sc);
1912 	vge_tx_list_init(sc);
1913 
1914 	/* Set our station address */
1915 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1916 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1917 
1918 	/*
1919 	 * Set receive FIFO threshold. Also allow transmission and
1920 	 * reception of VLAN tagged frames.
1921 	 */
1922 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1923 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1924 
1925 	/* Set DMA burst length */
1926 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1927 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1928 
1929 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1930 
1931 	/* Set collision backoff algorithm */
1932 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1933 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1934 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1935 
1936 	/* Disable LPSEL field in priority resolution */
1937 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1938 
1939 	/*
1940 	 * Load the addresses of the DMA queues into the chip.
1941 	 * Note that we only use one transmit queue.
1942 	 */
1943 
1944 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1945 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1946 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1947 
1948 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1949 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1950 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1951 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1952 
1953 	/* Enable and wake up the RX descriptor queue */
1954 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1955 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1956 
1957 	/* Enable the TX descriptor queue */
1958 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1959 
1960 	/* Set up the receive filter -- allow large frames for VLANs. */
1961 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1962 
1963 	/* If we want promiscuous mode, set the allframes bit. */
1964 	if (ifp->if_flags & IFF_PROMISC) {
1965 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1966 	}
1967 
1968 	/* Set capture broadcast bit to capture broadcast frames. */
1969 	if (ifp->if_flags & IFF_BROADCAST) {
1970 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1971 	}
1972 
1973 	/* Set multicast bit to capture multicast frames. */
1974 	if (ifp->if_flags & IFF_MULTICAST) {
1975 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1976 	}
1977 
1978 	/* Init the cam filter. */
1979 	vge_cam_clear(sc);
1980 
1981 	/* Init the multicast filter. */
1982 	vge_setmulti(sc);
1983 
1984 	/* Enable flow control */
1985 
1986 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1987 
1988 	/* Enable jumbo frame reception (if desired) */
1989 
1990 	/* Start the MAC. */
1991 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1992 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1993 	CSR_WRITE_1(sc, VGE_CRS0,
1994 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1995 
1996 	/*
1997 	 * Configure one-shot timer for microsecond
1998 	 * resulution and load it for 500 usecs.
1999 	 */
2000 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2001 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2002 
2003 	/*
2004 	 * Configure interrupt moderation for receive. Enable
2005 	 * the holdoff counter and load it, and set the RX
2006 	 * suppression count to the number of descriptors we
2007 	 * want to allow before triggering an interrupt.
2008 	 * The holdoff timer is in units of 20 usecs.
2009 	 */
2010 
2011 #ifdef notyet
2012 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2013 	/* Select the interrupt holdoff timer page. */
2014 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2015 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2016 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2017 
2018 	/* Enable use of the holdoff timer. */
2019 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2020 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2021 
2022 	/* Select the RX suppression threshold page. */
2023 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2024 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2025 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2026 
2027 	/* Restore the page select bits. */
2028 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2029 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2030 #endif
2031 
2032 #ifdef DEVICE_POLLING
2033 	/*
2034 	 * Disable interrupts if we are polling.
2035 	 */
2036 	if (ifp->if_capenable & IFCAP_POLLING) {
2037 		CSR_WRITE_4(sc, VGE_IMR, 0);
2038 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2039 	} else	/* otherwise ... */
2040 #endif
2041 	{
2042 	/*
2043 	 * Enable interrupts.
2044 	 */
2045 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2046 		CSR_WRITE_4(sc, VGE_ISR, 0);
2047 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2048 	}
2049 
2050 	mii_mediachg(mii);
2051 
2052 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2053 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2054 
2055 	sc->vge_if_flags = 0;
2056 	sc->vge_link = 0;
2057 
2058 	VGE_UNLOCK(sc);
2059 
2060 	return;
2061 }
2062 
2063 /*
2064  * Set media options.
2065  */
2066 static int
2067 vge_ifmedia_upd(ifp)
2068 	struct ifnet		*ifp;
2069 {
2070 	struct vge_softc	*sc;
2071 	struct mii_data		*mii;
2072 
2073 	sc = ifp->if_softc;
2074 	VGE_LOCK(sc);
2075 	mii = device_get_softc(sc->vge_miibus);
2076 	mii_mediachg(mii);
2077 	VGE_UNLOCK(sc);
2078 
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Report current media status.
2084  */
2085 static void
2086 vge_ifmedia_sts(ifp, ifmr)
2087 	struct ifnet		*ifp;
2088 	struct ifmediareq	*ifmr;
2089 {
2090 	struct vge_softc	*sc;
2091 	struct mii_data		*mii;
2092 
2093 	sc = ifp->if_softc;
2094 	mii = device_get_softc(sc->vge_miibus);
2095 
2096 	mii_pollstat(mii);
2097 	ifmr->ifm_active = mii->mii_media_active;
2098 	ifmr->ifm_status = mii->mii_media_status;
2099 
2100 	return;
2101 }
2102 
2103 static void
2104 vge_miibus_statchg(dev)
2105 	device_t		dev;
2106 {
2107 	struct vge_softc	*sc;
2108 	struct mii_data		*mii;
2109 	struct ifmedia_entry	*ife;
2110 
2111 	sc = device_get_softc(dev);
2112 	mii = device_get_softc(sc->vge_miibus);
2113 	ife = mii->mii_media.ifm_cur;
2114 
2115 	/*
2116 	 * If the user manually selects a media mode, we need to turn
2117 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2118 	 * user happens to choose a full duplex mode, we also need to
2119 	 * set the 'force full duplex' bit. This applies only to
2120 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2121 	 * mode is disabled, and in 1000baseT mode, full duplex is
2122 	 * always implied, so we turn on the forced mode bit but leave
2123 	 * the FDX bit cleared.
2124 	 */
2125 
2126 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2127 	case IFM_AUTO:
2128 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2129 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2130 		break;
2131 	case IFM_1000_T:
2132 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2133 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2134 		break;
2135 	case IFM_100_TX:
2136 	case IFM_10_T:
2137 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2138 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2139 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2140 		} else {
2141 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2142 		}
2143 		break;
2144 	default:
2145 		device_printf(dev, "unknown media type: %x\n",
2146 		    IFM_SUBTYPE(ife->ifm_media));
2147 		break;
2148 	}
2149 
2150 	return;
2151 }
2152 
2153 static int
2154 vge_ioctl(ifp, command, data)
2155 	struct ifnet		*ifp;
2156 	u_long			command;
2157 	caddr_t			data;
2158 {
2159 	struct vge_softc	*sc = ifp->if_softc;
2160 	struct ifreq		*ifr = (struct ifreq *) data;
2161 	struct mii_data		*mii;
2162 	int			error = 0;
2163 
2164 	switch (command) {
2165 	case SIOCSIFMTU:
2166 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2167 			error = EINVAL;
2168 		ifp->if_mtu = ifr->ifr_mtu;
2169 		break;
2170 	case SIOCSIFFLAGS:
2171 		if (ifp->if_flags & IFF_UP) {
2172 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2173 			    ifp->if_flags & IFF_PROMISC &&
2174 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2175 				CSR_SETBIT_1(sc, VGE_RXCTL,
2176 				    VGE_RXCTL_RX_PROMISC);
2177 				vge_setmulti(sc);
2178 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2179 			    !(ifp->if_flags & IFF_PROMISC) &&
2180 			    sc->vge_if_flags & IFF_PROMISC) {
2181 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2182 				    VGE_RXCTL_RX_PROMISC);
2183 				vge_setmulti(sc);
2184                         } else
2185 				vge_init(sc);
2186 		} else {
2187 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2188 				vge_stop(sc);
2189 		}
2190 		sc->vge_if_flags = ifp->if_flags;
2191 		break;
2192 	case SIOCADDMULTI:
2193 	case SIOCDELMULTI:
2194 		vge_setmulti(sc);
2195 		break;
2196 	case SIOCGIFMEDIA:
2197 	case SIOCSIFMEDIA:
2198 		mii = device_get_softc(sc->vge_miibus);
2199 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2200 		break;
2201 	case SIOCSIFCAP:
2202 	    {
2203 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2204 #ifdef DEVICE_POLLING
2205 		if (mask & IFCAP_POLLING) {
2206 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2207 				error = ether_poll_register(vge_poll, ifp);
2208 				if (error)
2209 					return(error);
2210 				VGE_LOCK(sc);
2211 					/* Disable interrupts */
2212 				CSR_WRITE_4(sc, VGE_IMR, 0);
2213 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2214 				ifp->if_capenable |= IFCAP_POLLING;
2215 				VGE_UNLOCK(sc);
2216 			} else {
2217 				error = ether_poll_deregister(ifp);
2218 				/* Enable interrupts. */
2219 				VGE_LOCK(sc);
2220 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2221 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2222 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2223 				ifp->if_capenable &= ~IFCAP_POLLING;
2224 				VGE_UNLOCK(sc);
2225 			}
2226 		}
2227 #endif /* DEVICE_POLLING */
2228 		if ((mask & IFCAP_TXCSUM) != 0 &&
2229 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2230 			ifp->if_capenable ^= IFCAP_TXCSUM;
2231 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2232 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2233 			else
2234 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2235 		}
2236 		if ((mask & IFCAP_RXCSUM) != 0 &&
2237 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2238 			ifp->if_capenable ^= IFCAP_RXCSUM;
2239 	    }
2240 		break;
2241 	default:
2242 		error = ether_ioctl(ifp, command, data);
2243 		break;
2244 	}
2245 
2246 	return (error);
2247 }
2248 
2249 static void
2250 vge_watchdog(ifp)
2251 	struct ifnet		*ifp;
2252 {
2253 	struct vge_softc		*sc;
2254 
2255 	sc = ifp->if_softc;
2256 	VGE_LOCK(sc);
2257 	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2258 	ifp->if_oerrors++;
2259 
2260 	vge_txeof(sc);
2261 	vge_rxeof(sc);
2262 
2263 	vge_init(sc);
2264 
2265 	VGE_UNLOCK(sc);
2266 
2267 	return;
2268 }
2269 
2270 /*
2271  * Stop the adapter and free any mbufs allocated to the
2272  * RX and TX lists.
2273  */
2274 static void
2275 vge_stop(sc)
2276 	struct vge_softc		*sc;
2277 {
2278 	register int		i;
2279 	struct ifnet		*ifp;
2280 
2281 	VGE_LOCK(sc);
2282 	ifp = sc->vge_ifp;
2283 	ifp->if_timer = 0;
2284 
2285 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2286 
2287 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2288 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2289 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2290 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2291 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2292 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2293 
2294 	if (sc->vge_head != NULL) {
2295 		m_freem(sc->vge_head);
2296 		sc->vge_head = sc->vge_tail = NULL;
2297 	}
2298 
2299 	/* Free the TX list buffers. */
2300 
2301 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2302 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2303 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2304 			    sc->vge_ldata.vge_tx_dmamap[i]);
2305 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2306 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2307 		}
2308 	}
2309 
2310 	/* Free the RX list buffers. */
2311 
2312 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2313 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2314 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2315 			    sc->vge_ldata.vge_rx_dmamap[i]);
2316 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2317 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2318 		}
2319 	}
2320 
2321 	VGE_UNLOCK(sc);
2322 
2323 	return;
2324 }
2325 
2326 /*
2327  * Device suspend routine.  Stop the interface and save some PCI
2328  * settings in case the BIOS doesn't restore them properly on
2329  * resume.
2330  */
2331 static int
2332 vge_suspend(dev)
2333 	device_t		dev;
2334 {
2335 	struct vge_softc	*sc;
2336 
2337 	sc = device_get_softc(dev);
2338 
2339 	vge_stop(sc);
2340 
2341 	sc->suspended = 1;
2342 
2343 	return (0);
2344 }
2345 
2346 /*
2347  * Device resume routine.  Restore some PCI settings in case the BIOS
2348  * doesn't, re-enable busmastering, and restart the interface if
2349  * appropriate.
2350  */
2351 static int
2352 vge_resume(dev)
2353 	device_t		dev;
2354 {
2355 	struct vge_softc	*sc;
2356 	struct ifnet		*ifp;
2357 
2358 	sc = device_get_softc(dev);
2359 	ifp = sc->vge_ifp;
2360 
2361 	/* reenable busmastering */
2362 	pci_enable_busmaster(dev);
2363 	pci_enable_io(dev, SYS_RES_MEMORY);
2364 
2365 	/* reinitialize interface if necessary */
2366 	if (ifp->if_flags & IFF_UP)
2367 		vge_init(sc);
2368 
2369 	sc->suspended = 0;
2370 
2371 	return (0);
2372 }
2373 
2374 /*
2375  * Stop all chip I/O so that the kernel's probe routines don't
2376  * get confused by errant DMAs when rebooting.
2377  */
2378 static int
2379 vge_shutdown(dev)
2380 	device_t		dev;
2381 {
2382 	struct vge_softc		*sc;
2383 
2384 	sc = device_get_softc(dev);
2385 
2386 	vge_stop(sc);
2387 
2388 	return (0);
2389 }
2390