1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include "opt_wlan.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/condvar.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kdb.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include <dev/usb/usbdi_util.h> 72 #include "usbdevs.h" 73 74 #include <dev/usb/wlan/if_zydreg.h> 75 #include <dev/usb/wlan/if_zydfw.h> 76 77 #ifdef USB_DEBUG 78 static int zyd_debug = 0; 79 80 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 81 "USB zyd"); 82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 83 "zyd debug level"); 84 85 enum { 86 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 87 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 88 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 89 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 90 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 91 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 92 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 93 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 94 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 95 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 96 ZYD_DEBUG_ANY = 0xffffffff 97 }; 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 if (zyd_debug & (m)) \ 100 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 101 } while (0) 102 #else 103 #define DPRINTF(sc, m, fmt, ...) do { \ 104 (void) sc; \ 105 } while (0) 106 #endif 107 108 #define zyd_do_request(sc,req,data) \ 109 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 110 111 static device_probe_t zyd_match; 112 static device_attach_t zyd_attach; 113 static device_detach_t zyd_detach; 114 115 static usb_callback_t zyd_intr_read_callback; 116 static usb_callback_t zyd_intr_write_callback; 117 static usb_callback_t zyd_bulk_read_callback; 118 static usb_callback_t zyd_bulk_write_callback; 119 120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 121 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 122 const uint8_t [IEEE80211_ADDR_LEN], 123 const uint8_t [IEEE80211_ADDR_LEN]); 124 static void zyd_vap_delete(struct ieee80211vap *); 125 static void zyd_tx_free(struct zyd_tx_data *, int); 126 static void zyd_setup_tx_list(struct zyd_softc *); 127 static void zyd_unsetup_tx_list(struct zyd_softc *); 128 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 129 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 130 void *, int, int); 131 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 132 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 133 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 134 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 135 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 136 static int zyd_lock_phy(struct zyd_softc *); 137 static int zyd_unlock_phy(struct zyd_softc *); 138 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 139 static const char *zyd_rf_name(uint8_t); 140 static int zyd_hw_init(struct zyd_softc *); 141 static int zyd_read_pod(struct zyd_softc *); 142 static int zyd_read_eeprom(struct zyd_softc *); 143 static int zyd_get_macaddr(struct zyd_softc *); 144 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 145 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 146 static int zyd_switch_radio(struct zyd_softc *, int); 147 static int zyd_set_led(struct zyd_softc *, int, int); 148 static void zyd_set_multi(struct zyd_softc *); 149 static void zyd_update_mcast(struct ieee80211com *); 150 static int zyd_set_rxfilter(struct zyd_softc *); 151 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 152 static int zyd_set_beacon_interval(struct zyd_softc *, int); 153 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 154 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 155 struct ieee80211_node *); 156 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 157 static void zyd_start(struct zyd_softc *); 158 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 159 const struct ieee80211_bpf_params *); 160 static void zyd_parent(struct ieee80211com *); 161 static void zyd_init_locked(struct zyd_softc *); 162 static void zyd_stop(struct zyd_softc *); 163 static int zyd_loadfirmware(struct zyd_softc *); 164 static void zyd_scan_start(struct ieee80211com *); 165 static void zyd_scan_end(struct ieee80211com *); 166 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 167 struct ieee80211_channel[]); 168 static void zyd_set_channel(struct ieee80211com *); 169 static int zyd_rfmd_init(struct zyd_rf *); 170 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 171 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 172 static int zyd_al2230_init(struct zyd_rf *); 173 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 174 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 176 static int zyd_al2230_init_b(struct zyd_rf *); 177 static int zyd_al7230B_init(struct zyd_rf *); 178 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 179 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 180 static int zyd_al2210_init(struct zyd_rf *); 181 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 182 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 183 static int zyd_gct_init(struct zyd_rf *); 184 static int zyd_gct_switch_radio(struct zyd_rf *, int); 185 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 186 static int zyd_gct_mode(struct zyd_rf *); 187 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 188 static int zyd_gct_write(struct zyd_rf *, uint16_t); 189 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 190 static int zyd_maxim2_init(struct zyd_rf *); 191 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 192 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 193 194 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 195 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 196 197 /* various supported device vendors/products */ 198 #define ZYD_ZD1211 0 199 #define ZYD_ZD1211B 1 200 201 #define ZYD_ZD1211_DEV(v,p) \ 202 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 203 #define ZYD_ZD1211B_DEV(v,p) \ 204 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 205 static const STRUCT_USB_HOST_ID zyd_devs[] = { 206 /* ZYD_ZD1211 */ 207 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 208 ZYD_ZD1211_DEV(ABOCOM, WL54), 209 ZYD_ZD1211_DEV(ASUS, WL159G), 210 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 211 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 213 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 215 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 216 ZYD_ZD1211_DEV(SAGEM, XG760A), 217 ZYD_ZD1211_DEV(SENAO, NUB8301), 218 ZYD_ZD1211_DEV(SITECOMEU, WL113), 219 ZYD_ZD1211_DEV(SWEEX, ZD1211), 220 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 222 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 223 ZYD_ZD1211_DEV(TWINMOS, G240), 224 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 226 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 227 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 228 ZYD_ZD1211_DEV(ZCOM, ZD1211), 229 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 230 ZYD_ZD1211_DEV(ZYXEL, AG225H), 231 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 232 ZYD_ZD1211_DEV(ZYXEL, G200V2), 233 /* ZYD_ZD1211B */ 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 235 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 236 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 237 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 238 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 239 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 240 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 241 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 242 ZYD_ZD1211B_DEV(MELCO, KG54L), 243 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 244 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 245 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 246 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 247 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 248 ZYD_ZD1211B_DEV(USR, USR5423), 249 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 250 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 252 ZYD_ZD1211B_DEV(ZYXEL, M202), 253 ZYD_ZD1211B_DEV(ZYXEL, G202), 254 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 255 }; 256 257 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 258 [ZYD_BULK_WR] = { 259 .type = UE_BULK, 260 .endpoint = UE_ADDR_ANY, 261 .direction = UE_DIR_OUT, 262 .bufsize = ZYD_MAX_TXBUFSZ, 263 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 264 .callback = zyd_bulk_write_callback, 265 .ep_index = 0, 266 .timeout = 10000, /* 10 seconds */ 267 }, 268 [ZYD_BULK_RD] = { 269 .type = UE_BULK, 270 .endpoint = UE_ADDR_ANY, 271 .direction = UE_DIR_IN, 272 .bufsize = ZYX_MAX_RXBUFSZ, 273 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 274 .callback = zyd_bulk_read_callback, 275 .ep_index = 0, 276 }, 277 [ZYD_INTR_WR] = { 278 .type = UE_BULK_INTR, 279 .endpoint = UE_ADDR_ANY, 280 .direction = UE_DIR_OUT, 281 .bufsize = sizeof(struct zyd_cmd), 282 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 283 .callback = zyd_intr_write_callback, 284 .timeout = 1000, /* 1 second */ 285 .ep_index = 1, 286 }, 287 [ZYD_INTR_RD] = { 288 .type = UE_INTERRUPT, 289 .endpoint = UE_ADDR_ANY, 290 .direction = UE_DIR_IN, 291 .bufsize = sizeof(struct zyd_cmd), 292 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 293 .callback = zyd_intr_read_callback, 294 }, 295 }; 296 #define zyd_read16_m(sc, val, data) do { \ 297 error = zyd_read16(sc, val, data); \ 298 if (error != 0) \ 299 goto fail; \ 300 } while (0) 301 #define zyd_write16_m(sc, val, data) do { \ 302 error = zyd_write16(sc, val, data); \ 303 if (error != 0) \ 304 goto fail; \ 305 } while (0) 306 #define zyd_read32_m(sc, val, data) do { \ 307 error = zyd_read32(sc, val, data); \ 308 if (error != 0) \ 309 goto fail; \ 310 } while (0) 311 #define zyd_write32_m(sc, val, data) do { \ 312 error = zyd_write32(sc, val, data); \ 313 if (error != 0) \ 314 goto fail; \ 315 } while (0) 316 317 static int 318 zyd_match(device_t dev) 319 { 320 struct usb_attach_arg *uaa = device_get_ivars(dev); 321 322 if (uaa->usb_mode != USB_MODE_HOST) 323 return (ENXIO); 324 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 325 return (ENXIO); 326 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 327 return (ENXIO); 328 329 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 330 } 331 332 static int 333 zyd_attach(device_t dev) 334 { 335 struct usb_attach_arg *uaa = device_get_ivars(dev); 336 struct zyd_softc *sc = device_get_softc(dev); 337 struct ieee80211com *ic = &sc->sc_ic; 338 uint8_t iface_index; 339 int error; 340 341 if (uaa->info.bcdDevice < 0x4330) { 342 device_printf(dev, "device version mismatch: 0x%X " 343 "(only >= 43.30 supported)\n", 344 uaa->info.bcdDevice); 345 return (EINVAL); 346 } 347 348 device_set_usb_desc(dev); 349 sc->sc_dev = dev; 350 sc->sc_udev = uaa->device; 351 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 352 353 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 354 MTX_NETWORK_LOCK, MTX_DEF); 355 STAILQ_INIT(&sc->sc_rqh); 356 mbufq_init(&sc->sc_snd, ifqmaxlen); 357 358 iface_index = ZYD_IFACE_INDEX; 359 error = usbd_transfer_setup(uaa->device, 360 &iface_index, sc->sc_xfer, zyd_config, 361 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 362 if (error) { 363 device_printf(dev, "could not allocate USB transfers, " 364 "err=%s\n", usbd_errstr(error)); 365 goto detach; 366 } 367 368 ZYD_LOCK(sc); 369 if ((error = zyd_get_macaddr(sc)) != 0) { 370 device_printf(sc->sc_dev, "could not read EEPROM\n"); 371 ZYD_UNLOCK(sc); 372 goto detach; 373 } 374 ZYD_UNLOCK(sc); 375 376 ic->ic_softc = sc; 377 ic->ic_name = device_get_nameunit(dev); 378 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 379 ic->ic_opmode = IEEE80211_M_STA; 380 381 /* set device capabilities */ 382 ic->ic_caps = 383 IEEE80211_C_STA /* station mode */ 384 | IEEE80211_C_MONITOR /* monitor mode */ 385 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 386 | IEEE80211_C_SHSLOT /* short slot time supported */ 387 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 388 | IEEE80211_C_WPA /* 802.11i */ 389 ; 390 391 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 392 ic->ic_channels); 393 394 ieee80211_ifattach(ic); 395 ic->ic_raw_xmit = zyd_raw_xmit; 396 ic->ic_scan_start = zyd_scan_start; 397 ic->ic_scan_end = zyd_scan_end; 398 ic->ic_getradiocaps = zyd_getradiocaps; 399 ic->ic_set_channel = zyd_set_channel; 400 ic->ic_vap_create = zyd_vap_create; 401 ic->ic_vap_delete = zyd_vap_delete; 402 ic->ic_update_mcast = zyd_update_mcast; 403 ic->ic_update_promisc = zyd_update_mcast; 404 ic->ic_parent = zyd_parent; 405 ic->ic_transmit = zyd_transmit; 406 407 ieee80211_radiotap_attach(ic, 408 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 409 ZYD_TX_RADIOTAP_PRESENT, 410 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 411 ZYD_RX_RADIOTAP_PRESENT); 412 413 if (bootverbose) 414 ieee80211_announce(ic); 415 416 return (0); 417 418 detach: 419 zyd_detach(dev); 420 return (ENXIO); /* failure */ 421 } 422 423 static void 424 zyd_drain_mbufq(struct zyd_softc *sc) 425 { 426 struct mbuf *m; 427 struct ieee80211_node *ni; 428 429 ZYD_LOCK_ASSERT(sc, MA_OWNED); 430 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 431 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 432 m->m_pkthdr.rcvif = NULL; 433 ieee80211_free_node(ni); 434 m_freem(m); 435 } 436 } 437 438 static int 439 zyd_detach(device_t dev) 440 { 441 struct zyd_softc *sc = device_get_softc(dev); 442 struct ieee80211com *ic = &sc->sc_ic; 443 unsigned int x; 444 445 /* 446 * Prevent further allocations from RX/TX data 447 * lists and ioctls: 448 */ 449 ZYD_LOCK(sc); 450 sc->sc_flags |= ZYD_FLAG_DETACHED; 451 zyd_drain_mbufq(sc); 452 STAILQ_INIT(&sc->tx_q); 453 STAILQ_INIT(&sc->tx_free); 454 ZYD_UNLOCK(sc); 455 456 /* drain USB transfers */ 457 for (x = 0; x != ZYD_N_TRANSFER; x++) 458 usbd_transfer_drain(sc->sc_xfer[x]); 459 460 /* free TX list, if any */ 461 ZYD_LOCK(sc); 462 zyd_unsetup_tx_list(sc); 463 ZYD_UNLOCK(sc); 464 465 /* free USB transfers and some data buffers */ 466 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 467 468 if (ic->ic_softc == sc) 469 ieee80211_ifdetach(ic); 470 mtx_destroy(&sc->sc_mtx); 471 472 return (0); 473 } 474 475 static struct ieee80211vap * 476 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 477 enum ieee80211_opmode opmode, int flags, 478 const uint8_t bssid[IEEE80211_ADDR_LEN], 479 const uint8_t mac[IEEE80211_ADDR_LEN]) 480 { 481 struct zyd_vap *zvp; 482 struct ieee80211vap *vap; 483 484 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 485 return (NULL); 486 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 487 vap = &zvp->vap; 488 489 /* enable s/w bmiss handling for sta mode */ 490 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 491 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 492 /* out of memory */ 493 free(zvp, M_80211_VAP); 494 return (NULL); 495 } 496 497 /* override state transition machine */ 498 zvp->newstate = vap->iv_newstate; 499 vap->iv_newstate = zyd_newstate; 500 501 ieee80211_ratectl_init(vap); 502 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 503 504 /* complete setup */ 505 ieee80211_vap_attach(vap, ieee80211_media_change, 506 ieee80211_media_status, mac); 507 ic->ic_opmode = opmode; 508 return (vap); 509 } 510 511 static void 512 zyd_vap_delete(struct ieee80211vap *vap) 513 { 514 struct zyd_vap *zvp = ZYD_VAP(vap); 515 516 ieee80211_ratectl_deinit(vap); 517 ieee80211_vap_detach(vap); 518 free(zvp, M_80211_VAP); 519 } 520 521 static void 522 zyd_tx_free(struct zyd_tx_data *data, int txerr) 523 { 524 struct zyd_softc *sc = data->sc; 525 526 if (data->m != NULL) { 527 ieee80211_tx_complete(data->ni, data->m, txerr); 528 data->m = NULL; 529 data->ni = NULL; 530 } 531 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 532 sc->tx_nfree++; 533 } 534 535 static void 536 zyd_setup_tx_list(struct zyd_softc *sc) 537 { 538 struct zyd_tx_data *data; 539 int i; 540 541 sc->tx_nfree = 0; 542 STAILQ_INIT(&sc->tx_q); 543 STAILQ_INIT(&sc->tx_free); 544 545 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 546 data = &sc->tx_data[i]; 547 548 data->sc = sc; 549 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 550 sc->tx_nfree++; 551 } 552 } 553 554 static void 555 zyd_unsetup_tx_list(struct zyd_softc *sc) 556 { 557 struct zyd_tx_data *data; 558 int i; 559 560 /* make sure any subsequent use of the queues will fail */ 561 sc->tx_nfree = 0; 562 STAILQ_INIT(&sc->tx_q); 563 STAILQ_INIT(&sc->tx_free); 564 565 /* free up all node references and mbufs */ 566 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 567 data = &sc->tx_data[i]; 568 569 if (data->m != NULL) { 570 m_freem(data->m); 571 data->m = NULL; 572 } 573 if (data->ni != NULL) { 574 ieee80211_free_node(data->ni); 575 data->ni = NULL; 576 } 577 } 578 } 579 580 static int 581 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 582 { 583 struct zyd_vap *zvp = ZYD_VAP(vap); 584 struct ieee80211com *ic = vap->iv_ic; 585 struct zyd_softc *sc = ic->ic_softc; 586 int error; 587 588 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 589 ieee80211_state_name[vap->iv_state], 590 ieee80211_state_name[nstate]); 591 592 IEEE80211_UNLOCK(ic); 593 ZYD_LOCK(sc); 594 switch (nstate) { 595 case IEEE80211_S_AUTH: 596 zyd_set_chan(sc, ic->ic_curchan); 597 break; 598 case IEEE80211_S_RUN: 599 if (vap->iv_opmode == IEEE80211_M_MONITOR) 600 break; 601 602 /* turn link LED on */ 603 error = zyd_set_led(sc, ZYD_LED1, 1); 604 if (error != 0) 605 break; 606 607 /* make data LED blink upon Tx */ 608 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 609 610 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 611 zyd_set_bssid(sc, sc->sc_bssid); 612 break; 613 default: 614 break; 615 } 616 fail: 617 ZYD_UNLOCK(sc); 618 IEEE80211_LOCK(ic); 619 return (zvp->newstate(vap, nstate, arg)); 620 } 621 622 /* 623 * Callback handler for interrupt transfer 624 */ 625 static void 626 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 627 { 628 struct zyd_softc *sc = usbd_xfer_softc(xfer); 629 struct ieee80211com *ic = &sc->sc_ic; 630 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 631 struct ieee80211_node *ni; 632 struct zyd_cmd *cmd = &sc->sc_ibuf; 633 struct usb_page_cache *pc; 634 int datalen; 635 int actlen; 636 637 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 638 639 switch (USB_GET_STATE(xfer)) { 640 case USB_ST_TRANSFERRED: 641 pc = usbd_xfer_get_frame(xfer, 0); 642 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 643 644 switch (le16toh(cmd->code)) { 645 case ZYD_NOTIF_RETRYSTATUS: 646 { 647 struct zyd_notif_retry *retry = 648 (struct zyd_notif_retry *)cmd->data; 649 uint16_t count = le16toh(retry->count); 650 651 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 652 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 653 le16toh(retry->rate), ether_sprintf(retry->macaddr), 654 count & 0xff, count); 655 656 /* 657 * Find the node to which the packet was sent and 658 * update its retry statistics. In BSS mode, this node 659 * is the AP we're associated to so no lookup is 660 * actually needed. 661 */ 662 ni = ieee80211_find_txnode(vap, retry->macaddr); 663 if (ni != NULL) { 664 struct ieee80211_ratectl_tx_status *txs = 665 &sc->sc_txs; 666 int retrycnt = count & 0xff; 667 668 txs->flags = 669 IEEE80211_RATECTL_STATUS_LONG_RETRY; 670 txs->long_retries = retrycnt; 671 if (count & 0x100) { 672 txs->status = 673 IEEE80211_RATECTL_TX_FAIL_LONG; 674 } else { 675 txs->status = 676 IEEE80211_RATECTL_TX_SUCCESS; 677 } 678 679 ieee80211_ratectl_tx_complete(ni, txs); 680 ieee80211_free_node(ni); 681 } 682 if (count & 0x100) 683 /* too many retries */ 684 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 685 1); 686 break; 687 } 688 case ZYD_NOTIF_IORD: 689 { 690 struct zyd_rq *rqp; 691 692 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 693 break; /* HMAC interrupt */ 694 695 datalen = actlen - sizeof(cmd->code); 696 datalen -= 2; /* XXX: padding? */ 697 698 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 699 int i; 700 int count; 701 702 if (rqp->olen != datalen) 703 continue; 704 count = rqp->olen / sizeof(struct zyd_pair); 705 for (i = 0; i < count; i++) { 706 if (*(((const uint16_t *)rqp->idata) + i) != 707 (((struct zyd_pair *)cmd->data) + i)->reg) 708 break; 709 } 710 if (i != count) 711 continue; 712 /* copy answer into caller-supplied buffer */ 713 memcpy(rqp->odata, cmd->data, rqp->olen); 714 DPRINTF(sc, ZYD_DEBUG_CMD, 715 "command %p complete, data = %*D \n", 716 rqp, rqp->olen, (char *)rqp->odata, ":"); 717 wakeup(rqp); /* wakeup caller */ 718 break; 719 } 720 if (rqp == NULL) { 721 device_printf(sc->sc_dev, 722 "unexpected IORD notification %*D\n", 723 datalen, cmd->data, ":"); 724 } 725 break; 726 } 727 default: 728 device_printf(sc->sc_dev, "unknown notification %x\n", 729 le16toh(cmd->code)); 730 } 731 732 /* FALLTHROUGH */ 733 case USB_ST_SETUP: 734 tr_setup: 735 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 736 usbd_transfer_submit(xfer); 737 break; 738 739 default: /* Error */ 740 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 741 usbd_errstr(error)); 742 743 if (error != USB_ERR_CANCELLED) { 744 /* try to clear stall first */ 745 usbd_xfer_set_stall(xfer); 746 goto tr_setup; 747 } 748 break; 749 } 750 } 751 752 static void 753 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 754 { 755 struct zyd_softc *sc = usbd_xfer_softc(xfer); 756 struct zyd_rq *rqp, *cmd; 757 struct usb_page_cache *pc; 758 759 switch (USB_GET_STATE(xfer)) { 760 case USB_ST_TRANSFERRED: 761 cmd = usbd_xfer_get_priv(xfer); 762 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 763 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 764 /* Ensure the cached rq pointer is still valid */ 765 if (rqp == cmd && 766 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 767 wakeup(rqp); /* wakeup caller */ 768 } 769 770 /* FALLTHROUGH */ 771 case USB_ST_SETUP: 772 tr_setup: 773 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 774 if (rqp->flags & ZYD_CMD_FLAG_SENT) 775 continue; 776 777 pc = usbd_xfer_get_frame(xfer, 0); 778 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 779 780 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 781 usbd_xfer_set_priv(xfer, rqp); 782 rqp->flags |= ZYD_CMD_FLAG_SENT; 783 usbd_transfer_submit(xfer); 784 break; 785 } 786 break; 787 788 default: /* Error */ 789 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 790 usbd_errstr(error)); 791 792 if (error != USB_ERR_CANCELLED) { 793 /* try to clear stall first */ 794 usbd_xfer_set_stall(xfer); 795 goto tr_setup; 796 } 797 break; 798 } 799 } 800 801 static int 802 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 803 void *odata, int olen, int flags) 804 { 805 struct zyd_cmd cmd; 806 struct zyd_rq rq; 807 int error; 808 809 if (ilen > (int)sizeof(cmd.data)) 810 return (EINVAL); 811 812 cmd.code = htole16(code); 813 memcpy(cmd.data, idata, ilen); 814 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 815 &rq, ilen, idata, ":"); 816 817 rq.cmd = &cmd; 818 rq.idata = idata; 819 rq.odata = odata; 820 rq.ilen = sizeof(uint16_t) + ilen; 821 rq.olen = olen; 822 rq.flags = flags; 823 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 824 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 825 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 826 827 /* wait at most one second for command reply */ 828 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 829 if (error) 830 device_printf(sc->sc_dev, "command timeout\n"); 831 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 832 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 833 &rq, error); 834 835 return (error); 836 } 837 838 static int 839 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 840 { 841 struct zyd_pair tmp; 842 int error; 843 844 reg = htole16(reg); 845 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 846 ZYD_CMD_FLAG_READ); 847 if (error == 0) 848 *val = le16toh(tmp.val); 849 return (error); 850 } 851 852 static int 853 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 854 { 855 struct zyd_pair tmp[2]; 856 uint16_t regs[2]; 857 int error; 858 859 regs[0] = htole16(ZYD_REG32_HI(reg)); 860 regs[1] = htole16(ZYD_REG32_LO(reg)); 861 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 862 ZYD_CMD_FLAG_READ); 863 if (error == 0) 864 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 865 return (error); 866 } 867 868 static int 869 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 870 { 871 struct zyd_pair pair; 872 873 pair.reg = htole16(reg); 874 pair.val = htole16(val); 875 876 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 877 } 878 879 static int 880 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 881 { 882 struct zyd_pair pair[2]; 883 884 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 885 pair[0].val = htole16(val >> 16); 886 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 887 pair[1].val = htole16(val & 0xffff); 888 889 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 890 } 891 892 static int 893 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 894 { 895 struct zyd_rf *rf = &sc->sc_rf; 896 struct zyd_rfwrite_cmd req; 897 uint16_t cr203; 898 int error, i; 899 900 zyd_read16_m(sc, ZYD_CR203, &cr203); 901 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 902 903 req.code = htole16(2); 904 req.width = htole16(rf->width); 905 for (i = 0; i < rf->width; i++) { 906 req.bit[i] = htole16(cr203); 907 if (val & (1 << (rf->width - 1 - i))) 908 req.bit[i] |= htole16(ZYD_RF_DATA); 909 } 910 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 911 fail: 912 return (error); 913 } 914 915 static int 916 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 917 { 918 int error; 919 920 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 921 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 922 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 923 fail: 924 return (error); 925 } 926 927 static int 928 zyd_lock_phy(struct zyd_softc *sc) 929 { 930 int error; 931 uint32_t tmp; 932 933 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 934 tmp &= ~ZYD_UNLOCK_PHY_REGS; 935 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 936 fail: 937 return (error); 938 } 939 940 static int 941 zyd_unlock_phy(struct zyd_softc *sc) 942 { 943 int error; 944 uint32_t tmp; 945 946 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 947 tmp |= ZYD_UNLOCK_PHY_REGS; 948 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 949 fail: 950 return (error); 951 } 952 953 /* 954 * RFMD RF methods. 955 */ 956 static int 957 zyd_rfmd_init(struct zyd_rf *rf) 958 { 959 struct zyd_softc *sc = rf->rf_sc; 960 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 961 static const uint32_t rfini[] = ZYD_RFMD_RF; 962 int i, error; 963 964 /* init RF-dependent PHY registers */ 965 for (i = 0; i < nitems(phyini); i++) { 966 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 967 } 968 969 /* init RFMD radio */ 970 for (i = 0; i < nitems(rfini); i++) { 971 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 972 return (error); 973 } 974 fail: 975 return (error); 976 } 977 978 static int 979 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 980 { 981 int error; 982 struct zyd_softc *sc = rf->rf_sc; 983 984 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 985 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 986 fail: 987 return (error); 988 } 989 990 static int 991 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 992 { 993 int error; 994 struct zyd_softc *sc = rf->rf_sc; 995 static const struct { 996 uint32_t r1, r2; 997 } rfprog[] = ZYD_RFMD_CHANTABLE; 998 999 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1000 if (error != 0) 1001 goto fail; 1002 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1003 if (error != 0) 1004 goto fail; 1005 1006 fail: 1007 return (error); 1008 } 1009 1010 /* 1011 * AL2230 RF methods. 1012 */ 1013 static int 1014 zyd_al2230_init(struct zyd_rf *rf) 1015 { 1016 struct zyd_softc *sc = rf->rf_sc; 1017 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1018 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1019 static const struct zyd_phy_pair phypll[] = { 1020 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1021 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1022 }; 1023 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1024 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1025 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1026 int i, error; 1027 1028 /* init RF-dependent PHY registers */ 1029 for (i = 0; i < nitems(phyini); i++) 1030 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1031 1032 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1033 for (i = 0; i < nitems(phy2230s); i++) 1034 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1035 } 1036 1037 /* init AL2230 radio */ 1038 for (i = 0; i < nitems(rfini1); i++) { 1039 error = zyd_rfwrite(sc, rfini1[i]); 1040 if (error != 0) 1041 goto fail; 1042 } 1043 1044 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1045 error = zyd_rfwrite(sc, 0x000824); 1046 else 1047 error = zyd_rfwrite(sc, 0x0005a4); 1048 if (error != 0) 1049 goto fail; 1050 1051 for (i = 0; i < nitems(rfini2); i++) { 1052 error = zyd_rfwrite(sc, rfini2[i]); 1053 if (error != 0) 1054 goto fail; 1055 } 1056 1057 for (i = 0; i < nitems(phypll); i++) 1058 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1059 1060 for (i = 0; i < nitems(rfini3); i++) { 1061 error = zyd_rfwrite(sc, rfini3[i]); 1062 if (error != 0) 1063 goto fail; 1064 } 1065 fail: 1066 return (error); 1067 } 1068 1069 static int 1070 zyd_al2230_fini(struct zyd_rf *rf) 1071 { 1072 int error, i; 1073 struct zyd_softc *sc = rf->rf_sc; 1074 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1075 1076 for (i = 0; i < nitems(phy); i++) 1077 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1078 1079 if (sc->sc_newphy != 0) 1080 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1081 1082 zyd_write16_m(sc, ZYD_CR203, 0x6); 1083 fail: 1084 return (error); 1085 } 1086 1087 static int 1088 zyd_al2230_init_b(struct zyd_rf *rf) 1089 { 1090 struct zyd_softc *sc = rf->rf_sc; 1091 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1092 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1093 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1094 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1095 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1096 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1097 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1098 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1099 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1100 int i, error; 1101 1102 for (i = 0; i < nitems(phy1); i++) 1103 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1104 1105 /* init RF-dependent PHY registers */ 1106 for (i = 0; i < nitems(phyini); i++) 1107 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1108 1109 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1110 for (i = 0; i < nitems(phy2230s); i++) 1111 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1112 } 1113 1114 for (i = 0; i < 3; i++) { 1115 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1116 if (error != 0) 1117 return (error); 1118 } 1119 1120 for (i = 0; i < nitems(rfini_part1); i++) { 1121 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1122 if (error != 0) 1123 return (error); 1124 } 1125 1126 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1127 error = zyd_rfwrite(sc, 0x241000); 1128 else 1129 error = zyd_rfwrite(sc, 0x25a000); 1130 if (error != 0) 1131 goto fail; 1132 1133 for (i = 0; i < nitems(rfini_part2); i++) { 1134 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1135 if (error != 0) 1136 return (error); 1137 } 1138 1139 for (i = 0; i < nitems(phy2); i++) 1140 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1141 1142 for (i = 0; i < nitems(rfini_part3); i++) { 1143 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1144 if (error != 0) 1145 return (error); 1146 } 1147 1148 for (i = 0; i < nitems(phy3); i++) 1149 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1150 1151 error = zyd_al2230_fini(rf); 1152 fail: 1153 return (error); 1154 } 1155 1156 static int 1157 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1158 { 1159 struct zyd_softc *sc = rf->rf_sc; 1160 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1161 1162 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1163 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1164 fail: 1165 return (error); 1166 } 1167 1168 static int 1169 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1170 { 1171 int error, i; 1172 struct zyd_softc *sc = rf->rf_sc; 1173 static const struct zyd_phy_pair phy1[] = { 1174 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1175 }; 1176 static const struct { 1177 uint32_t r1, r2, r3; 1178 } rfprog[] = ZYD_AL2230_CHANTABLE; 1179 1180 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1181 if (error != 0) 1182 goto fail; 1183 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1184 if (error != 0) 1185 goto fail; 1186 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1187 if (error != 0) 1188 goto fail; 1189 1190 for (i = 0; i < nitems(phy1); i++) 1191 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1192 fail: 1193 return (error); 1194 } 1195 1196 static int 1197 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1198 { 1199 int error, i; 1200 struct zyd_softc *sc = rf->rf_sc; 1201 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1202 static const struct { 1203 uint32_t r1, r2, r3; 1204 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1205 1206 for (i = 0; i < nitems(phy1); i++) 1207 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1208 1209 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1210 if (error != 0) 1211 goto fail; 1212 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1213 if (error != 0) 1214 goto fail; 1215 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1216 if (error != 0) 1217 goto fail; 1218 error = zyd_al2230_fini(rf); 1219 fail: 1220 return (error); 1221 } 1222 1223 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1224 { \ 1225 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1226 { ZYD_CR47, 0x1e } \ 1227 } 1228 1229 static int 1230 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1231 { 1232 int error = 0, i; 1233 struct zyd_softc *sc = rf->rf_sc; 1234 struct ieee80211com *ic = &sc->sc_ic; 1235 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1236 int chan = ieee80211_chan2ieee(ic, c); 1237 1238 if (chan == 1 || chan == 11) 1239 r[0].val = 0x12; 1240 1241 for (i = 0; i < nitems(r); i++) 1242 zyd_write16_m(sc, r[i].reg, r[i].val); 1243 fail: 1244 return (error); 1245 } 1246 1247 /* 1248 * AL7230B RF methods. 1249 */ 1250 static int 1251 zyd_al7230B_init(struct zyd_rf *rf) 1252 { 1253 struct zyd_softc *sc = rf->rf_sc; 1254 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1255 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1256 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1257 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1258 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1259 int i, error; 1260 1261 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1262 1263 /* init RF-dependent PHY registers, part one */ 1264 for (i = 0; i < nitems(phyini_1); i++) 1265 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1266 1267 /* init AL7230B radio, part one */ 1268 for (i = 0; i < nitems(rfini_1); i++) { 1269 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1270 return (error); 1271 } 1272 /* init RF-dependent PHY registers, part two */ 1273 for (i = 0; i < nitems(phyini_2); i++) 1274 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1275 1276 /* init AL7230B radio, part two */ 1277 for (i = 0; i < nitems(rfini_2); i++) { 1278 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1279 return (error); 1280 } 1281 /* init RF-dependent PHY registers, part three */ 1282 for (i = 0; i < nitems(phyini_3); i++) 1283 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1284 fail: 1285 return (error); 1286 } 1287 1288 static int 1289 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1290 { 1291 int error; 1292 struct zyd_softc *sc = rf->rf_sc; 1293 1294 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1295 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1296 fail: 1297 return (error); 1298 } 1299 1300 static int 1301 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1302 { 1303 struct zyd_softc *sc = rf->rf_sc; 1304 static const struct { 1305 uint32_t r1, r2; 1306 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1307 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1308 int i, error; 1309 1310 zyd_write16_m(sc, ZYD_CR240, 0x57); 1311 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1312 1313 for (i = 0; i < nitems(rfsc); i++) { 1314 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1315 return (error); 1316 } 1317 1318 zyd_write16_m(sc, ZYD_CR128, 0x14); 1319 zyd_write16_m(sc, ZYD_CR129, 0x12); 1320 zyd_write16_m(sc, ZYD_CR130, 0x10); 1321 zyd_write16_m(sc, ZYD_CR38, 0x38); 1322 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1323 1324 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1325 if (error != 0) 1326 goto fail; 1327 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1328 if (error != 0) 1329 goto fail; 1330 error = zyd_rfwrite(sc, 0x3c9000); 1331 if (error != 0) 1332 goto fail; 1333 1334 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1335 zyd_write16_m(sc, ZYD_CR203, 0x06); 1336 zyd_write16_m(sc, ZYD_CR240, 0x08); 1337 fail: 1338 return (error); 1339 } 1340 1341 /* 1342 * AL2210 RF methods. 1343 */ 1344 static int 1345 zyd_al2210_init(struct zyd_rf *rf) 1346 { 1347 struct zyd_softc *sc = rf->rf_sc; 1348 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1349 static const uint32_t rfini[] = ZYD_AL2210_RF; 1350 uint32_t tmp; 1351 int i, error; 1352 1353 zyd_write32_m(sc, ZYD_CR18, 2); 1354 1355 /* init RF-dependent PHY registers */ 1356 for (i = 0; i < nitems(phyini); i++) 1357 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1358 1359 /* init AL2210 radio */ 1360 for (i = 0; i < nitems(rfini); i++) { 1361 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1362 return (error); 1363 } 1364 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1365 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1366 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1367 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1368 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1369 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1370 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1371 zyd_write32_m(sc, ZYD_CR18, 3); 1372 fail: 1373 return (error); 1374 } 1375 1376 static int 1377 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1378 { 1379 /* vendor driver does nothing for this RF chip */ 1380 1381 return (0); 1382 } 1383 1384 static int 1385 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1386 { 1387 int error; 1388 struct zyd_softc *sc = rf->rf_sc; 1389 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1390 uint32_t tmp; 1391 1392 zyd_write32_m(sc, ZYD_CR18, 2); 1393 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1394 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1395 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1396 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1397 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1398 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1399 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1400 1401 /* actually set the channel */ 1402 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1403 if (error != 0) 1404 goto fail; 1405 1406 zyd_write32_m(sc, ZYD_CR18, 3); 1407 fail: 1408 return (error); 1409 } 1410 1411 /* 1412 * GCT RF methods. 1413 */ 1414 static int 1415 zyd_gct_init(struct zyd_rf *rf) 1416 { 1417 #define ZYD_GCT_INTR_REG 0x85c1 1418 struct zyd_softc *sc = rf->rf_sc; 1419 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1420 static const uint32_t rfini[] = ZYD_GCT_RF; 1421 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1422 int i, idx = -1, error; 1423 uint16_t data; 1424 1425 /* init RF-dependent PHY registers */ 1426 for (i = 0; i < nitems(phyini); i++) 1427 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1428 1429 /* init cgt radio */ 1430 for (i = 0; i < nitems(rfini); i++) { 1431 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1432 return (error); 1433 } 1434 1435 error = zyd_gct_mode(rf); 1436 if (error != 0) 1437 return (error); 1438 1439 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1440 error = zyd_gct_set_channel_synth(rf, 1, 0); 1441 if (error != 0) 1442 goto fail; 1443 error = zyd_gct_write(rf, vco[i][0]); 1444 if (error != 0) 1445 goto fail; 1446 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1447 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1448 if ((data & 0xf) == 0) { 1449 idx = i; 1450 break; 1451 } 1452 } 1453 if (idx == -1) { 1454 error = zyd_gct_set_channel_synth(rf, 1, 1); 1455 if (error != 0) 1456 goto fail; 1457 error = zyd_gct_write(rf, 0x6662); 1458 if (error != 0) 1459 goto fail; 1460 } 1461 1462 rf->idx = idx; 1463 zyd_write16_m(sc, ZYD_CR203, 0x6); 1464 fail: 1465 return (error); 1466 #undef ZYD_GCT_INTR_REG 1467 } 1468 1469 static int 1470 zyd_gct_mode(struct zyd_rf *rf) 1471 { 1472 struct zyd_softc *sc = rf->rf_sc; 1473 static const uint32_t mode[] = { 1474 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1475 }; 1476 int i, error; 1477 1478 for (i = 0; i < nitems(mode); i++) { 1479 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1480 break; 1481 } 1482 return (error); 1483 } 1484 1485 static int 1486 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1487 { 1488 int error, idx = chan - 1; 1489 struct zyd_softc *sc = rf->rf_sc; 1490 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1491 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1492 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1493 1494 error = zyd_rfwrite(sc, 1495 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1496 if (error != 0) 1497 return (error); 1498 return zyd_rfwrite(sc, div_synth[idx]); 1499 } 1500 1501 static int 1502 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1503 { 1504 struct zyd_softc *sc = rf->rf_sc; 1505 1506 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1507 } 1508 1509 static int 1510 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1511 { 1512 int error; 1513 struct zyd_softc *sc = rf->rf_sc; 1514 1515 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1516 if (error != 0) 1517 return (error); 1518 1519 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1520 zyd_write16_m(sc, ZYD_CR251, 1521 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1522 fail: 1523 return (error); 1524 } 1525 1526 static int 1527 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1528 { 1529 int error, i; 1530 struct zyd_softc *sc = rf->rf_sc; 1531 static const struct zyd_phy_pair cmd[] = { 1532 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1533 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1534 }; 1535 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1536 1537 error = zyd_gct_set_channel_synth(rf, chan, 0); 1538 if (error != 0) 1539 goto fail; 1540 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1541 vco[rf->idx][((chan - 1) / 2)]); 1542 if (error != 0) 1543 goto fail; 1544 error = zyd_gct_mode(rf); 1545 if (error != 0) 1546 return (error); 1547 for (i = 0; i < nitems(cmd); i++) 1548 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1549 error = zyd_gct_txgain(rf, chan); 1550 if (error != 0) 1551 return (error); 1552 zyd_write16_m(sc, ZYD_CR203, 0x6); 1553 fail: 1554 return (error); 1555 } 1556 1557 static int 1558 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1559 { 1560 struct zyd_softc *sc = rf->rf_sc; 1561 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1562 uint8_t idx = sc->sc_pwrint[chan - 1]; 1563 1564 if (idx >= nitems(txgain)) { 1565 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1566 chan, idx); 1567 return 0; 1568 } 1569 1570 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1571 } 1572 1573 /* 1574 * Maxim2 RF methods. 1575 */ 1576 static int 1577 zyd_maxim2_init(struct zyd_rf *rf) 1578 { 1579 struct zyd_softc *sc = rf->rf_sc; 1580 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1581 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1582 uint16_t tmp; 1583 int i, error; 1584 1585 /* init RF-dependent PHY registers */ 1586 for (i = 0; i < nitems(phyini); i++) 1587 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1588 1589 zyd_read16_m(sc, ZYD_CR203, &tmp); 1590 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1591 1592 /* init maxim2 radio */ 1593 for (i = 0; i < nitems(rfini); i++) { 1594 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1595 return (error); 1596 } 1597 zyd_read16_m(sc, ZYD_CR203, &tmp); 1598 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1599 fail: 1600 return (error); 1601 } 1602 1603 static int 1604 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1605 { 1606 1607 /* vendor driver does nothing for this RF chip */ 1608 return (0); 1609 } 1610 1611 static int 1612 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1613 { 1614 struct zyd_softc *sc = rf->rf_sc; 1615 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1616 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1617 static const struct { 1618 uint32_t r1, r2; 1619 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1620 uint16_t tmp; 1621 int i, error; 1622 1623 /* 1624 * Do the same as we do when initializing it, except for the channel 1625 * values coming from the two channel tables. 1626 */ 1627 1628 /* init RF-dependent PHY registers */ 1629 for (i = 0; i < nitems(phyini); i++) 1630 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1631 1632 zyd_read16_m(sc, ZYD_CR203, &tmp); 1633 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1634 1635 /* first two values taken from the chantables */ 1636 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1637 if (error != 0) 1638 goto fail; 1639 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1640 if (error != 0) 1641 goto fail; 1642 1643 /* init maxim2 radio - skipping the two first values */ 1644 for (i = 2; i < nitems(rfini); i++) { 1645 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1646 return (error); 1647 } 1648 zyd_read16_m(sc, ZYD_CR203, &tmp); 1649 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1650 fail: 1651 return (error); 1652 } 1653 1654 static int 1655 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1656 { 1657 struct zyd_rf *rf = &sc->sc_rf; 1658 1659 rf->rf_sc = sc; 1660 rf->update_pwr = 1; 1661 1662 switch (type) { 1663 case ZYD_RF_RFMD: 1664 rf->init = zyd_rfmd_init; 1665 rf->switch_radio = zyd_rfmd_switch_radio; 1666 rf->set_channel = zyd_rfmd_set_channel; 1667 rf->width = 24; /* 24-bit RF values */ 1668 break; 1669 case ZYD_RF_AL2230: 1670 case ZYD_RF_AL2230S: 1671 if (sc->sc_macrev == ZYD_ZD1211B) { 1672 rf->init = zyd_al2230_init_b; 1673 rf->set_channel = zyd_al2230_set_channel_b; 1674 } else { 1675 rf->init = zyd_al2230_init; 1676 rf->set_channel = zyd_al2230_set_channel; 1677 } 1678 rf->switch_radio = zyd_al2230_switch_radio; 1679 rf->bandedge6 = zyd_al2230_bandedge6; 1680 rf->width = 24; /* 24-bit RF values */ 1681 break; 1682 case ZYD_RF_AL7230B: 1683 rf->init = zyd_al7230B_init; 1684 rf->switch_radio = zyd_al7230B_switch_radio; 1685 rf->set_channel = zyd_al7230B_set_channel; 1686 rf->width = 24; /* 24-bit RF values */ 1687 break; 1688 case ZYD_RF_AL2210: 1689 rf->init = zyd_al2210_init; 1690 rf->switch_radio = zyd_al2210_switch_radio; 1691 rf->set_channel = zyd_al2210_set_channel; 1692 rf->width = 24; /* 24-bit RF values */ 1693 break; 1694 case ZYD_RF_MAXIM_NEW: 1695 case ZYD_RF_GCT: 1696 rf->init = zyd_gct_init; 1697 rf->switch_radio = zyd_gct_switch_radio; 1698 rf->set_channel = zyd_gct_set_channel; 1699 rf->width = 24; /* 24-bit RF values */ 1700 rf->update_pwr = 0; 1701 break; 1702 case ZYD_RF_MAXIM_NEW2: 1703 rf->init = zyd_maxim2_init; 1704 rf->switch_radio = zyd_maxim2_switch_radio; 1705 rf->set_channel = zyd_maxim2_set_channel; 1706 rf->width = 18; /* 18-bit RF values */ 1707 break; 1708 default: 1709 device_printf(sc->sc_dev, 1710 "sorry, radio \"%s\" is not supported yet\n", 1711 zyd_rf_name(type)); 1712 return (EINVAL); 1713 } 1714 return (0); 1715 } 1716 1717 static const char * 1718 zyd_rf_name(uint8_t type) 1719 { 1720 static const char * const zyd_rfs[] = { 1721 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1722 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1723 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1724 "PHILIPS" 1725 }; 1726 1727 return zyd_rfs[(type > 15) ? 0 : type]; 1728 } 1729 1730 static int 1731 zyd_hw_init(struct zyd_softc *sc) 1732 { 1733 int error; 1734 const struct zyd_phy_pair *phyp; 1735 struct zyd_rf *rf = &sc->sc_rf; 1736 uint16_t val; 1737 1738 /* specify that the plug and play is finished */ 1739 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1740 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1741 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1742 sc->sc_fwbase); 1743 1744 /* retrieve firmware revision number */ 1745 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1746 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1747 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1748 /* set mandatory rates - XXX assumes 802.11b/g */ 1749 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1750 1751 /* disable interrupts */ 1752 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1753 1754 if ((error = zyd_read_pod(sc)) != 0) { 1755 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1756 goto fail; 1757 } 1758 1759 /* PHY init (resetting) */ 1760 error = zyd_lock_phy(sc); 1761 if (error != 0) 1762 goto fail; 1763 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1764 for (; phyp->reg != 0; phyp++) 1765 zyd_write16_m(sc, phyp->reg, phyp->val); 1766 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1767 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1768 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1769 } 1770 error = zyd_unlock_phy(sc); 1771 if (error != 0) 1772 goto fail; 1773 1774 /* HMAC init */ 1775 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1776 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1777 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1778 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1779 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1780 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1781 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1782 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1783 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1784 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1785 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1786 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1787 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1788 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1789 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1790 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1791 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1792 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1793 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1794 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1795 1796 if (sc->sc_macrev == ZYD_ZD1211) { 1797 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1798 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1799 } else { 1800 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1801 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1802 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1803 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1804 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1805 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1806 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1807 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1808 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1809 } 1810 1811 /* init beacon interval to 100ms */ 1812 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1813 goto fail; 1814 1815 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1816 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1817 sc->sc_rfrev); 1818 goto fail; 1819 } 1820 1821 /* RF chip init */ 1822 error = zyd_lock_phy(sc); 1823 if (error != 0) 1824 goto fail; 1825 error = (*rf->init)(rf); 1826 if (error != 0) { 1827 device_printf(sc->sc_dev, 1828 "radio initialization failed, error %d\n", error); 1829 goto fail; 1830 } 1831 error = zyd_unlock_phy(sc); 1832 if (error != 0) 1833 goto fail; 1834 1835 if ((error = zyd_read_eeprom(sc)) != 0) { 1836 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1837 goto fail; 1838 } 1839 1840 fail: return (error); 1841 } 1842 1843 static int 1844 zyd_read_pod(struct zyd_softc *sc) 1845 { 1846 int error; 1847 uint32_t tmp; 1848 1849 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1850 sc->sc_rfrev = tmp & 0x0f; 1851 sc->sc_ledtype = (tmp >> 4) & 0x01; 1852 sc->sc_al2230s = (tmp >> 7) & 0x01; 1853 sc->sc_cckgain = (tmp >> 8) & 0x01; 1854 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1855 sc->sc_parev = (tmp >> 16) & 0x0f; 1856 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1857 sc->sc_newphy = (tmp >> 31) & 0x01; 1858 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1859 fail: 1860 return (error); 1861 } 1862 1863 static int 1864 zyd_read_eeprom(struct zyd_softc *sc) 1865 { 1866 uint16_t val; 1867 int error, i; 1868 1869 /* read Tx power calibration tables */ 1870 for (i = 0; i < 7; i++) { 1871 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1872 sc->sc_pwrcal[i * 2] = val >> 8; 1873 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1874 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1875 sc->sc_pwrint[i * 2] = val >> 8; 1876 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1877 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1878 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1879 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1880 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1881 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1882 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1883 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1884 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1885 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1886 } 1887 fail: 1888 return (error); 1889 } 1890 1891 static int 1892 zyd_get_macaddr(struct zyd_softc *sc) 1893 { 1894 struct usb_device_request req; 1895 usb_error_t error; 1896 1897 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1898 req.bRequest = ZYD_READFWDATAREQ; 1899 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1900 USETW(req.wIndex, 0); 1901 USETW(req.wLength, IEEE80211_ADDR_LEN); 1902 1903 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1904 if (error != 0) { 1905 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1906 usbd_errstr(error)); 1907 } 1908 1909 return (error); 1910 } 1911 1912 static int 1913 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1914 { 1915 int error; 1916 uint32_t tmp; 1917 1918 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1919 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1920 tmp = addr[5] << 8 | addr[4]; 1921 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1922 fail: 1923 return (error); 1924 } 1925 1926 static int 1927 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1928 { 1929 int error; 1930 uint32_t tmp; 1931 1932 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1933 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1934 tmp = addr[5] << 8 | addr[4]; 1935 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1936 fail: 1937 return (error); 1938 } 1939 1940 static int 1941 zyd_switch_radio(struct zyd_softc *sc, int on) 1942 { 1943 struct zyd_rf *rf = &sc->sc_rf; 1944 int error; 1945 1946 error = zyd_lock_phy(sc); 1947 if (error != 0) 1948 goto fail; 1949 error = (*rf->switch_radio)(rf, on); 1950 if (error != 0) 1951 goto fail; 1952 error = zyd_unlock_phy(sc); 1953 fail: 1954 return (error); 1955 } 1956 1957 static int 1958 zyd_set_led(struct zyd_softc *sc, int which, int on) 1959 { 1960 int error; 1961 uint32_t tmp; 1962 1963 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1964 tmp &= ~which; 1965 if (on) 1966 tmp |= which; 1967 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1968 fail: 1969 return (error); 1970 } 1971 1972 static u_int 1973 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1974 { 1975 uint32_t *hash = arg; 1976 uint8_t v; 1977 1978 v = ((uint8_t *)LLADDR(sdl))[5] >> 2; 1979 if (v < 32) 1980 hash[0] |= 1 << v; 1981 else 1982 hash[1] |= 1 << (v - 32); 1983 1984 return (1); 1985 } 1986 1987 static void 1988 zyd_set_multi(struct zyd_softc *sc) 1989 { 1990 struct ieee80211com *ic = &sc->sc_ic; 1991 uint32_t hash[2]; 1992 int error; 1993 1994 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1995 return; 1996 1997 hash[0] = 0x00000000; 1998 hash[1] = 0x80000000; 1999 2000 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 2001 ic->ic_promisc > 0) { 2002 hash[0] = 0xffffffff; 2003 hash[1] = 0xffffffff; 2004 } else { 2005 struct ieee80211vap *vap; 2006 2007 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2008 if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash); 2009 } 2010 2011 /* reprogram multicast global hash table */ 2012 zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]); 2013 zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]); 2014 fail: 2015 if (error != 0) 2016 device_printf(sc->sc_dev, 2017 "could not set multicast hash table\n"); 2018 } 2019 2020 static void 2021 zyd_update_mcast(struct ieee80211com *ic) 2022 { 2023 struct zyd_softc *sc = ic->ic_softc; 2024 2025 ZYD_LOCK(sc); 2026 zyd_set_multi(sc); 2027 ZYD_UNLOCK(sc); 2028 } 2029 2030 static int 2031 zyd_set_rxfilter(struct zyd_softc *sc) 2032 { 2033 struct ieee80211com *ic = &sc->sc_ic; 2034 uint32_t rxfilter; 2035 2036 switch (ic->ic_opmode) { 2037 case IEEE80211_M_STA: 2038 rxfilter = ZYD_FILTER_BSS; 2039 break; 2040 case IEEE80211_M_IBSS: 2041 case IEEE80211_M_HOSTAP: 2042 rxfilter = ZYD_FILTER_HOSTAP; 2043 break; 2044 case IEEE80211_M_MONITOR: 2045 rxfilter = ZYD_FILTER_MONITOR; 2046 break; 2047 default: 2048 /* should not get there */ 2049 return (EINVAL); 2050 } 2051 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2052 } 2053 2054 static void 2055 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2056 { 2057 int error; 2058 struct ieee80211com *ic = &sc->sc_ic; 2059 struct zyd_rf *rf = &sc->sc_rf; 2060 uint32_t tmp; 2061 int chan; 2062 2063 chan = ieee80211_chan2ieee(ic, c); 2064 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2065 /* XXX should NEVER happen */ 2066 device_printf(sc->sc_dev, 2067 "%s: invalid channel %x\n", __func__, chan); 2068 return; 2069 } 2070 2071 error = zyd_lock_phy(sc); 2072 if (error != 0) 2073 goto fail; 2074 2075 error = (*rf->set_channel)(rf, chan); 2076 if (error != 0) 2077 goto fail; 2078 2079 if (rf->update_pwr) { 2080 /* update Tx power */ 2081 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2082 2083 if (sc->sc_macrev == ZYD_ZD1211B) { 2084 zyd_write16_m(sc, ZYD_CR67, 2085 sc->sc_ofdm36_cal[chan - 1]); 2086 zyd_write16_m(sc, ZYD_CR66, 2087 sc->sc_ofdm48_cal[chan - 1]); 2088 zyd_write16_m(sc, ZYD_CR65, 2089 sc->sc_ofdm54_cal[chan - 1]); 2090 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2091 zyd_write16_m(sc, ZYD_CR69, 0x28); 2092 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2093 } 2094 } 2095 if (sc->sc_cckgain) { 2096 /* set CCK baseband gain from EEPROM */ 2097 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2098 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2099 } 2100 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2101 error = (*rf->bandedge6)(rf, c); 2102 if (error != 0) 2103 goto fail; 2104 } 2105 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2106 2107 error = zyd_unlock_phy(sc); 2108 if (error != 0) 2109 goto fail; 2110 2111 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2112 htole16(c->ic_freq); 2113 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2114 htole16(c->ic_flags); 2115 fail: 2116 return; 2117 } 2118 2119 static int 2120 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2121 { 2122 int error; 2123 uint32_t val; 2124 2125 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2126 sc->sc_atim_wnd = val; 2127 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2128 sc->sc_pre_tbtt = val; 2129 sc->sc_bcn_int = bintval; 2130 2131 if (sc->sc_bcn_int <= 5) 2132 sc->sc_bcn_int = 5; 2133 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2134 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2135 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2136 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2137 2138 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2139 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2140 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2141 fail: 2142 return (error); 2143 } 2144 2145 static void 2146 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2147 { 2148 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2149 struct ieee80211com *ic = &sc->sc_ic; 2150 struct zyd_plcphdr plcp; 2151 struct zyd_rx_stat stat; 2152 struct usb_page_cache *pc; 2153 struct mbuf *m; 2154 int rlen, rssi; 2155 2156 if (len < ZYD_MIN_FRAGSZ) { 2157 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2158 device_get_nameunit(sc->sc_dev), len); 2159 counter_u64_add(ic->ic_ierrors, 1); 2160 return; 2161 } 2162 pc = usbd_xfer_get_frame(xfer, 0); 2163 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2164 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2165 2166 if (stat.flags & ZYD_RX_ERROR) { 2167 DPRINTF(sc, ZYD_DEBUG_RECV, 2168 "%s: RX status indicated error (%x)\n", 2169 device_get_nameunit(sc->sc_dev), stat.flags); 2170 counter_u64_add(ic->ic_ierrors, 1); 2171 return; 2172 } 2173 2174 /* compute actual frame length */ 2175 rlen = len - sizeof(struct zyd_plcphdr) - 2176 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2177 2178 /* allocate a mbuf to store the frame */ 2179 if (rlen > (int)MCLBYTES) { 2180 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2181 device_get_nameunit(sc->sc_dev), rlen); 2182 counter_u64_add(ic->ic_ierrors, 1); 2183 return; 2184 } else if (rlen > (int)MHLEN) 2185 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2186 else 2187 m = m_gethdr(M_NOWAIT, MT_DATA); 2188 if (m == NULL) { 2189 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2190 device_get_nameunit(sc->sc_dev)); 2191 counter_u64_add(ic->ic_ierrors, 1); 2192 return; 2193 } 2194 m->m_pkthdr.len = m->m_len = rlen; 2195 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2196 2197 if (ieee80211_radiotap_active(ic)) { 2198 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2199 2200 tap->wr_flags = 0; 2201 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2202 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2203 /* XXX toss, no way to express errors */ 2204 if (stat.flags & ZYD_RX_DECRYPTERR) 2205 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2206 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2207 (stat.flags & ZYD_RX_OFDM) ? 2208 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2209 tap->wr_antsignal = stat.rssi + -95; 2210 tap->wr_antnoise = -95; /* XXX */ 2211 } 2212 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2213 2214 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2215 sc->sc_rx_data[sc->sc_rx_count].m = m; 2216 sc->sc_rx_count++; 2217 } 2218 2219 static void 2220 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2221 { 2222 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2223 struct ieee80211com *ic = &sc->sc_ic; 2224 struct ieee80211_node *ni; 2225 struct epoch_tracker et; 2226 struct zyd_rx_desc desc; 2227 struct mbuf *m; 2228 struct usb_page_cache *pc; 2229 uint32_t offset; 2230 uint8_t rssi; 2231 int8_t nf; 2232 int i; 2233 int actlen; 2234 2235 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2236 2237 sc->sc_rx_count = 0; 2238 switch (USB_GET_STATE(xfer)) { 2239 case USB_ST_TRANSFERRED: 2240 pc = usbd_xfer_get_frame(xfer, 0); 2241 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2242 2243 offset = 0; 2244 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2245 DPRINTF(sc, ZYD_DEBUG_RECV, 2246 "%s: received multi-frame transfer\n", __func__); 2247 2248 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2249 uint16_t len16 = UGETW(desc.len[i]); 2250 2251 if (len16 == 0 || len16 > actlen) 2252 break; 2253 2254 zyd_rx_data(xfer, offset, len16); 2255 2256 /* next frame is aligned on a 32-bit boundary */ 2257 len16 = (len16 + 3) & ~3; 2258 offset += len16; 2259 if (len16 > actlen) 2260 break; 2261 actlen -= len16; 2262 } 2263 } else { 2264 DPRINTF(sc, ZYD_DEBUG_RECV, 2265 "%s: received single-frame transfer\n", __func__); 2266 2267 zyd_rx_data(xfer, 0, actlen); 2268 } 2269 /* FALLTHROUGH */ 2270 case USB_ST_SETUP: 2271 tr_setup: 2272 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2273 usbd_transfer_submit(xfer); 2274 2275 /* 2276 * At the end of a USB callback it is always safe to unlock 2277 * the private mutex of a device! That is why we do the 2278 * "ieee80211_input" here, and not some lines up! 2279 */ 2280 ZYD_UNLOCK(sc); 2281 NET_EPOCH_ENTER(et); 2282 for (i = 0; i < sc->sc_rx_count; i++) { 2283 rssi = sc->sc_rx_data[i].rssi; 2284 m = sc->sc_rx_data[i].m; 2285 sc->sc_rx_data[i].m = NULL; 2286 2287 nf = -95; /* XXX */ 2288 2289 ni = ieee80211_find_rxnode(ic, 2290 mtod(m, struct ieee80211_frame_min *)); 2291 if (ni != NULL) { 2292 (void)ieee80211_input(ni, m, rssi, nf); 2293 ieee80211_free_node(ni); 2294 } else 2295 (void)ieee80211_input_all(ic, m, rssi, nf); 2296 } 2297 NET_EPOCH_EXIT(et); 2298 ZYD_LOCK(sc); 2299 zyd_start(sc); 2300 break; 2301 2302 default: /* Error */ 2303 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2304 2305 if (error != USB_ERR_CANCELLED) { 2306 /* try to clear stall first */ 2307 usbd_xfer_set_stall(xfer); 2308 goto tr_setup; 2309 } 2310 break; 2311 } 2312 } 2313 2314 static uint8_t 2315 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2316 { 2317 switch (rate) { 2318 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2319 case 12: 2320 return (0xb); 2321 case 18: 2322 return (0xf); 2323 case 24: 2324 return (0xa); 2325 case 36: 2326 return (0xe); 2327 case 48: 2328 return (0x9); 2329 case 72: 2330 return (0xd); 2331 case 96: 2332 return (0x8); 2333 case 108: 2334 return (0xc); 2335 /* CCK rates (NB: not IEEE std, device-specific) */ 2336 case 2: 2337 return (0x0); 2338 case 4: 2339 return (0x1); 2340 case 11: 2341 return (0x2); 2342 case 22: 2343 return (0x3); 2344 } 2345 2346 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2347 return (0x0); 2348 } 2349 2350 static void 2351 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2352 { 2353 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2354 struct ieee80211vap *vap; 2355 struct zyd_tx_data *data; 2356 struct mbuf *m; 2357 struct usb_page_cache *pc; 2358 int actlen; 2359 2360 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2361 2362 switch (USB_GET_STATE(xfer)) { 2363 case USB_ST_TRANSFERRED: 2364 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2365 actlen); 2366 2367 /* free resources */ 2368 data = usbd_xfer_get_priv(xfer); 2369 zyd_tx_free(data, 0); 2370 usbd_xfer_set_priv(xfer, NULL); 2371 2372 /* FALLTHROUGH */ 2373 case USB_ST_SETUP: 2374 tr_setup: 2375 data = STAILQ_FIRST(&sc->tx_q); 2376 if (data) { 2377 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2378 m = data->m; 2379 2380 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2381 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2382 m->m_pkthdr.len); 2383 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2384 } 2385 pc = usbd_xfer_get_frame(xfer, 0); 2386 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2387 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2388 m->m_pkthdr.len); 2389 2390 vap = data->ni->ni_vap; 2391 if (ieee80211_radiotap_active_vap(vap)) { 2392 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2393 2394 tap->wt_flags = 0; 2395 tap->wt_rate = data->rate; 2396 2397 ieee80211_radiotap_tx(vap, m); 2398 } 2399 2400 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2401 usbd_xfer_set_priv(xfer, data); 2402 usbd_transfer_submit(xfer); 2403 } 2404 zyd_start(sc); 2405 break; 2406 2407 default: /* Error */ 2408 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2409 usbd_errstr(error)); 2410 2411 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2412 data = usbd_xfer_get_priv(xfer); 2413 usbd_xfer_set_priv(xfer, NULL); 2414 if (data != NULL) 2415 zyd_tx_free(data, error); 2416 2417 if (error != USB_ERR_CANCELLED) { 2418 if (error == USB_ERR_TIMEOUT) 2419 device_printf(sc->sc_dev, "device timeout\n"); 2420 2421 /* 2422 * Try to clear stall first, also if other 2423 * errors occur, hence clearing stall 2424 * introduces a 50 ms delay: 2425 */ 2426 usbd_xfer_set_stall(xfer); 2427 goto tr_setup; 2428 } 2429 break; 2430 } 2431 } 2432 2433 static int 2434 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2435 { 2436 struct ieee80211vap *vap = ni->ni_vap; 2437 struct ieee80211com *ic = ni->ni_ic; 2438 struct zyd_tx_desc *desc; 2439 struct zyd_tx_data *data; 2440 struct ieee80211_frame *wh; 2441 const struct ieee80211_txparam *tp = ni->ni_txparms; 2442 struct ieee80211_key *k; 2443 int rate, totlen, type, ismcast; 2444 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2445 uint8_t phy; 2446 uint16_t pktlen; 2447 uint32_t bits; 2448 2449 wh = mtod(m0, struct ieee80211_frame *); 2450 data = STAILQ_FIRST(&sc->tx_free); 2451 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2452 sc->tx_nfree--; 2453 2454 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2455 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2456 2457 if (type == IEEE80211_FC0_TYPE_MGT || 2458 type == IEEE80211_FC0_TYPE_CTL || 2459 (m0->m_flags & M_EAPOL) != 0) { 2460 rate = tp->mgmtrate; 2461 } else { 2462 /* for data frames */ 2463 if (ismcast) 2464 rate = tp->mcastrate; 2465 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2466 rate = tp->ucastrate; 2467 else { 2468 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2469 rate = ni->ni_txrate; 2470 } 2471 } 2472 2473 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2474 k = ieee80211_crypto_encap(ni, m0); 2475 if (k == NULL) { 2476 return (ENOBUFS); 2477 } 2478 /* packet header may have moved, reset our local pointer */ 2479 wh = mtod(m0, struct ieee80211_frame *); 2480 } 2481 2482 data->ni = ni; 2483 data->m = m0; 2484 data->rate = rate; 2485 2486 /* fill Tx descriptor */ 2487 desc = &data->desc; 2488 phy = zyd_plcp_signal(sc, rate); 2489 desc->phy = phy; 2490 if (ZYD_RATE_IS_OFDM(rate)) { 2491 desc->phy |= ZYD_TX_PHY_OFDM; 2492 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2493 desc->phy |= ZYD_TX_PHY_5GHZ; 2494 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2495 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2496 2497 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2498 desc->len = htole16(totlen); 2499 2500 desc->flags = ZYD_TX_FLAG_BACKOFF; 2501 if (!ismcast) { 2502 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2503 if (totlen > vap->iv_rtsthreshold) { 2504 desc->flags |= ZYD_TX_FLAG_RTS; 2505 } else if (ZYD_RATE_IS_OFDM(rate) && 2506 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2507 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2508 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2509 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2510 desc->flags |= ZYD_TX_FLAG_RTS; 2511 } 2512 } else 2513 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2514 if ((wh->i_fc[0] & 2515 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2516 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2517 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2518 2519 /* actual transmit length (XXX why +10?) */ 2520 pktlen = ZYD_TX_DESC_SIZE + 10; 2521 if (sc->sc_macrev == ZYD_ZD1211) 2522 pktlen += totlen; 2523 desc->pktlen = htole16(pktlen); 2524 2525 bits = (rate == 11) ? (totlen * 16) + 10 : 2526 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2527 desc->plcp_length = htole16(bits / ratediv[phy]); 2528 desc->plcp_service = 0; 2529 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2530 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2531 desc->nextlen = 0; 2532 2533 if (ieee80211_radiotap_active_vap(vap)) { 2534 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2535 2536 tap->wt_flags = 0; 2537 tap->wt_rate = rate; 2538 2539 ieee80211_radiotap_tx(vap, m0); 2540 } 2541 2542 DPRINTF(sc, ZYD_DEBUG_XMIT, 2543 "%s: sending data frame len=%zu rate=%u\n", 2544 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2545 rate); 2546 2547 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2548 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2549 2550 return (0); 2551 } 2552 2553 static int 2554 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2555 { 2556 struct zyd_softc *sc = ic->ic_softc; 2557 int error; 2558 2559 ZYD_LOCK(sc); 2560 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2561 ZYD_UNLOCK(sc); 2562 return (ENXIO); 2563 } 2564 error = mbufq_enqueue(&sc->sc_snd, m); 2565 if (error) { 2566 ZYD_UNLOCK(sc); 2567 return (error); 2568 } 2569 zyd_start(sc); 2570 ZYD_UNLOCK(sc); 2571 2572 return (0); 2573 } 2574 2575 static void 2576 zyd_start(struct zyd_softc *sc) 2577 { 2578 struct ieee80211_node *ni; 2579 struct mbuf *m; 2580 2581 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2582 2583 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2584 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2585 if (zyd_tx_start(sc, m, ni) != 0) { 2586 m_freem(m); 2587 if_inc_counter(ni->ni_vap->iv_ifp, 2588 IFCOUNTER_OERRORS, 1); 2589 ieee80211_free_node(ni); 2590 break; 2591 } 2592 } 2593 } 2594 2595 static int 2596 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2597 const struct ieee80211_bpf_params *params) 2598 { 2599 struct ieee80211com *ic = ni->ni_ic; 2600 struct zyd_softc *sc = ic->ic_softc; 2601 2602 ZYD_LOCK(sc); 2603 /* prevent management frames from being sent if we're not ready */ 2604 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2605 ZYD_UNLOCK(sc); 2606 m_freem(m); 2607 return (ENETDOWN); 2608 } 2609 if (sc->tx_nfree == 0) { 2610 ZYD_UNLOCK(sc); 2611 m_freem(m); 2612 return (ENOBUFS); /* XXX */ 2613 } 2614 2615 /* 2616 * Legacy path; interpret frame contents to decide 2617 * precisely how to send the frame. 2618 * XXX raw path 2619 */ 2620 if (zyd_tx_start(sc, m, ni) != 0) { 2621 ZYD_UNLOCK(sc); 2622 m_freem(m); 2623 return (EIO); 2624 } 2625 ZYD_UNLOCK(sc); 2626 return (0); 2627 } 2628 2629 static void 2630 zyd_parent(struct ieee80211com *ic) 2631 { 2632 struct zyd_softc *sc = ic->ic_softc; 2633 int startall = 0; 2634 2635 ZYD_LOCK(sc); 2636 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2637 ZYD_UNLOCK(sc); 2638 return; 2639 } 2640 if (ic->ic_nrunning > 0) { 2641 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2642 zyd_init_locked(sc); 2643 startall = 1; 2644 } else 2645 zyd_set_multi(sc); 2646 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2647 zyd_stop(sc); 2648 ZYD_UNLOCK(sc); 2649 if (startall) 2650 ieee80211_start_all(ic); 2651 } 2652 2653 static void 2654 zyd_init_locked(struct zyd_softc *sc) 2655 { 2656 struct ieee80211com *ic = &sc->sc_ic; 2657 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2658 struct usb_config_descriptor *cd; 2659 int error; 2660 uint32_t val; 2661 2662 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2663 2664 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2665 error = zyd_loadfirmware(sc); 2666 if (error != 0) { 2667 device_printf(sc->sc_dev, 2668 "could not load firmware (error=%d)\n", error); 2669 goto fail; 2670 } 2671 2672 /* reset device */ 2673 cd = usbd_get_config_descriptor(sc->sc_udev); 2674 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2675 cd->bConfigurationValue); 2676 if (error) 2677 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2678 2679 error = zyd_hw_init(sc); 2680 if (error) { 2681 device_printf(sc->sc_dev, 2682 "hardware initialization failed\n"); 2683 goto fail; 2684 } 2685 2686 device_printf(sc->sc_dev, 2687 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2688 "BE%x NP%x Gain%x F%x\n", 2689 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2690 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2691 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2692 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2693 sc->sc_cckgain, sc->sc_fix_cr157); 2694 2695 /* read regulatory domain (currently unused) */ 2696 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2697 sc->sc_regdomain = val >> 16; 2698 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2699 sc->sc_regdomain); 2700 2701 /* we'll do software WEP decryption for now */ 2702 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2703 __func__); 2704 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2705 2706 sc->sc_flags |= ZYD_FLAG_INITONCE; 2707 } 2708 2709 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2710 zyd_stop(sc); 2711 2712 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2713 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2714 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2715 if (error != 0) 2716 return; 2717 2718 /* set basic rates */ 2719 if (ic->ic_curmode == IEEE80211_MODE_11B) 2720 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2721 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2722 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2723 else /* assumes 802.11b/g */ 2724 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2725 2726 /* promiscuous mode */ 2727 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2728 /* multicast setup */ 2729 zyd_set_multi(sc); 2730 /* set RX filter */ 2731 error = zyd_set_rxfilter(sc); 2732 if (error != 0) 2733 goto fail; 2734 2735 /* switch radio transmitter ON */ 2736 error = zyd_switch_radio(sc, 1); 2737 if (error != 0) 2738 goto fail; 2739 /* set default BSS channel */ 2740 zyd_set_chan(sc, ic->ic_curchan); 2741 2742 /* 2743 * Allocate Tx and Rx xfer queues. 2744 */ 2745 zyd_setup_tx_list(sc); 2746 2747 /* enable interrupts */ 2748 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2749 2750 sc->sc_flags |= ZYD_FLAG_RUNNING; 2751 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2752 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2753 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2754 2755 return; 2756 2757 fail: zyd_stop(sc); 2758 return; 2759 } 2760 2761 static void 2762 zyd_stop(struct zyd_softc *sc) 2763 { 2764 int error; 2765 2766 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2767 2768 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2769 zyd_drain_mbufq(sc); 2770 2771 /* 2772 * Drain all the transfers, if not already drained: 2773 */ 2774 ZYD_UNLOCK(sc); 2775 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2776 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2777 ZYD_LOCK(sc); 2778 2779 zyd_unsetup_tx_list(sc); 2780 2781 /* Stop now if the device was never set up */ 2782 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2783 return; 2784 2785 /* switch radio transmitter OFF */ 2786 error = zyd_switch_radio(sc, 0); 2787 if (error != 0) 2788 goto fail; 2789 /* disable Rx */ 2790 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2791 /* disable interrupts */ 2792 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2793 2794 fail: 2795 return; 2796 } 2797 2798 static int 2799 zyd_loadfirmware(struct zyd_softc *sc) 2800 { 2801 struct usb_device_request req; 2802 size_t size; 2803 u_char *fw; 2804 uint8_t stat; 2805 uint16_t addr; 2806 2807 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2808 return (0); 2809 2810 if (sc->sc_macrev == ZYD_ZD1211) { 2811 fw = (u_char *)zd1211_firmware; 2812 size = sizeof(zd1211_firmware); 2813 } else { 2814 fw = (u_char *)zd1211b_firmware; 2815 size = sizeof(zd1211b_firmware); 2816 } 2817 2818 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2819 req.bRequest = ZYD_DOWNLOADREQ; 2820 USETW(req.wIndex, 0); 2821 2822 addr = ZYD_FIRMWARE_START_ADDR; 2823 while (size > 0) { 2824 /* 2825 * When the transfer size is 4096 bytes, it is not 2826 * likely to be able to transfer it. 2827 * The cause is port or machine or chip? 2828 */ 2829 const int mlen = min(size, 64); 2830 2831 DPRINTF(sc, ZYD_DEBUG_FW, 2832 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2833 2834 USETW(req.wValue, addr); 2835 USETW(req.wLength, mlen); 2836 if (zyd_do_request(sc, &req, fw) != 0) 2837 return (EIO); 2838 2839 addr += mlen / 2; 2840 fw += mlen; 2841 size -= mlen; 2842 } 2843 2844 /* check whether the upload succeeded */ 2845 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2846 req.bRequest = ZYD_DOWNLOADSTS; 2847 USETW(req.wValue, 0); 2848 USETW(req.wIndex, 0); 2849 USETW(req.wLength, sizeof(stat)); 2850 if (zyd_do_request(sc, &req, &stat) != 0) 2851 return (EIO); 2852 2853 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2854 2855 return (stat & 0x80) ? (EIO) : (0); 2856 } 2857 2858 static void 2859 zyd_scan_start(struct ieee80211com *ic) 2860 { 2861 struct zyd_softc *sc = ic->ic_softc; 2862 2863 ZYD_LOCK(sc); 2864 /* want broadcast address while scanning */ 2865 zyd_set_bssid(sc, ieee80211broadcastaddr); 2866 ZYD_UNLOCK(sc); 2867 } 2868 2869 static void 2870 zyd_scan_end(struct ieee80211com *ic) 2871 { 2872 struct zyd_softc *sc = ic->ic_softc; 2873 2874 ZYD_LOCK(sc); 2875 /* restore previous bssid */ 2876 zyd_set_bssid(sc, sc->sc_bssid); 2877 ZYD_UNLOCK(sc); 2878 } 2879 2880 static void 2881 zyd_getradiocaps(struct ieee80211com *ic, 2882 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2883 { 2884 uint8_t bands[IEEE80211_MODE_BYTES]; 2885 2886 memset(bands, 0, sizeof(bands)); 2887 setbit(bands, IEEE80211_MODE_11B); 2888 setbit(bands, IEEE80211_MODE_11G); 2889 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 2890 } 2891 2892 static void 2893 zyd_set_channel(struct ieee80211com *ic) 2894 { 2895 struct zyd_softc *sc = ic->ic_softc; 2896 2897 ZYD_LOCK(sc); 2898 zyd_set_chan(sc, ic->ic_curchan); 2899 ZYD_UNLOCK(sc); 2900 } 2901 2902 static device_method_t zyd_methods[] = { 2903 /* Device interface */ 2904 DEVMETHOD(device_probe, zyd_match), 2905 DEVMETHOD(device_attach, zyd_attach), 2906 DEVMETHOD(device_detach, zyd_detach), 2907 DEVMETHOD_END 2908 }; 2909 2910 static driver_t zyd_driver = { 2911 .name = "zyd", 2912 .methods = zyd_methods, 2913 .size = sizeof(struct zyd_softc) 2914 }; 2915 2916 static devclass_t zyd_devclass; 2917 2918 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2919 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2920 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2921 MODULE_VERSION(zyd, 1); 2922 USB_PNP_HOST_INFO(zyd_devs); 2923