1 /*- 2 * Copyright (c) 2004 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that 46 * combines a tri-speed ethernet MAC and PHY, with the following 47 * features: 48 * 49 * o Jumbo frame support up to 16K 50 * o Transmit and receive flow control 51 * o IPv4 checksum offload 52 * o VLAN tag insertion and stripping 53 * o TCP large send 54 * o 64-bit multicast hash table filter 55 * o 64 entry CAM filter 56 * o 16K RX FIFO and 48K TX FIFO memory 57 * o Interrupt moderation 58 * 59 * The VT6122 supports up to four transmit DMA queues. The descriptors 60 * in the transmit ring can address up to 7 data fragments; frames which 61 * span more than 7 data buffers must be coalesced, but in general the 62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 63 * long. The receive descriptors address only a single buffer. 64 * 65 * There are two peculiar design issues with the VT6122. One is that 66 * receive data buffers must be aligned on a 32-bit boundary. This is 67 * not a problem where the VT6122 is used as a LOM device in x86-based 68 * systems, but on architectures that generate unaligned access traps, we 69 * have to do some copying. 70 * 71 * The other issue has to do with the way 64-bit addresses are handled. 72 * The DMA descriptors only allow you to specify 48 bits of addressing 73 * information. The remaining 16 bits are specified using one of the 74 * I/O registers. If you only have a 32-bit system, then this isn't 75 * an issue, but if you have a 64-bit system and more than 4GB of 76 * memory, you must have to make sure your network data buffers reside 77 * in the same 48-bit 'segment.' 78 * 79 * Special thanks to Ryan Fu at VIA Networking for providing documentation 80 * and sample NICs for testing. 81 */ 82 83 #ifdef HAVE_KERNEL_OPTION_HEADERS 84 #include "opt_device_polling.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/endian.h> 89 #include <sys/systm.h> 90 #include <sys/sockio.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/module.h> 94 #include <sys/kernel.h> 95 #include <sys/socket.h> 96 #include <sys/taskqueue.h> 97 98 #include <net/if.h> 99 #include <net/if_arp.h> 100 #include <net/ethernet.h> 101 #include <net/if_dl.h> 102 #include <net/if_media.h> 103 #include <net/if_types.h> 104 #include <net/if_vlan_var.h> 105 106 #include <net/bpf.h> 107 108 #include <machine/bus.h> 109 #include <machine/resource.h> 110 #include <sys/bus.h> 111 #include <sys/rman.h> 112 113 #include <dev/mii/mii.h> 114 #include <dev/mii/miivar.h> 115 116 #include <dev/pci/pcireg.h> 117 #include <dev/pci/pcivar.h> 118 119 MODULE_DEPEND(vge, pci, 1, 1, 1); 120 MODULE_DEPEND(vge, ether, 1, 1, 1); 121 MODULE_DEPEND(vge, miibus, 1, 1, 1); 122 123 /* "device miibus" required. See GENERIC if you get errors here. */ 124 #include "miibus_if.h" 125 126 #include <dev/vge/if_vgereg.h> 127 #include <dev/vge/if_vgevar.h> 128 129 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 130 131 /* 132 * Various supported device vendors/types and their names. 133 */ 134 static struct vge_type vge_devs[] = { 135 { VIA_VENDORID, VIA_DEVICEID_61XX, 136 "VIA Networking Gigabit Ethernet" }, 137 { 0, 0, NULL } 138 }; 139 140 static int vge_probe (device_t); 141 static int vge_attach (device_t); 142 static int vge_detach (device_t); 143 144 static int vge_encap (struct vge_softc *, struct mbuf *, int); 145 146 static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 147 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int, 148 bus_size_t, int); 149 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 150 bus_size_t, int); 151 static int vge_allocmem (device_t, struct vge_softc *); 152 static int vge_newbuf (struct vge_softc *, int, struct mbuf *); 153 static int vge_rx_list_init (struct vge_softc *); 154 static int vge_tx_list_init (struct vge_softc *); 155 #ifdef VGE_FIXUP_RX 156 static __inline void vge_fixup_rx 157 (struct mbuf *); 158 #endif 159 static void vge_rxeof (struct vge_softc *); 160 static void vge_txeof (struct vge_softc *); 161 static void vge_intr (void *); 162 static void vge_tick (void *); 163 static void vge_tx_task (void *, int); 164 static void vge_start (struct ifnet *); 165 static int vge_ioctl (struct ifnet *, u_long, caddr_t); 166 static void vge_init (void *); 167 static void vge_stop (struct vge_softc *); 168 static void vge_watchdog (struct ifnet *); 169 static int vge_suspend (device_t); 170 static int vge_resume (device_t); 171 static int vge_shutdown (device_t); 172 static int vge_ifmedia_upd (struct ifnet *); 173 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 174 175 #ifdef VGE_EEPROM 176 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); 177 #endif 178 static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int); 179 180 static void vge_miipoll_start (struct vge_softc *); 181 static void vge_miipoll_stop (struct vge_softc *); 182 static int vge_miibus_readreg (device_t, int, int); 183 static int vge_miibus_writereg (device_t, int, int, int); 184 static void vge_miibus_statchg (device_t); 185 186 static void vge_cam_clear (struct vge_softc *); 187 static int vge_cam_set (struct vge_softc *, uint8_t *); 188 static void vge_setmulti (struct vge_softc *); 189 static void vge_reset (struct vge_softc *); 190 191 #define VGE_PCI_LOIO 0x10 192 #define VGE_PCI_LOMEM 0x14 193 194 static device_method_t vge_methods[] = { 195 /* Device interface */ 196 DEVMETHOD(device_probe, vge_probe), 197 DEVMETHOD(device_attach, vge_attach), 198 DEVMETHOD(device_detach, vge_detach), 199 DEVMETHOD(device_suspend, vge_suspend), 200 DEVMETHOD(device_resume, vge_resume), 201 DEVMETHOD(device_shutdown, vge_shutdown), 202 203 /* bus interface */ 204 DEVMETHOD(bus_print_child, bus_generic_print_child), 205 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 206 207 /* MII interface */ 208 DEVMETHOD(miibus_readreg, vge_miibus_readreg), 209 DEVMETHOD(miibus_writereg, vge_miibus_writereg), 210 DEVMETHOD(miibus_statchg, vge_miibus_statchg), 211 212 { 0, 0 } 213 }; 214 215 static driver_t vge_driver = { 216 "vge", 217 vge_methods, 218 sizeof(struct vge_softc) 219 }; 220 221 static devclass_t vge_devclass; 222 223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); 224 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0); 225 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); 226 227 #ifdef VGE_EEPROM 228 /* 229 * Read a word of data stored in the EEPROM at address 'addr.' 230 */ 231 static void 232 vge_eeprom_getword(sc, addr, dest) 233 struct vge_softc *sc; 234 int addr; 235 u_int16_t *dest; 236 { 237 register int i; 238 u_int16_t word = 0; 239 240 /* 241 * Enter EEPROM embedded programming mode. In order to 242 * access the EEPROM at all, we first have to set the 243 * EELOAD bit in the CHIPCFG2 register. 244 */ 245 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 246 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 247 248 /* Select the address of the word we want to read */ 249 CSR_WRITE_1(sc, VGE_EEADDR, addr); 250 251 /* Issue read command */ 252 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 253 254 /* Wait for the done bit to be set. */ 255 for (i = 0; i < VGE_TIMEOUT; i++) { 256 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 257 break; 258 } 259 260 if (i == VGE_TIMEOUT) { 261 device_printf(sc->vge_dev, "EEPROM read timed out\n"); 262 *dest = 0; 263 return; 264 } 265 266 /* Read the result */ 267 word = CSR_READ_2(sc, VGE_EERDDAT); 268 269 /* Turn off EEPROM access mode. */ 270 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 271 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 272 273 *dest = word; 274 275 return; 276 } 277 #endif 278 279 /* 280 * Read a sequence of words from the EEPROM. 281 */ 282 static void 283 vge_read_eeprom(sc, dest, off, cnt, swap) 284 struct vge_softc *sc; 285 caddr_t dest; 286 int off; 287 int cnt; 288 int swap; 289 { 290 int i; 291 #ifdef VGE_EEPROM 292 u_int16_t word = 0, *ptr; 293 294 for (i = 0; i < cnt; i++) { 295 vge_eeprom_getword(sc, off + i, &word); 296 ptr = (u_int16_t *)(dest + (i * 2)); 297 if (swap) 298 *ptr = ntohs(word); 299 else 300 *ptr = word; 301 } 302 #else 303 for (i = 0; i < ETHER_ADDR_LEN; i++) 304 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); 305 #endif 306 } 307 308 static void 309 vge_miipoll_stop(sc) 310 struct vge_softc *sc; 311 { 312 int i; 313 314 CSR_WRITE_1(sc, VGE_MIICMD, 0); 315 316 for (i = 0; i < VGE_TIMEOUT; i++) { 317 DELAY(1); 318 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 319 break; 320 } 321 322 if (i == VGE_TIMEOUT) 323 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 324 325 return; 326 } 327 328 static void 329 vge_miipoll_start(sc) 330 struct vge_softc *sc; 331 { 332 int i; 333 334 /* First, make sure we're idle. */ 335 336 CSR_WRITE_1(sc, VGE_MIICMD, 0); 337 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 338 339 for (i = 0; i < VGE_TIMEOUT; i++) { 340 DELAY(1); 341 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 342 break; 343 } 344 345 if (i == VGE_TIMEOUT) { 346 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 347 return; 348 } 349 350 /* Now enable auto poll mode. */ 351 352 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 353 354 /* And make sure it started. */ 355 356 for (i = 0; i < VGE_TIMEOUT; i++) { 357 DELAY(1); 358 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 359 break; 360 } 361 362 if (i == VGE_TIMEOUT) 363 device_printf(sc->vge_dev, "failed to start MII autopoll\n"); 364 365 return; 366 } 367 368 static int 369 vge_miibus_readreg(dev, phy, reg) 370 device_t dev; 371 int phy, reg; 372 { 373 struct vge_softc *sc; 374 int i; 375 u_int16_t rval = 0; 376 377 sc = device_get_softc(dev); 378 379 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 380 return(0); 381 382 VGE_LOCK(sc); 383 vge_miipoll_stop(sc); 384 385 /* Specify the register we want to read. */ 386 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 387 388 /* Issue read command. */ 389 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 390 391 /* Wait for the read command bit to self-clear. */ 392 for (i = 0; i < VGE_TIMEOUT; i++) { 393 DELAY(1); 394 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 395 break; 396 } 397 398 if (i == VGE_TIMEOUT) 399 device_printf(sc->vge_dev, "MII read timed out\n"); 400 else 401 rval = CSR_READ_2(sc, VGE_MIIDATA); 402 403 vge_miipoll_start(sc); 404 VGE_UNLOCK(sc); 405 406 return (rval); 407 } 408 409 static int 410 vge_miibus_writereg(dev, phy, reg, data) 411 device_t dev; 412 int phy, reg, data; 413 { 414 struct vge_softc *sc; 415 int i, rval = 0; 416 417 sc = device_get_softc(dev); 418 419 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 420 return(0); 421 422 VGE_LOCK(sc); 423 vge_miipoll_stop(sc); 424 425 /* Specify the register we want to write. */ 426 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 427 428 /* Specify the data we want to write. */ 429 CSR_WRITE_2(sc, VGE_MIIDATA, data); 430 431 /* Issue write command. */ 432 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 433 434 /* Wait for the write command bit to self-clear. */ 435 for (i = 0; i < VGE_TIMEOUT; i++) { 436 DELAY(1); 437 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 438 break; 439 } 440 441 if (i == VGE_TIMEOUT) { 442 device_printf(sc->vge_dev, "MII write timed out\n"); 443 rval = EIO; 444 } 445 446 vge_miipoll_start(sc); 447 VGE_UNLOCK(sc); 448 449 return (rval); 450 } 451 452 static void 453 vge_cam_clear(sc) 454 struct vge_softc *sc; 455 { 456 int i; 457 458 /* 459 * Turn off all the mask bits. This tells the chip 460 * that none of the entries in the CAM filter are valid. 461 * desired entries will be enabled as we fill the filter in. 462 */ 463 464 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 465 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 466 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 467 for (i = 0; i < 8; i++) 468 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 469 470 /* Clear the VLAN filter too. */ 471 472 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 473 for (i = 0; i < 8; i++) 474 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 475 476 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 477 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 478 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 479 480 sc->vge_camidx = 0; 481 482 return; 483 } 484 485 static int 486 vge_cam_set(sc, addr) 487 struct vge_softc *sc; 488 uint8_t *addr; 489 { 490 int i, error = 0; 491 492 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 493 return(ENOSPC); 494 495 /* Select the CAM data page. */ 496 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 497 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 498 499 /* Set the filter entry we want to update and enable writing. */ 500 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); 501 502 /* Write the address to the CAM registers */ 503 for (i = 0; i < ETHER_ADDR_LEN; i++) 504 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 505 506 /* Issue a write command. */ 507 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 508 509 /* Wake for it to clear. */ 510 for (i = 0; i < VGE_TIMEOUT; i++) { 511 DELAY(1); 512 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 513 break; 514 } 515 516 if (i == VGE_TIMEOUT) { 517 device_printf(sc->vge_dev, "setting CAM filter failed\n"); 518 error = EIO; 519 goto fail; 520 } 521 522 /* Select the CAM mask page. */ 523 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 524 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 525 526 /* Set the mask bit that enables this filter. */ 527 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 528 1<<(sc->vge_camidx & 7)); 529 530 sc->vge_camidx++; 531 532 fail: 533 /* Turn off access to CAM. */ 534 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 535 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 536 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 537 538 return (error); 539 } 540 541 /* 542 * Program the multicast filter. We use the 64-entry CAM filter 543 * for perfect filtering. If there's more than 64 multicast addresses, 544 * we use the hash filter insted. 545 */ 546 static void 547 vge_setmulti(sc) 548 struct vge_softc *sc; 549 { 550 struct ifnet *ifp; 551 int error = 0/*, h = 0*/; 552 struct ifmultiaddr *ifma; 553 u_int32_t h, hashes[2] = { 0, 0 }; 554 555 ifp = sc->vge_ifp; 556 557 /* First, zot all the multicast entries. */ 558 vge_cam_clear(sc); 559 CSR_WRITE_4(sc, VGE_MAR0, 0); 560 CSR_WRITE_4(sc, VGE_MAR1, 0); 561 562 /* 563 * If the user wants allmulti or promisc mode, enable reception 564 * of all multicast frames. 565 */ 566 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 567 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); 568 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); 569 return; 570 } 571 572 /* Now program new ones */ 573 IF_ADDR_LOCK(ifp); 574 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 575 if (ifma->ifma_addr->sa_family != AF_LINK) 576 continue; 577 error = vge_cam_set(sc, 578 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 579 if (error) 580 break; 581 } 582 583 /* If there were too many addresses, use the hash filter. */ 584 if (error) { 585 vge_cam_clear(sc); 586 587 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 588 if (ifma->ifma_addr->sa_family != AF_LINK) 589 continue; 590 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 591 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 592 if (h < 32) 593 hashes[0] |= (1 << h); 594 else 595 hashes[1] |= (1 << (h - 32)); 596 } 597 598 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 599 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 600 } 601 IF_ADDR_UNLOCK(ifp); 602 603 return; 604 } 605 606 static void 607 vge_reset(sc) 608 struct vge_softc *sc; 609 { 610 register int i; 611 612 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 613 614 for (i = 0; i < VGE_TIMEOUT; i++) { 615 DELAY(5); 616 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 617 break; 618 } 619 620 if (i == VGE_TIMEOUT) { 621 device_printf(sc->vge_dev, "soft reset timed out"); 622 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 623 DELAY(2000); 624 } 625 626 DELAY(5000); 627 628 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 629 630 for (i = 0; i < VGE_TIMEOUT; i++) { 631 DELAY(5); 632 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 633 break; 634 } 635 636 if (i == VGE_TIMEOUT) { 637 device_printf(sc->vge_dev, "EEPROM reload timed out\n"); 638 return; 639 } 640 641 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 642 643 return; 644 } 645 646 /* 647 * Probe for a VIA gigabit chip. Check the PCI vendor and device 648 * IDs against our list and return a device name if we find a match. 649 */ 650 static int 651 vge_probe(dev) 652 device_t dev; 653 { 654 struct vge_type *t; 655 struct vge_softc *sc; 656 657 t = vge_devs; 658 sc = device_get_softc(dev); 659 660 while (t->vge_name != NULL) { 661 if ((pci_get_vendor(dev) == t->vge_vid) && 662 (pci_get_device(dev) == t->vge_did)) { 663 device_set_desc(dev, t->vge_name); 664 return (BUS_PROBE_DEFAULT); 665 } 666 t++; 667 } 668 669 return (ENXIO); 670 } 671 672 static void 673 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error) 674 void *arg; 675 bus_dma_segment_t *segs; 676 int nseg; 677 bus_size_t mapsize; 678 int error; 679 { 680 681 struct vge_dmaload_arg *ctx; 682 struct vge_rx_desc *d = NULL; 683 684 if (error) 685 return; 686 687 ctx = arg; 688 689 /* Signal error to caller if there's too many segments */ 690 if (nseg > ctx->vge_maxsegs) { 691 ctx->vge_maxsegs = 0; 692 return; 693 } 694 695 /* 696 * Map the segment array into descriptors. 697 */ 698 699 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx]; 700 701 /* If this descriptor is still owned by the chip, bail. */ 702 703 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) { 704 device_printf(ctx->sc->vge_dev, 705 "tried to map busy descriptor\n"); 706 ctx->vge_maxsegs = 0; 707 return; 708 } 709 710 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I); 711 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 712 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 713 d->vge_sts = 0; 714 d->vge_ctl = 0; 715 716 ctx->vge_maxsegs = 1; 717 718 return; 719 } 720 721 static void 722 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 723 void *arg; 724 bus_dma_segment_t *segs; 725 int nseg; 726 bus_size_t mapsize; 727 int error; 728 { 729 struct vge_dmaload_arg *ctx; 730 struct vge_tx_desc *d = NULL; 731 struct vge_tx_frag *f; 732 int i = 0; 733 734 if (error) 735 return; 736 737 ctx = arg; 738 739 /* Signal error to caller if there's too many segments */ 740 if (nseg > ctx->vge_maxsegs) { 741 ctx->vge_maxsegs = 0; 742 return; 743 } 744 745 /* Map the segment array into descriptors. */ 746 747 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx]; 748 749 /* If this descriptor is still owned by the chip, bail. */ 750 751 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) { 752 ctx->vge_maxsegs = 0; 753 return; 754 } 755 756 for (i = 0; i < nseg; i++) { 757 f = &d->vge_frag[i]; 758 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len)); 759 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr)); 760 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF); 761 } 762 763 /* Argh. This chip does not autopad short frames */ 764 765 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) { 766 f = &d->vge_frag[i]; 767 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - 768 ctx->vge_m0->m_pkthdr.len)); 769 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 770 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 771 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN; 772 i++; 773 } 774 775 /* 776 * When telling the chip how many segments there are, we 777 * must use nsegs + 1 instead of just nsegs. Darned if I 778 * know why. 779 */ 780 i++; 781 782 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16; 783 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM; 784 785 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN) 786 d->vge_ctl |= VGE_TDCTL_JUMBO; 787 788 ctx->vge_maxsegs = nseg; 789 790 return; 791 } 792 793 /* 794 * Map a single buffer address. 795 */ 796 797 static void 798 vge_dma_map_addr(arg, segs, nseg, error) 799 void *arg; 800 bus_dma_segment_t *segs; 801 int nseg; 802 int error; 803 { 804 bus_addr_t *addr; 805 806 if (error) 807 return; 808 809 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 810 addr = arg; 811 *addr = segs->ds_addr; 812 813 return; 814 } 815 816 static int 817 vge_allocmem(dev, sc) 818 device_t dev; 819 struct vge_softc *sc; 820 { 821 int error; 822 int nseg; 823 int i; 824 825 /* 826 * Allocate map for RX mbufs. 827 */ 828 nseg = 32; 829 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0, 830 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 831 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, 832 NULL, NULL, &sc->vge_ldata.vge_mtag); 833 if (error) { 834 device_printf(dev, "could not allocate dma tag\n"); 835 return (ENOMEM); 836 } 837 838 /* 839 * Allocate map for TX descriptor list. 840 */ 841 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 842 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 843 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, 844 NULL, NULL, &sc->vge_ldata.vge_tx_list_tag); 845 if (error) { 846 device_printf(dev, "could not allocate dma tag\n"); 847 return (ENOMEM); 848 } 849 850 /* Allocate DMA'able memory for the TX ring */ 851 852 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag, 853 (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 854 &sc->vge_ldata.vge_tx_list_map); 855 if (error) 856 return (ENOMEM); 857 858 /* Load the map for the TX ring. */ 859 860 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag, 861 sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list, 862 VGE_TX_LIST_SZ, vge_dma_map_addr, 863 &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT); 864 865 /* Create DMA maps for TX buffers */ 866 867 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 868 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 869 &sc->vge_ldata.vge_tx_dmamap[i]); 870 if (error) { 871 device_printf(dev, "can't create DMA map for TX\n"); 872 return (ENOMEM); 873 } 874 } 875 876 /* 877 * Allocate map for RX descriptor list. 878 */ 879 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 880 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 881 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, 882 NULL, NULL, &sc->vge_ldata.vge_rx_list_tag); 883 if (error) { 884 device_printf(dev, "could not allocate dma tag\n"); 885 return (ENOMEM); 886 } 887 888 /* Allocate DMA'able memory for the RX ring */ 889 890 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag, 891 (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 892 &sc->vge_ldata.vge_rx_list_map); 893 if (error) 894 return (ENOMEM); 895 896 /* Load the map for the RX ring. */ 897 898 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag, 899 sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list, 900 VGE_TX_LIST_SZ, vge_dma_map_addr, 901 &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT); 902 903 /* Create DMA maps for RX buffers */ 904 905 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 906 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 907 &sc->vge_ldata.vge_rx_dmamap[i]); 908 if (error) { 909 device_printf(dev, "can't create DMA map for RX\n"); 910 return (ENOMEM); 911 } 912 } 913 914 return (0); 915 } 916 917 /* 918 * Attach the interface. Allocate softc structures, do ifmedia 919 * setup and ethernet/BPF attach. 920 */ 921 static int 922 vge_attach(dev) 923 device_t dev; 924 { 925 u_char eaddr[ETHER_ADDR_LEN]; 926 struct vge_softc *sc; 927 struct ifnet *ifp; 928 int unit, error = 0, rid; 929 930 sc = device_get_softc(dev); 931 unit = device_get_unit(dev); 932 sc->vge_dev = dev; 933 934 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 935 MTX_DEF | MTX_RECURSE); 936 /* 937 * Map control/status registers. 938 */ 939 pci_enable_busmaster(dev); 940 941 rid = VGE_PCI_LOMEM; 942 sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 943 0, ~0, 1, RF_ACTIVE); 944 945 if (sc->vge_res == NULL) { 946 printf ("vge%d: couldn't map ports/memory\n", unit); 947 error = ENXIO; 948 goto fail; 949 } 950 951 sc->vge_btag = rman_get_bustag(sc->vge_res); 952 sc->vge_bhandle = rman_get_bushandle(sc->vge_res); 953 954 /* Allocate interrupt */ 955 rid = 0; 956 sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 957 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); 958 959 if (sc->vge_irq == NULL) { 960 printf("vge%d: couldn't map interrupt\n", unit); 961 error = ENXIO; 962 goto fail; 963 } 964 965 /* Reset the adapter. */ 966 vge_reset(sc); 967 968 /* 969 * Get station address from the EEPROM. 970 */ 971 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); 972 973 sc->vge_unit = unit; 974 975 /* 976 * Allocate the parent bus DMA tag appropriate for PCI. 977 */ 978 #define VGE_NSEG_NEW 32 979 error = bus_dma_tag_create(NULL, /* parent */ 980 1, 0, /* alignment, boundary */ 981 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 982 BUS_SPACE_MAXADDR, /* highaddr */ 983 NULL, NULL, /* filter, filterarg */ 984 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */ 985 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 986 BUS_DMA_ALLOCNOW, /* flags */ 987 NULL, NULL, /* lockfunc, lockarg */ 988 &sc->vge_parent_tag); 989 if (error) 990 goto fail; 991 992 error = vge_allocmem(dev, sc); 993 994 if (error) 995 goto fail; 996 997 ifp = sc->vge_ifp = if_alloc(IFT_ETHER); 998 if (ifp == NULL) { 999 printf("vge%d: can not if_alloc()\n", sc->vge_unit); 1000 error = ENOSPC; 1001 goto fail; 1002 } 1003 1004 /* Do MII setup */ 1005 if (mii_phy_probe(dev, &sc->vge_miibus, 1006 vge_ifmedia_upd, vge_ifmedia_sts)) { 1007 printf("vge%d: MII without any phy!\n", sc->vge_unit); 1008 error = ENXIO; 1009 goto fail; 1010 } 1011 1012 ifp->if_softc = sc; 1013 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1014 ifp->if_mtu = ETHERMTU; 1015 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1016 ifp->if_ioctl = vge_ioctl; 1017 ifp->if_capabilities = IFCAP_VLAN_MTU; 1018 ifp->if_start = vge_start; 1019 ifp->if_hwassist = VGE_CSUM_FEATURES; 1020 ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; 1021 ifp->if_capenable = ifp->if_capabilities; 1022 #ifdef DEVICE_POLLING 1023 ifp->if_capabilities |= IFCAP_POLLING; 1024 #endif 1025 ifp->if_watchdog = vge_watchdog; 1026 ifp->if_init = vge_init; 1027 IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN); 1028 ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN; 1029 IFQ_SET_READY(&ifp->if_snd); 1030 1031 TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp); 1032 1033 /* 1034 * Call MI attach routine. 1035 */ 1036 ether_ifattach(ifp, eaddr); 1037 1038 /* Hook interrupt last to avoid having to lock softc */ 1039 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, 1040 NULL, vge_intr, sc, &sc->vge_intrhand); 1041 1042 if (error) { 1043 printf("vge%d: couldn't set up irq\n", unit); 1044 ether_ifdetach(ifp); 1045 goto fail; 1046 } 1047 1048 fail: 1049 if (error) 1050 vge_detach(dev); 1051 1052 return (error); 1053 } 1054 1055 /* 1056 * Shutdown hardware and free up resources. This can be called any 1057 * time after the mutex has been initialized. It is called in both 1058 * the error case in attach and the normal detach case so it needs 1059 * to be careful about only freeing resources that have actually been 1060 * allocated. 1061 */ 1062 static int 1063 vge_detach(dev) 1064 device_t dev; 1065 { 1066 struct vge_softc *sc; 1067 struct ifnet *ifp; 1068 int i; 1069 1070 sc = device_get_softc(dev); 1071 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); 1072 ifp = sc->vge_ifp; 1073 1074 #ifdef DEVICE_POLLING 1075 if (ifp->if_capenable & IFCAP_POLLING) 1076 ether_poll_deregister(ifp); 1077 #endif 1078 1079 /* These should only be active if attach succeeded */ 1080 if (device_is_attached(dev)) { 1081 vge_stop(sc); 1082 /* 1083 * Force off the IFF_UP flag here, in case someone 1084 * still had a BPF descriptor attached to this 1085 * interface. If they do, ether_ifattach() will cause 1086 * the BPF code to try and clear the promisc mode 1087 * flag, which will bubble down to vge_ioctl(), 1088 * which will try to call vge_init() again. This will 1089 * turn the NIC back on and restart the MII ticker, 1090 * which will panic the system when the kernel tries 1091 * to invoke the vge_tick() function that isn't there 1092 * anymore. 1093 */ 1094 ifp->if_flags &= ~IFF_UP; 1095 ether_ifdetach(ifp); 1096 } 1097 if (sc->vge_miibus) 1098 device_delete_child(dev, sc->vge_miibus); 1099 bus_generic_detach(dev); 1100 1101 if (sc->vge_intrhand) 1102 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); 1103 if (sc->vge_irq) 1104 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq); 1105 if (sc->vge_res) 1106 bus_release_resource(dev, SYS_RES_MEMORY, 1107 VGE_PCI_LOMEM, sc->vge_res); 1108 if (ifp) 1109 if_free(ifp); 1110 1111 /* Unload and free the RX DMA ring memory and map */ 1112 1113 if (sc->vge_ldata.vge_rx_list_tag) { 1114 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag, 1115 sc->vge_ldata.vge_rx_list_map); 1116 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag, 1117 sc->vge_ldata.vge_rx_list, 1118 sc->vge_ldata.vge_rx_list_map); 1119 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag); 1120 } 1121 1122 /* Unload and free the TX DMA ring memory and map */ 1123 1124 if (sc->vge_ldata.vge_tx_list_tag) { 1125 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag, 1126 sc->vge_ldata.vge_tx_list_map); 1127 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, 1128 sc->vge_ldata.vge_tx_list, 1129 sc->vge_ldata.vge_tx_list_map); 1130 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag); 1131 } 1132 1133 /* Destroy all the RX and TX buffer maps */ 1134 1135 if (sc->vge_ldata.vge_mtag) { 1136 for (i = 0; i < VGE_TX_DESC_CNT; i++) 1137 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 1138 sc->vge_ldata.vge_tx_dmamap[i]); 1139 for (i = 0; i < VGE_RX_DESC_CNT; i++) 1140 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 1141 sc->vge_ldata.vge_rx_dmamap[i]); 1142 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag); 1143 } 1144 1145 if (sc->vge_parent_tag) 1146 bus_dma_tag_destroy(sc->vge_parent_tag); 1147 1148 mtx_destroy(&sc->vge_mtx); 1149 1150 return (0); 1151 } 1152 1153 static int 1154 vge_newbuf(sc, idx, m) 1155 struct vge_softc *sc; 1156 int idx; 1157 struct mbuf *m; 1158 { 1159 struct vge_dmaload_arg arg; 1160 struct mbuf *n = NULL; 1161 int i, error; 1162 1163 if (m == NULL) { 1164 n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1165 if (n == NULL) 1166 return (ENOBUFS); 1167 m = n; 1168 } else 1169 m->m_data = m->m_ext.ext_buf; 1170 1171 1172 #ifdef VGE_FIXUP_RX 1173 /* 1174 * This is part of an evil trick to deal with non-x86 platforms. 1175 * The VIA chip requires RX buffers to be aligned on 32-bit 1176 * boundaries, but that will hose non-x86 machines. To get around 1177 * this, we leave some empty space at the start of each buffer 1178 * and for non-x86 hosts, we copy the buffer back two bytes 1179 * to achieve word alignment. This is slightly more efficient 1180 * than allocating a new buffer, copying the contents, and 1181 * discarding the old buffer. 1182 */ 1183 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN; 1184 m_adj(m, VGE_ETHER_ALIGN); 1185 #else 1186 m->m_len = m->m_pkthdr.len = MCLBYTES; 1187 #endif 1188 1189 arg.sc = sc; 1190 arg.vge_idx = idx; 1191 arg.vge_maxsegs = 1; 1192 arg.vge_flags = 0; 1193 1194 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, 1195 sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc, 1196 &arg, BUS_DMA_NOWAIT); 1197 if (error || arg.vge_maxsegs != 1) { 1198 if (n != NULL) 1199 m_freem(n); 1200 return (ENOMEM); 1201 } 1202 1203 /* 1204 * Note: the manual fails to document the fact that for 1205 * proper opration, the driver needs to replentish the RX 1206 * DMA ring 4 descriptors at a time (rather than one at a 1207 * time, like most chips). We can allocate the new buffers 1208 * but we should not set the OWN bits until we're ready 1209 * to hand back 4 of them in one shot. 1210 */ 1211 1212 #define VGE_RXCHUNK 4 1213 sc->vge_rx_consumed++; 1214 if (sc->vge_rx_consumed == VGE_RXCHUNK) { 1215 for (i = idx; i != idx - sc->vge_rx_consumed; i--) 1216 sc->vge_ldata.vge_rx_list[i].vge_sts |= 1217 htole32(VGE_RDSTS_OWN); 1218 sc->vge_rx_consumed = 0; 1219 } 1220 1221 sc->vge_ldata.vge_rx_mbuf[idx] = m; 1222 1223 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1224 sc->vge_ldata.vge_rx_dmamap[idx], 1225 BUS_DMASYNC_PREREAD); 1226 1227 return (0); 1228 } 1229 1230 static int 1231 vge_tx_list_init(sc) 1232 struct vge_softc *sc; 1233 { 1234 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); 1235 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, 1236 (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); 1237 1238 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1239 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE); 1240 sc->vge_ldata.vge_tx_prodidx = 0; 1241 sc->vge_ldata.vge_tx_considx = 0; 1242 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; 1243 1244 return (0); 1245 } 1246 1247 static int 1248 vge_rx_list_init(sc) 1249 struct vge_softc *sc; 1250 { 1251 int i; 1252 1253 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); 1254 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf, 1255 (VGE_RX_DESC_CNT * sizeof(struct mbuf *))); 1256 1257 sc->vge_rx_consumed = 0; 1258 1259 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1260 if (vge_newbuf(sc, i, NULL) == ENOBUFS) 1261 return (ENOBUFS); 1262 } 1263 1264 /* Flush the RX descriptors */ 1265 1266 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1267 sc->vge_ldata.vge_rx_list_map, 1268 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1269 1270 sc->vge_ldata.vge_rx_prodidx = 0; 1271 sc->vge_rx_consumed = 0; 1272 sc->vge_head = sc->vge_tail = NULL; 1273 1274 return (0); 1275 } 1276 1277 #ifdef VGE_FIXUP_RX 1278 static __inline void 1279 vge_fixup_rx(m) 1280 struct mbuf *m; 1281 { 1282 int i; 1283 uint16_t *src, *dst; 1284 1285 src = mtod(m, uint16_t *); 1286 dst = src - 1; 1287 1288 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1289 *dst++ = *src++; 1290 1291 m->m_data -= ETHER_ALIGN; 1292 1293 return; 1294 } 1295 #endif 1296 1297 /* 1298 * RX handler. We support the reception of jumbo frames that have 1299 * been fragmented across multiple 2K mbuf cluster buffers. 1300 */ 1301 static void 1302 vge_rxeof(sc) 1303 struct vge_softc *sc; 1304 { 1305 struct mbuf *m; 1306 struct ifnet *ifp; 1307 int i, total_len; 1308 int lim = 0; 1309 struct vge_rx_desc *cur_rx; 1310 u_int32_t rxstat, rxctl; 1311 1312 VGE_LOCK_ASSERT(sc); 1313 ifp = sc->vge_ifp; 1314 i = sc->vge_ldata.vge_rx_prodidx; 1315 1316 /* Invalidate the descriptor memory */ 1317 1318 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1319 sc->vge_ldata.vge_rx_list_map, 1320 BUS_DMASYNC_POSTREAD); 1321 1322 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { 1323 1324 #ifdef DEVICE_POLLING 1325 if (ifp->if_capenable & IFCAP_POLLING) { 1326 if (sc->rxcycles <= 0) 1327 break; 1328 sc->rxcycles--; 1329 } 1330 #endif 1331 1332 cur_rx = &sc->vge_ldata.vge_rx_list[i]; 1333 m = sc->vge_ldata.vge_rx_mbuf[i]; 1334 total_len = VGE_RXBYTES(cur_rx); 1335 rxstat = le32toh(cur_rx->vge_sts); 1336 rxctl = le32toh(cur_rx->vge_ctl); 1337 1338 /* Invalidate the RX mbuf and unload its map */ 1339 1340 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1341 sc->vge_ldata.vge_rx_dmamap[i], 1342 BUS_DMASYNC_POSTWRITE); 1343 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1344 sc->vge_ldata.vge_rx_dmamap[i]); 1345 1346 /* 1347 * If the 'start of frame' bit is set, this indicates 1348 * either the first fragment in a multi-fragment receive, 1349 * or an intermediate fragment. Either way, we want to 1350 * accumulate the buffers. 1351 */ 1352 if (rxstat & VGE_RXPKT_SOF) { 1353 m->m_len = MCLBYTES - VGE_ETHER_ALIGN; 1354 if (sc->vge_head == NULL) 1355 sc->vge_head = sc->vge_tail = m; 1356 else { 1357 m->m_flags &= ~M_PKTHDR; 1358 sc->vge_tail->m_next = m; 1359 sc->vge_tail = m; 1360 } 1361 vge_newbuf(sc, i, NULL); 1362 VGE_RX_DESC_INC(i); 1363 continue; 1364 } 1365 1366 /* 1367 * Bad/error frames will have the RXOK bit cleared. 1368 * However, there's one error case we want to allow: 1369 * if a VLAN tagged frame arrives and the chip can't 1370 * match it against the CAM filter, it considers this 1371 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1372 * We don't want to drop the frame though: our VLAN 1373 * filtering is done in software. 1374 */ 1375 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) 1376 && !(rxstat & VGE_RDSTS_CSUMERR)) { 1377 ifp->if_ierrors++; 1378 /* 1379 * If this is part of a multi-fragment packet, 1380 * discard all the pieces. 1381 */ 1382 if (sc->vge_head != NULL) { 1383 m_freem(sc->vge_head); 1384 sc->vge_head = sc->vge_tail = NULL; 1385 } 1386 vge_newbuf(sc, i, m); 1387 VGE_RX_DESC_INC(i); 1388 continue; 1389 } 1390 1391 /* 1392 * If allocating a replacement mbuf fails, 1393 * reload the current one. 1394 */ 1395 1396 if (vge_newbuf(sc, i, NULL)) { 1397 ifp->if_ierrors++; 1398 if (sc->vge_head != NULL) { 1399 m_freem(sc->vge_head); 1400 sc->vge_head = sc->vge_tail = NULL; 1401 } 1402 vge_newbuf(sc, i, m); 1403 VGE_RX_DESC_INC(i); 1404 continue; 1405 } 1406 1407 VGE_RX_DESC_INC(i); 1408 1409 if (sc->vge_head != NULL) { 1410 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN); 1411 /* 1412 * Special case: if there's 4 bytes or less 1413 * in this buffer, the mbuf can be discarded: 1414 * the last 4 bytes is the CRC, which we don't 1415 * care about anyway. 1416 */ 1417 if (m->m_len <= ETHER_CRC_LEN) { 1418 sc->vge_tail->m_len -= 1419 (ETHER_CRC_LEN - m->m_len); 1420 m_freem(m); 1421 } else { 1422 m->m_len -= ETHER_CRC_LEN; 1423 m->m_flags &= ~M_PKTHDR; 1424 sc->vge_tail->m_next = m; 1425 } 1426 m = sc->vge_head; 1427 sc->vge_head = sc->vge_tail = NULL; 1428 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1429 } else 1430 m->m_pkthdr.len = m->m_len = 1431 (total_len - ETHER_CRC_LEN); 1432 1433 #ifdef VGE_FIXUP_RX 1434 vge_fixup_rx(m); 1435 #endif 1436 ifp->if_ipackets++; 1437 m->m_pkthdr.rcvif = ifp; 1438 1439 /* Do RX checksumming if enabled */ 1440 if (ifp->if_capenable & IFCAP_RXCSUM) { 1441 1442 /* Check IP header checksum */ 1443 if (rxctl & VGE_RDCTL_IPPKT) 1444 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1445 if (rxctl & VGE_RDCTL_IPCSUMOK) 1446 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1447 1448 /* Check TCP/UDP checksum */ 1449 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) && 1450 rxctl & VGE_RDCTL_PROTOCSUMOK) { 1451 m->m_pkthdr.csum_flags |= 1452 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1453 m->m_pkthdr.csum_data = 0xffff; 1454 } 1455 } 1456 1457 if (rxstat & VGE_RDSTS_VTAG) { 1458 /* 1459 * The 32-bit rxctl register is stored in little-endian. 1460 * However, the 16-bit vlan tag is stored in big-endian, 1461 * so we have to byte swap it. 1462 */ 1463 m->m_pkthdr.ether_vtag = 1464 bswap16(rxctl & VGE_RDCTL_VLANID); 1465 m->m_flags |= M_VLANTAG; 1466 } 1467 1468 VGE_UNLOCK(sc); 1469 (*ifp->if_input)(ifp, m); 1470 VGE_LOCK(sc); 1471 1472 lim++; 1473 if (lim == VGE_RX_DESC_CNT) 1474 break; 1475 1476 } 1477 1478 /* Flush the RX DMA ring */ 1479 1480 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1481 sc->vge_ldata.vge_rx_list_map, 1482 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1483 1484 sc->vge_ldata.vge_rx_prodidx = i; 1485 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); 1486 1487 1488 return; 1489 } 1490 1491 static void 1492 vge_txeof(sc) 1493 struct vge_softc *sc; 1494 { 1495 struct ifnet *ifp; 1496 u_int32_t txstat; 1497 int idx; 1498 1499 ifp = sc->vge_ifp; 1500 idx = sc->vge_ldata.vge_tx_considx; 1501 1502 /* Invalidate the TX descriptor list */ 1503 1504 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1505 sc->vge_ldata.vge_tx_list_map, 1506 BUS_DMASYNC_POSTREAD); 1507 1508 while (idx != sc->vge_ldata.vge_tx_prodidx) { 1509 1510 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts); 1511 if (txstat & VGE_TDSTS_OWN) 1512 break; 1513 1514 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); 1515 sc->vge_ldata.vge_tx_mbuf[idx] = NULL; 1516 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1517 sc->vge_ldata.vge_tx_dmamap[idx]); 1518 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) 1519 ifp->if_collisions++; 1520 if (txstat & VGE_TDSTS_TXERR) 1521 ifp->if_oerrors++; 1522 else 1523 ifp->if_opackets++; 1524 1525 sc->vge_ldata.vge_tx_free++; 1526 VGE_TX_DESC_INC(idx); 1527 } 1528 1529 /* No changes made to the TX ring, so no flush needed */ 1530 1531 if (idx != sc->vge_ldata.vge_tx_considx) { 1532 sc->vge_ldata.vge_tx_considx = idx; 1533 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1534 ifp->if_timer = 0; 1535 } 1536 1537 /* 1538 * If not all descriptors have been released reaped yet, 1539 * reload the timer so that we will eventually get another 1540 * interrupt that will cause us to re-enter this routine. 1541 * This is done in case the transmitter has gone idle. 1542 */ 1543 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) { 1544 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1545 } 1546 1547 return; 1548 } 1549 1550 static void 1551 vge_tick(xsc) 1552 void *xsc; 1553 { 1554 struct vge_softc *sc; 1555 struct ifnet *ifp; 1556 struct mii_data *mii; 1557 1558 sc = xsc; 1559 ifp = sc->vge_ifp; 1560 VGE_LOCK(sc); 1561 mii = device_get_softc(sc->vge_miibus); 1562 1563 mii_tick(mii); 1564 if (sc->vge_link) { 1565 if (!(mii->mii_media_status & IFM_ACTIVE)) { 1566 sc->vge_link = 0; 1567 if_link_state_change(sc->vge_ifp, 1568 LINK_STATE_DOWN); 1569 } 1570 } else { 1571 if (mii->mii_media_status & IFM_ACTIVE && 1572 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1573 sc->vge_link = 1; 1574 if_link_state_change(sc->vge_ifp, 1575 LINK_STATE_UP); 1576 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1577 taskqueue_enqueue(taskqueue_swi, 1578 &sc->vge_txtask); 1579 } 1580 } 1581 1582 VGE_UNLOCK(sc); 1583 1584 return; 1585 } 1586 1587 #ifdef DEVICE_POLLING 1588 static void 1589 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) 1590 { 1591 struct vge_softc *sc = ifp->if_softc; 1592 1593 VGE_LOCK(sc); 1594 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1595 goto done; 1596 1597 sc->rxcycles = count; 1598 vge_rxeof(sc); 1599 vge_txeof(sc); 1600 1601 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1602 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); 1603 1604 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1605 u_int32_t status; 1606 status = CSR_READ_4(sc, VGE_ISR); 1607 if (status == 0xFFFFFFFF) 1608 goto done; 1609 if (status) 1610 CSR_WRITE_4(sc, VGE_ISR, status); 1611 1612 /* 1613 * XXX check behaviour on receiver stalls. 1614 */ 1615 1616 if (status & VGE_ISR_TXDMA_STALL || 1617 status & VGE_ISR_RXDMA_STALL) 1618 vge_init(sc); 1619 1620 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1621 vge_rxeof(sc); 1622 ifp->if_ierrors++; 1623 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1624 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1625 } 1626 } 1627 done: 1628 VGE_UNLOCK(sc); 1629 } 1630 #endif /* DEVICE_POLLING */ 1631 1632 static void 1633 vge_intr(arg) 1634 void *arg; 1635 { 1636 struct vge_softc *sc; 1637 struct ifnet *ifp; 1638 u_int32_t status; 1639 1640 sc = arg; 1641 1642 if (sc->suspended) { 1643 return; 1644 } 1645 1646 VGE_LOCK(sc); 1647 ifp = sc->vge_ifp; 1648 1649 if (!(ifp->if_flags & IFF_UP)) { 1650 VGE_UNLOCK(sc); 1651 return; 1652 } 1653 1654 #ifdef DEVICE_POLLING 1655 if (ifp->if_capenable & IFCAP_POLLING) { 1656 VGE_UNLOCK(sc); 1657 return; 1658 } 1659 #endif 1660 1661 /* Disable interrupts */ 1662 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1663 1664 for (;;) { 1665 1666 status = CSR_READ_4(sc, VGE_ISR); 1667 /* If the card has gone away the read returns 0xffff. */ 1668 if (status == 0xFFFFFFFF) 1669 break; 1670 1671 if (status) 1672 CSR_WRITE_4(sc, VGE_ISR, status); 1673 1674 if ((status & VGE_INTRS) == 0) 1675 break; 1676 1677 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1678 vge_rxeof(sc); 1679 1680 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1681 vge_rxeof(sc); 1682 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1683 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1684 } 1685 1686 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) 1687 vge_txeof(sc); 1688 1689 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) 1690 vge_init(sc); 1691 1692 if (status & VGE_ISR_LINKSTS) 1693 vge_tick(sc); 1694 } 1695 1696 /* Re-enable interrupts */ 1697 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1698 1699 VGE_UNLOCK(sc); 1700 1701 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1702 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); 1703 1704 return; 1705 } 1706 1707 static int 1708 vge_encap(sc, m_head, idx) 1709 struct vge_softc *sc; 1710 struct mbuf *m_head; 1711 int idx; 1712 { 1713 struct mbuf *m_new = NULL; 1714 struct vge_dmaload_arg arg; 1715 bus_dmamap_t map; 1716 int error; 1717 1718 if (sc->vge_ldata.vge_tx_free <= 2) 1719 return (EFBIG); 1720 1721 arg.vge_flags = 0; 1722 1723 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1724 arg.vge_flags |= VGE_TDCTL_IPCSUM; 1725 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1726 arg.vge_flags |= VGE_TDCTL_TCPCSUM; 1727 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1728 arg.vge_flags |= VGE_TDCTL_UDPCSUM; 1729 1730 arg.sc = sc; 1731 arg.vge_idx = idx; 1732 arg.vge_m0 = m_head; 1733 arg.vge_maxsegs = VGE_TX_FRAGS; 1734 1735 map = sc->vge_ldata.vge_tx_dmamap[idx]; 1736 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, 1737 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); 1738 1739 if (error && error != EFBIG) { 1740 printf("vge%d: can't map mbuf (error %d)\n", 1741 sc->vge_unit, error); 1742 return (ENOBUFS); 1743 } 1744 1745 /* Too many segments to map, coalesce into a single mbuf */ 1746 1747 if (error || arg.vge_maxsegs == 0) { 1748 m_new = m_defrag(m_head, M_DONTWAIT); 1749 if (m_new == NULL) 1750 return (1); 1751 else 1752 m_head = m_new; 1753 1754 arg.sc = sc; 1755 arg.vge_m0 = m_head; 1756 arg.vge_idx = idx; 1757 arg.vge_maxsegs = 1; 1758 1759 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, 1760 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); 1761 if (error) { 1762 printf("vge%d: can't map mbuf (error %d)\n", 1763 sc->vge_unit, error); 1764 return (EFBIG); 1765 } 1766 } 1767 1768 sc->vge_ldata.vge_tx_mbuf[idx] = m_head; 1769 sc->vge_ldata.vge_tx_free--; 1770 1771 /* 1772 * Set up hardware VLAN tagging. 1773 */ 1774 1775 if (m_head->m_flags & M_VLANTAG) 1776 sc->vge_ldata.vge_tx_list[idx].vge_ctl |= 1777 htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG); 1778 1779 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); 1780 1781 return (0); 1782 } 1783 1784 static void 1785 vge_tx_task(arg, npending) 1786 void *arg; 1787 int npending; 1788 { 1789 struct ifnet *ifp; 1790 1791 ifp = arg; 1792 vge_start(ifp); 1793 1794 return; 1795 } 1796 1797 /* 1798 * Main transmit routine. 1799 */ 1800 1801 static void 1802 vge_start(ifp) 1803 struct ifnet *ifp; 1804 { 1805 struct vge_softc *sc; 1806 struct mbuf *m_head = NULL; 1807 int idx, pidx = 0; 1808 1809 sc = ifp->if_softc; 1810 VGE_LOCK(sc); 1811 1812 if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) { 1813 VGE_UNLOCK(sc); 1814 return; 1815 } 1816 1817 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1818 VGE_UNLOCK(sc); 1819 return; 1820 } 1821 1822 idx = sc->vge_ldata.vge_tx_prodidx; 1823 1824 pidx = idx - 1; 1825 if (pidx < 0) 1826 pidx = VGE_TX_DESC_CNT - 1; 1827 1828 1829 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) { 1830 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1831 if (m_head == NULL) 1832 break; 1833 1834 if (vge_encap(sc, m_head, idx)) { 1835 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1836 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1837 break; 1838 } 1839 1840 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= 1841 htole16(VGE_TXDESC_Q); 1842 1843 pidx = idx; 1844 VGE_TX_DESC_INC(idx); 1845 1846 /* 1847 * If there's a BPF listener, bounce a copy of this frame 1848 * to him. 1849 */ 1850 ETHER_BPF_MTAP(ifp, m_head); 1851 } 1852 1853 if (idx == sc->vge_ldata.vge_tx_prodidx) { 1854 VGE_UNLOCK(sc); 1855 return; 1856 } 1857 1858 /* Flush the TX descriptors */ 1859 1860 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1861 sc->vge_ldata.vge_tx_list_map, 1862 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1863 1864 /* Issue a transmit command. */ 1865 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 1866 1867 sc->vge_ldata.vge_tx_prodidx = idx; 1868 1869 /* 1870 * Use the countdown timer for interrupt moderation. 1871 * 'TX done' interrupts are disabled. Instead, we reset the 1872 * countdown timer, which will begin counting until it hits 1873 * the value in the SSTIMER register, and then trigger an 1874 * interrupt. Each time we set the TIMER0_ENABLE bit, the 1875 * the timer count is reloaded. Only when the transmitter 1876 * is idle will the timer hit 0 and an interrupt fire. 1877 */ 1878 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1879 1880 VGE_UNLOCK(sc); 1881 1882 /* 1883 * Set a timeout in case the chip goes out to lunch. 1884 */ 1885 ifp->if_timer = 5; 1886 1887 return; 1888 } 1889 1890 static void 1891 vge_init(xsc) 1892 void *xsc; 1893 { 1894 struct vge_softc *sc = xsc; 1895 struct ifnet *ifp = sc->vge_ifp; 1896 struct mii_data *mii; 1897 int i; 1898 1899 VGE_LOCK(sc); 1900 mii = device_get_softc(sc->vge_miibus); 1901 1902 /* 1903 * Cancel pending I/O and free all RX/TX buffers. 1904 */ 1905 vge_stop(sc); 1906 vge_reset(sc); 1907 1908 /* 1909 * Initialize the RX and TX descriptors and mbufs. 1910 */ 1911 1912 vge_rx_list_init(sc); 1913 vge_tx_list_init(sc); 1914 1915 /* Set our station address */ 1916 for (i = 0; i < ETHER_ADDR_LEN; i++) 1917 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]); 1918 1919 /* 1920 * Set receive FIFO threshold. Also allow transmission and 1921 * reception of VLAN tagged frames. 1922 */ 1923 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 1924 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); 1925 1926 /* Set DMA burst length */ 1927 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 1928 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 1929 1930 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 1931 1932 /* Set collision backoff algorithm */ 1933 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 1934 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 1935 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 1936 1937 /* Disable LPSEL field in priority resolution */ 1938 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 1939 1940 /* 1941 * Load the addresses of the DMA queues into the chip. 1942 * Note that we only use one transmit queue. 1943 */ 1944 1945 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, 1946 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr)); 1947 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); 1948 1949 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 1950 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr)); 1951 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); 1952 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); 1953 1954 /* Enable and wake up the RX descriptor queue */ 1955 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1956 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1957 1958 /* Enable the TX descriptor queue */ 1959 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 1960 1961 /* Set up the receive filter -- allow large frames for VLANs. */ 1962 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); 1963 1964 /* If we want promiscuous mode, set the allframes bit. */ 1965 if (ifp->if_flags & IFF_PROMISC) { 1966 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); 1967 } 1968 1969 /* Set capture broadcast bit to capture broadcast frames. */ 1970 if (ifp->if_flags & IFF_BROADCAST) { 1971 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); 1972 } 1973 1974 /* Set multicast bit to capture multicast frames. */ 1975 if (ifp->if_flags & IFF_MULTICAST) { 1976 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); 1977 } 1978 1979 /* Init the cam filter. */ 1980 vge_cam_clear(sc); 1981 1982 /* Init the multicast filter. */ 1983 vge_setmulti(sc); 1984 1985 /* Enable flow control */ 1986 1987 CSR_WRITE_1(sc, VGE_CRS2, 0x8B); 1988 1989 /* Enable jumbo frame reception (if desired) */ 1990 1991 /* Start the MAC. */ 1992 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 1993 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 1994 CSR_WRITE_1(sc, VGE_CRS0, 1995 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 1996 1997 /* 1998 * Configure one-shot timer for microsecond 1999 * resulution and load it for 500 usecs. 2000 */ 2001 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); 2002 CSR_WRITE_2(sc, VGE_SSTIMER, 400); 2003 2004 /* 2005 * Configure interrupt moderation for receive. Enable 2006 * the holdoff counter and load it, and set the RX 2007 * suppression count to the number of descriptors we 2008 * want to allow before triggering an interrupt. 2009 * The holdoff timer is in units of 20 usecs. 2010 */ 2011 2012 #ifdef notyet 2013 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); 2014 /* Select the interrupt holdoff timer page. */ 2015 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2016 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 2017 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ 2018 2019 /* Enable use of the holdoff timer. */ 2020 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 2021 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); 2022 2023 /* Select the RX suppression threshold page. */ 2024 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2025 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 2026 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ 2027 2028 /* Restore the page select bits. */ 2029 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 2030 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 2031 #endif 2032 2033 #ifdef DEVICE_POLLING 2034 /* 2035 * Disable interrupts if we are polling. 2036 */ 2037 if (ifp->if_capenable & IFCAP_POLLING) { 2038 CSR_WRITE_4(sc, VGE_IMR, 0); 2039 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2040 } else /* otherwise ... */ 2041 #endif 2042 { 2043 /* 2044 * Enable interrupts. 2045 */ 2046 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2047 CSR_WRITE_4(sc, VGE_ISR, 0); 2048 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2049 } 2050 2051 mii_mediachg(mii); 2052 2053 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2054 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2055 2056 sc->vge_if_flags = 0; 2057 sc->vge_link = 0; 2058 2059 VGE_UNLOCK(sc); 2060 2061 return; 2062 } 2063 2064 /* 2065 * Set media options. 2066 */ 2067 static int 2068 vge_ifmedia_upd(ifp) 2069 struct ifnet *ifp; 2070 { 2071 struct vge_softc *sc; 2072 struct mii_data *mii; 2073 2074 sc = ifp->if_softc; 2075 VGE_LOCK(sc); 2076 mii = device_get_softc(sc->vge_miibus); 2077 mii_mediachg(mii); 2078 VGE_UNLOCK(sc); 2079 2080 return (0); 2081 } 2082 2083 /* 2084 * Report current media status. 2085 */ 2086 static void 2087 vge_ifmedia_sts(ifp, ifmr) 2088 struct ifnet *ifp; 2089 struct ifmediareq *ifmr; 2090 { 2091 struct vge_softc *sc; 2092 struct mii_data *mii; 2093 2094 sc = ifp->if_softc; 2095 mii = device_get_softc(sc->vge_miibus); 2096 2097 mii_pollstat(mii); 2098 ifmr->ifm_active = mii->mii_media_active; 2099 ifmr->ifm_status = mii->mii_media_status; 2100 2101 return; 2102 } 2103 2104 static void 2105 vge_miibus_statchg(dev) 2106 device_t dev; 2107 { 2108 struct vge_softc *sc; 2109 struct mii_data *mii; 2110 struct ifmedia_entry *ife; 2111 2112 sc = device_get_softc(dev); 2113 mii = device_get_softc(sc->vge_miibus); 2114 ife = mii->mii_media.ifm_cur; 2115 2116 /* 2117 * If the user manually selects a media mode, we need to turn 2118 * on the forced MAC mode bit in the DIAGCTL register. If the 2119 * user happens to choose a full duplex mode, we also need to 2120 * set the 'force full duplex' bit. This applies only to 2121 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 2122 * mode is disabled, and in 1000baseT mode, full duplex is 2123 * always implied, so we turn on the forced mode bit but leave 2124 * the FDX bit cleared. 2125 */ 2126 2127 switch (IFM_SUBTYPE(ife->ifm_media)) { 2128 case IFM_AUTO: 2129 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2130 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2131 break; 2132 case IFM_1000_T: 2133 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2134 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2135 break; 2136 case IFM_100_TX: 2137 case IFM_10_T: 2138 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2139 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { 2140 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2141 } else { 2142 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2143 } 2144 break; 2145 default: 2146 device_printf(dev, "unknown media type: %x\n", 2147 IFM_SUBTYPE(ife->ifm_media)); 2148 break; 2149 } 2150 2151 return; 2152 } 2153 2154 static int 2155 vge_ioctl(ifp, command, data) 2156 struct ifnet *ifp; 2157 u_long command; 2158 caddr_t data; 2159 { 2160 struct vge_softc *sc = ifp->if_softc; 2161 struct ifreq *ifr = (struct ifreq *) data; 2162 struct mii_data *mii; 2163 int error = 0; 2164 2165 switch (command) { 2166 case SIOCSIFMTU: 2167 if (ifr->ifr_mtu > VGE_JUMBO_MTU) 2168 error = EINVAL; 2169 ifp->if_mtu = ifr->ifr_mtu; 2170 break; 2171 case SIOCSIFFLAGS: 2172 if (ifp->if_flags & IFF_UP) { 2173 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2174 ifp->if_flags & IFF_PROMISC && 2175 !(sc->vge_if_flags & IFF_PROMISC)) { 2176 CSR_SETBIT_1(sc, VGE_RXCTL, 2177 VGE_RXCTL_RX_PROMISC); 2178 vge_setmulti(sc); 2179 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2180 !(ifp->if_flags & IFF_PROMISC) && 2181 sc->vge_if_flags & IFF_PROMISC) { 2182 CSR_CLRBIT_1(sc, VGE_RXCTL, 2183 VGE_RXCTL_RX_PROMISC); 2184 vge_setmulti(sc); 2185 } else 2186 vge_init(sc); 2187 } else { 2188 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2189 vge_stop(sc); 2190 } 2191 sc->vge_if_flags = ifp->if_flags; 2192 break; 2193 case SIOCADDMULTI: 2194 case SIOCDELMULTI: 2195 vge_setmulti(sc); 2196 break; 2197 case SIOCGIFMEDIA: 2198 case SIOCSIFMEDIA: 2199 mii = device_get_softc(sc->vge_miibus); 2200 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2201 break; 2202 case SIOCSIFCAP: 2203 { 2204 int mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2205 #ifdef DEVICE_POLLING 2206 if (mask & IFCAP_POLLING) { 2207 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2208 error = ether_poll_register(vge_poll, ifp); 2209 if (error) 2210 return(error); 2211 VGE_LOCK(sc); 2212 /* Disable interrupts */ 2213 CSR_WRITE_4(sc, VGE_IMR, 0); 2214 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2215 ifp->if_capenable |= IFCAP_POLLING; 2216 VGE_UNLOCK(sc); 2217 } else { 2218 error = ether_poll_deregister(ifp); 2219 /* Enable interrupts. */ 2220 VGE_LOCK(sc); 2221 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2222 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2223 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2224 ifp->if_capenable &= ~IFCAP_POLLING; 2225 VGE_UNLOCK(sc); 2226 } 2227 } 2228 #endif /* DEVICE_POLLING */ 2229 if (mask & IFCAP_HWCSUM) { 2230 ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM); 2231 if (ifp->if_capenable & IFCAP_TXCSUM) 2232 ifp->if_hwassist = VGE_CSUM_FEATURES; 2233 else 2234 ifp->if_hwassist = 0; 2235 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2236 vge_init(sc); 2237 } 2238 } 2239 break; 2240 default: 2241 error = ether_ioctl(ifp, command, data); 2242 break; 2243 } 2244 2245 return (error); 2246 } 2247 2248 static void 2249 vge_watchdog(ifp) 2250 struct ifnet *ifp; 2251 { 2252 struct vge_softc *sc; 2253 2254 sc = ifp->if_softc; 2255 VGE_LOCK(sc); 2256 printf("vge%d: watchdog timeout\n", sc->vge_unit); 2257 ifp->if_oerrors++; 2258 2259 vge_txeof(sc); 2260 vge_rxeof(sc); 2261 2262 vge_init(sc); 2263 2264 VGE_UNLOCK(sc); 2265 2266 return; 2267 } 2268 2269 /* 2270 * Stop the adapter and free any mbufs allocated to the 2271 * RX and TX lists. 2272 */ 2273 static void 2274 vge_stop(sc) 2275 struct vge_softc *sc; 2276 { 2277 register int i; 2278 struct ifnet *ifp; 2279 2280 VGE_LOCK(sc); 2281 ifp = sc->vge_ifp; 2282 ifp->if_timer = 0; 2283 2284 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2285 2286 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2287 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2288 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2289 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2290 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2291 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2292 2293 if (sc->vge_head != NULL) { 2294 m_freem(sc->vge_head); 2295 sc->vge_head = sc->vge_tail = NULL; 2296 } 2297 2298 /* Free the TX list buffers. */ 2299 2300 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 2301 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { 2302 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2303 sc->vge_ldata.vge_tx_dmamap[i]); 2304 m_freem(sc->vge_ldata.vge_tx_mbuf[i]); 2305 sc->vge_ldata.vge_tx_mbuf[i] = NULL; 2306 } 2307 } 2308 2309 /* Free the RX list buffers. */ 2310 2311 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 2312 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { 2313 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2314 sc->vge_ldata.vge_rx_dmamap[i]); 2315 m_freem(sc->vge_ldata.vge_rx_mbuf[i]); 2316 sc->vge_ldata.vge_rx_mbuf[i] = NULL; 2317 } 2318 } 2319 2320 VGE_UNLOCK(sc); 2321 2322 return; 2323 } 2324 2325 /* 2326 * Device suspend routine. Stop the interface and save some PCI 2327 * settings in case the BIOS doesn't restore them properly on 2328 * resume. 2329 */ 2330 static int 2331 vge_suspend(dev) 2332 device_t dev; 2333 { 2334 struct vge_softc *sc; 2335 2336 sc = device_get_softc(dev); 2337 2338 vge_stop(sc); 2339 2340 sc->suspended = 1; 2341 2342 return (0); 2343 } 2344 2345 /* 2346 * Device resume routine. Restore some PCI settings in case the BIOS 2347 * doesn't, re-enable busmastering, and restart the interface if 2348 * appropriate. 2349 */ 2350 static int 2351 vge_resume(dev) 2352 device_t dev; 2353 { 2354 struct vge_softc *sc; 2355 struct ifnet *ifp; 2356 2357 sc = device_get_softc(dev); 2358 ifp = sc->vge_ifp; 2359 2360 /* reenable busmastering */ 2361 pci_enable_busmaster(dev); 2362 pci_enable_io(dev, SYS_RES_MEMORY); 2363 2364 /* reinitialize interface if necessary */ 2365 if (ifp->if_flags & IFF_UP) 2366 vge_init(sc); 2367 2368 sc->suspended = 0; 2369 2370 return (0); 2371 } 2372 2373 /* 2374 * Stop all chip I/O so that the kernel's probe routines don't 2375 * get confused by errant DMAs when rebooting. 2376 */ 2377 static int 2378 vge_shutdown(dev) 2379 device_t dev; 2380 { 2381 struct vge_softc *sc; 2382 2383 sc = device_get_softc(dev); 2384 2385 vge_stop(sc); 2386 2387 return (0); 2388 } 2389