xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision d1d015864103b253b3fcb2f72a0da5b0cfeb31b6)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/kdb.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <sys/rman.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include <dev/usb/usbdi_util.h>
73 #include "usbdevs.h"
74 
75 #include <dev/usb/wlan/if_zydreg.h>
76 #include <dev/usb/wlan/if_zydfw.h>
77 
78 #ifdef USB_DEBUG
79 static int zyd_debug = 0;
80 
81 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
83     "zyd debug level");
84 
85 enum {
86 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
87 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
88 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
89 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
90 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
91 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
92 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
93 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
94 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
95 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
96 	ZYD_DEBUG_ANY		= 0xffffffff
97 };
98 #define	DPRINTF(sc, m, fmt, ...) do {				\
99 	if (zyd_debug & (m))					\
100 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
101 } while (0)
102 #else
103 #define	DPRINTF(sc, m, fmt, ...) do {				\
104 	(void) sc;						\
105 } while (0)
106 #endif
107 
108 #define	zyd_do_request(sc,req,data) \
109     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
110 
111 static device_probe_t zyd_match;
112 static device_attach_t zyd_attach;
113 static device_detach_t zyd_detach;
114 
115 static usb_callback_t zyd_intr_read_callback;
116 static usb_callback_t zyd_intr_write_callback;
117 static usb_callback_t zyd_bulk_read_callback;
118 static usb_callback_t zyd_bulk_write_callback;
119 
120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
121 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
122 		    const uint8_t [IEEE80211_ADDR_LEN],
123 		    const uint8_t [IEEE80211_ADDR_LEN]);
124 static void	zyd_vap_delete(struct ieee80211vap *);
125 static void	zyd_tx_free(struct zyd_tx_data *, int);
126 static void	zyd_setup_tx_list(struct zyd_softc *);
127 static void	zyd_unsetup_tx_list(struct zyd_softc *);
128 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
130 		    void *, int, int);
131 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
132 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
133 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
134 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
135 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
136 static int	zyd_lock_phy(struct zyd_softc *);
137 static int	zyd_unlock_phy(struct zyd_softc *);
138 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
139 static const char *zyd_rf_name(uint8_t);
140 static int	zyd_hw_init(struct zyd_softc *);
141 static int	zyd_read_pod(struct zyd_softc *);
142 static int	zyd_read_eeprom(struct zyd_softc *);
143 static int	zyd_get_macaddr(struct zyd_softc *);
144 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
145 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
146 static int	zyd_switch_radio(struct zyd_softc *, int);
147 static int	zyd_set_led(struct zyd_softc *, int, int);
148 static void	zyd_set_multi(struct zyd_softc *);
149 static void	zyd_update_mcast(struct ifnet *);
150 static int	zyd_set_rxfilter(struct zyd_softc *);
151 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
152 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
153 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
154 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
155 		    struct ieee80211_node *);
156 static void	zyd_start(struct ifnet *);
157 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
158 		    const struct ieee80211_bpf_params *);
159 static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
160 static void	zyd_init_locked(struct zyd_softc *);
161 static void	zyd_init(void *);
162 static void	zyd_stop(struct zyd_softc *);
163 static int	zyd_loadfirmware(struct zyd_softc *);
164 static void	zyd_scan_start(struct ieee80211com *);
165 static void	zyd_scan_end(struct ieee80211com *);
166 static void	zyd_set_channel(struct ieee80211com *);
167 static int	zyd_rfmd_init(struct zyd_rf *);
168 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
169 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
170 static int	zyd_al2230_init(struct zyd_rf *);
171 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
172 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
173 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
174 static int	zyd_al2230_init_b(struct zyd_rf *);
175 static int	zyd_al7230B_init(struct zyd_rf *);
176 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
177 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
178 static int	zyd_al2210_init(struct zyd_rf *);
179 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
180 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
181 static int	zyd_gct_init(struct zyd_rf *);
182 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
183 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
184 static int	zyd_gct_mode(struct zyd_rf *);
185 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
186 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
187 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
188 static int	zyd_maxim2_init(struct zyd_rf *);
189 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
190 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
191 
192 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
193 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
194 
195 /* various supported device vendors/products */
196 #define ZYD_ZD1211	0
197 #define ZYD_ZD1211B	1
198 
199 #define	ZYD_ZD1211_DEV(v,p)	\
200 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
201 #define	ZYD_ZD1211B_DEV(v,p)	\
202 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
203 static const STRUCT_USB_HOST_ID zyd_devs[] = {
204 	/* ZYD_ZD1211 */
205 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
206 	ZYD_ZD1211_DEV(ABOCOM, WL54),
207 	ZYD_ZD1211_DEV(ASUS, WL159G),
208 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
209 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
210 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
211 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
212 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
213 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
214 	ZYD_ZD1211_DEV(SAGEM, XG760A),
215 	ZYD_ZD1211_DEV(SENAO, NUB8301),
216 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
217 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
218 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
219 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
220 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
221 	ZYD_ZD1211_DEV(TWINMOS, G240),
222 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
223 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
224 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
225 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
226 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
227 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
228 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
229 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
230 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
231 	/* ZYD_ZD1211B */
232 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
233 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
234 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
235 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
236 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
237 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
238 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
239 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
240 	ZYD_ZD1211B_DEV(MELCO, KG54L),
241 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
242 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
243 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
244 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
245 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
246 	ZYD_ZD1211B_DEV(USR, USR5423),
247 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
248 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
249 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
250 	ZYD_ZD1211B_DEV(ZYXEL, M202),
251 	ZYD_ZD1211B_DEV(ZYXEL, G202),
252 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
253 };
254 
255 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
256 	[ZYD_BULK_WR] = {
257 		.type = UE_BULK,
258 		.endpoint = UE_ADDR_ANY,
259 		.direction = UE_DIR_OUT,
260 		.bufsize = ZYD_MAX_TXBUFSZ,
261 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
262 		.callback = zyd_bulk_write_callback,
263 		.ep_index = 0,
264 		.timeout = 10000,	/* 10 seconds */
265 	},
266 	[ZYD_BULK_RD] = {
267 		.type = UE_BULK,
268 		.endpoint = UE_ADDR_ANY,
269 		.direction = UE_DIR_IN,
270 		.bufsize = ZYX_MAX_RXBUFSZ,
271 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
272 		.callback = zyd_bulk_read_callback,
273 		.ep_index = 0,
274 	},
275 	[ZYD_INTR_WR] = {
276 		.type = UE_BULK_INTR,
277 		.endpoint = UE_ADDR_ANY,
278 		.direction = UE_DIR_OUT,
279 		.bufsize = sizeof(struct zyd_cmd),
280 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
281 		.callback = zyd_intr_write_callback,
282 		.timeout = 1000,	/* 1 second */
283 		.ep_index = 1,
284 	},
285 	[ZYD_INTR_RD] = {
286 		.type = UE_INTERRUPT,
287 		.endpoint = UE_ADDR_ANY,
288 		.direction = UE_DIR_IN,
289 		.bufsize = sizeof(struct zyd_cmd),
290 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
291 		.callback = zyd_intr_read_callback,
292 	},
293 };
294 #define zyd_read16_m(sc, val, data)	do {				\
295 	error = zyd_read16(sc, val, data);				\
296 	if (error != 0)							\
297 		goto fail;						\
298 } while (0)
299 #define zyd_write16_m(sc, val, data)	do {				\
300 	error = zyd_write16(sc, val, data);				\
301 	if (error != 0)							\
302 		goto fail;						\
303 } while (0)
304 #define zyd_read32_m(sc, val, data)	do {				\
305 	error = zyd_read32(sc, val, data);				\
306 	if (error != 0)							\
307 		goto fail;						\
308 } while (0)
309 #define zyd_write32_m(sc, val, data)	do {				\
310 	error = zyd_write32(sc, val, data);				\
311 	if (error != 0)							\
312 		goto fail;						\
313 } while (0)
314 
315 static int
316 zyd_match(device_t dev)
317 {
318 	struct usb_attach_arg *uaa = device_get_ivars(dev);
319 
320 	if (uaa->usb_mode != USB_MODE_HOST)
321 		return (ENXIO);
322 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
323 		return (ENXIO);
324 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
325 		return (ENXIO);
326 
327 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
328 }
329 
330 static int
331 zyd_attach(device_t dev)
332 {
333 	struct usb_attach_arg *uaa = device_get_ivars(dev);
334 	struct zyd_softc *sc = device_get_softc(dev);
335 	struct ifnet *ifp;
336 	struct ieee80211com *ic;
337 	uint8_t iface_index, bands;
338 	int error;
339 
340 	if (uaa->info.bcdDevice < 0x4330) {
341 		device_printf(dev, "device version mismatch: 0x%X "
342 		    "(only >= 43.30 supported)\n",
343 		    uaa->info.bcdDevice);
344 		return (EINVAL);
345 	}
346 
347 	device_set_usb_desc(dev);
348 	sc->sc_dev = dev;
349 	sc->sc_udev = uaa->device;
350 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
351 
352 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
353 	    MTX_NETWORK_LOCK, MTX_DEF);
354 	STAILQ_INIT(&sc->sc_rqh);
355 
356 	iface_index = ZYD_IFACE_INDEX;
357 	error = usbd_transfer_setup(uaa->device,
358 	    &iface_index, sc->sc_xfer, zyd_config,
359 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
360 	if (error) {
361 		device_printf(dev, "could not allocate USB transfers, "
362 		    "err=%s\n", usbd_errstr(error));
363 		goto detach;
364 	}
365 
366 	ZYD_LOCK(sc);
367 	if ((error = zyd_get_macaddr(sc)) != 0) {
368 		device_printf(sc->sc_dev, "could not read EEPROM\n");
369 		ZYD_UNLOCK(sc);
370 		goto detach;
371 	}
372 	ZYD_UNLOCK(sc);
373 
374 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
375 	if (ifp == NULL) {
376 		device_printf(sc->sc_dev, "can not if_alloc()\n");
377 		goto detach;
378 	}
379 	ifp->if_softc = sc;
380 	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
381 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
382 	ifp->if_init = zyd_init;
383 	ifp->if_ioctl = zyd_ioctl;
384 	ifp->if_start = zyd_start;
385 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
386 	IFQ_SET_READY(&ifp->if_snd);
387 
388 	ic = ifp->if_l2com;
389 	ic->ic_ifp = ifp;
390 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
391 	ic->ic_opmode = IEEE80211_M_STA;
392 
393 	/* set device capabilities */
394 	ic->ic_caps =
395 		  IEEE80211_C_STA		/* station mode */
396 		| IEEE80211_C_MONITOR		/* monitor mode */
397 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
398 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
399 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
400 	        | IEEE80211_C_WPA		/* 802.11i */
401 		;
402 
403 	bands = 0;
404 	setbit(&bands, IEEE80211_MODE_11B);
405 	setbit(&bands, IEEE80211_MODE_11G);
406 	ieee80211_init_channels(ic, NULL, &bands);
407 
408 	ieee80211_ifattach(ic, sc->sc_bssid);
409 	ic->ic_raw_xmit = zyd_raw_xmit;
410 	ic->ic_scan_start = zyd_scan_start;
411 	ic->ic_scan_end = zyd_scan_end;
412 	ic->ic_set_channel = zyd_set_channel;
413 
414 	ic->ic_vap_create = zyd_vap_create;
415 	ic->ic_vap_delete = zyd_vap_delete;
416 	ic->ic_update_mcast = zyd_update_mcast;
417 	ic->ic_update_promisc = zyd_update_mcast;
418 
419 	ieee80211_radiotap_attach(ic,
420 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
421 		ZYD_TX_RADIOTAP_PRESENT,
422 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
423 		ZYD_RX_RADIOTAP_PRESENT);
424 
425 	if (bootverbose)
426 		ieee80211_announce(ic);
427 
428 	return (0);
429 
430 detach:
431 	zyd_detach(dev);
432 	return (ENXIO);			/* failure */
433 }
434 
435 static int
436 zyd_detach(device_t dev)
437 {
438 	struct zyd_softc *sc = device_get_softc(dev);
439 	struct ifnet *ifp = sc->sc_ifp;
440 	struct ieee80211com *ic;
441 	unsigned int x;
442 
443 	/*
444 	 * Prevent further allocations from RX/TX data
445 	 * lists and ioctls:
446 	 */
447 	ZYD_LOCK(sc);
448 	sc->sc_flags |= ZYD_FLAG_DETACHED;
449 	STAILQ_INIT(&sc->tx_q);
450 	STAILQ_INIT(&sc->tx_free);
451 	ZYD_UNLOCK(sc);
452 
453 	/* drain USB transfers */
454 	for (x = 0; x != ZYD_N_TRANSFER; x++)
455 		usbd_transfer_drain(sc->sc_xfer[x]);
456 
457 	/* free TX list, if any */
458 	ZYD_LOCK(sc);
459 	zyd_unsetup_tx_list(sc);
460 	ZYD_UNLOCK(sc);
461 
462 	/* free USB transfers and some data buffers */
463 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
464 
465 	if (ifp) {
466 		ic = ifp->if_l2com;
467 		ieee80211_ifdetach(ic);
468 		if_free(ifp);
469 	}
470 	mtx_destroy(&sc->sc_mtx);
471 
472 	return (0);
473 }
474 
475 static struct ieee80211vap *
476 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
477     enum ieee80211_opmode opmode, int flags,
478     const uint8_t bssid[IEEE80211_ADDR_LEN],
479     const uint8_t mac[IEEE80211_ADDR_LEN])
480 {
481 	struct zyd_vap *zvp;
482 	struct ieee80211vap *vap;
483 
484 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
485 		return (NULL);
486 	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
487 	    M_80211_VAP, M_NOWAIT | M_ZERO);
488 	if (zvp == NULL)
489 		return (NULL);
490 	vap = &zvp->vap;
491 	/* enable s/w bmiss handling for sta mode */
492 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
493 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
494 
495 	/* override state transition machine */
496 	zvp->newstate = vap->iv_newstate;
497 	vap->iv_newstate = zyd_newstate;
498 
499 	ieee80211_ratectl_init(vap);
500 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
501 
502 	/* complete setup */
503 	ieee80211_vap_attach(vap, ieee80211_media_change,
504 	    ieee80211_media_status);
505 	ic->ic_opmode = opmode;
506 	return (vap);
507 }
508 
509 static void
510 zyd_vap_delete(struct ieee80211vap *vap)
511 {
512 	struct zyd_vap *zvp = ZYD_VAP(vap);
513 
514 	ieee80211_ratectl_deinit(vap);
515 	ieee80211_vap_detach(vap);
516 	free(zvp, M_80211_VAP);
517 }
518 
519 static void
520 zyd_tx_free(struct zyd_tx_data *data, int txerr)
521 {
522 	struct zyd_softc *sc = data->sc;
523 
524 	if (data->m != NULL) {
525 		if (data->m->m_flags & M_TXCB)
526 			ieee80211_process_callback(data->ni, data->m,
527 			    txerr ? ETIMEDOUT : 0);
528 		m_freem(data->m);
529 		data->m = NULL;
530 
531 		ieee80211_free_node(data->ni);
532 		data->ni = NULL;
533 	}
534 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
535 	sc->tx_nfree++;
536 }
537 
538 static void
539 zyd_setup_tx_list(struct zyd_softc *sc)
540 {
541 	struct zyd_tx_data *data;
542 	int i;
543 
544 	sc->tx_nfree = 0;
545 	STAILQ_INIT(&sc->tx_q);
546 	STAILQ_INIT(&sc->tx_free);
547 
548 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
549 		data = &sc->tx_data[i];
550 
551 		data->sc = sc;
552 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
553 		sc->tx_nfree++;
554 	}
555 }
556 
557 static void
558 zyd_unsetup_tx_list(struct zyd_softc *sc)
559 {
560 	struct zyd_tx_data *data;
561 	int i;
562 
563 	/* make sure any subsequent use of the queues will fail */
564 	sc->tx_nfree = 0;
565 	STAILQ_INIT(&sc->tx_q);
566 	STAILQ_INIT(&sc->tx_free);
567 
568 	/* free up all node references and mbufs */
569 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
570 		data = &sc->tx_data[i];
571 
572 		if (data->m != NULL) {
573 			m_freem(data->m);
574 			data->m = NULL;
575 		}
576 		if (data->ni != NULL) {
577 			ieee80211_free_node(data->ni);
578 			data->ni = NULL;
579 		}
580 	}
581 }
582 
583 static int
584 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
585 {
586 	struct zyd_vap *zvp = ZYD_VAP(vap);
587 	struct ieee80211com *ic = vap->iv_ic;
588 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
589 	int error;
590 
591 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
592 	    ieee80211_state_name[vap->iv_state],
593 	    ieee80211_state_name[nstate]);
594 
595 	IEEE80211_UNLOCK(ic);
596 	ZYD_LOCK(sc);
597 	switch (nstate) {
598 	case IEEE80211_S_AUTH:
599 		zyd_set_chan(sc, ic->ic_curchan);
600 		break;
601 	case IEEE80211_S_RUN:
602 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
603 			break;
604 
605 		/* turn link LED on */
606 		error = zyd_set_led(sc, ZYD_LED1, 1);
607 		if (error != 0)
608 			break;
609 
610 		/* make data LED blink upon Tx */
611 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
612 
613 		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
614 		zyd_set_bssid(sc, sc->sc_bssid);
615 		break;
616 	default:
617 		break;
618 	}
619 fail:
620 	ZYD_UNLOCK(sc);
621 	IEEE80211_LOCK(ic);
622 	return (zvp->newstate(vap, nstate, arg));
623 }
624 
625 /*
626  * Callback handler for interrupt transfer
627  */
628 static void
629 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
630 {
631 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
632 	struct ifnet *ifp = sc->sc_ifp;
633 	struct ieee80211com *ic = ifp->if_l2com;
634 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
635 	struct ieee80211_node *ni;
636 	struct zyd_cmd *cmd = &sc->sc_ibuf;
637 	struct usb_page_cache *pc;
638 	int datalen;
639 	int actlen;
640 
641 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
642 
643 	switch (USB_GET_STATE(xfer)) {
644 	case USB_ST_TRANSFERRED:
645 		pc = usbd_xfer_get_frame(xfer, 0);
646 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
647 
648 		switch (le16toh(cmd->code)) {
649 		case ZYD_NOTIF_RETRYSTATUS:
650 		{
651 			struct zyd_notif_retry *retry =
652 			    (struct zyd_notif_retry *)cmd->data;
653 
654 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
655 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
656 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
657 			    le16toh(retry->count)&0xff, le16toh(retry->count));
658 
659 			/*
660 			 * Find the node to which the packet was sent and
661 			 * update its retry statistics.  In BSS mode, this node
662 			 * is the AP we're associated to so no lookup is
663 			 * actually needed.
664 			 */
665 			ni = ieee80211_find_txnode(vap, retry->macaddr);
666 			if (ni != NULL) {
667 				int retrycnt =
668 				    (int)(le16toh(retry->count) & 0xff);
669 
670 				ieee80211_ratectl_tx_complete(vap, ni,
671 				    IEEE80211_RATECTL_TX_FAILURE,
672 				    &retrycnt, NULL);
673 				ieee80211_free_node(ni);
674 			}
675 			if (le16toh(retry->count) & 0x100)
676 				ifp->if_oerrors++;	/* too many retries */
677 			break;
678 		}
679 		case ZYD_NOTIF_IORD:
680 		{
681 			struct zyd_rq *rqp;
682 
683 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
684 				break;	/* HMAC interrupt */
685 
686 			datalen = actlen - sizeof(cmd->code);
687 			datalen -= 2;	/* XXX: padding? */
688 
689 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
690 				int i;
691 				int count;
692 
693 				if (rqp->olen != datalen)
694 					continue;
695 				count = rqp->olen / sizeof(struct zyd_pair);
696 				for (i = 0; i < count; i++) {
697 					if (*(((const uint16_t *)rqp->idata) + i) !=
698 					    (((struct zyd_pair *)cmd->data) + i)->reg)
699 						break;
700 				}
701 				if (i != count)
702 					continue;
703 				/* copy answer into caller-supplied buffer */
704 				memcpy(rqp->odata, cmd->data, rqp->olen);
705 				DPRINTF(sc, ZYD_DEBUG_CMD,
706 				    "command %p complete, data = %*D \n",
707 				    rqp, rqp->olen, (char *)rqp->odata, ":");
708 				wakeup(rqp);	/* wakeup caller */
709 				break;
710 			}
711 			if (rqp == NULL) {
712 				device_printf(sc->sc_dev,
713 				    "unexpected IORD notification %*D\n",
714 				    datalen, cmd->data, ":");
715 			}
716 			break;
717 		}
718 		default:
719 			device_printf(sc->sc_dev, "unknown notification %x\n",
720 			    le16toh(cmd->code));
721 		}
722 
723 		/* FALLTHROUGH */
724 	case USB_ST_SETUP:
725 tr_setup:
726 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
727 		usbd_transfer_submit(xfer);
728 		break;
729 
730 	default:			/* Error */
731 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
732 		    usbd_errstr(error));
733 
734 		if (error != USB_ERR_CANCELLED) {
735 			/* try to clear stall first */
736 			usbd_xfer_set_stall(xfer);
737 			goto tr_setup;
738 		}
739 		break;
740 	}
741 }
742 
743 static void
744 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
745 {
746 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
747 	struct zyd_rq *rqp, *cmd;
748 	struct usb_page_cache *pc;
749 
750 	switch (USB_GET_STATE(xfer)) {
751 	case USB_ST_TRANSFERRED:
752 		cmd = usbd_xfer_get_priv(xfer);
753 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
754 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
755 			/* Ensure the cached rq pointer is still valid */
756 			if (rqp == cmd &&
757 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
758 				wakeup(rqp);	/* wakeup caller */
759 		}
760 
761 		/* FALLTHROUGH */
762 	case USB_ST_SETUP:
763 tr_setup:
764 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
765 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
766 				continue;
767 
768 			pc = usbd_xfer_get_frame(xfer, 0);
769 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
770 
771 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
772 			usbd_xfer_set_priv(xfer, rqp);
773 			rqp->flags |= ZYD_CMD_FLAG_SENT;
774 			usbd_transfer_submit(xfer);
775 			break;
776 		}
777 		break;
778 
779 	default:			/* Error */
780 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
781 		    usbd_errstr(error));
782 
783 		if (error != USB_ERR_CANCELLED) {
784 			/* try to clear stall first */
785 			usbd_xfer_set_stall(xfer);
786 			goto tr_setup;
787 		}
788 		break;
789 	}
790 }
791 
792 static int
793 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
794     void *odata, int olen, int flags)
795 {
796 	struct zyd_cmd cmd;
797 	struct zyd_rq rq;
798 	int error;
799 
800 	if (ilen > (int)sizeof(cmd.data))
801 		return (EINVAL);
802 
803 	cmd.code = htole16(code);
804 	memcpy(cmd.data, idata, ilen);
805 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
806 	    &rq, ilen, idata, ":");
807 
808 	rq.cmd = &cmd;
809 	rq.idata = idata;
810 	rq.odata = odata;
811 	rq.ilen = sizeof(uint16_t) + ilen;
812 	rq.olen = olen;
813 	rq.flags = flags;
814 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
815 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
816 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
817 
818 	/* wait at most one second for command reply */
819 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
820 	if (error)
821 		device_printf(sc->sc_dev, "command timeout\n");
822 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
823 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
824 	    &rq, error);
825 
826 	return (error);
827 }
828 
829 static int
830 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
831 {
832 	struct zyd_pair tmp;
833 	int error;
834 
835 	reg = htole16(reg);
836 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
837 	    ZYD_CMD_FLAG_READ);
838 	if (error == 0)
839 		*val = le16toh(tmp.val);
840 	return (error);
841 }
842 
843 static int
844 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
845 {
846 	struct zyd_pair tmp[2];
847 	uint16_t regs[2];
848 	int error;
849 
850 	regs[0] = htole16(ZYD_REG32_HI(reg));
851 	regs[1] = htole16(ZYD_REG32_LO(reg));
852 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
853 	    ZYD_CMD_FLAG_READ);
854 	if (error == 0)
855 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
856 	return (error);
857 }
858 
859 static int
860 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
861 {
862 	struct zyd_pair pair;
863 
864 	pair.reg = htole16(reg);
865 	pair.val = htole16(val);
866 
867 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
868 }
869 
870 static int
871 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
872 {
873 	struct zyd_pair pair[2];
874 
875 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
876 	pair[0].val = htole16(val >> 16);
877 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
878 	pair[1].val = htole16(val & 0xffff);
879 
880 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
881 }
882 
883 static int
884 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
885 {
886 	struct zyd_rf *rf = &sc->sc_rf;
887 	struct zyd_rfwrite_cmd req;
888 	uint16_t cr203;
889 	int error, i;
890 
891 	zyd_read16_m(sc, ZYD_CR203, &cr203);
892 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
893 
894 	req.code  = htole16(2);
895 	req.width = htole16(rf->width);
896 	for (i = 0; i < rf->width; i++) {
897 		req.bit[i] = htole16(cr203);
898 		if (val & (1 << (rf->width - 1 - i)))
899 			req.bit[i] |= htole16(ZYD_RF_DATA);
900 	}
901 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
902 fail:
903 	return (error);
904 }
905 
906 static int
907 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
908 {
909 	int error;
910 
911 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
912 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
913 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
914 fail:
915 	return (error);
916 }
917 
918 static int
919 zyd_lock_phy(struct zyd_softc *sc)
920 {
921 	int error;
922 	uint32_t tmp;
923 
924 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
925 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
926 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
927 fail:
928 	return (error);
929 }
930 
931 static int
932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 	int error;
935 	uint32_t tmp;
936 
937 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
938 	tmp |= ZYD_UNLOCK_PHY_REGS;
939 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
940 fail:
941 	return (error);
942 }
943 
944 /*
945  * RFMD RF methods.
946  */
947 static int
948 zyd_rfmd_init(struct zyd_rf *rf)
949 {
950 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
951 	struct zyd_softc *sc = rf->rf_sc;
952 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
953 	static const uint32_t rfini[] = ZYD_RFMD_RF;
954 	int i, error;
955 
956 	/* init RF-dependent PHY registers */
957 	for (i = 0; i < N(phyini); i++) {
958 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
959 	}
960 
961 	/* init RFMD radio */
962 	for (i = 0; i < N(rfini); i++) {
963 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
964 			return (error);
965 	}
966 fail:
967 	return (error);
968 #undef N
969 }
970 
971 static int
972 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
973 {
974 	int error;
975 	struct zyd_softc *sc = rf->rf_sc;
976 
977 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
978 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
979 fail:
980 	return (error);
981 }
982 
983 static int
984 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
985 {
986 	int error;
987 	struct zyd_softc *sc = rf->rf_sc;
988 	static const struct {
989 		uint32_t	r1, r2;
990 	} rfprog[] = ZYD_RFMD_CHANTABLE;
991 
992 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
993 	if (error != 0)
994 		goto fail;
995 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
996 	if (error != 0)
997 		goto fail;
998 
999 fail:
1000 	return (error);
1001 }
1002 
1003 /*
1004  * AL2230 RF methods.
1005  */
1006 static int
1007 zyd_al2230_init(struct zyd_rf *rf)
1008 {
1009 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1010 	struct zyd_softc *sc = rf->rf_sc;
1011 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1012 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1013 	static const struct zyd_phy_pair phypll[] = {
1014 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1015 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1016 	};
1017 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1018 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1019 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1020 	int i, error;
1021 
1022 	/* init RF-dependent PHY registers */
1023 	for (i = 0; i < N(phyini); i++)
1024 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1025 
1026 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1027 		for (i = 0; i < N(phy2230s); i++)
1028 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1029 	}
1030 
1031 	/* init AL2230 radio */
1032 	for (i = 0; i < N(rfini1); i++) {
1033 		error = zyd_rfwrite(sc, rfini1[i]);
1034 		if (error != 0)
1035 			goto fail;
1036 	}
1037 
1038 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1039 		error = zyd_rfwrite(sc, 0x000824);
1040 	else
1041 		error = zyd_rfwrite(sc, 0x0005a4);
1042 	if (error != 0)
1043 		goto fail;
1044 
1045 	for (i = 0; i < N(rfini2); i++) {
1046 		error = zyd_rfwrite(sc, rfini2[i]);
1047 		if (error != 0)
1048 			goto fail;
1049 	}
1050 
1051 	for (i = 0; i < N(phypll); i++)
1052 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1053 
1054 	for (i = 0; i < N(rfini3); i++) {
1055 		error = zyd_rfwrite(sc, rfini3[i]);
1056 		if (error != 0)
1057 			goto fail;
1058 	}
1059 fail:
1060 	return (error);
1061 #undef N
1062 }
1063 
1064 static int
1065 zyd_al2230_fini(struct zyd_rf *rf)
1066 {
1067 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1068 	int error, i;
1069 	struct zyd_softc *sc = rf->rf_sc;
1070 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1071 
1072 	for (i = 0; i < N(phy); i++)
1073 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1074 
1075 	if (sc->sc_newphy != 0)
1076 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1077 
1078 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1079 fail:
1080 	return (error);
1081 #undef N
1082 }
1083 
1084 static int
1085 zyd_al2230_init_b(struct zyd_rf *rf)
1086 {
1087 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1088 	struct zyd_softc *sc = rf->rf_sc;
1089 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1090 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1091 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1092 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1093 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1094 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1095 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1096 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1097 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1098 	int i, error;
1099 
1100 	for (i = 0; i < N(phy1); i++)
1101 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1102 
1103 	/* init RF-dependent PHY registers */
1104 	for (i = 0; i < N(phyini); i++)
1105 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1106 
1107 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1108 		for (i = 0; i < N(phy2230s); i++)
1109 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1110 	}
1111 
1112 	for (i = 0; i < 3; i++) {
1113 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1114 		if (error != 0)
1115 			return (error);
1116 	}
1117 
1118 	for (i = 0; i < N(rfini_part1); i++) {
1119 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1120 		if (error != 0)
1121 			return (error);
1122 	}
1123 
1124 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1125 		error = zyd_rfwrite(sc, 0x241000);
1126 	else
1127 		error = zyd_rfwrite(sc, 0x25a000);
1128 	if (error != 0)
1129 		goto fail;
1130 
1131 	for (i = 0; i < N(rfini_part2); i++) {
1132 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1133 		if (error != 0)
1134 			return (error);
1135 	}
1136 
1137 	for (i = 0; i < N(phy2); i++)
1138 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1139 
1140 	for (i = 0; i < N(rfini_part3); i++) {
1141 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1142 		if (error != 0)
1143 			return (error);
1144 	}
1145 
1146 	for (i = 0; i < N(phy3); i++)
1147 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1148 
1149 	error = zyd_al2230_fini(rf);
1150 fail:
1151 	return (error);
1152 #undef N
1153 }
1154 
1155 static int
1156 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1157 {
1158 	struct zyd_softc *sc = rf->rf_sc;
1159 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1160 
1161 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1162 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1163 fail:
1164 	return (error);
1165 }
1166 
1167 static int
1168 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1169 {
1170 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1171 	int error, i;
1172 	struct zyd_softc *sc = rf->rf_sc;
1173 	static const struct zyd_phy_pair phy1[] = {
1174 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1175 	};
1176 	static const struct {
1177 		uint32_t	r1, r2, r3;
1178 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1179 
1180 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1181 	if (error != 0)
1182 		goto fail;
1183 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1184 	if (error != 0)
1185 		goto fail;
1186 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1187 	if (error != 0)
1188 		goto fail;
1189 
1190 	for (i = 0; i < N(phy1); i++)
1191 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1192 fail:
1193 	return (error);
1194 #undef N
1195 }
1196 
1197 static int
1198 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1199 {
1200 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1201 	int error, i;
1202 	struct zyd_softc *sc = rf->rf_sc;
1203 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1204 	static const struct {
1205 		uint32_t	r1, r2, r3;
1206 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1207 
1208 	for (i = 0; i < N(phy1); i++)
1209 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1210 
1211 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1212 	if (error != 0)
1213 		goto fail;
1214 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1215 	if (error != 0)
1216 		goto fail;
1217 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1218 	if (error != 0)
1219 		goto fail;
1220 	error = zyd_al2230_fini(rf);
1221 fail:
1222 	return (error);
1223 #undef N
1224 }
1225 
1226 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1227 {									\
1228 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1229 	{ ZYD_CR47,  0x1e }						\
1230 }
1231 
1232 static int
1233 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1234 {
1235 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1236 	int error = 0, i;
1237 	struct zyd_softc *sc = rf->rf_sc;
1238 	struct ifnet *ifp = sc->sc_ifp;
1239 	struct ieee80211com *ic = ifp->if_l2com;
1240 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1241 	int chan = ieee80211_chan2ieee(ic, c);
1242 
1243 	if (chan == 1 || chan == 11)
1244 		r[0].val = 0x12;
1245 
1246 	for (i = 0; i < N(r); i++)
1247 		zyd_write16_m(sc, r[i].reg, r[i].val);
1248 fail:
1249 	return (error);
1250 #undef N
1251 }
1252 
1253 /*
1254  * AL7230B RF methods.
1255  */
1256 static int
1257 zyd_al7230B_init(struct zyd_rf *rf)
1258 {
1259 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1260 	struct zyd_softc *sc = rf->rf_sc;
1261 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1262 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1263 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1264 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1265 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1266 	int i, error;
1267 
1268 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1269 
1270 	/* init RF-dependent PHY registers, part one */
1271 	for (i = 0; i < N(phyini_1); i++)
1272 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1273 
1274 	/* init AL7230B radio, part one */
1275 	for (i = 0; i < N(rfini_1); i++) {
1276 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1277 			return (error);
1278 	}
1279 	/* init RF-dependent PHY registers, part two */
1280 	for (i = 0; i < N(phyini_2); i++)
1281 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1282 
1283 	/* init AL7230B radio, part two */
1284 	for (i = 0; i < N(rfini_2); i++) {
1285 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1286 			return (error);
1287 	}
1288 	/* init RF-dependent PHY registers, part three */
1289 	for (i = 0; i < N(phyini_3); i++)
1290 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1291 fail:
1292 	return (error);
1293 #undef N
1294 }
1295 
1296 static int
1297 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1298 {
1299 	int error;
1300 	struct zyd_softc *sc = rf->rf_sc;
1301 
1302 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1303 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1304 fail:
1305 	return (error);
1306 }
1307 
1308 static int
1309 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1310 {
1311 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1312 	struct zyd_softc *sc = rf->rf_sc;
1313 	static const struct {
1314 		uint32_t	r1, r2;
1315 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1316 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1317 	int i, error;
1318 
1319 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1320 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1321 
1322 	for (i = 0; i < N(rfsc); i++) {
1323 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1324 			return (error);
1325 	}
1326 
1327 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1328 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1329 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1330 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1331 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1332 
1333 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1334 	if (error != 0)
1335 		goto fail;
1336 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1337 	if (error != 0)
1338 		goto fail;
1339 	error = zyd_rfwrite(sc, 0x3c9000);
1340 	if (error != 0)
1341 		goto fail;
1342 
1343 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1344 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1345 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1346 fail:
1347 	return (error);
1348 #undef N
1349 }
1350 
1351 /*
1352  * AL2210 RF methods.
1353  */
1354 static int
1355 zyd_al2210_init(struct zyd_rf *rf)
1356 {
1357 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1358 	struct zyd_softc *sc = rf->rf_sc;
1359 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1360 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1361 	uint32_t tmp;
1362 	int i, error;
1363 
1364 	zyd_write32_m(sc, ZYD_CR18, 2);
1365 
1366 	/* init RF-dependent PHY registers */
1367 	for (i = 0; i < N(phyini); i++)
1368 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1369 
1370 	/* init AL2210 radio */
1371 	for (i = 0; i < N(rfini); i++) {
1372 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1373 			return (error);
1374 	}
1375 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1376 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1377 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1378 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1379 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1380 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1381 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1382 	zyd_write32_m(sc, ZYD_CR18, 3);
1383 fail:
1384 	return (error);
1385 #undef N
1386 }
1387 
1388 static int
1389 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1390 {
1391 	/* vendor driver does nothing for this RF chip */
1392 
1393 	return (0);
1394 }
1395 
1396 static int
1397 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1398 {
1399 	int error;
1400 	struct zyd_softc *sc = rf->rf_sc;
1401 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1402 	uint32_t tmp;
1403 
1404 	zyd_write32_m(sc, ZYD_CR18, 2);
1405 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1406 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1407 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1408 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1409 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1410 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1411 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1412 
1413 	/* actually set the channel */
1414 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1415 	if (error != 0)
1416 		goto fail;
1417 
1418 	zyd_write32_m(sc, ZYD_CR18, 3);
1419 fail:
1420 	return (error);
1421 }
1422 
1423 /*
1424  * GCT RF methods.
1425  */
1426 static int
1427 zyd_gct_init(struct zyd_rf *rf)
1428 {
1429 #define	ZYD_GCT_INTR_REG	0x85c1
1430 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1431 	struct zyd_softc *sc = rf->rf_sc;
1432 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1433 	static const uint32_t rfini[] = ZYD_GCT_RF;
1434 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1435 	int i, idx = -1, error;
1436 	uint16_t data;
1437 
1438 	/* init RF-dependent PHY registers */
1439 	for (i = 0; i < N(phyini); i++)
1440 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1441 
1442 	/* init cgt radio */
1443 	for (i = 0; i < N(rfini); i++) {
1444 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1445 			return (error);
1446 	}
1447 
1448 	error = zyd_gct_mode(rf);
1449 	if (error != 0)
1450 		return (error);
1451 
1452 	for (i = 0; i < (int)(N(vco) - 1); i++) {
1453 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1454 		if (error != 0)
1455 			goto fail;
1456 		error = zyd_gct_write(rf, vco[i][0]);
1457 		if (error != 0)
1458 			goto fail;
1459 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1460 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1461 		if ((data & 0xf) == 0) {
1462 			idx = i;
1463 			break;
1464 		}
1465 	}
1466 	if (idx == -1) {
1467 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1468 		if (error != 0)
1469 			goto fail;
1470 		error = zyd_gct_write(rf, 0x6662);
1471 		if (error != 0)
1472 			goto fail;
1473 	}
1474 
1475 	rf->idx = idx;
1476 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1477 fail:
1478 	return (error);
1479 #undef N
1480 #undef ZYD_GCT_INTR_REG
1481 }
1482 
1483 static int
1484 zyd_gct_mode(struct zyd_rf *rf)
1485 {
1486 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1487 	struct zyd_softc *sc = rf->rf_sc;
1488 	static const uint32_t mode[] = {
1489 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1490 	};
1491 	int i, error;
1492 
1493 	for (i = 0; i < N(mode); i++) {
1494 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1495 			break;
1496 	}
1497 	return (error);
1498 #undef N
1499 }
1500 
1501 static int
1502 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1503 {
1504 	int error, idx = chan - 1;
1505 	struct zyd_softc *sc = rf->rf_sc;
1506 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1507 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1508 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1509 
1510 	error = zyd_rfwrite(sc,
1511 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1512 	if (error != 0)
1513 		return (error);
1514 	return zyd_rfwrite(sc, div_synth[idx]);
1515 }
1516 
1517 static int
1518 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1519 {
1520 	struct zyd_softc *sc = rf->rf_sc;
1521 
1522 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1523 }
1524 
1525 static int
1526 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1527 {
1528 	int error;
1529 	struct zyd_softc *sc = rf->rf_sc;
1530 
1531 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1532 	if (error != 0)
1533 		return (error);
1534 
1535 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1536 	zyd_write16_m(sc, ZYD_CR251,
1537 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1538 fail:
1539 	return (error);
1540 }
1541 
1542 static int
1543 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1544 {
1545 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1546 	int error, i;
1547 	struct zyd_softc *sc = rf->rf_sc;
1548 	static const struct zyd_phy_pair cmd[] = {
1549 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1550 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1551 	};
1552 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1553 
1554 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1555 	if (error != 0)
1556 		goto fail;
1557 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1558 	    vco[rf->idx][((chan - 1) / 2)]);
1559 	if (error != 0)
1560 		goto fail;
1561 	error = zyd_gct_mode(rf);
1562 	if (error != 0)
1563 		return (error);
1564 	for (i = 0; i < N(cmd); i++)
1565 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1566 	error = zyd_gct_txgain(rf, chan);
1567 	if (error != 0)
1568 		return (error);
1569 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1570 fail:
1571 	return (error);
1572 #undef N
1573 }
1574 
1575 static int
1576 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1577 {
1578 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1579 	struct zyd_softc *sc = rf->rf_sc;
1580 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1581 	uint8_t idx = sc->sc_pwrint[chan - 1];
1582 
1583 	if (idx >= N(txgain)) {
1584 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1585 		    chan, idx);
1586 		return 0;
1587 	}
1588 
1589 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1590 #undef N
1591 }
1592 
1593 /*
1594  * Maxim2 RF methods.
1595  */
1596 static int
1597 zyd_maxim2_init(struct zyd_rf *rf)
1598 {
1599 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1600 	struct zyd_softc *sc = rf->rf_sc;
1601 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1602 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1603 	uint16_t tmp;
1604 	int i, error;
1605 
1606 	/* init RF-dependent PHY registers */
1607 	for (i = 0; i < N(phyini); i++)
1608 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1609 
1610 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1611 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1612 
1613 	/* init maxim2 radio */
1614 	for (i = 0; i < N(rfini); i++) {
1615 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1616 			return (error);
1617 	}
1618 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1619 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1620 fail:
1621 	return (error);
1622 #undef N
1623 }
1624 
1625 static int
1626 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1627 {
1628 
1629 	/* vendor driver does nothing for this RF chip */
1630 	return (0);
1631 }
1632 
1633 static int
1634 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1635 {
1636 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1637 	struct zyd_softc *sc = rf->rf_sc;
1638 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1639 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1640 	static const struct {
1641 		uint32_t	r1, r2;
1642 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1643 	uint16_t tmp;
1644 	int i, error;
1645 
1646 	/*
1647 	 * Do the same as we do when initializing it, except for the channel
1648 	 * values coming from the two channel tables.
1649 	 */
1650 
1651 	/* init RF-dependent PHY registers */
1652 	for (i = 0; i < N(phyini); i++)
1653 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1654 
1655 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1656 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1657 
1658 	/* first two values taken from the chantables */
1659 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1660 	if (error != 0)
1661 		goto fail;
1662 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1663 	if (error != 0)
1664 		goto fail;
1665 
1666 	/* init maxim2 radio - skipping the two first values */
1667 	for (i = 2; i < N(rfini); i++) {
1668 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1669 			return (error);
1670 	}
1671 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1672 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1673 fail:
1674 	return (error);
1675 #undef N
1676 }
1677 
1678 static int
1679 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1680 {
1681 	struct zyd_rf *rf = &sc->sc_rf;
1682 
1683 	rf->rf_sc = sc;
1684 	rf->update_pwr = 1;
1685 
1686 	switch (type) {
1687 	case ZYD_RF_RFMD:
1688 		rf->init         = zyd_rfmd_init;
1689 		rf->switch_radio = zyd_rfmd_switch_radio;
1690 		rf->set_channel  = zyd_rfmd_set_channel;
1691 		rf->width        = 24;	/* 24-bit RF values */
1692 		break;
1693 	case ZYD_RF_AL2230:
1694 	case ZYD_RF_AL2230S:
1695 		if (sc->sc_macrev == ZYD_ZD1211B) {
1696 			rf->init = zyd_al2230_init_b;
1697 			rf->set_channel = zyd_al2230_set_channel_b;
1698 		} else {
1699 			rf->init = zyd_al2230_init;
1700 			rf->set_channel = zyd_al2230_set_channel;
1701 		}
1702 		rf->switch_radio = zyd_al2230_switch_radio;
1703 		rf->bandedge6	 = zyd_al2230_bandedge6;
1704 		rf->width        = 24;	/* 24-bit RF values */
1705 		break;
1706 	case ZYD_RF_AL7230B:
1707 		rf->init         = zyd_al7230B_init;
1708 		rf->switch_radio = zyd_al7230B_switch_radio;
1709 		rf->set_channel  = zyd_al7230B_set_channel;
1710 		rf->width        = 24;	/* 24-bit RF values */
1711 		break;
1712 	case ZYD_RF_AL2210:
1713 		rf->init         = zyd_al2210_init;
1714 		rf->switch_radio = zyd_al2210_switch_radio;
1715 		rf->set_channel  = zyd_al2210_set_channel;
1716 		rf->width        = 24;	/* 24-bit RF values */
1717 		break;
1718 	case ZYD_RF_MAXIM_NEW:
1719 	case ZYD_RF_GCT:
1720 		rf->init         = zyd_gct_init;
1721 		rf->switch_radio = zyd_gct_switch_radio;
1722 		rf->set_channel  = zyd_gct_set_channel;
1723 		rf->width        = 24;	/* 24-bit RF values */
1724 		rf->update_pwr   = 0;
1725 		break;
1726 	case ZYD_RF_MAXIM_NEW2:
1727 		rf->init         = zyd_maxim2_init;
1728 		rf->switch_radio = zyd_maxim2_switch_radio;
1729 		rf->set_channel  = zyd_maxim2_set_channel;
1730 		rf->width        = 18;	/* 18-bit RF values */
1731 		break;
1732 	default:
1733 		device_printf(sc->sc_dev,
1734 		    "sorry, radio \"%s\" is not supported yet\n",
1735 		    zyd_rf_name(type));
1736 		return (EINVAL);
1737 	}
1738 	return (0);
1739 }
1740 
1741 static const char *
1742 zyd_rf_name(uint8_t type)
1743 {
1744 	static const char * const zyd_rfs[] = {
1745 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1746 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1747 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1748 		"PHILIPS"
1749 	};
1750 
1751 	return zyd_rfs[(type > 15) ? 0 : type];
1752 }
1753 
1754 static int
1755 zyd_hw_init(struct zyd_softc *sc)
1756 {
1757 	int error;
1758 	const struct zyd_phy_pair *phyp;
1759 	struct zyd_rf *rf = &sc->sc_rf;
1760 	uint16_t val;
1761 
1762 	/* specify that the plug and play is finished */
1763 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1764 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1765 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1766 	    sc->sc_fwbase);
1767 
1768 	/* retrieve firmware revision number */
1769 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1770 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1771 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1772 	/* set mandatory rates - XXX assumes 802.11b/g */
1773 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1774 
1775 	/* disable interrupts */
1776 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1777 
1778 	if ((error = zyd_read_pod(sc)) != 0) {
1779 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1780 		goto fail;
1781 	}
1782 
1783 	/* PHY init (resetting) */
1784 	error = zyd_lock_phy(sc);
1785 	if (error != 0)
1786 		goto fail;
1787 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1788 	for (; phyp->reg != 0; phyp++)
1789 		zyd_write16_m(sc, phyp->reg, phyp->val);
1790 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1791 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1792 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1793 	}
1794 	error = zyd_unlock_phy(sc);
1795 	if (error != 0)
1796 		goto fail;
1797 
1798 	/* HMAC init */
1799 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1800 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1801 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1802 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1803 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1804 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1805 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1806 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1807 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1808 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1809 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1810 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1811 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1812 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1813 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1814 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1815 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1816 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1817 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1818 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1819 
1820 	if (sc->sc_macrev == ZYD_ZD1211) {
1821 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1822 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1823 	} else {
1824 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1825 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1826 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1827 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1828 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1829 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1830 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1831 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1832 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1833 	}
1834 
1835 	/* init beacon interval to 100ms */
1836 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1837 		goto fail;
1838 
1839 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1840 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1841 		    sc->sc_rfrev);
1842 		goto fail;
1843 	}
1844 
1845 	/* RF chip init */
1846 	error = zyd_lock_phy(sc);
1847 	if (error != 0)
1848 		goto fail;
1849 	error = (*rf->init)(rf);
1850 	if (error != 0) {
1851 		device_printf(sc->sc_dev,
1852 		    "radio initialization failed, error %d\n", error);
1853 		goto fail;
1854 	}
1855 	error = zyd_unlock_phy(sc);
1856 	if (error != 0)
1857 		goto fail;
1858 
1859 	if ((error = zyd_read_eeprom(sc)) != 0) {
1860 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1861 		goto fail;
1862 	}
1863 
1864 fail:	return (error);
1865 }
1866 
1867 static int
1868 zyd_read_pod(struct zyd_softc *sc)
1869 {
1870 	int error;
1871 	uint32_t tmp;
1872 
1873 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1874 	sc->sc_rfrev     = tmp & 0x0f;
1875 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1876 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1877 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1878 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1879 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1880 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1881 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1882 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1883 fail:
1884 	return (error);
1885 }
1886 
1887 static int
1888 zyd_read_eeprom(struct zyd_softc *sc)
1889 {
1890 	uint16_t val;
1891 	int error, i;
1892 
1893 	/* read Tx power calibration tables */
1894 	for (i = 0; i < 7; i++) {
1895 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1896 		sc->sc_pwrcal[i * 2] = val >> 8;
1897 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1898 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1899 		sc->sc_pwrint[i * 2] = val >> 8;
1900 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1901 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1902 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1903 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1904 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1905 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1906 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1907 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1908 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1909 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1910 	}
1911 fail:
1912 	return (error);
1913 }
1914 
1915 static int
1916 zyd_get_macaddr(struct zyd_softc *sc)
1917 {
1918 	struct usb_device_request req;
1919 	usb_error_t error;
1920 
1921 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1922 	req.bRequest = ZYD_READFWDATAREQ;
1923 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1924 	USETW(req.wIndex, 0);
1925 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1926 
1927 	error = zyd_do_request(sc, &req, sc->sc_bssid);
1928 	if (error != 0) {
1929 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1930 		    usbd_errstr(error));
1931 	}
1932 
1933 	return (error);
1934 }
1935 
1936 static int
1937 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1938 {
1939 	int error;
1940 	uint32_t tmp;
1941 
1942 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1943 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1944 	tmp = addr[5] << 8 | addr[4];
1945 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1946 fail:
1947 	return (error);
1948 }
1949 
1950 static int
1951 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1952 {
1953 	int error;
1954 	uint32_t tmp;
1955 
1956 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1957 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1958 	tmp = addr[5] << 8 | addr[4];
1959 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1960 fail:
1961 	return (error);
1962 }
1963 
1964 static int
1965 zyd_switch_radio(struct zyd_softc *sc, int on)
1966 {
1967 	struct zyd_rf *rf = &sc->sc_rf;
1968 	int error;
1969 
1970 	error = zyd_lock_phy(sc);
1971 	if (error != 0)
1972 		goto fail;
1973 	error = (*rf->switch_radio)(rf, on);
1974 	if (error != 0)
1975 		goto fail;
1976 	error = zyd_unlock_phy(sc);
1977 fail:
1978 	return (error);
1979 }
1980 
1981 static int
1982 zyd_set_led(struct zyd_softc *sc, int which, int on)
1983 {
1984 	int error;
1985 	uint32_t tmp;
1986 
1987 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1988 	tmp &= ~which;
1989 	if (on)
1990 		tmp |= which;
1991 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1992 fail:
1993 	return (error);
1994 }
1995 
1996 static void
1997 zyd_set_multi(struct zyd_softc *sc)
1998 {
1999 	int error;
2000 	struct ifnet *ifp = sc->sc_ifp;
2001 	struct ieee80211com *ic = ifp->if_l2com;
2002 	struct ifmultiaddr *ifma;
2003 	uint32_t low, high;
2004 	uint8_t v;
2005 
2006 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2007 		return;
2008 
2009 	low = 0x00000000;
2010 	high = 0x80000000;
2011 
2012 	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
2013 	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
2014 		low = 0xffffffff;
2015 		high = 0xffffffff;
2016 	} else {
2017 		if_maddr_rlock(ifp);
2018 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2019 			if (ifma->ifma_addr->sa_family != AF_LINK)
2020 				continue;
2021 			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
2022 			    ifma->ifma_addr))[5] >> 2;
2023 			if (v < 32)
2024 				low |= 1 << v;
2025 			else
2026 				high |= 1 << (v - 32);
2027 		}
2028 		if_maddr_runlock(ifp);
2029 	}
2030 
2031 	/* reprogram multicast global hash table */
2032 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2033 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2034 fail:
2035 	if (error != 0)
2036 		device_printf(sc->sc_dev,
2037 		    "could not set multicast hash table\n");
2038 }
2039 
2040 static void
2041 zyd_update_mcast(struct ifnet *ifp)
2042 {
2043 	struct zyd_softc *sc = ifp->if_softc;
2044 
2045 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2046 		return;
2047 
2048 	ZYD_LOCK(sc);
2049 	zyd_set_multi(sc);
2050 	ZYD_UNLOCK(sc);
2051 }
2052 
2053 static int
2054 zyd_set_rxfilter(struct zyd_softc *sc)
2055 {
2056 	struct ifnet *ifp = sc->sc_ifp;
2057 	struct ieee80211com *ic = ifp->if_l2com;
2058 	uint32_t rxfilter;
2059 
2060 	switch (ic->ic_opmode) {
2061 	case IEEE80211_M_STA:
2062 		rxfilter = ZYD_FILTER_BSS;
2063 		break;
2064 	case IEEE80211_M_IBSS:
2065 	case IEEE80211_M_HOSTAP:
2066 		rxfilter = ZYD_FILTER_HOSTAP;
2067 		break;
2068 	case IEEE80211_M_MONITOR:
2069 		rxfilter = ZYD_FILTER_MONITOR;
2070 		break;
2071 	default:
2072 		/* should not get there */
2073 		return (EINVAL);
2074 	}
2075 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2076 }
2077 
2078 static void
2079 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2080 {
2081 	int error;
2082 	struct ifnet *ifp = sc->sc_ifp;
2083 	struct ieee80211com *ic = ifp->if_l2com;
2084 	struct zyd_rf *rf = &sc->sc_rf;
2085 	uint32_t tmp;
2086 	int chan;
2087 
2088 	chan = ieee80211_chan2ieee(ic, c);
2089 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2090 		/* XXX should NEVER happen */
2091 		device_printf(sc->sc_dev,
2092 		    "%s: invalid channel %x\n", __func__, chan);
2093 		return;
2094 	}
2095 
2096 	error = zyd_lock_phy(sc);
2097 	if (error != 0)
2098 		goto fail;
2099 
2100 	error = (*rf->set_channel)(rf, chan);
2101 	if (error != 0)
2102 		goto fail;
2103 
2104 	if (rf->update_pwr) {
2105 		/* update Tx power */
2106 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2107 
2108 		if (sc->sc_macrev == ZYD_ZD1211B) {
2109 			zyd_write16_m(sc, ZYD_CR67,
2110 			    sc->sc_ofdm36_cal[chan - 1]);
2111 			zyd_write16_m(sc, ZYD_CR66,
2112 			    sc->sc_ofdm48_cal[chan - 1]);
2113 			zyd_write16_m(sc, ZYD_CR65,
2114 			    sc->sc_ofdm54_cal[chan - 1]);
2115 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2116 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2117 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2118 		}
2119 	}
2120 	if (sc->sc_cckgain) {
2121 		/* set CCK baseband gain from EEPROM */
2122 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2123 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2124 	}
2125 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2126 		error = (*rf->bandedge6)(rf, c);
2127 		if (error != 0)
2128 			goto fail;
2129 	}
2130 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2131 
2132 	error = zyd_unlock_phy(sc);
2133 	if (error != 0)
2134 		goto fail;
2135 
2136 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2137 	    htole16(c->ic_freq);
2138 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2139 	    htole16(c->ic_flags);
2140 fail:
2141 	return;
2142 }
2143 
2144 static int
2145 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2146 {
2147 	int error;
2148 	uint32_t val;
2149 
2150 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2151 	sc->sc_atim_wnd = val;
2152 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2153 	sc->sc_pre_tbtt = val;
2154 	sc->sc_bcn_int = bintval;
2155 
2156 	if (sc->sc_bcn_int <= 5)
2157 		sc->sc_bcn_int = 5;
2158 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2159 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2160 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2161 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2162 
2163 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2164 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2165 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2166 fail:
2167 	return (error);
2168 }
2169 
2170 static void
2171 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2172 {
2173 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2174 	struct ifnet *ifp = sc->sc_ifp;
2175 	struct ieee80211com *ic = ifp->if_l2com;
2176 	struct zyd_plcphdr plcp;
2177 	struct zyd_rx_stat stat;
2178 	struct usb_page_cache *pc;
2179 	struct mbuf *m;
2180 	int rlen, rssi;
2181 
2182 	if (len < ZYD_MIN_FRAGSZ) {
2183 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2184 		    device_get_nameunit(sc->sc_dev), len);
2185 		ifp->if_ierrors++;
2186 		return;
2187 	}
2188 	pc = usbd_xfer_get_frame(xfer, 0);
2189 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2190 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2191 
2192 	if (stat.flags & ZYD_RX_ERROR) {
2193 		DPRINTF(sc, ZYD_DEBUG_RECV,
2194 		    "%s: RX status indicated error (%x)\n",
2195 		    device_get_nameunit(sc->sc_dev), stat.flags);
2196 		ifp->if_ierrors++;
2197 		return;
2198 	}
2199 
2200 	/* compute actual frame length */
2201 	rlen = len - sizeof(struct zyd_plcphdr) -
2202 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2203 
2204 	/* allocate a mbuf to store the frame */
2205 	if (rlen > (int)MCLBYTES) {
2206 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2207 		    device_get_nameunit(sc->sc_dev), rlen);
2208 		ifp->if_ierrors++;
2209 		return;
2210 	} else if (rlen > (int)MHLEN)
2211 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2212 	else
2213 		m = m_gethdr(M_NOWAIT, MT_DATA);
2214 	if (m == NULL) {
2215 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2216 		    device_get_nameunit(sc->sc_dev));
2217 		ifp->if_ierrors++;
2218 		return;
2219 	}
2220 	m->m_pkthdr.rcvif = ifp;
2221 	m->m_pkthdr.len = m->m_len = rlen;
2222 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2223 
2224 	if (ieee80211_radiotap_active(ic)) {
2225 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2226 
2227 		tap->wr_flags = 0;
2228 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2229 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2230 		/* XXX toss, no way to express errors */
2231 		if (stat.flags & ZYD_RX_DECRYPTERR)
2232 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2233 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2234 		    (stat.flags & ZYD_RX_OFDM) ?
2235 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2236 		tap->wr_antsignal = stat.rssi + -95;
2237 		tap->wr_antnoise = -95;	/* XXX */
2238 	}
2239 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2240 
2241 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2242 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2243 	sc->sc_rx_count++;
2244 }
2245 
2246 static void
2247 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2248 {
2249 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2250 	struct ifnet *ifp = sc->sc_ifp;
2251 	struct ieee80211com *ic = ifp->if_l2com;
2252 	struct ieee80211_node *ni;
2253 	struct zyd_rx_desc desc;
2254 	struct mbuf *m;
2255 	struct usb_page_cache *pc;
2256 	uint32_t offset;
2257 	uint8_t rssi;
2258 	int8_t nf;
2259 	int i;
2260 	int actlen;
2261 
2262 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2263 
2264 	sc->sc_rx_count = 0;
2265 	switch (USB_GET_STATE(xfer)) {
2266 	case USB_ST_TRANSFERRED:
2267 		pc = usbd_xfer_get_frame(xfer, 0);
2268 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2269 
2270 		offset = 0;
2271 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2272 			DPRINTF(sc, ZYD_DEBUG_RECV,
2273 			    "%s: received multi-frame transfer\n", __func__);
2274 
2275 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2276 				uint16_t len16 = UGETW(desc.len[i]);
2277 
2278 				if (len16 == 0 || len16 > actlen)
2279 					break;
2280 
2281 				zyd_rx_data(xfer, offset, len16);
2282 
2283 				/* next frame is aligned on a 32-bit boundary */
2284 				len16 = (len16 + 3) & ~3;
2285 				offset += len16;
2286 				if (len16 > actlen)
2287 					break;
2288 				actlen -= len16;
2289 			}
2290 		} else {
2291 			DPRINTF(sc, ZYD_DEBUG_RECV,
2292 			    "%s: received single-frame transfer\n", __func__);
2293 
2294 			zyd_rx_data(xfer, 0, actlen);
2295 		}
2296 		/* FALLTHROUGH */
2297 	case USB_ST_SETUP:
2298 tr_setup:
2299 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2300 		usbd_transfer_submit(xfer);
2301 
2302 		/*
2303 		 * At the end of a USB callback it is always safe to unlock
2304 		 * the private mutex of a device! That is why we do the
2305 		 * "ieee80211_input" here, and not some lines up!
2306 		 */
2307 		ZYD_UNLOCK(sc);
2308 		for (i = 0; i < sc->sc_rx_count; i++) {
2309 			rssi = sc->sc_rx_data[i].rssi;
2310 			m = sc->sc_rx_data[i].m;
2311 			sc->sc_rx_data[i].m = NULL;
2312 
2313 			nf = -95;	/* XXX */
2314 
2315 			ni = ieee80211_find_rxnode(ic,
2316 			    mtod(m, struct ieee80211_frame_min *));
2317 			if (ni != NULL) {
2318 				(void)ieee80211_input(ni, m, rssi, nf);
2319 				ieee80211_free_node(ni);
2320 			} else
2321 				(void)ieee80211_input_all(ic, m, rssi, nf);
2322 		}
2323 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2324 		    !IFQ_IS_EMPTY(&ifp->if_snd))
2325 			zyd_start(ifp);
2326 		ZYD_LOCK(sc);
2327 		break;
2328 
2329 	default:			/* Error */
2330 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2331 
2332 		if (error != USB_ERR_CANCELLED) {
2333 			/* try to clear stall first */
2334 			usbd_xfer_set_stall(xfer);
2335 			goto tr_setup;
2336 		}
2337 		break;
2338 	}
2339 }
2340 
2341 static uint8_t
2342 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2343 {
2344 	switch (rate) {
2345 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2346 	case 12:
2347 		return (0xb);
2348 	case 18:
2349 		return (0xf);
2350 	case 24:
2351 		return (0xa);
2352 	case 36:
2353 		return (0xe);
2354 	case 48:
2355 		return (0x9);
2356 	case 72:
2357 		return (0xd);
2358 	case 96:
2359 		return (0x8);
2360 	case 108:
2361 		return (0xc);
2362 	/* CCK rates (NB: not IEEE std, device-specific) */
2363 	case 2:
2364 		return (0x0);
2365 	case 4:
2366 		return (0x1);
2367 	case 11:
2368 		return (0x2);
2369 	case 22:
2370 		return (0x3);
2371 	}
2372 
2373 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2374 	return (0x0);
2375 }
2376 
2377 static void
2378 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2379 {
2380 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2381 	struct ifnet *ifp = sc->sc_ifp;
2382 	struct ieee80211vap *vap;
2383 	struct zyd_tx_data *data;
2384 	struct mbuf *m;
2385 	struct usb_page_cache *pc;
2386 	int actlen;
2387 
2388 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2389 
2390 	switch (USB_GET_STATE(xfer)) {
2391 	case USB_ST_TRANSFERRED:
2392 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2393 		    actlen);
2394 
2395 		/* free resources */
2396 		data = usbd_xfer_get_priv(xfer);
2397 		zyd_tx_free(data, 0);
2398 		usbd_xfer_set_priv(xfer, NULL);
2399 
2400 		ifp->if_opackets++;
2401 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2402 
2403 		/* FALLTHROUGH */
2404 	case USB_ST_SETUP:
2405 tr_setup:
2406 		data = STAILQ_FIRST(&sc->tx_q);
2407 		if (data) {
2408 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2409 			m = data->m;
2410 
2411 			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2412 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2413 				    m->m_pkthdr.len);
2414 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2415 			}
2416 			pc = usbd_xfer_get_frame(xfer, 0);
2417 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2418 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2419 			    m->m_pkthdr.len);
2420 
2421 			vap = data->ni->ni_vap;
2422 			if (ieee80211_radiotap_active_vap(vap)) {
2423 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2424 
2425 				tap->wt_flags = 0;
2426 				tap->wt_rate = data->rate;
2427 
2428 				ieee80211_radiotap_tx(vap, m);
2429 			}
2430 
2431 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2432 			usbd_xfer_set_priv(xfer, data);
2433 			usbd_transfer_submit(xfer);
2434 		}
2435 		ZYD_UNLOCK(sc);
2436 		zyd_start(ifp);
2437 		ZYD_LOCK(sc);
2438 		break;
2439 
2440 	default:			/* Error */
2441 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2442 		    usbd_errstr(error));
2443 
2444 		ifp->if_oerrors++;
2445 		data = usbd_xfer_get_priv(xfer);
2446 		usbd_xfer_set_priv(xfer, NULL);
2447 		if (data != NULL)
2448 			zyd_tx_free(data, error);
2449 
2450 		if (error != USB_ERR_CANCELLED) {
2451 			if (error == USB_ERR_TIMEOUT)
2452 				device_printf(sc->sc_dev, "device timeout\n");
2453 
2454 			/*
2455 			 * Try to clear stall first, also if other
2456 			 * errors occur, hence clearing stall
2457 			 * introduces a 50 ms delay:
2458 			 */
2459 			usbd_xfer_set_stall(xfer);
2460 			goto tr_setup;
2461 		}
2462 		break;
2463 	}
2464 }
2465 
2466 static int
2467 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2468 {
2469 	struct ieee80211vap *vap = ni->ni_vap;
2470 	struct ieee80211com *ic = ni->ni_ic;
2471 	struct zyd_tx_desc *desc;
2472 	struct zyd_tx_data *data;
2473 	struct ieee80211_frame *wh;
2474 	const struct ieee80211_txparam *tp;
2475 	struct ieee80211_key *k;
2476 	int rate, totlen;
2477 	static uint8_t ratediv[] = ZYD_TX_RATEDIV;
2478 	uint8_t phy;
2479 	uint16_t pktlen;
2480 	uint32_t bits;
2481 
2482 	wh = mtod(m0, struct ieee80211_frame *);
2483 	data = STAILQ_FIRST(&sc->tx_free);
2484 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2485 	sc->tx_nfree--;
2486 
2487 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT ||
2488 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2489 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2490 		rate = tp->mgmtrate;
2491 	} else {
2492 		tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2493 		/* for data frames */
2494 		if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2495 			rate = tp->mcastrate;
2496 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2497 			rate = tp->ucastrate;
2498 		else {
2499 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2500 			rate = ni->ni_txrate;
2501 		}
2502 	}
2503 
2504 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2505 		k = ieee80211_crypto_encap(ni, m0);
2506 		if (k == NULL) {
2507 			m_freem(m0);
2508 			return (ENOBUFS);
2509 		}
2510 		/* packet header may have moved, reset our local pointer */
2511 		wh = mtod(m0, struct ieee80211_frame *);
2512 	}
2513 
2514 	data->ni = ni;
2515 	data->m = m0;
2516 	data->rate = rate;
2517 
2518 	/* fill Tx descriptor */
2519 	desc = &data->desc;
2520 	phy = zyd_plcp_signal(sc, rate);
2521 	desc->phy = phy;
2522 	if (ZYD_RATE_IS_OFDM(rate)) {
2523 		desc->phy |= ZYD_TX_PHY_OFDM;
2524 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2525 			desc->phy |= ZYD_TX_PHY_5GHZ;
2526 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2527 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2528 
2529 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2530 	desc->len = htole16(totlen);
2531 
2532 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2533 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2534 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2535 		if (totlen > vap->iv_rtsthreshold) {
2536 			desc->flags |= ZYD_TX_FLAG_RTS;
2537 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2538 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2539 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2540 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2541 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2542 				desc->flags |= ZYD_TX_FLAG_RTS;
2543 		}
2544 	} else
2545 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2546 	if ((wh->i_fc[0] &
2547 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2548 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2549 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2550 
2551 	/* actual transmit length (XXX why +10?) */
2552 	pktlen = ZYD_TX_DESC_SIZE + 10;
2553 	if (sc->sc_macrev == ZYD_ZD1211)
2554 		pktlen += totlen;
2555 	desc->pktlen = htole16(pktlen);
2556 
2557 	bits = (rate == 11) ? (totlen * 16) + 10 :
2558 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2559 	desc->plcp_length = htole16(bits / ratediv[phy]);
2560 	desc->plcp_service = 0;
2561 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2562 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2563 	desc->nextlen = 0;
2564 
2565 	if (ieee80211_radiotap_active_vap(vap)) {
2566 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2567 
2568 		tap->wt_flags = 0;
2569 		tap->wt_rate = rate;
2570 
2571 		ieee80211_radiotap_tx(vap, m0);
2572 	}
2573 
2574 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2575 	    "%s: sending data frame len=%zu rate=%u\n",
2576 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2577 		rate);
2578 
2579 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2580 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2581 
2582 	return (0);
2583 }
2584 
2585 static void
2586 zyd_start(struct ifnet *ifp)
2587 {
2588 	struct zyd_softc *sc = ifp->if_softc;
2589 	struct ieee80211_node *ni;
2590 	struct mbuf *m;
2591 
2592 	ZYD_LOCK(sc);
2593 	for (;;) {
2594 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2595 		if (m == NULL)
2596 			break;
2597 		if (sc->tx_nfree == 0) {
2598 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2599 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2600 			break;
2601 		}
2602 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2603 		if (zyd_tx_start(sc, m, ni) != 0) {
2604 			ieee80211_free_node(ni);
2605 			ifp->if_oerrors++;
2606 			break;
2607 		}
2608 	}
2609 	ZYD_UNLOCK(sc);
2610 }
2611 
2612 static int
2613 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2614 	const struct ieee80211_bpf_params *params)
2615 {
2616 	struct ieee80211com *ic = ni->ni_ic;
2617 	struct ifnet *ifp = ic->ic_ifp;
2618 	struct zyd_softc *sc = ifp->if_softc;
2619 
2620 	ZYD_LOCK(sc);
2621 	/* prevent management frames from being sent if we're not ready */
2622 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2623 		ZYD_UNLOCK(sc);
2624 		m_freem(m);
2625 		ieee80211_free_node(ni);
2626 		return (ENETDOWN);
2627 	}
2628 	if (sc->tx_nfree == 0) {
2629 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2630 		ZYD_UNLOCK(sc);
2631 		m_freem(m);
2632 		ieee80211_free_node(ni);
2633 		return (ENOBUFS);		/* XXX */
2634 	}
2635 
2636 	/*
2637 	 * Legacy path; interpret frame contents to decide
2638 	 * precisely how to send the frame.
2639 	 * XXX raw path
2640 	 */
2641 	if (zyd_tx_start(sc, m, ni) != 0) {
2642 		ZYD_UNLOCK(sc);
2643 		ifp->if_oerrors++;
2644 		ieee80211_free_node(ni);
2645 		return (EIO);
2646 	}
2647 	ZYD_UNLOCK(sc);
2648 	return (0);
2649 }
2650 
2651 static int
2652 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2653 {
2654 	struct zyd_softc *sc = ifp->if_softc;
2655 	struct ieee80211com *ic = ifp->if_l2com;
2656 	struct ifreq *ifr = (struct ifreq *) data;
2657 	int error;
2658 	int startall = 0;
2659 
2660 	ZYD_LOCK(sc);
2661 	error = (sc->sc_flags & ZYD_FLAG_DETACHED) ? ENXIO : 0;
2662 	ZYD_UNLOCK(sc);
2663 	if (error)
2664 		return (error);
2665 
2666 	switch (cmd) {
2667 	case SIOCSIFFLAGS:
2668 		ZYD_LOCK(sc);
2669 		if (ifp->if_flags & IFF_UP) {
2670 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2671 				zyd_init_locked(sc);
2672 				startall = 1;
2673 			} else
2674 				zyd_set_multi(sc);
2675 		} else {
2676 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2677 				zyd_stop(sc);
2678 		}
2679 		ZYD_UNLOCK(sc);
2680 		if (startall)
2681 			ieee80211_start_all(ic);
2682 		break;
2683 	case SIOCGIFMEDIA:
2684 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2685 		break;
2686 	case SIOCGIFADDR:
2687 		error = ether_ioctl(ifp, cmd, data);
2688 		break;
2689 	default:
2690 		error = EINVAL;
2691 		break;
2692 	}
2693 	return (error);
2694 }
2695 
2696 static void
2697 zyd_init_locked(struct zyd_softc *sc)
2698 {
2699 	struct ifnet *ifp = sc->sc_ifp;
2700 	struct ieee80211com *ic = ifp->if_l2com;
2701 	struct usb_config_descriptor *cd;
2702 	int error;
2703 	uint32_t val;
2704 
2705 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2706 
2707 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2708 		error = zyd_loadfirmware(sc);
2709 		if (error != 0) {
2710 			device_printf(sc->sc_dev,
2711 			    "could not load firmware (error=%d)\n", error);
2712 			goto fail;
2713 		}
2714 
2715 		/* reset device */
2716 		cd = usbd_get_config_descriptor(sc->sc_udev);
2717 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2718 		    cd->bConfigurationValue);
2719 		if (error)
2720 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2721 
2722 		error = zyd_hw_init(sc);
2723 		if (error) {
2724 			device_printf(sc->sc_dev,
2725 			    "hardware initialization failed\n");
2726 			goto fail;
2727 		}
2728 
2729 		device_printf(sc->sc_dev,
2730 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2731 		    "BE%x NP%x Gain%x F%x\n",
2732 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2733 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2734 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2735 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2736 		    sc->sc_cckgain, sc->sc_fix_cr157);
2737 
2738 		/* read regulatory domain (currently unused) */
2739 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2740 		sc->sc_regdomain = val >> 16;
2741 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2742 		    sc->sc_regdomain);
2743 
2744 		/* we'll do software WEP decryption for now */
2745 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2746 		    __func__);
2747 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2748 
2749 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2750 	}
2751 
2752 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2753 		zyd_stop(sc);
2754 
2755 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2756 	    IF_LLADDR(ifp), ":");
2757 	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2758 	if (error != 0)
2759 		return;
2760 
2761 	/* set basic rates */
2762 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2763 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2764 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2765 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2766 	else	/* assumes 802.11b/g */
2767 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2768 
2769 	/* promiscuous mode */
2770 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2771 	/* multicast setup */
2772 	zyd_set_multi(sc);
2773 	/* set RX filter  */
2774 	error = zyd_set_rxfilter(sc);
2775 	if (error != 0)
2776 		goto fail;
2777 
2778 	/* switch radio transmitter ON */
2779 	error = zyd_switch_radio(sc, 1);
2780 	if (error != 0)
2781 		goto fail;
2782 	/* set default BSS channel */
2783 	zyd_set_chan(sc, ic->ic_curchan);
2784 
2785 	/*
2786 	 * Allocate Tx and Rx xfer queues.
2787 	 */
2788 	zyd_setup_tx_list(sc);
2789 
2790 	/* enable interrupts */
2791 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2792 
2793 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2794 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2795 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2796 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2797 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2798 
2799 	return;
2800 
2801 fail:	zyd_stop(sc);
2802 	return;
2803 }
2804 
2805 static void
2806 zyd_init(void *priv)
2807 {
2808 	struct zyd_softc *sc = priv;
2809 	struct ifnet *ifp = sc->sc_ifp;
2810 	struct ieee80211com *ic = ifp->if_l2com;
2811 
2812 	ZYD_LOCK(sc);
2813 	zyd_init_locked(sc);
2814 	ZYD_UNLOCK(sc);
2815 
2816 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2817 		ieee80211_start_all(ic);		/* start all vap's */
2818 }
2819 
2820 static void
2821 zyd_stop(struct zyd_softc *sc)
2822 {
2823 	struct ifnet *ifp = sc->sc_ifp;
2824 	int error;
2825 
2826 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2827 
2828 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2829 
2830 	/*
2831 	 * Drain all the transfers, if not already drained:
2832 	 */
2833 	ZYD_UNLOCK(sc);
2834 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2835 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2836 	ZYD_LOCK(sc);
2837 
2838 	zyd_unsetup_tx_list(sc);
2839 
2840 	/* Stop now if the device was never set up */
2841 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2842 		return;
2843 
2844 	/* switch radio transmitter OFF */
2845 	error = zyd_switch_radio(sc, 0);
2846 	if (error != 0)
2847 		goto fail;
2848 	/* disable Rx */
2849 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2850 	/* disable interrupts */
2851 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2852 
2853 fail:
2854 	return;
2855 }
2856 
2857 static int
2858 zyd_loadfirmware(struct zyd_softc *sc)
2859 {
2860 	struct usb_device_request req;
2861 	size_t size;
2862 	u_char *fw;
2863 	uint8_t stat;
2864 	uint16_t addr;
2865 
2866 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2867 		return (0);
2868 
2869 	if (sc->sc_macrev == ZYD_ZD1211) {
2870 		fw = (u_char *)zd1211_firmware;
2871 		size = sizeof(zd1211_firmware);
2872 	} else {
2873 		fw = (u_char *)zd1211b_firmware;
2874 		size = sizeof(zd1211b_firmware);
2875 	}
2876 
2877 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2878 	req.bRequest = ZYD_DOWNLOADREQ;
2879 	USETW(req.wIndex, 0);
2880 
2881 	addr = ZYD_FIRMWARE_START_ADDR;
2882 	while (size > 0) {
2883 		/*
2884 		 * When the transfer size is 4096 bytes, it is not
2885 		 * likely to be able to transfer it.
2886 		 * The cause is port or machine or chip?
2887 		 */
2888 		const int mlen = min(size, 64);
2889 
2890 		DPRINTF(sc, ZYD_DEBUG_FW,
2891 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2892 
2893 		USETW(req.wValue, addr);
2894 		USETW(req.wLength, mlen);
2895 		if (zyd_do_request(sc, &req, fw) != 0)
2896 			return (EIO);
2897 
2898 		addr += mlen / 2;
2899 		fw   += mlen;
2900 		size -= mlen;
2901 	}
2902 
2903 	/* check whether the upload succeeded */
2904 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2905 	req.bRequest = ZYD_DOWNLOADSTS;
2906 	USETW(req.wValue, 0);
2907 	USETW(req.wIndex, 0);
2908 	USETW(req.wLength, sizeof(stat));
2909 	if (zyd_do_request(sc, &req, &stat) != 0)
2910 		return (EIO);
2911 
2912 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2913 
2914 	return (stat & 0x80) ? (EIO) : (0);
2915 }
2916 
2917 static void
2918 zyd_scan_start(struct ieee80211com *ic)
2919 {
2920 	struct ifnet *ifp = ic->ic_ifp;
2921 	struct zyd_softc *sc = ifp->if_softc;
2922 
2923 	ZYD_LOCK(sc);
2924 	/* want broadcast address while scanning */
2925 	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2926 	ZYD_UNLOCK(sc);
2927 }
2928 
2929 static void
2930 zyd_scan_end(struct ieee80211com *ic)
2931 {
2932 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2933 
2934 	ZYD_LOCK(sc);
2935 	/* restore previous bssid */
2936 	zyd_set_bssid(sc, sc->sc_bssid);
2937 	ZYD_UNLOCK(sc);
2938 }
2939 
2940 static void
2941 zyd_set_channel(struct ieee80211com *ic)
2942 {
2943 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2944 
2945 	ZYD_LOCK(sc);
2946 	zyd_set_chan(sc, ic->ic_curchan);
2947 	ZYD_UNLOCK(sc);
2948 }
2949 
2950 static device_method_t zyd_methods[] = {
2951         /* Device interface */
2952         DEVMETHOD(device_probe, zyd_match),
2953         DEVMETHOD(device_attach, zyd_attach),
2954         DEVMETHOD(device_detach, zyd_detach),
2955 	DEVMETHOD_END
2956 };
2957 
2958 static driver_t zyd_driver = {
2959 	.name = "zyd",
2960 	.methods = zyd_methods,
2961 	.size = sizeof(struct zyd_softc)
2962 };
2963 
2964 static devclass_t zyd_devclass;
2965 
2966 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2967 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2968 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2969 MODULE_VERSION(zyd, 1);
2970