1 /*- 2 * Copyright (c) 2004 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that 46 * combines a tri-speed ethernet MAC and PHY, with the following 47 * features: 48 * 49 * o Jumbo frame support up to 16K 50 * o Transmit and receive flow control 51 * o IPv4 checksum offload 52 * o VLAN tag insertion and stripping 53 * o TCP large send 54 * o 64-bit multicast hash table filter 55 * o 64 entry CAM filter 56 * o 16K RX FIFO and 48K TX FIFO memory 57 * o Interrupt moderation 58 * 59 * The VT6122 supports up to four transmit DMA queues. The descriptors 60 * in the transmit ring can address up to 7 data fragments; frames which 61 * span more than 7 data buffers must be coalesced, but in general the 62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 63 * long. The receive descriptors address only a single buffer. 64 * 65 * There are two peculiar design issues with the VT6122. One is that 66 * receive data buffers must be aligned on a 32-bit boundary. This is 67 * not a problem where the VT6122 is used as a LOM device in x86-based 68 * systems, but on architectures that generate unaligned access traps, we 69 * have to do some copying. 70 * 71 * The other issue has to do with the way 64-bit addresses are handled. 72 * The DMA descriptors only allow you to specify 48 bits of addressing 73 * information. The remaining 16 bits are specified using one of the 74 * I/O registers. If you only have a 32-bit system, then this isn't 75 * an issue, but if you have a 64-bit system and more than 4GB of 76 * memory, you must have to make sure your network data buffers reside 77 * in the same 48-bit 'segment.' 78 * 79 * Special thanks to Ryan Fu at VIA Networking for providing documentation 80 * and sample NICs for testing. 81 */ 82 83 #ifdef HAVE_KERNEL_OPTION_HEADERS 84 #include "opt_device_polling.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/endian.h> 89 #include <sys/systm.h> 90 #include <sys/sockio.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/module.h> 94 #include <sys/kernel.h> 95 #include <sys/socket.h> 96 #include <sys/sysctl.h> 97 98 #include <net/if.h> 99 #include <net/if_arp.h> 100 #include <net/ethernet.h> 101 #include <net/if_dl.h> 102 #include <net/if_media.h> 103 #include <net/if_types.h> 104 #include <net/if_vlan_var.h> 105 106 #include <net/bpf.h> 107 108 #include <machine/bus.h> 109 #include <machine/resource.h> 110 #include <sys/bus.h> 111 #include <sys/rman.h> 112 113 #include <dev/mii/mii.h> 114 #include <dev/mii/miivar.h> 115 116 #include <dev/pci/pcireg.h> 117 #include <dev/pci/pcivar.h> 118 119 MODULE_DEPEND(vge, pci, 1, 1, 1); 120 MODULE_DEPEND(vge, ether, 1, 1, 1); 121 MODULE_DEPEND(vge, miibus, 1, 1, 1); 122 123 /* "device miibus" required. See GENERIC if you get errors here. */ 124 #include "miibus_if.h" 125 126 #include <dev/vge/if_vgereg.h> 127 #include <dev/vge/if_vgevar.h> 128 129 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 130 131 /* Tunables */ 132 static int msi_disable = 0; 133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable); 134 135 /* 136 * The SQE error counter of MIB seems to report bogus value. 137 * Vendor's workaround does not seem to work on PCIe based 138 * controllers. Disable it until we find better workaround. 139 */ 140 #undef VGE_ENABLE_SQEERR 141 142 /* 143 * Various supported device vendors/types and their names. 144 */ 145 static struct vge_type vge_devs[] = { 146 { VIA_VENDORID, VIA_DEVICEID_61XX, 147 "VIA Networking Velocity Gigabit Ethernet" }, 148 { 0, 0, NULL } 149 }; 150 151 static int vge_attach(device_t); 152 static int vge_detach(device_t); 153 static int vge_probe(device_t); 154 static int vge_resume(device_t); 155 static int vge_shutdown(device_t); 156 static int vge_suspend(device_t); 157 158 static void vge_cam_clear(struct vge_softc *); 159 static int vge_cam_set(struct vge_softc *, uint8_t *); 160 static void vge_clrwol(struct vge_softc *); 161 static void vge_discard_rxbuf(struct vge_softc *, int); 162 static int vge_dma_alloc(struct vge_softc *); 163 static void vge_dma_free(struct vge_softc *); 164 static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int); 165 #ifdef VGE_EEPROM 166 static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *); 167 #endif 168 static int vge_encap(struct vge_softc *, struct mbuf **); 169 #ifndef __NO_STRICT_ALIGNMENT 170 static __inline void 171 vge_fixup_rx(struct mbuf *); 172 #endif 173 static void vge_freebufs(struct vge_softc *); 174 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 175 static int vge_ifmedia_upd(struct ifnet *); 176 static void vge_init(void *); 177 static void vge_init_locked(struct vge_softc *); 178 static void vge_intr(void *); 179 static void vge_intr_holdoff(struct vge_softc *); 180 static int vge_ioctl(struct ifnet *, u_long, caddr_t); 181 static void vge_link_statchg(void *); 182 static int vge_miibus_readreg(device_t, int, int); 183 static void vge_miibus_statchg(device_t); 184 static int vge_miibus_writereg(device_t, int, int, int); 185 static void vge_miipoll_start(struct vge_softc *); 186 static void vge_miipoll_stop(struct vge_softc *); 187 static int vge_newbuf(struct vge_softc *, int); 188 static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int); 189 static void vge_reset(struct vge_softc *); 190 static int vge_rx_list_init(struct vge_softc *); 191 static int vge_rxeof(struct vge_softc *, int); 192 static void vge_rxfilter(struct vge_softc *); 193 static void vge_setvlan(struct vge_softc *); 194 static void vge_setwol(struct vge_softc *); 195 static void vge_start(struct ifnet *); 196 static void vge_start_locked(struct ifnet *); 197 static void vge_stats_clear(struct vge_softc *); 198 static void vge_stats_update(struct vge_softc *); 199 static void vge_stop(struct vge_softc *); 200 static void vge_sysctl_node(struct vge_softc *); 201 static int vge_tx_list_init(struct vge_softc *); 202 static void vge_txeof(struct vge_softc *); 203 static void vge_watchdog(void *); 204 205 static device_method_t vge_methods[] = { 206 /* Device interface */ 207 DEVMETHOD(device_probe, vge_probe), 208 DEVMETHOD(device_attach, vge_attach), 209 DEVMETHOD(device_detach, vge_detach), 210 DEVMETHOD(device_suspend, vge_suspend), 211 DEVMETHOD(device_resume, vge_resume), 212 DEVMETHOD(device_shutdown, vge_shutdown), 213 214 /* bus interface */ 215 DEVMETHOD(bus_print_child, bus_generic_print_child), 216 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 217 218 /* MII interface */ 219 DEVMETHOD(miibus_readreg, vge_miibus_readreg), 220 DEVMETHOD(miibus_writereg, vge_miibus_writereg), 221 DEVMETHOD(miibus_statchg, vge_miibus_statchg), 222 223 { 0, 0 } 224 }; 225 226 static driver_t vge_driver = { 227 "vge", 228 vge_methods, 229 sizeof(struct vge_softc) 230 }; 231 232 static devclass_t vge_devclass; 233 234 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); 235 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); 236 237 #ifdef VGE_EEPROM 238 /* 239 * Read a word of data stored in the EEPROM at address 'addr.' 240 */ 241 static void 242 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest) 243 { 244 int i; 245 uint16_t word = 0; 246 247 /* 248 * Enter EEPROM embedded programming mode. In order to 249 * access the EEPROM at all, we first have to set the 250 * EELOAD bit in the CHIPCFG2 register. 251 */ 252 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 253 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 254 255 /* Select the address of the word we want to read */ 256 CSR_WRITE_1(sc, VGE_EEADDR, addr); 257 258 /* Issue read command */ 259 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 260 261 /* Wait for the done bit to be set. */ 262 for (i = 0; i < VGE_TIMEOUT; i++) { 263 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 264 break; 265 } 266 267 if (i == VGE_TIMEOUT) { 268 device_printf(sc->vge_dev, "EEPROM read timed out\n"); 269 *dest = 0; 270 return; 271 } 272 273 /* Read the result */ 274 word = CSR_READ_2(sc, VGE_EERDDAT); 275 276 /* Turn off EEPROM access mode. */ 277 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 278 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 279 280 *dest = word; 281 } 282 #endif 283 284 /* 285 * Read a sequence of words from the EEPROM. 286 */ 287 static void 288 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap) 289 { 290 int i; 291 #ifdef VGE_EEPROM 292 uint16_t word = 0, *ptr; 293 294 for (i = 0; i < cnt; i++) { 295 vge_eeprom_getword(sc, off + i, &word); 296 ptr = (uint16_t *)(dest + (i * 2)); 297 if (swap) 298 *ptr = ntohs(word); 299 else 300 *ptr = word; 301 } 302 #else 303 for (i = 0; i < ETHER_ADDR_LEN; i++) 304 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); 305 #endif 306 } 307 308 static void 309 vge_miipoll_stop(struct vge_softc *sc) 310 { 311 int i; 312 313 CSR_WRITE_1(sc, VGE_MIICMD, 0); 314 315 for (i = 0; i < VGE_TIMEOUT; i++) { 316 DELAY(1); 317 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 318 break; 319 } 320 321 if (i == VGE_TIMEOUT) 322 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 323 } 324 325 static void 326 vge_miipoll_start(struct vge_softc *sc) 327 { 328 int i; 329 330 /* First, make sure we're idle. */ 331 332 CSR_WRITE_1(sc, VGE_MIICMD, 0); 333 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 334 335 for (i = 0; i < VGE_TIMEOUT; i++) { 336 DELAY(1); 337 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 338 break; 339 } 340 341 if (i == VGE_TIMEOUT) { 342 device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); 343 return; 344 } 345 346 /* Now enable auto poll mode. */ 347 348 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 349 350 /* And make sure it started. */ 351 352 for (i = 0; i < VGE_TIMEOUT; i++) { 353 DELAY(1); 354 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 355 break; 356 } 357 358 if (i == VGE_TIMEOUT) 359 device_printf(sc->vge_dev, "failed to start MII autopoll\n"); 360 } 361 362 static int 363 vge_miibus_readreg(device_t dev, int phy, int reg) 364 { 365 struct vge_softc *sc; 366 int i; 367 uint16_t rval = 0; 368 369 sc = device_get_softc(dev); 370 371 vge_miipoll_stop(sc); 372 373 /* Specify the register we want to read. */ 374 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 375 376 /* Issue read command. */ 377 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 378 379 /* Wait for the read command bit to self-clear. */ 380 for (i = 0; i < VGE_TIMEOUT; i++) { 381 DELAY(1); 382 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 383 break; 384 } 385 386 if (i == VGE_TIMEOUT) 387 device_printf(sc->vge_dev, "MII read timed out\n"); 388 else 389 rval = CSR_READ_2(sc, VGE_MIIDATA); 390 391 vge_miipoll_start(sc); 392 393 return (rval); 394 } 395 396 static int 397 vge_miibus_writereg(device_t dev, int phy, int reg, int data) 398 { 399 struct vge_softc *sc; 400 int i, rval = 0; 401 402 sc = device_get_softc(dev); 403 404 vge_miipoll_stop(sc); 405 406 /* Specify the register we want to write. */ 407 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 408 409 /* Specify the data we want to write. */ 410 CSR_WRITE_2(sc, VGE_MIIDATA, data); 411 412 /* Issue write command. */ 413 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 414 415 /* Wait for the write command bit to self-clear. */ 416 for (i = 0; i < VGE_TIMEOUT; i++) { 417 DELAY(1); 418 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 419 break; 420 } 421 422 if (i == VGE_TIMEOUT) { 423 device_printf(sc->vge_dev, "MII write timed out\n"); 424 rval = EIO; 425 } 426 427 vge_miipoll_start(sc); 428 429 return (rval); 430 } 431 432 static void 433 vge_cam_clear(struct vge_softc *sc) 434 { 435 int i; 436 437 /* 438 * Turn off all the mask bits. This tells the chip 439 * that none of the entries in the CAM filter are valid. 440 * desired entries will be enabled as we fill the filter in. 441 */ 442 443 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 444 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 445 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 446 for (i = 0; i < 8; i++) 447 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 448 449 /* Clear the VLAN filter too. */ 450 451 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 452 for (i = 0; i < 8; i++) 453 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 454 455 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 456 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 457 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 458 459 sc->vge_camidx = 0; 460 } 461 462 static int 463 vge_cam_set(struct vge_softc *sc, uint8_t *addr) 464 { 465 int i, error = 0; 466 467 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 468 return (ENOSPC); 469 470 /* Select the CAM data page. */ 471 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 472 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 473 474 /* Set the filter entry we want to update and enable writing. */ 475 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); 476 477 /* Write the address to the CAM registers */ 478 for (i = 0; i < ETHER_ADDR_LEN; i++) 479 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 480 481 /* Issue a write command. */ 482 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 483 484 /* Wake for it to clear. */ 485 for (i = 0; i < VGE_TIMEOUT; i++) { 486 DELAY(1); 487 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 488 break; 489 } 490 491 if (i == VGE_TIMEOUT) { 492 device_printf(sc->vge_dev, "setting CAM filter failed\n"); 493 error = EIO; 494 goto fail; 495 } 496 497 /* Select the CAM mask page. */ 498 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 499 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 500 501 /* Set the mask bit that enables this filter. */ 502 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 503 1<<(sc->vge_camidx & 7)); 504 505 sc->vge_camidx++; 506 507 fail: 508 /* Turn off access to CAM. */ 509 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 510 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 511 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 512 513 return (error); 514 } 515 516 static void 517 vge_setvlan(struct vge_softc *sc) 518 { 519 struct ifnet *ifp; 520 uint8_t cfg; 521 522 VGE_LOCK_ASSERT(sc); 523 524 ifp = sc->vge_ifp; 525 cfg = CSR_READ_1(sc, VGE_RXCFG); 526 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 527 cfg |= VGE_VTAG_OPT2; 528 else 529 cfg &= ~VGE_VTAG_OPT2; 530 CSR_WRITE_1(sc, VGE_RXCFG, cfg); 531 } 532 533 /* 534 * Program the multicast filter. We use the 64-entry CAM filter 535 * for perfect filtering. If there's more than 64 multicast addresses, 536 * we use the hash filter instead. 537 */ 538 static void 539 vge_rxfilter(struct vge_softc *sc) 540 { 541 struct ifnet *ifp; 542 struct ifmultiaddr *ifma; 543 uint32_t h, hashes[2]; 544 uint8_t rxcfg; 545 int error = 0; 546 547 VGE_LOCK_ASSERT(sc); 548 549 /* First, zot all the multicast entries. */ 550 hashes[0] = 0; 551 hashes[1] = 0; 552 553 rxcfg = CSR_READ_1(sc, VGE_RXCTL); 554 rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST | 555 VGE_RXCTL_RX_PROMISC); 556 /* 557 * Always allow VLAN oversized frames and frames for 558 * this host. 559 */ 560 rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST; 561 562 ifp = sc->vge_ifp; 563 if ((ifp->if_flags & IFF_BROADCAST) != 0) 564 rxcfg |= VGE_RXCTL_RX_BCAST; 565 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 566 if ((ifp->if_flags & IFF_PROMISC) != 0) 567 rxcfg |= VGE_RXCTL_RX_PROMISC; 568 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 569 hashes[0] = 0xFFFFFFFF; 570 hashes[1] = 0xFFFFFFFF; 571 } 572 goto done; 573 } 574 575 vge_cam_clear(sc); 576 /* Now program new ones */ 577 if_maddr_rlock(ifp); 578 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 579 if (ifma->ifma_addr->sa_family != AF_LINK) 580 continue; 581 error = vge_cam_set(sc, 582 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 583 if (error) 584 break; 585 } 586 587 /* If there were too many addresses, use the hash filter. */ 588 if (error) { 589 vge_cam_clear(sc); 590 591 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 592 if (ifma->ifma_addr->sa_family != AF_LINK) 593 continue; 594 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 595 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 596 if (h < 32) 597 hashes[0] |= (1 << h); 598 else 599 hashes[1] |= (1 << (h - 32)); 600 } 601 } 602 if_maddr_runlock(ifp); 603 604 done: 605 if (hashes[0] != 0 || hashes[1] != 0) 606 rxcfg |= VGE_RXCTL_RX_MCAST; 607 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 608 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 609 CSR_WRITE_1(sc, VGE_RXCTL, rxcfg); 610 } 611 612 static void 613 vge_reset(struct vge_softc *sc) 614 { 615 int i; 616 617 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 618 619 for (i = 0; i < VGE_TIMEOUT; i++) { 620 DELAY(5); 621 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 622 break; 623 } 624 625 if (i == VGE_TIMEOUT) { 626 device_printf(sc->vge_dev, "soft reset timed out\n"); 627 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 628 DELAY(2000); 629 } 630 631 DELAY(5000); 632 } 633 634 /* 635 * Probe for a VIA gigabit chip. Check the PCI vendor and device 636 * IDs against our list and return a device name if we find a match. 637 */ 638 static int 639 vge_probe(device_t dev) 640 { 641 struct vge_type *t; 642 643 t = vge_devs; 644 645 while (t->vge_name != NULL) { 646 if ((pci_get_vendor(dev) == t->vge_vid) && 647 (pci_get_device(dev) == t->vge_did)) { 648 device_set_desc(dev, t->vge_name); 649 return (BUS_PROBE_DEFAULT); 650 } 651 t++; 652 } 653 654 return (ENXIO); 655 } 656 657 /* 658 * Map a single buffer address. 659 */ 660 661 struct vge_dmamap_arg { 662 bus_addr_t vge_busaddr; 663 }; 664 665 static void 666 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 667 { 668 struct vge_dmamap_arg *ctx; 669 670 if (error != 0) 671 return; 672 673 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 674 675 ctx = (struct vge_dmamap_arg *)arg; 676 ctx->vge_busaddr = segs[0].ds_addr; 677 } 678 679 static int 680 vge_dma_alloc(struct vge_softc *sc) 681 { 682 struct vge_dmamap_arg ctx; 683 struct vge_txdesc *txd; 684 struct vge_rxdesc *rxd; 685 bus_addr_t lowaddr, tx_ring_end, rx_ring_end; 686 int error, i; 687 688 /* 689 * It seems old PCI controllers do not support DAC. DAC 690 * configuration can be enabled by accessing VGE_CHIPCFG3 691 * register but honor EEPROM configuration instead of 692 * blindly overriding DAC configuration. PCIe based 693 * controllers are supposed to support 64bit DMA so enable 694 * 64bit DMA on these controllers. 695 */ 696 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 697 lowaddr = BUS_SPACE_MAXADDR; 698 else 699 lowaddr = BUS_SPACE_MAXADDR_32BIT; 700 701 again: 702 /* Create parent ring tag. */ 703 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 704 1, 0, /* algnmnt, boundary */ 705 lowaddr, /* lowaddr */ 706 BUS_SPACE_MAXADDR, /* highaddr */ 707 NULL, NULL, /* filter, filterarg */ 708 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 709 0, /* nsegments */ 710 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 711 0, /* flags */ 712 NULL, NULL, /* lockfunc, lockarg */ 713 &sc->vge_cdata.vge_ring_tag); 714 if (error != 0) { 715 device_printf(sc->vge_dev, 716 "could not create parent DMA tag.\n"); 717 goto fail; 718 } 719 720 /* Create tag for Tx ring. */ 721 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ 722 VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 723 BUS_SPACE_MAXADDR, /* lowaddr */ 724 BUS_SPACE_MAXADDR, /* highaddr */ 725 NULL, NULL, /* filter, filterarg */ 726 VGE_TX_LIST_SZ, /* maxsize */ 727 1, /* nsegments */ 728 VGE_TX_LIST_SZ, /* maxsegsize */ 729 0, /* flags */ 730 NULL, NULL, /* lockfunc, lockarg */ 731 &sc->vge_cdata.vge_tx_ring_tag); 732 if (error != 0) { 733 device_printf(sc->vge_dev, 734 "could not allocate Tx ring DMA tag.\n"); 735 goto fail; 736 } 737 738 /* Create tag for Rx ring. */ 739 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ 740 VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 741 BUS_SPACE_MAXADDR, /* lowaddr */ 742 BUS_SPACE_MAXADDR, /* highaddr */ 743 NULL, NULL, /* filter, filterarg */ 744 VGE_RX_LIST_SZ, /* maxsize */ 745 1, /* nsegments */ 746 VGE_RX_LIST_SZ, /* maxsegsize */ 747 0, /* flags */ 748 NULL, NULL, /* lockfunc, lockarg */ 749 &sc->vge_cdata.vge_rx_ring_tag); 750 if (error != 0) { 751 device_printf(sc->vge_dev, 752 "could not allocate Rx ring DMA tag.\n"); 753 goto fail; 754 } 755 756 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 757 error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag, 758 (void **)&sc->vge_rdata.vge_tx_ring, 759 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 760 &sc->vge_cdata.vge_tx_ring_map); 761 if (error != 0) { 762 device_printf(sc->vge_dev, 763 "could not allocate DMA'able memory for Tx ring.\n"); 764 goto fail; 765 } 766 767 ctx.vge_busaddr = 0; 768 error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag, 769 sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring, 770 VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 771 if (error != 0 || ctx.vge_busaddr == 0) { 772 device_printf(sc->vge_dev, 773 "could not load DMA'able memory for Tx ring.\n"); 774 goto fail; 775 } 776 sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr; 777 778 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 779 error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag, 780 (void **)&sc->vge_rdata.vge_rx_ring, 781 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 782 &sc->vge_cdata.vge_rx_ring_map); 783 if (error != 0) { 784 device_printf(sc->vge_dev, 785 "could not allocate DMA'able memory for Rx ring.\n"); 786 goto fail; 787 } 788 789 ctx.vge_busaddr = 0; 790 error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag, 791 sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring, 792 VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 793 if (error != 0 || ctx.vge_busaddr == 0) { 794 device_printf(sc->vge_dev, 795 "could not load DMA'able memory for Rx ring.\n"); 796 goto fail; 797 } 798 sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr; 799 800 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 801 tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ; 802 rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ; 803 if ((VGE_ADDR_HI(tx_ring_end) != 804 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) || 805 (VGE_ADDR_HI(rx_ring_end) != 806 VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) || 807 VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) { 808 device_printf(sc->vge_dev, "4GB boundary crossed, " 809 "switching to 32bit DMA address mode.\n"); 810 vge_dma_free(sc); 811 /* Limit DMA address space to 32bit and try again. */ 812 lowaddr = BUS_SPACE_MAXADDR_32BIT; 813 goto again; 814 } 815 816 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 817 lowaddr = VGE_BUF_DMA_MAXADDR; 818 else 819 lowaddr = BUS_SPACE_MAXADDR_32BIT; 820 /* Create parent buffer tag. */ 821 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 822 1, 0, /* algnmnt, boundary */ 823 lowaddr, /* lowaddr */ 824 BUS_SPACE_MAXADDR, /* highaddr */ 825 NULL, NULL, /* filter, filterarg */ 826 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 827 0, /* nsegments */ 828 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 829 0, /* flags */ 830 NULL, NULL, /* lockfunc, lockarg */ 831 &sc->vge_cdata.vge_buffer_tag); 832 if (error != 0) { 833 device_printf(sc->vge_dev, 834 "could not create parent buffer DMA tag.\n"); 835 goto fail; 836 } 837 838 /* Create tag for Tx buffers. */ 839 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ 840 1, 0, /* algnmnt, boundary */ 841 BUS_SPACE_MAXADDR, /* lowaddr */ 842 BUS_SPACE_MAXADDR, /* highaddr */ 843 NULL, NULL, /* filter, filterarg */ 844 MCLBYTES * VGE_MAXTXSEGS, /* maxsize */ 845 VGE_MAXTXSEGS, /* nsegments */ 846 MCLBYTES, /* maxsegsize */ 847 0, /* flags */ 848 NULL, NULL, /* lockfunc, lockarg */ 849 &sc->vge_cdata.vge_tx_tag); 850 if (error != 0) { 851 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n"); 852 goto fail; 853 } 854 855 /* Create tag for Rx buffers. */ 856 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ 857 VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 858 BUS_SPACE_MAXADDR, /* lowaddr */ 859 BUS_SPACE_MAXADDR, /* highaddr */ 860 NULL, NULL, /* filter, filterarg */ 861 MCLBYTES, /* maxsize */ 862 1, /* nsegments */ 863 MCLBYTES, /* maxsegsize */ 864 0, /* flags */ 865 NULL, NULL, /* lockfunc, lockarg */ 866 &sc->vge_cdata.vge_rx_tag); 867 if (error != 0) { 868 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n"); 869 goto fail; 870 } 871 872 /* Create DMA maps for Tx buffers. */ 873 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 874 txd = &sc->vge_cdata.vge_txdesc[i]; 875 txd->tx_m = NULL; 876 txd->tx_dmamap = NULL; 877 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0, 878 &txd->tx_dmamap); 879 if (error != 0) { 880 device_printf(sc->vge_dev, 881 "could not create Tx dmamap.\n"); 882 goto fail; 883 } 884 } 885 /* Create DMA maps for Rx buffers. */ 886 if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, 887 &sc->vge_cdata.vge_rx_sparemap)) != 0) { 888 device_printf(sc->vge_dev, 889 "could not create spare Rx dmamap.\n"); 890 goto fail; 891 } 892 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 893 rxd = &sc->vge_cdata.vge_rxdesc[i]; 894 rxd->rx_m = NULL; 895 rxd->rx_dmamap = NULL; 896 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, 897 &rxd->rx_dmamap); 898 if (error != 0) { 899 device_printf(sc->vge_dev, 900 "could not create Rx dmamap.\n"); 901 goto fail; 902 } 903 } 904 905 fail: 906 return (error); 907 } 908 909 static void 910 vge_dma_free(struct vge_softc *sc) 911 { 912 struct vge_txdesc *txd; 913 struct vge_rxdesc *rxd; 914 int i; 915 916 /* Tx ring. */ 917 if (sc->vge_cdata.vge_tx_ring_tag != NULL) { 918 if (sc->vge_cdata.vge_tx_ring_map) 919 bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag, 920 sc->vge_cdata.vge_tx_ring_map); 921 if (sc->vge_cdata.vge_tx_ring_map && 922 sc->vge_rdata.vge_tx_ring) 923 bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag, 924 sc->vge_rdata.vge_tx_ring, 925 sc->vge_cdata.vge_tx_ring_map); 926 sc->vge_rdata.vge_tx_ring = NULL; 927 sc->vge_cdata.vge_tx_ring_map = NULL; 928 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag); 929 sc->vge_cdata.vge_tx_ring_tag = NULL; 930 } 931 /* Rx ring. */ 932 if (sc->vge_cdata.vge_rx_ring_tag != NULL) { 933 if (sc->vge_cdata.vge_rx_ring_map) 934 bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag, 935 sc->vge_cdata.vge_rx_ring_map); 936 if (sc->vge_cdata.vge_rx_ring_map && 937 sc->vge_rdata.vge_rx_ring) 938 bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag, 939 sc->vge_rdata.vge_rx_ring, 940 sc->vge_cdata.vge_rx_ring_map); 941 sc->vge_rdata.vge_rx_ring = NULL; 942 sc->vge_cdata.vge_rx_ring_map = NULL; 943 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag); 944 sc->vge_cdata.vge_rx_ring_tag = NULL; 945 } 946 /* Tx buffers. */ 947 if (sc->vge_cdata.vge_tx_tag != NULL) { 948 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 949 txd = &sc->vge_cdata.vge_txdesc[i]; 950 if (txd->tx_dmamap != NULL) { 951 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag, 952 txd->tx_dmamap); 953 txd->tx_dmamap = NULL; 954 } 955 } 956 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag); 957 sc->vge_cdata.vge_tx_tag = NULL; 958 } 959 /* Rx buffers. */ 960 if (sc->vge_cdata.vge_rx_tag != NULL) { 961 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 962 rxd = &sc->vge_cdata.vge_rxdesc[i]; 963 if (rxd->rx_dmamap != NULL) { 964 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, 965 rxd->rx_dmamap); 966 rxd->rx_dmamap = NULL; 967 } 968 } 969 if (sc->vge_cdata.vge_rx_sparemap != NULL) { 970 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, 971 sc->vge_cdata.vge_rx_sparemap); 972 sc->vge_cdata.vge_rx_sparemap = NULL; 973 } 974 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag); 975 sc->vge_cdata.vge_rx_tag = NULL; 976 } 977 978 if (sc->vge_cdata.vge_buffer_tag != NULL) { 979 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag); 980 sc->vge_cdata.vge_buffer_tag = NULL; 981 } 982 if (sc->vge_cdata.vge_ring_tag != NULL) { 983 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag); 984 sc->vge_cdata.vge_ring_tag = NULL; 985 } 986 } 987 988 /* 989 * Attach the interface. Allocate softc structures, do ifmedia 990 * setup and ethernet/BPF attach. 991 */ 992 static int 993 vge_attach(device_t dev) 994 { 995 u_char eaddr[ETHER_ADDR_LEN]; 996 struct vge_softc *sc; 997 struct ifnet *ifp; 998 int error = 0, cap, i, msic, rid; 999 1000 sc = device_get_softc(dev); 1001 sc->vge_dev = dev; 1002 1003 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1004 MTX_DEF); 1005 callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0); 1006 1007 /* 1008 * Map control/status registers. 1009 */ 1010 pci_enable_busmaster(dev); 1011 1012 rid = PCIR_BAR(1); 1013 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1014 RF_ACTIVE); 1015 1016 if (sc->vge_res == NULL) { 1017 device_printf(dev, "couldn't map ports/memory\n"); 1018 error = ENXIO; 1019 goto fail; 1020 } 1021 1022 if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) { 1023 sc->vge_flags |= VGE_FLAG_PCIE; 1024 sc->vge_expcap = cap; 1025 } else 1026 sc->vge_flags |= VGE_FLAG_JUMBO; 1027 if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) { 1028 sc->vge_flags |= VGE_FLAG_PMCAP; 1029 sc->vge_pmcap = cap; 1030 } 1031 rid = 0; 1032 msic = pci_msi_count(dev); 1033 if (msi_disable == 0 && msic > 0) { 1034 msic = 1; 1035 if (pci_alloc_msi(dev, &msic) == 0) { 1036 if (msic == 1) { 1037 sc->vge_flags |= VGE_FLAG_MSI; 1038 device_printf(dev, "Using %d MSI message\n", 1039 msic); 1040 rid = 1; 1041 } else 1042 pci_release_msi(dev); 1043 } 1044 } 1045 1046 /* Allocate interrupt */ 1047 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1048 ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE); 1049 if (sc->vge_irq == NULL) { 1050 device_printf(dev, "couldn't map interrupt\n"); 1051 error = ENXIO; 1052 goto fail; 1053 } 1054 1055 /* Reset the adapter. */ 1056 vge_reset(sc); 1057 /* Reload EEPROM. */ 1058 CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 1059 for (i = 0; i < VGE_TIMEOUT; i++) { 1060 DELAY(5); 1061 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 1062 break; 1063 } 1064 if (i == VGE_TIMEOUT) 1065 device_printf(dev, "EEPROM reload timed out\n"); 1066 /* 1067 * Clear PACPI as EEPROM reload will set the bit. Otherwise 1068 * MAC will receive magic packet which in turn confuses 1069 * controller. 1070 */ 1071 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 1072 1073 /* 1074 * Get station address from the EEPROM. 1075 */ 1076 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); 1077 /* 1078 * Save configured PHY address. 1079 * It seems the PHY address of PCIe controllers just 1080 * reflects media jump strapping status so we assume the 1081 * internal PHY address of PCIe controller is at 1. 1082 */ 1083 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) 1084 sc->vge_phyaddr = 1; 1085 else 1086 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) & 1087 VGE_MIICFG_PHYADDR; 1088 /* Clear WOL and take hardware from powerdown. */ 1089 vge_clrwol(sc); 1090 vge_sysctl_node(sc); 1091 error = vge_dma_alloc(sc); 1092 if (error) 1093 goto fail; 1094 1095 ifp = sc->vge_ifp = if_alloc(IFT_ETHER); 1096 if (ifp == NULL) { 1097 device_printf(dev, "can not if_alloc()\n"); 1098 error = ENOSPC; 1099 goto fail; 1100 } 1101 1102 /* Do MII setup */ 1103 error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd, 1104 vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY, 1105 0); 1106 if (error != 0) { 1107 device_printf(dev, "attaching PHYs failed\n"); 1108 goto fail; 1109 } 1110 1111 ifp->if_softc = sc; 1112 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1113 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1114 ifp->if_ioctl = vge_ioctl; 1115 ifp->if_capabilities = IFCAP_VLAN_MTU; 1116 ifp->if_start = vge_start; 1117 ifp->if_hwassist = VGE_CSUM_FEATURES; 1118 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 1119 IFCAP_VLAN_HWTAGGING; 1120 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) 1121 ifp->if_capabilities |= IFCAP_WOL; 1122 ifp->if_capenable = ifp->if_capabilities; 1123 #ifdef DEVICE_POLLING 1124 ifp->if_capabilities |= IFCAP_POLLING; 1125 #endif 1126 ifp->if_init = vge_init; 1127 IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1); 1128 ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1; 1129 IFQ_SET_READY(&ifp->if_snd); 1130 1131 /* 1132 * Call MI attach routine. 1133 */ 1134 ether_ifattach(ifp, eaddr); 1135 1136 /* Tell the upper layer(s) we support long frames. */ 1137 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1138 1139 /* Hook interrupt last to avoid having to lock softc */ 1140 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, 1141 NULL, vge_intr, sc, &sc->vge_intrhand); 1142 1143 if (error) { 1144 device_printf(dev, "couldn't set up irq\n"); 1145 ether_ifdetach(ifp); 1146 goto fail; 1147 } 1148 1149 fail: 1150 if (error) 1151 vge_detach(dev); 1152 1153 return (error); 1154 } 1155 1156 /* 1157 * Shutdown hardware and free up resources. This can be called any 1158 * time after the mutex has been initialized. It is called in both 1159 * the error case in attach and the normal detach case so it needs 1160 * to be careful about only freeing resources that have actually been 1161 * allocated. 1162 */ 1163 static int 1164 vge_detach(device_t dev) 1165 { 1166 struct vge_softc *sc; 1167 struct ifnet *ifp; 1168 1169 sc = device_get_softc(dev); 1170 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); 1171 ifp = sc->vge_ifp; 1172 1173 #ifdef DEVICE_POLLING 1174 if (ifp->if_capenable & IFCAP_POLLING) 1175 ether_poll_deregister(ifp); 1176 #endif 1177 1178 /* These should only be active if attach succeeded */ 1179 if (device_is_attached(dev)) { 1180 ether_ifdetach(ifp); 1181 VGE_LOCK(sc); 1182 vge_stop(sc); 1183 VGE_UNLOCK(sc); 1184 callout_drain(&sc->vge_watchdog); 1185 } 1186 if (sc->vge_miibus) 1187 device_delete_child(dev, sc->vge_miibus); 1188 bus_generic_detach(dev); 1189 1190 if (sc->vge_intrhand) 1191 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); 1192 if (sc->vge_irq) 1193 bus_release_resource(dev, SYS_RES_IRQ, 1194 sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq); 1195 if (sc->vge_flags & VGE_FLAG_MSI) 1196 pci_release_msi(dev); 1197 if (sc->vge_res) 1198 bus_release_resource(dev, SYS_RES_MEMORY, 1199 PCIR_BAR(1), sc->vge_res); 1200 if (ifp) 1201 if_free(ifp); 1202 1203 vge_dma_free(sc); 1204 mtx_destroy(&sc->vge_mtx); 1205 1206 return (0); 1207 } 1208 1209 static void 1210 vge_discard_rxbuf(struct vge_softc *sc, int prod) 1211 { 1212 struct vge_rxdesc *rxd; 1213 int i; 1214 1215 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1216 rxd->rx_desc->vge_sts = 0; 1217 rxd->rx_desc->vge_ctl = 0; 1218 1219 /* 1220 * Note: the manual fails to document the fact that for 1221 * proper opration, the driver needs to replentish the RX 1222 * DMA ring 4 descriptors at a time (rather than one at a 1223 * time, like most chips). We can allocate the new buffers 1224 * but we should not set the OWN bits until we're ready 1225 * to hand back 4 of them in one shot. 1226 */ 1227 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { 1228 for (i = VGE_RXCHUNK; i > 0; i--) { 1229 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); 1230 rxd = rxd->rxd_prev; 1231 } 1232 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; 1233 } 1234 } 1235 1236 static int 1237 vge_newbuf(struct vge_softc *sc, int prod) 1238 { 1239 struct vge_rxdesc *rxd; 1240 struct mbuf *m; 1241 bus_dma_segment_t segs[1]; 1242 bus_dmamap_t map; 1243 int i, nsegs; 1244 1245 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1246 if (m == NULL) 1247 return (ENOBUFS); 1248 /* 1249 * This is part of an evil trick to deal with strict-alignment 1250 * architectures. The VIA chip requires RX buffers to be aligned 1251 * on 32-bit boundaries, but that will hose strict-alignment 1252 * architectures. To get around this, we leave some empty space 1253 * at the start of each buffer and for non-strict-alignment hosts, 1254 * we copy the buffer back two bytes to achieve word alignment. 1255 * This is slightly more efficient than allocating a new buffer, 1256 * copying the contents, and discarding the old buffer. 1257 */ 1258 m->m_len = m->m_pkthdr.len = MCLBYTES; 1259 m_adj(m, VGE_RX_BUF_ALIGN); 1260 1261 if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag, 1262 sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1263 m_freem(m); 1264 return (ENOBUFS); 1265 } 1266 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1267 1268 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1269 if (rxd->rx_m != NULL) { 1270 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, 1271 BUS_DMASYNC_POSTREAD); 1272 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap); 1273 } 1274 map = rxd->rx_dmamap; 1275 rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap; 1276 sc->vge_cdata.vge_rx_sparemap = map; 1277 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, 1278 BUS_DMASYNC_PREREAD); 1279 rxd->rx_m = m; 1280 1281 rxd->rx_desc->vge_sts = 0; 1282 rxd->rx_desc->vge_ctl = 0; 1283 rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 1284 rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) | 1285 (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I); 1286 1287 /* 1288 * Note: the manual fails to document the fact that for 1289 * proper operation, the driver needs to replenish the RX 1290 * DMA ring 4 descriptors at a time (rather than one at a 1291 * time, like most chips). We can allocate the new buffers 1292 * but we should not set the OWN bits until we're ready 1293 * to hand back 4 of them in one shot. 1294 */ 1295 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { 1296 for (i = VGE_RXCHUNK; i > 0; i--) { 1297 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); 1298 rxd = rxd->rxd_prev; 1299 } 1300 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; 1301 } 1302 1303 return (0); 1304 } 1305 1306 static int 1307 vge_tx_list_init(struct vge_softc *sc) 1308 { 1309 struct vge_ring_data *rd; 1310 struct vge_txdesc *txd; 1311 int i; 1312 1313 VGE_LOCK_ASSERT(sc); 1314 1315 sc->vge_cdata.vge_tx_prodidx = 0; 1316 sc->vge_cdata.vge_tx_considx = 0; 1317 sc->vge_cdata.vge_tx_cnt = 0; 1318 1319 rd = &sc->vge_rdata; 1320 bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ); 1321 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 1322 txd = &sc->vge_cdata.vge_txdesc[i]; 1323 txd->tx_m = NULL; 1324 txd->tx_desc = &rd->vge_tx_ring[i]; 1325 } 1326 1327 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1328 sc->vge_cdata.vge_tx_ring_map, 1329 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1330 1331 return (0); 1332 } 1333 1334 static int 1335 vge_rx_list_init(struct vge_softc *sc) 1336 { 1337 struct vge_ring_data *rd; 1338 struct vge_rxdesc *rxd; 1339 int i; 1340 1341 VGE_LOCK_ASSERT(sc); 1342 1343 sc->vge_cdata.vge_rx_prodidx = 0; 1344 sc->vge_cdata.vge_head = NULL; 1345 sc->vge_cdata.vge_tail = NULL; 1346 sc->vge_cdata.vge_rx_commit = 0; 1347 1348 rd = &sc->vge_rdata; 1349 bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ); 1350 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1351 rxd = &sc->vge_cdata.vge_rxdesc[i]; 1352 rxd->rx_m = NULL; 1353 rxd->rx_desc = &rd->vge_rx_ring[i]; 1354 if (i == 0) 1355 rxd->rxd_prev = 1356 &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1]; 1357 else 1358 rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1]; 1359 if (vge_newbuf(sc, i) != 0) 1360 return (ENOBUFS); 1361 } 1362 1363 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1364 sc->vge_cdata.vge_rx_ring_map, 1365 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1366 1367 sc->vge_cdata.vge_rx_commit = 0; 1368 1369 return (0); 1370 } 1371 1372 static void 1373 vge_freebufs(struct vge_softc *sc) 1374 { 1375 struct vge_txdesc *txd; 1376 struct vge_rxdesc *rxd; 1377 struct ifnet *ifp; 1378 int i; 1379 1380 VGE_LOCK_ASSERT(sc); 1381 1382 ifp = sc->vge_ifp; 1383 /* 1384 * Free RX and TX mbufs still in the queues. 1385 */ 1386 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1387 rxd = &sc->vge_cdata.vge_rxdesc[i]; 1388 if (rxd->rx_m != NULL) { 1389 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, 1390 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 1391 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, 1392 rxd->rx_dmamap); 1393 m_freem(rxd->rx_m); 1394 rxd->rx_m = NULL; 1395 } 1396 } 1397 1398 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 1399 txd = &sc->vge_cdata.vge_txdesc[i]; 1400 if (txd->tx_m != NULL) { 1401 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, 1402 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 1403 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, 1404 txd->tx_dmamap); 1405 m_freem(txd->tx_m); 1406 txd->tx_m = NULL; 1407 ifp->if_oerrors++; 1408 } 1409 } 1410 } 1411 1412 #ifndef __NO_STRICT_ALIGNMENT 1413 static __inline void 1414 vge_fixup_rx(struct mbuf *m) 1415 { 1416 int i; 1417 uint16_t *src, *dst; 1418 1419 src = mtod(m, uint16_t *); 1420 dst = src - 1; 1421 1422 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1423 *dst++ = *src++; 1424 1425 m->m_data -= ETHER_ALIGN; 1426 } 1427 #endif 1428 1429 /* 1430 * RX handler. We support the reception of jumbo frames that have 1431 * been fragmented across multiple 2K mbuf cluster buffers. 1432 */ 1433 static int 1434 vge_rxeof(struct vge_softc *sc, int count) 1435 { 1436 struct mbuf *m; 1437 struct ifnet *ifp; 1438 int prod, prog, total_len; 1439 struct vge_rxdesc *rxd; 1440 struct vge_rx_desc *cur_rx; 1441 uint32_t rxstat, rxctl; 1442 1443 VGE_LOCK_ASSERT(sc); 1444 1445 ifp = sc->vge_ifp; 1446 1447 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1448 sc->vge_cdata.vge_rx_ring_map, 1449 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1450 1451 prod = sc->vge_cdata.vge_rx_prodidx; 1452 for (prog = 0; count > 0 && 1453 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1454 VGE_RX_DESC_INC(prod)) { 1455 cur_rx = &sc->vge_rdata.vge_rx_ring[prod]; 1456 rxstat = le32toh(cur_rx->vge_sts); 1457 if ((rxstat & VGE_RDSTS_OWN) != 0) 1458 break; 1459 count--; 1460 prog++; 1461 rxctl = le32toh(cur_rx->vge_ctl); 1462 total_len = VGE_RXBYTES(rxstat); 1463 rxd = &sc->vge_cdata.vge_rxdesc[prod]; 1464 m = rxd->rx_m; 1465 1466 /* 1467 * If the 'start of frame' bit is set, this indicates 1468 * either the first fragment in a multi-fragment receive, 1469 * or an intermediate fragment. Either way, we want to 1470 * accumulate the buffers. 1471 */ 1472 if ((rxstat & VGE_RXPKT_SOF) != 0) { 1473 if (vge_newbuf(sc, prod) != 0) { 1474 ifp->if_iqdrops++; 1475 VGE_CHAIN_RESET(sc); 1476 vge_discard_rxbuf(sc, prod); 1477 continue; 1478 } 1479 m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN; 1480 if (sc->vge_cdata.vge_head == NULL) { 1481 sc->vge_cdata.vge_head = m; 1482 sc->vge_cdata.vge_tail = m; 1483 } else { 1484 m->m_flags &= ~M_PKTHDR; 1485 sc->vge_cdata.vge_tail->m_next = m; 1486 sc->vge_cdata.vge_tail = m; 1487 } 1488 continue; 1489 } 1490 1491 /* 1492 * Bad/error frames will have the RXOK bit cleared. 1493 * However, there's one error case we want to allow: 1494 * if a VLAN tagged frame arrives and the chip can't 1495 * match it against the CAM filter, it considers this 1496 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1497 * We don't want to drop the frame though: our VLAN 1498 * filtering is done in software. 1499 * We also want to receive bad-checksummed frames and 1500 * and frames with bad-length. 1501 */ 1502 if ((rxstat & VGE_RDSTS_RXOK) == 0 && 1503 (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR | 1504 VGE_RDSTS_CSUMERR)) == 0) { 1505 ifp->if_ierrors++; 1506 /* 1507 * If this is part of a multi-fragment packet, 1508 * discard all the pieces. 1509 */ 1510 VGE_CHAIN_RESET(sc); 1511 vge_discard_rxbuf(sc, prod); 1512 continue; 1513 } 1514 1515 if (vge_newbuf(sc, prod) != 0) { 1516 ifp->if_iqdrops++; 1517 VGE_CHAIN_RESET(sc); 1518 vge_discard_rxbuf(sc, prod); 1519 continue; 1520 } 1521 1522 /* Chain received mbufs. */ 1523 if (sc->vge_cdata.vge_head != NULL) { 1524 m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN); 1525 /* 1526 * Special case: if there's 4 bytes or less 1527 * in this buffer, the mbuf can be discarded: 1528 * the last 4 bytes is the CRC, which we don't 1529 * care about anyway. 1530 */ 1531 if (m->m_len <= ETHER_CRC_LEN) { 1532 sc->vge_cdata.vge_tail->m_len -= 1533 (ETHER_CRC_LEN - m->m_len); 1534 m_freem(m); 1535 } else { 1536 m->m_len -= ETHER_CRC_LEN; 1537 m->m_flags &= ~M_PKTHDR; 1538 sc->vge_cdata.vge_tail->m_next = m; 1539 } 1540 m = sc->vge_cdata.vge_head; 1541 m->m_flags |= M_PKTHDR; 1542 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1543 } else { 1544 m->m_flags |= M_PKTHDR; 1545 m->m_pkthdr.len = m->m_len = 1546 (total_len - ETHER_CRC_LEN); 1547 } 1548 1549 #ifndef __NO_STRICT_ALIGNMENT 1550 vge_fixup_rx(m); 1551 #endif 1552 m->m_pkthdr.rcvif = ifp; 1553 1554 /* Do RX checksumming if enabled */ 1555 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 1556 (rxctl & VGE_RDCTL_FRAG) == 0) { 1557 /* Check IP header checksum */ 1558 if ((rxctl & VGE_RDCTL_IPPKT) != 0) 1559 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1560 if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0) 1561 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1562 1563 /* Check TCP/UDP checksum */ 1564 if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) && 1565 rxctl & VGE_RDCTL_PROTOCSUMOK) { 1566 m->m_pkthdr.csum_flags |= 1567 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1568 m->m_pkthdr.csum_data = 0xffff; 1569 } 1570 } 1571 1572 if ((rxstat & VGE_RDSTS_VTAG) != 0) { 1573 /* 1574 * The 32-bit rxctl register is stored in little-endian. 1575 * However, the 16-bit vlan tag is stored in big-endian, 1576 * so we have to byte swap it. 1577 */ 1578 m->m_pkthdr.ether_vtag = 1579 bswap16(rxctl & VGE_RDCTL_VLANID); 1580 m->m_flags |= M_VLANTAG; 1581 } 1582 1583 VGE_UNLOCK(sc); 1584 (*ifp->if_input)(ifp, m); 1585 VGE_LOCK(sc); 1586 sc->vge_cdata.vge_head = NULL; 1587 sc->vge_cdata.vge_tail = NULL; 1588 } 1589 1590 if (prog > 0) { 1591 sc->vge_cdata.vge_rx_prodidx = prod; 1592 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, 1593 sc->vge_cdata.vge_rx_ring_map, 1594 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1595 /* Update residue counter. */ 1596 if (sc->vge_cdata.vge_rx_commit != 0) { 1597 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, 1598 sc->vge_cdata.vge_rx_commit); 1599 sc->vge_cdata.vge_rx_commit = 0; 1600 } 1601 } 1602 return (prog); 1603 } 1604 1605 static void 1606 vge_txeof(struct vge_softc *sc) 1607 { 1608 struct ifnet *ifp; 1609 struct vge_tx_desc *cur_tx; 1610 struct vge_txdesc *txd; 1611 uint32_t txstat; 1612 int cons, prod; 1613 1614 VGE_LOCK_ASSERT(sc); 1615 1616 ifp = sc->vge_ifp; 1617 1618 if (sc->vge_cdata.vge_tx_cnt == 0) 1619 return; 1620 1621 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1622 sc->vge_cdata.vge_tx_ring_map, 1623 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1624 1625 /* 1626 * Go through our tx list and free mbufs for those 1627 * frames that have been transmitted. 1628 */ 1629 cons = sc->vge_cdata.vge_tx_considx; 1630 prod = sc->vge_cdata.vge_tx_prodidx; 1631 for (; cons != prod; VGE_TX_DESC_INC(cons)) { 1632 cur_tx = &sc->vge_rdata.vge_tx_ring[cons]; 1633 txstat = le32toh(cur_tx->vge_sts); 1634 if ((txstat & VGE_TDSTS_OWN) != 0) 1635 break; 1636 sc->vge_cdata.vge_tx_cnt--; 1637 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1638 1639 txd = &sc->vge_cdata.vge_txdesc[cons]; 1640 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, 1641 BUS_DMASYNC_POSTWRITE); 1642 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap); 1643 1644 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n", 1645 __func__)); 1646 m_freem(txd->tx_m); 1647 txd->tx_m = NULL; 1648 txd->tx_desc->vge_frag[0].vge_addrhi = 0; 1649 } 1650 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1651 sc->vge_cdata.vge_tx_ring_map, 1652 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1653 sc->vge_cdata.vge_tx_considx = cons; 1654 if (sc->vge_cdata.vge_tx_cnt == 0) 1655 sc->vge_timer = 0; 1656 } 1657 1658 static void 1659 vge_link_statchg(void *xsc) 1660 { 1661 struct vge_softc *sc; 1662 struct ifnet *ifp; 1663 struct mii_data *mii; 1664 1665 sc = xsc; 1666 ifp = sc->vge_ifp; 1667 VGE_LOCK_ASSERT(sc); 1668 mii = device_get_softc(sc->vge_miibus); 1669 1670 mii_pollstat(mii); 1671 if ((sc->vge_flags & VGE_FLAG_LINK) != 0) { 1672 if (!(mii->mii_media_status & IFM_ACTIVE)) { 1673 sc->vge_flags &= ~VGE_FLAG_LINK; 1674 if_link_state_change(sc->vge_ifp, 1675 LINK_STATE_DOWN); 1676 } 1677 } else { 1678 if (mii->mii_media_status & IFM_ACTIVE && 1679 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1680 sc->vge_flags |= VGE_FLAG_LINK; 1681 if_link_state_change(sc->vge_ifp, 1682 LINK_STATE_UP); 1683 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1684 vge_start_locked(ifp); 1685 } 1686 } 1687 } 1688 1689 #ifdef DEVICE_POLLING 1690 static int 1691 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) 1692 { 1693 struct vge_softc *sc = ifp->if_softc; 1694 int rx_npkts = 0; 1695 1696 VGE_LOCK(sc); 1697 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1698 goto done; 1699 1700 rx_npkts = vge_rxeof(sc, count); 1701 vge_txeof(sc); 1702 1703 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1704 vge_start_locked(ifp); 1705 1706 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1707 uint32_t status; 1708 status = CSR_READ_4(sc, VGE_ISR); 1709 if (status == 0xFFFFFFFF) 1710 goto done; 1711 if (status) 1712 CSR_WRITE_4(sc, VGE_ISR, status); 1713 1714 /* 1715 * XXX check behaviour on receiver stalls. 1716 */ 1717 1718 if (status & VGE_ISR_TXDMA_STALL || 1719 status & VGE_ISR_RXDMA_STALL) { 1720 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1721 vge_init_locked(sc); 1722 } 1723 1724 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1725 vge_rxeof(sc, count); 1726 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1727 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1728 } 1729 } 1730 done: 1731 VGE_UNLOCK(sc); 1732 return (rx_npkts); 1733 } 1734 #endif /* DEVICE_POLLING */ 1735 1736 static void 1737 vge_intr(void *arg) 1738 { 1739 struct vge_softc *sc; 1740 struct ifnet *ifp; 1741 uint32_t status; 1742 1743 sc = arg; 1744 VGE_LOCK(sc); 1745 1746 ifp = sc->vge_ifp; 1747 if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 || 1748 (ifp->if_flags & IFF_UP) == 0) { 1749 VGE_UNLOCK(sc); 1750 return; 1751 } 1752 1753 #ifdef DEVICE_POLLING 1754 if (ifp->if_capenable & IFCAP_POLLING) { 1755 status = CSR_READ_4(sc, VGE_ISR); 1756 CSR_WRITE_4(sc, VGE_ISR, status); 1757 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0) 1758 vge_link_statchg(sc); 1759 VGE_UNLOCK(sc); 1760 return; 1761 } 1762 #endif 1763 1764 /* Disable interrupts */ 1765 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1766 status = CSR_READ_4(sc, VGE_ISR); 1767 CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD); 1768 /* If the card has gone away the read returns 0xffff. */ 1769 if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0) 1770 goto done; 1771 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1772 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1773 vge_rxeof(sc, VGE_RX_DESC_CNT); 1774 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1775 vge_rxeof(sc, VGE_RX_DESC_CNT); 1776 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1777 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1778 } 1779 1780 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO)) 1781 vge_txeof(sc); 1782 1783 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) { 1784 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1785 vge_init_locked(sc); 1786 } 1787 1788 if (status & VGE_ISR_LINKSTS) 1789 vge_link_statchg(sc); 1790 } 1791 done: 1792 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1793 /* Re-enable interrupts */ 1794 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1795 1796 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1797 vge_start_locked(ifp); 1798 } 1799 VGE_UNLOCK(sc); 1800 } 1801 1802 static int 1803 vge_encap(struct vge_softc *sc, struct mbuf **m_head) 1804 { 1805 struct vge_txdesc *txd; 1806 struct vge_tx_frag *frag; 1807 struct mbuf *m; 1808 bus_dma_segment_t txsegs[VGE_MAXTXSEGS]; 1809 int error, i, nsegs, padlen; 1810 uint32_t cflags; 1811 1812 VGE_LOCK_ASSERT(sc); 1813 1814 M_ASSERTPKTHDR((*m_head)); 1815 1816 /* Argh. This chip does not autopad short frames. */ 1817 if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) { 1818 m = *m_head; 1819 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len; 1820 if (M_WRITABLE(m) == 0) { 1821 /* Get a writable copy. */ 1822 m = m_dup(*m_head, M_DONTWAIT); 1823 m_freem(*m_head); 1824 if (m == NULL) { 1825 *m_head = NULL; 1826 return (ENOBUFS); 1827 } 1828 *m_head = m; 1829 } 1830 if (M_TRAILINGSPACE(m) < padlen) { 1831 m = m_defrag(m, M_DONTWAIT); 1832 if (m == NULL) { 1833 m_freem(*m_head); 1834 *m_head = NULL; 1835 return (ENOBUFS); 1836 } 1837 } 1838 /* 1839 * Manually pad short frames, and zero the pad space 1840 * to avoid leaking data. 1841 */ 1842 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1843 m->m_pkthdr.len += padlen; 1844 m->m_len = m->m_pkthdr.len; 1845 *m_head = m; 1846 } 1847 1848 txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx]; 1849 1850 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, 1851 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1852 if (error == EFBIG) { 1853 m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS); 1854 if (m == NULL) { 1855 m_freem(*m_head); 1856 *m_head = NULL; 1857 return (ENOMEM); 1858 } 1859 *m_head = m; 1860 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, 1861 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1862 if (error != 0) { 1863 m_freem(*m_head); 1864 *m_head = NULL; 1865 return (error); 1866 } 1867 } else if (error != 0) 1868 return (error); 1869 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, 1870 BUS_DMASYNC_PREWRITE); 1871 1872 m = *m_head; 1873 cflags = 0; 1874 1875 /* Configure checksum offload. */ 1876 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1877 cflags |= VGE_TDCTL_IPCSUM; 1878 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1879 cflags |= VGE_TDCTL_TCPCSUM; 1880 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1881 cflags |= VGE_TDCTL_UDPCSUM; 1882 1883 /* Configure VLAN. */ 1884 if ((m->m_flags & M_VLANTAG) != 0) 1885 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG; 1886 txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16); 1887 /* 1888 * XXX 1889 * Velocity family seems to support TSO but no information 1890 * for MSS configuration is available. Also the number of 1891 * fragments supported by a descriptor is too small to hold 1892 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF, 1893 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build 1894 * longer chain of buffers but no additional information is 1895 * available. 1896 * 1897 * When telling the chip how many segments there are, we 1898 * must use nsegs + 1 instead of just nsegs. Darned if I 1899 * know why. This also means we can't use the last fragment 1900 * field of Tx descriptor. 1901 */ 1902 txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) | 1903 VGE_TD_LS_NORM); 1904 for (i = 0; i < nsegs; i++) { 1905 frag = &txd->tx_desc->vge_frag[i]; 1906 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr)); 1907 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) | 1908 (VGE_BUFLEN(txsegs[i].ds_len) << 16)); 1909 } 1910 1911 sc->vge_cdata.vge_tx_cnt++; 1912 VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx); 1913 1914 /* 1915 * Finally request interrupt and give the first descriptor 1916 * ownership to hardware. 1917 */ 1918 txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC); 1919 txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN); 1920 txd->tx_m = m; 1921 1922 return (0); 1923 } 1924 1925 /* 1926 * Main transmit routine. 1927 */ 1928 1929 static void 1930 vge_start(struct ifnet *ifp) 1931 { 1932 struct vge_softc *sc; 1933 1934 sc = ifp->if_softc; 1935 VGE_LOCK(sc); 1936 vge_start_locked(ifp); 1937 VGE_UNLOCK(sc); 1938 } 1939 1940 1941 static void 1942 vge_start_locked(struct ifnet *ifp) 1943 { 1944 struct vge_softc *sc; 1945 struct vge_txdesc *txd; 1946 struct mbuf *m_head; 1947 int enq, idx; 1948 1949 sc = ifp->if_softc; 1950 1951 VGE_LOCK_ASSERT(sc); 1952 1953 if ((sc->vge_flags & VGE_FLAG_LINK) == 0 || 1954 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1955 IFF_DRV_RUNNING) 1956 return; 1957 1958 idx = sc->vge_cdata.vge_tx_prodidx; 1959 VGE_TX_DESC_DEC(idx); 1960 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1961 sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) { 1962 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1963 if (m_head == NULL) 1964 break; 1965 /* 1966 * Pack the data into the transmit ring. If we 1967 * don't have room, set the OACTIVE flag and wait 1968 * for the NIC to drain the ring. 1969 */ 1970 if (vge_encap(sc, &m_head)) { 1971 if (m_head == NULL) 1972 break; 1973 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1974 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1975 break; 1976 } 1977 1978 txd = &sc->vge_cdata.vge_txdesc[idx]; 1979 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q); 1980 VGE_TX_DESC_INC(idx); 1981 1982 enq++; 1983 /* 1984 * If there's a BPF listener, bounce a copy of this frame 1985 * to him. 1986 */ 1987 ETHER_BPF_MTAP(ifp, m_head); 1988 } 1989 1990 if (enq > 0) { 1991 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, 1992 sc->vge_cdata.vge_tx_ring_map, 1993 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1994 /* Issue a transmit command. */ 1995 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 1996 /* 1997 * Set a timeout in case the chip goes out to lunch. 1998 */ 1999 sc->vge_timer = 5; 2000 } 2001 } 2002 2003 static void 2004 vge_init(void *xsc) 2005 { 2006 struct vge_softc *sc = xsc; 2007 2008 VGE_LOCK(sc); 2009 vge_init_locked(sc); 2010 VGE_UNLOCK(sc); 2011 } 2012 2013 static void 2014 vge_init_locked(struct vge_softc *sc) 2015 { 2016 struct ifnet *ifp = sc->vge_ifp; 2017 struct mii_data *mii; 2018 int error, i; 2019 2020 VGE_LOCK_ASSERT(sc); 2021 mii = device_get_softc(sc->vge_miibus); 2022 2023 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2024 return; 2025 2026 /* 2027 * Cancel pending I/O and free all RX/TX buffers. 2028 */ 2029 vge_stop(sc); 2030 vge_reset(sc); 2031 2032 /* 2033 * Initialize the RX and TX descriptors and mbufs. 2034 */ 2035 2036 error = vge_rx_list_init(sc); 2037 if (error != 0) { 2038 device_printf(sc->vge_dev, "no memory for Rx buffers.\n"); 2039 return; 2040 } 2041 vge_tx_list_init(sc); 2042 /* Clear MAC statistics. */ 2043 vge_stats_clear(sc); 2044 /* Set our station address */ 2045 for (i = 0; i < ETHER_ADDR_LEN; i++) 2046 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]); 2047 2048 /* 2049 * Set receive FIFO threshold. Also allow transmission and 2050 * reception of VLAN tagged frames. 2051 */ 2052 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 2053 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES); 2054 2055 /* Set DMA burst length */ 2056 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 2057 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 2058 2059 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 2060 2061 /* Set collision backoff algorithm */ 2062 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 2063 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 2064 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 2065 2066 /* Disable LPSEL field in priority resolution */ 2067 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 2068 2069 /* 2070 * Load the addresses of the DMA queues into the chip. 2071 * Note that we only use one transmit queue. 2072 */ 2073 2074 CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, 2075 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)); 2076 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, 2077 VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr)); 2078 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); 2079 2080 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 2081 VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr)); 2082 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); 2083 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); 2084 2085 /* Configure interrupt moderation. */ 2086 vge_intr_holdoff(sc); 2087 2088 /* Enable and wake up the RX descriptor queue */ 2089 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 2090 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 2091 2092 /* Enable the TX descriptor queue */ 2093 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 2094 2095 /* Init the cam filter. */ 2096 vge_cam_clear(sc); 2097 2098 /* Set up receiver filter. */ 2099 vge_rxfilter(sc); 2100 vge_setvlan(sc); 2101 2102 /* Enable flow control */ 2103 2104 CSR_WRITE_1(sc, VGE_CRS2, 0x8B); 2105 2106 /* Enable jumbo frame reception (if desired) */ 2107 2108 /* Start the MAC. */ 2109 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 2110 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 2111 CSR_WRITE_1(sc, VGE_CRS0, 2112 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 2113 2114 #ifdef DEVICE_POLLING 2115 /* 2116 * Disable interrupts except link state change if we are polling. 2117 */ 2118 if (ifp->if_capenable & IFCAP_POLLING) { 2119 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); 2120 } else /* otherwise ... */ 2121 #endif 2122 { 2123 /* 2124 * Enable interrupts. 2125 */ 2126 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2127 } 2128 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2129 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2130 2131 sc->vge_flags &= ~VGE_FLAG_LINK; 2132 mii_mediachg(mii); 2133 2134 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2135 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2136 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); 2137 } 2138 2139 /* 2140 * Set media options. 2141 */ 2142 static int 2143 vge_ifmedia_upd(struct ifnet *ifp) 2144 { 2145 struct vge_softc *sc; 2146 struct mii_data *mii; 2147 int error; 2148 2149 sc = ifp->if_softc; 2150 VGE_LOCK(sc); 2151 mii = device_get_softc(sc->vge_miibus); 2152 error = mii_mediachg(mii); 2153 VGE_UNLOCK(sc); 2154 2155 return (error); 2156 } 2157 2158 /* 2159 * Report current media status. 2160 */ 2161 static void 2162 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2163 { 2164 struct vge_softc *sc; 2165 struct mii_data *mii; 2166 2167 sc = ifp->if_softc; 2168 mii = device_get_softc(sc->vge_miibus); 2169 2170 VGE_LOCK(sc); 2171 if ((ifp->if_flags & IFF_UP) == 0) { 2172 VGE_UNLOCK(sc); 2173 return; 2174 } 2175 mii_pollstat(mii); 2176 ifmr->ifm_active = mii->mii_media_active; 2177 ifmr->ifm_status = mii->mii_media_status; 2178 VGE_UNLOCK(sc); 2179 } 2180 2181 static void 2182 vge_miibus_statchg(device_t dev) 2183 { 2184 struct vge_softc *sc; 2185 struct mii_data *mii; 2186 struct ifmedia_entry *ife; 2187 2188 sc = device_get_softc(dev); 2189 mii = device_get_softc(sc->vge_miibus); 2190 ife = mii->mii_media.ifm_cur; 2191 2192 /* 2193 * If the user manually selects a media mode, we need to turn 2194 * on the forced MAC mode bit in the DIAGCTL register. If the 2195 * user happens to choose a full duplex mode, we also need to 2196 * set the 'force full duplex' bit. This applies only to 2197 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 2198 * mode is disabled, and in 1000baseT mode, full duplex is 2199 * always implied, so we turn on the forced mode bit but leave 2200 * the FDX bit cleared. 2201 */ 2202 2203 switch (IFM_SUBTYPE(ife->ifm_media)) { 2204 case IFM_AUTO: 2205 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2206 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2207 break; 2208 case IFM_1000_T: 2209 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2210 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2211 break; 2212 case IFM_100_TX: 2213 case IFM_10_T: 2214 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2215 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { 2216 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2217 } else { 2218 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2219 } 2220 break; 2221 default: 2222 device_printf(dev, "unknown media type: %x\n", 2223 IFM_SUBTYPE(ife->ifm_media)); 2224 break; 2225 } 2226 } 2227 2228 static int 2229 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2230 { 2231 struct vge_softc *sc = ifp->if_softc; 2232 struct ifreq *ifr = (struct ifreq *) data; 2233 struct mii_data *mii; 2234 int error = 0, mask; 2235 2236 switch (command) { 2237 case SIOCSIFMTU: 2238 VGE_LOCK(sc); 2239 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU) 2240 error = EINVAL; 2241 else if (ifp->if_mtu != ifr->ifr_mtu) { 2242 if (ifr->ifr_mtu > ETHERMTU && 2243 (sc->vge_flags & VGE_FLAG_JUMBO) == 0) 2244 error = EINVAL; 2245 else 2246 ifp->if_mtu = ifr->ifr_mtu; 2247 } 2248 VGE_UNLOCK(sc); 2249 break; 2250 case SIOCSIFFLAGS: 2251 VGE_LOCK(sc); 2252 if ((ifp->if_flags & IFF_UP) != 0) { 2253 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2254 ((ifp->if_flags ^ sc->vge_if_flags) & 2255 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2256 vge_rxfilter(sc); 2257 else 2258 vge_init_locked(sc); 2259 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2260 vge_stop(sc); 2261 sc->vge_if_flags = ifp->if_flags; 2262 VGE_UNLOCK(sc); 2263 break; 2264 case SIOCADDMULTI: 2265 case SIOCDELMULTI: 2266 VGE_LOCK(sc); 2267 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2268 vge_rxfilter(sc); 2269 VGE_UNLOCK(sc); 2270 break; 2271 case SIOCGIFMEDIA: 2272 case SIOCSIFMEDIA: 2273 mii = device_get_softc(sc->vge_miibus); 2274 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2275 break; 2276 case SIOCSIFCAP: 2277 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2278 #ifdef DEVICE_POLLING 2279 if (mask & IFCAP_POLLING) { 2280 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2281 error = ether_poll_register(vge_poll, ifp); 2282 if (error) 2283 return (error); 2284 VGE_LOCK(sc); 2285 /* Disable interrupts */ 2286 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); 2287 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2288 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2289 ifp->if_capenable |= IFCAP_POLLING; 2290 VGE_UNLOCK(sc); 2291 } else { 2292 error = ether_poll_deregister(ifp); 2293 /* Enable interrupts. */ 2294 VGE_LOCK(sc); 2295 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2296 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2297 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2298 ifp->if_capenable &= ~IFCAP_POLLING; 2299 VGE_UNLOCK(sc); 2300 } 2301 } 2302 #endif /* DEVICE_POLLING */ 2303 VGE_LOCK(sc); 2304 if ((mask & IFCAP_TXCSUM) != 0 && 2305 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2306 ifp->if_capenable ^= IFCAP_TXCSUM; 2307 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2308 ifp->if_hwassist |= VGE_CSUM_FEATURES; 2309 else 2310 ifp->if_hwassist &= ~VGE_CSUM_FEATURES; 2311 } 2312 if ((mask & IFCAP_RXCSUM) != 0 && 2313 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2314 ifp->if_capenable ^= IFCAP_RXCSUM; 2315 if ((mask & IFCAP_WOL_UCAST) != 0 && 2316 (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0) 2317 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2318 if ((mask & IFCAP_WOL_MCAST) != 0 && 2319 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2320 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2321 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2322 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2323 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2324 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2325 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2326 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2327 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2328 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 2329 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2330 vge_setvlan(sc); 2331 } 2332 VGE_UNLOCK(sc); 2333 VLAN_CAPABILITIES(ifp); 2334 break; 2335 default: 2336 error = ether_ioctl(ifp, command, data); 2337 break; 2338 } 2339 2340 return (error); 2341 } 2342 2343 static void 2344 vge_watchdog(void *arg) 2345 { 2346 struct vge_softc *sc; 2347 struct ifnet *ifp; 2348 2349 sc = arg; 2350 VGE_LOCK_ASSERT(sc); 2351 vge_stats_update(sc); 2352 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); 2353 if (sc->vge_timer == 0 || --sc->vge_timer > 0) 2354 return; 2355 2356 ifp = sc->vge_ifp; 2357 if_printf(ifp, "watchdog timeout\n"); 2358 ifp->if_oerrors++; 2359 2360 vge_txeof(sc); 2361 vge_rxeof(sc, VGE_RX_DESC_CNT); 2362 2363 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2364 vge_init_locked(sc); 2365 } 2366 2367 /* 2368 * Stop the adapter and free any mbufs allocated to the 2369 * RX and TX lists. 2370 */ 2371 static void 2372 vge_stop(struct vge_softc *sc) 2373 { 2374 struct ifnet *ifp; 2375 2376 VGE_LOCK_ASSERT(sc); 2377 ifp = sc->vge_ifp; 2378 sc->vge_timer = 0; 2379 callout_stop(&sc->vge_watchdog); 2380 2381 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2382 2383 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2384 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2385 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2386 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2387 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2388 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2389 2390 vge_stats_update(sc); 2391 VGE_CHAIN_RESET(sc); 2392 vge_txeof(sc); 2393 vge_freebufs(sc); 2394 } 2395 2396 /* 2397 * Device suspend routine. Stop the interface and save some PCI 2398 * settings in case the BIOS doesn't restore them properly on 2399 * resume. 2400 */ 2401 static int 2402 vge_suspend(device_t dev) 2403 { 2404 struct vge_softc *sc; 2405 2406 sc = device_get_softc(dev); 2407 2408 VGE_LOCK(sc); 2409 vge_stop(sc); 2410 vge_setwol(sc); 2411 sc->vge_flags |= VGE_FLAG_SUSPENDED; 2412 VGE_UNLOCK(sc); 2413 2414 return (0); 2415 } 2416 2417 /* 2418 * Device resume routine. Restore some PCI settings in case the BIOS 2419 * doesn't, re-enable busmastering, and restart the interface if 2420 * appropriate. 2421 */ 2422 static int 2423 vge_resume(device_t dev) 2424 { 2425 struct vge_softc *sc; 2426 struct ifnet *ifp; 2427 uint16_t pmstat; 2428 2429 sc = device_get_softc(dev); 2430 VGE_LOCK(sc); 2431 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) { 2432 /* Disable PME and clear PME status. */ 2433 pmstat = pci_read_config(sc->vge_dev, 2434 sc->vge_pmcap + PCIR_POWER_STATUS, 2); 2435 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 2436 pmstat &= ~PCIM_PSTAT_PMEENABLE; 2437 pci_write_config(sc->vge_dev, 2438 sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2); 2439 } 2440 } 2441 vge_clrwol(sc); 2442 /* Restart MII auto-polling. */ 2443 vge_miipoll_start(sc); 2444 ifp = sc->vge_ifp; 2445 /* Reinitialize interface if necessary. */ 2446 if ((ifp->if_flags & IFF_UP) != 0) { 2447 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2448 vge_init_locked(sc); 2449 } 2450 sc->vge_flags &= ~VGE_FLAG_SUSPENDED; 2451 VGE_UNLOCK(sc); 2452 2453 return (0); 2454 } 2455 2456 /* 2457 * Stop all chip I/O so that the kernel's probe routines don't 2458 * get confused by errant DMAs when rebooting. 2459 */ 2460 static int 2461 vge_shutdown(device_t dev) 2462 { 2463 2464 return (vge_suspend(dev)); 2465 } 2466 2467 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2468 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2469 2470 static void 2471 vge_sysctl_node(struct vge_softc *sc) 2472 { 2473 struct sysctl_ctx_list *ctx; 2474 struct sysctl_oid_list *child, *parent; 2475 struct sysctl_oid *tree; 2476 struct vge_hw_stats *stats; 2477 2478 stats = &sc->vge_stats; 2479 ctx = device_get_sysctl_ctx(sc->vge_dev); 2480 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev)); 2481 2482 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff", 2483 CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff"); 2484 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt", 2485 CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet"); 2486 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt", 2487 CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet"); 2488 2489 /* Pull in device tunables. */ 2490 sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT; 2491 resource_int_value(device_get_name(sc->vge_dev), 2492 device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff); 2493 sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT; 2494 resource_int_value(device_get_name(sc->vge_dev), 2495 device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt); 2496 sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT; 2497 resource_int_value(device_get_name(sc->vge_dev), 2498 device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt); 2499 2500 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2501 NULL, "VGE statistics"); 2502 parent = SYSCTL_CHILDREN(tree); 2503 2504 /* Rx statistics. */ 2505 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 2506 NULL, "RX MAC statistics"); 2507 child = SYSCTL_CHILDREN(tree); 2508 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames", 2509 &stats->rx_frames, "frames"); 2510 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 2511 &stats->rx_good_frames, "Good frames"); 2512 VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 2513 &stats->rx_fifo_oflows, "FIFO overflows"); 2514 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts", 2515 &stats->rx_runts, "Too short frames"); 2516 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs", 2517 &stats->rx_runts_errs, "Too short frames with errors"); 2518 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 2519 &stats->rx_pkts_64, "64 bytes frames"); 2520 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 2521 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 2522 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 2523 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 2524 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 2525 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 2526 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 2527 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 2528 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 2529 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 2530 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 2531 &stats->rx_pkts_1519_max, "1519 to max frames"); 2532 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs", 2533 &stats->rx_pkts_1519_max_errs, "1519 to max frames with error"); 2534 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", 2535 &stats->rx_jumbos, "Jumbo frames"); 2536 VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", 2537 &stats->rx_crcerrs, "CRC errors"); 2538 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 2539 &stats->rx_pause_frames, "CRC errors"); 2540 VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 2541 &stats->rx_alignerrs, "Alignment errors"); 2542 VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs", 2543 &stats->rx_nobufs, "Frames with no buffer event"); 2544 VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs", 2545 &stats->rx_symerrs, "Frames with symbol errors"); 2546 VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 2547 &stats->rx_lenerrs, "Frames with length mismatched"); 2548 2549 /* Tx statistics. */ 2550 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 2551 NULL, "TX MAC statistics"); 2552 child = SYSCTL_CHILDREN(tree); 2553 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 2554 &stats->tx_good_frames, "Good frames"); 2555 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 2556 &stats->tx_pkts_64, "64 bytes frames"); 2557 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 2558 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 2559 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 2560 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 2561 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 2562 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 2563 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 2564 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 2565 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 2566 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 2567 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", 2568 &stats->tx_jumbos, "Jumbo frames"); 2569 VGE_SYSCTL_STAT_ADD32(ctx, child, "colls", 2570 &stats->tx_colls, "Collisions"); 2571 VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 2572 &stats->tx_latecolls, "Late collisions"); 2573 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 2574 &stats->tx_pause, "Pause frames"); 2575 #ifdef VGE_ENABLE_SQEERR 2576 VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs", 2577 &stats->tx_sqeerrs, "SQE errors"); 2578 #endif 2579 /* Clear MAC statistics. */ 2580 vge_stats_clear(sc); 2581 } 2582 2583 #undef VGE_SYSCTL_STAT_ADD32 2584 2585 static void 2586 vge_stats_clear(struct vge_softc *sc) 2587 { 2588 int i; 2589 2590 CSR_WRITE_1(sc, VGE_MIBCSR, 2591 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE); 2592 CSR_WRITE_1(sc, VGE_MIBCSR, 2593 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR); 2594 for (i = VGE_TIMEOUT; i > 0; i--) { 2595 DELAY(1); 2596 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0) 2597 break; 2598 } 2599 if (i == 0) 2600 device_printf(sc->vge_dev, "MIB clear timed out!\n"); 2601 CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) & 2602 ~VGE_MIBCSR_FREEZE); 2603 } 2604 2605 static void 2606 vge_stats_update(struct vge_softc *sc) 2607 { 2608 struct vge_hw_stats *stats; 2609 struct ifnet *ifp; 2610 uint32_t mib[VGE_MIB_CNT], val; 2611 int i; 2612 2613 VGE_LOCK_ASSERT(sc); 2614 2615 stats = &sc->vge_stats; 2616 ifp = sc->vge_ifp; 2617 2618 CSR_WRITE_1(sc, VGE_MIBCSR, 2619 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH); 2620 for (i = VGE_TIMEOUT; i > 0; i--) { 2621 DELAY(1); 2622 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0) 2623 break; 2624 } 2625 if (i == 0) { 2626 device_printf(sc->vge_dev, "MIB counter dump timed out!\n"); 2627 vge_stats_clear(sc); 2628 return; 2629 } 2630 2631 bzero(mib, sizeof(mib)); 2632 reset_idx: 2633 /* Set MIB read index to 0. */ 2634 CSR_WRITE_1(sc, VGE_MIBCSR, 2635 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI); 2636 for (i = 0; i < VGE_MIB_CNT; i++) { 2637 val = CSR_READ_4(sc, VGE_MIBDATA); 2638 if (i != VGE_MIB_DATA_IDX(val)) { 2639 /* Reading interrupted. */ 2640 goto reset_idx; 2641 } 2642 mib[i] = val & VGE_MIB_DATA_MASK; 2643 } 2644 2645 /* Rx stats. */ 2646 stats->rx_frames += mib[VGE_MIB_RX_FRAMES]; 2647 stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES]; 2648 stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS]; 2649 stats->rx_runts += mib[VGE_MIB_RX_RUNTS]; 2650 stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS]; 2651 stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64]; 2652 stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127]; 2653 stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255]; 2654 stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511]; 2655 stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023]; 2656 stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518]; 2657 stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX]; 2658 stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS]; 2659 stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS]; 2660 stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS]; 2661 stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE]; 2662 stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS]; 2663 stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS]; 2664 stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS]; 2665 stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS]; 2666 2667 /* Tx stats. */ 2668 stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES]; 2669 stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64]; 2670 stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127]; 2671 stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255]; 2672 stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511]; 2673 stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023]; 2674 stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518]; 2675 stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS]; 2676 stats->tx_colls += mib[VGE_MIB_TX_COLLS]; 2677 stats->tx_pause += mib[VGE_MIB_TX_PAUSE]; 2678 #ifdef VGE_ENABLE_SQEERR 2679 stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS]; 2680 #endif 2681 stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS]; 2682 2683 /* Update counters in ifnet. */ 2684 ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES]; 2685 2686 ifp->if_collisions += mib[VGE_MIB_TX_COLLS] + 2687 mib[VGE_MIB_TX_LATECOLLS]; 2688 2689 ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] + 2690 mib[VGE_MIB_TX_LATECOLLS]; 2691 2692 ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES]; 2693 2694 ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] + 2695 mib[VGE_MIB_RX_RUNTS] + 2696 mib[VGE_MIB_RX_RUNTS_ERRS] + 2697 mib[VGE_MIB_RX_CRCERRS] + 2698 mib[VGE_MIB_RX_ALIGNERRS] + 2699 mib[VGE_MIB_RX_NOBUFS] + 2700 mib[VGE_MIB_RX_SYMERRS] + 2701 mib[VGE_MIB_RX_LENERRS]; 2702 } 2703 2704 static void 2705 vge_intr_holdoff(struct vge_softc *sc) 2706 { 2707 uint8_t intctl; 2708 2709 VGE_LOCK_ASSERT(sc); 2710 2711 /* 2712 * Set Tx interrupt supression threshold. 2713 * It's possible to use single-shot timer in VGE_CRS1 register 2714 * in Tx path such that driver can remove most of Tx completion 2715 * interrupts. However this requires additional access to 2716 * VGE_CRS1 register to reload the timer in addintion to 2717 * activating Tx kick command. Another downside is we don't know 2718 * what single-shot timer value should be used in advance so 2719 * reclaiming transmitted mbufs could be delayed a lot which in 2720 * turn slows down Tx operation. 2721 */ 2722 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR); 2723 CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt); 2724 2725 /* Set Rx interrupt suppresion threshold. */ 2726 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 2727 CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt); 2728 2729 intctl = CSR_READ_1(sc, VGE_INTCTL1); 2730 intctl &= ~VGE_INTCTL_SC_RELOAD; 2731 intctl |= VGE_INTCTL_HC_RELOAD; 2732 if (sc->vge_tx_coal_pkt <= 0) 2733 intctl |= VGE_INTCTL_TXINTSUP_DISABLE; 2734 else 2735 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE; 2736 if (sc->vge_rx_coal_pkt <= 0) 2737 intctl |= VGE_INTCTL_RXINTSUP_DISABLE; 2738 else 2739 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE; 2740 CSR_WRITE_1(sc, VGE_INTCTL1, intctl); 2741 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF); 2742 if (sc->vge_int_holdoff > 0) { 2743 /* Set interrupt holdoff timer. */ 2744 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 2745 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 2746 VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff)); 2747 /* Enable holdoff timer. */ 2748 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 2749 } 2750 } 2751 2752 static void 2753 vge_setlinkspeed(struct vge_softc *sc) 2754 { 2755 struct mii_data *mii; 2756 int aneg, i; 2757 2758 VGE_LOCK_ASSERT(sc); 2759 2760 mii = device_get_softc(sc->vge_miibus); 2761 mii_pollstat(mii); 2762 aneg = 0; 2763 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 2764 (IFM_ACTIVE | IFM_AVALID)) { 2765 switch IFM_SUBTYPE(mii->mii_media_active) { 2766 case IFM_10_T: 2767 case IFM_100_TX: 2768 return; 2769 case IFM_1000_T: 2770 aneg++; 2771 default: 2772 break; 2773 } 2774 } 2775 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0); 2776 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR, 2777 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 2778 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, 2779 BMCR_AUTOEN | BMCR_STARTNEG); 2780 DELAY(1000); 2781 if (aneg != 0) { 2782 /* Poll link state until vge(4) get a 10/100 link. */ 2783 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 2784 mii_pollstat(mii); 2785 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 2786 == (IFM_ACTIVE | IFM_AVALID)) { 2787 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2788 case IFM_10_T: 2789 case IFM_100_TX: 2790 return; 2791 default: 2792 break; 2793 } 2794 } 2795 VGE_UNLOCK(sc); 2796 pause("vgelnk", hz); 2797 VGE_LOCK(sc); 2798 } 2799 if (i == MII_ANEGTICKS_GIGE) 2800 device_printf(sc->vge_dev, "establishing link failed, " 2801 "WOL may not work!"); 2802 } 2803 /* 2804 * No link, force MAC to have 100Mbps, full-duplex link. 2805 * This is the last resort and may/may not work. 2806 */ 2807 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 2808 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 2809 } 2810 2811 static void 2812 vge_setwol(struct vge_softc *sc) 2813 { 2814 struct ifnet *ifp; 2815 uint16_t pmstat; 2816 uint8_t val; 2817 2818 VGE_LOCK_ASSERT(sc); 2819 2820 if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) { 2821 /* No PME capability, PHY power down. */ 2822 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, 2823 BMCR_PDOWN); 2824 vge_miipoll_stop(sc); 2825 return; 2826 } 2827 2828 ifp = sc->vge_ifp; 2829 2830 /* Clear WOL on pattern match. */ 2831 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); 2832 /* Disable WOL on magic/unicast packet. */ 2833 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); 2834 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | 2835 VGE_WOLCFG_PMEOVR); 2836 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 2837 vge_setlinkspeed(sc); 2838 val = 0; 2839 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2840 val |= VGE_WOLCR1_UCAST; 2841 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2842 val |= VGE_WOLCR1_MAGIC; 2843 CSR_WRITE_1(sc, VGE_WOLCR1S, val); 2844 val = 0; 2845 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2846 val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB; 2847 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR); 2848 /* Disable MII auto-polling. */ 2849 vge_miipoll_stop(sc); 2850 } 2851 CSR_SETBIT_1(sc, VGE_DIAGCTL, 2852 VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE); 2853 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); 2854 2855 /* Clear WOL status on pattern match. */ 2856 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); 2857 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); 2858 2859 val = CSR_READ_1(sc, VGE_PWRSTAT); 2860 val |= VGE_STICKHW_SWPTAG; 2861 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2862 /* Put hardware into sleep. */ 2863 val = CSR_READ_1(sc, VGE_PWRSTAT); 2864 val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1; 2865 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2866 /* Request PME if WOL is requested. */ 2867 pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap + 2868 PCIR_POWER_STATUS, 2); 2869 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2870 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2871 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2872 pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, 2873 pmstat, 2); 2874 } 2875 2876 static void 2877 vge_clrwol(struct vge_softc *sc) 2878 { 2879 uint8_t val; 2880 2881 val = CSR_READ_1(sc, VGE_PWRSTAT); 2882 val &= ~VGE_STICKHW_SWPTAG; 2883 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2884 /* Disable WOL and clear power state indicator. */ 2885 val = CSR_READ_1(sc, VGE_PWRSTAT); 2886 val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1); 2887 CSR_WRITE_1(sc, VGE_PWRSTAT, val); 2888 2889 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); 2890 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2891 2892 /* Clear WOL on pattern match. */ 2893 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); 2894 /* Disable WOL on magic/unicast packet. */ 2895 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); 2896 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | 2897 VGE_WOLCFG_PMEOVR); 2898 /* Clear WOL status on pattern match. */ 2899 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); 2900 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); 2901 } 2902