1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include "opt_wlan.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/condvar.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kdb.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include <dev/usb/usbdi_util.h> 72 #include "usbdevs.h" 73 74 #include <dev/usb/wlan/if_zydreg.h> 75 #include <dev/usb/wlan/if_zydfw.h> 76 77 #ifdef USB_DEBUG 78 static int zyd_debug = 0; 79 80 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 81 "USB zyd"); 82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 83 "zyd debug level"); 84 85 enum { 86 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 87 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 88 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 89 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 90 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 91 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 92 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 93 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 94 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 95 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 96 ZYD_DEBUG_ANY = 0xffffffff 97 }; 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 if (zyd_debug & (m)) \ 100 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 101 } while (0) 102 #else 103 #define DPRINTF(sc, m, fmt, ...) do { \ 104 (void) sc; \ 105 } while (0) 106 #endif 107 108 #define zyd_do_request(sc,req,data) \ 109 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 110 111 static device_probe_t zyd_match; 112 static device_attach_t zyd_attach; 113 static device_detach_t zyd_detach; 114 115 static usb_callback_t zyd_intr_read_callback; 116 static usb_callback_t zyd_intr_write_callback; 117 static usb_callback_t zyd_bulk_read_callback; 118 static usb_callback_t zyd_bulk_write_callback; 119 120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 121 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 122 const uint8_t [IEEE80211_ADDR_LEN], 123 const uint8_t [IEEE80211_ADDR_LEN]); 124 static void zyd_vap_delete(struct ieee80211vap *); 125 static void zyd_tx_free(struct zyd_tx_data *, int); 126 static void zyd_setup_tx_list(struct zyd_softc *); 127 static void zyd_unsetup_tx_list(struct zyd_softc *); 128 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 129 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 130 void *, int, int); 131 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 132 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 133 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 134 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 135 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 136 static int zyd_lock_phy(struct zyd_softc *); 137 static int zyd_unlock_phy(struct zyd_softc *); 138 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 139 static const char *zyd_rf_name(uint8_t); 140 static int zyd_hw_init(struct zyd_softc *); 141 static int zyd_read_pod(struct zyd_softc *); 142 static int zyd_read_eeprom(struct zyd_softc *); 143 static int zyd_get_macaddr(struct zyd_softc *); 144 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 145 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 146 static int zyd_switch_radio(struct zyd_softc *, int); 147 static int zyd_set_led(struct zyd_softc *, int, int); 148 static void zyd_set_multi(struct zyd_softc *); 149 static void zyd_update_mcast(struct ieee80211com *); 150 static int zyd_set_rxfilter(struct zyd_softc *); 151 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 152 static int zyd_set_beacon_interval(struct zyd_softc *, int); 153 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 154 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 155 struct ieee80211_node *); 156 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 157 static void zyd_start(struct zyd_softc *); 158 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 159 const struct ieee80211_bpf_params *); 160 static void zyd_parent(struct ieee80211com *); 161 static void zyd_init_locked(struct zyd_softc *); 162 static void zyd_stop(struct zyd_softc *); 163 static int zyd_loadfirmware(struct zyd_softc *); 164 static void zyd_scan_start(struct ieee80211com *); 165 static void zyd_scan_end(struct ieee80211com *); 166 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 167 struct ieee80211_channel[]); 168 static void zyd_set_channel(struct ieee80211com *); 169 static int zyd_rfmd_init(struct zyd_rf *); 170 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 171 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 172 static int zyd_al2230_init(struct zyd_rf *); 173 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 174 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 176 static int zyd_al2230_init_b(struct zyd_rf *); 177 static int zyd_al7230B_init(struct zyd_rf *); 178 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 179 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 180 static int zyd_al2210_init(struct zyd_rf *); 181 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 182 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 183 static int zyd_gct_init(struct zyd_rf *); 184 static int zyd_gct_switch_radio(struct zyd_rf *, int); 185 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 186 static int zyd_gct_mode(struct zyd_rf *); 187 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 188 static int zyd_gct_write(struct zyd_rf *, uint16_t); 189 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 190 static int zyd_maxim2_init(struct zyd_rf *); 191 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 192 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 193 194 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 195 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 196 197 /* various supported device vendors/products */ 198 #define ZYD_ZD1211 0 199 #define ZYD_ZD1211B 1 200 201 #define ZYD_ZD1211_DEV(v,p) \ 202 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 203 #define ZYD_ZD1211B_DEV(v,p) \ 204 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 205 static const STRUCT_USB_HOST_ID zyd_devs[] = { 206 /* ZYD_ZD1211 */ 207 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 208 ZYD_ZD1211_DEV(ABOCOM, WL54), 209 ZYD_ZD1211_DEV(ASUS, WL159G), 210 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 211 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 213 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 215 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 216 ZYD_ZD1211_DEV(SAGEM, XG760A), 217 ZYD_ZD1211_DEV(SENAO, NUB8301), 218 ZYD_ZD1211_DEV(SITECOMEU, WL113), 219 ZYD_ZD1211_DEV(SWEEX, ZD1211), 220 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 222 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 223 ZYD_ZD1211_DEV(TWINMOS, G240), 224 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 226 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 227 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 228 ZYD_ZD1211_DEV(ZCOM, ZD1211), 229 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 230 ZYD_ZD1211_DEV(ZYXEL, AG225H), 231 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 232 ZYD_ZD1211_DEV(ZYXEL, G200V2), 233 /* ZYD_ZD1211B */ 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 235 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 236 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 237 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 238 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 239 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 240 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 241 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 242 ZYD_ZD1211B_DEV(MELCO, KG54L), 243 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 244 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 245 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 246 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 247 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 248 ZYD_ZD1211B_DEV(USR, USR5423), 249 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 250 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 252 ZYD_ZD1211B_DEV(ZYXEL, M202), 253 ZYD_ZD1211B_DEV(ZYXEL, G202), 254 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 255 }; 256 257 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 258 [ZYD_BULK_WR] = { 259 .type = UE_BULK, 260 .endpoint = UE_ADDR_ANY, 261 .direction = UE_DIR_OUT, 262 .bufsize = ZYD_MAX_TXBUFSZ, 263 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 264 .callback = zyd_bulk_write_callback, 265 .ep_index = 0, 266 .timeout = 10000, /* 10 seconds */ 267 }, 268 [ZYD_BULK_RD] = { 269 .type = UE_BULK, 270 .endpoint = UE_ADDR_ANY, 271 .direction = UE_DIR_IN, 272 .bufsize = ZYX_MAX_RXBUFSZ, 273 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 274 .callback = zyd_bulk_read_callback, 275 .ep_index = 0, 276 }, 277 [ZYD_INTR_WR] = { 278 .type = UE_BULK_INTR, 279 .endpoint = UE_ADDR_ANY, 280 .direction = UE_DIR_OUT, 281 .bufsize = sizeof(struct zyd_cmd), 282 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 283 .callback = zyd_intr_write_callback, 284 .timeout = 1000, /* 1 second */ 285 .ep_index = 1, 286 }, 287 [ZYD_INTR_RD] = { 288 .type = UE_INTERRUPT, 289 .endpoint = UE_ADDR_ANY, 290 .direction = UE_DIR_IN, 291 .bufsize = sizeof(struct zyd_cmd), 292 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 293 .callback = zyd_intr_read_callback, 294 }, 295 }; 296 #define zyd_read16_m(sc, val, data) do { \ 297 error = zyd_read16(sc, val, data); \ 298 if (error != 0) \ 299 goto fail; \ 300 } while (0) 301 #define zyd_write16_m(sc, val, data) do { \ 302 error = zyd_write16(sc, val, data); \ 303 if (error != 0) \ 304 goto fail; \ 305 } while (0) 306 #define zyd_read32_m(sc, val, data) do { \ 307 error = zyd_read32(sc, val, data); \ 308 if (error != 0) \ 309 goto fail; \ 310 } while (0) 311 #define zyd_write32_m(sc, val, data) do { \ 312 error = zyd_write32(sc, val, data); \ 313 if (error != 0) \ 314 goto fail; \ 315 } while (0) 316 317 static int 318 zyd_match(device_t dev) 319 { 320 struct usb_attach_arg *uaa = device_get_ivars(dev); 321 322 if (uaa->usb_mode != USB_MODE_HOST) 323 return (ENXIO); 324 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 325 return (ENXIO); 326 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 327 return (ENXIO); 328 329 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 330 } 331 332 static int 333 zyd_attach(device_t dev) 334 { 335 struct usb_attach_arg *uaa = device_get_ivars(dev); 336 struct zyd_softc *sc = device_get_softc(dev); 337 struct ieee80211com *ic = &sc->sc_ic; 338 uint8_t iface_index; 339 int error; 340 341 if (uaa->info.bcdDevice < 0x4330) { 342 device_printf(dev, "device version mismatch: 0x%X " 343 "(only >= 43.30 supported)\n", 344 uaa->info.bcdDevice); 345 return (EINVAL); 346 } 347 348 device_set_usb_desc(dev); 349 sc->sc_dev = dev; 350 sc->sc_udev = uaa->device; 351 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 352 353 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 354 MTX_NETWORK_LOCK, MTX_DEF); 355 STAILQ_INIT(&sc->sc_rqh); 356 mbufq_init(&sc->sc_snd, ifqmaxlen); 357 358 iface_index = ZYD_IFACE_INDEX; 359 error = usbd_transfer_setup(uaa->device, 360 &iface_index, sc->sc_xfer, zyd_config, 361 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 362 if (error) { 363 device_printf(dev, "could not allocate USB transfers, " 364 "err=%s\n", usbd_errstr(error)); 365 goto detach; 366 } 367 368 ZYD_LOCK(sc); 369 if ((error = zyd_get_macaddr(sc)) != 0) { 370 device_printf(sc->sc_dev, "could not read EEPROM\n"); 371 ZYD_UNLOCK(sc); 372 goto detach; 373 } 374 ZYD_UNLOCK(sc); 375 376 ic->ic_softc = sc; 377 ic->ic_name = device_get_nameunit(dev); 378 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 379 ic->ic_opmode = IEEE80211_M_STA; 380 381 /* set device capabilities */ 382 ic->ic_caps = 383 IEEE80211_C_STA /* station mode */ 384 | IEEE80211_C_MONITOR /* monitor mode */ 385 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 386 | IEEE80211_C_SHSLOT /* short slot time supported */ 387 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 388 | IEEE80211_C_WPA /* 802.11i */ 389 ; 390 391 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 392 ic->ic_channels); 393 394 ieee80211_ifattach(ic); 395 ic->ic_raw_xmit = zyd_raw_xmit; 396 ic->ic_scan_start = zyd_scan_start; 397 ic->ic_scan_end = zyd_scan_end; 398 ic->ic_getradiocaps = zyd_getradiocaps; 399 ic->ic_set_channel = zyd_set_channel; 400 ic->ic_vap_create = zyd_vap_create; 401 ic->ic_vap_delete = zyd_vap_delete; 402 ic->ic_update_mcast = zyd_update_mcast; 403 ic->ic_update_promisc = zyd_update_mcast; 404 ic->ic_parent = zyd_parent; 405 ic->ic_transmit = zyd_transmit; 406 407 ieee80211_radiotap_attach(ic, 408 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 409 ZYD_TX_RADIOTAP_PRESENT, 410 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 411 ZYD_RX_RADIOTAP_PRESENT); 412 413 if (bootverbose) 414 ieee80211_announce(ic); 415 416 return (0); 417 418 detach: 419 zyd_detach(dev); 420 return (ENXIO); /* failure */ 421 } 422 423 static void 424 zyd_drain_mbufq(struct zyd_softc *sc) 425 { 426 struct mbuf *m; 427 struct ieee80211_node *ni; 428 429 ZYD_LOCK_ASSERT(sc, MA_OWNED); 430 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 431 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 432 m->m_pkthdr.rcvif = NULL; 433 ieee80211_free_node(ni); 434 m_freem(m); 435 } 436 } 437 438 439 static int 440 zyd_detach(device_t dev) 441 { 442 struct zyd_softc *sc = device_get_softc(dev); 443 struct ieee80211com *ic = &sc->sc_ic; 444 unsigned int x; 445 446 /* 447 * Prevent further allocations from RX/TX data 448 * lists and ioctls: 449 */ 450 ZYD_LOCK(sc); 451 sc->sc_flags |= ZYD_FLAG_DETACHED; 452 zyd_drain_mbufq(sc); 453 STAILQ_INIT(&sc->tx_q); 454 STAILQ_INIT(&sc->tx_free); 455 ZYD_UNLOCK(sc); 456 457 /* drain USB transfers */ 458 for (x = 0; x != ZYD_N_TRANSFER; x++) 459 usbd_transfer_drain(sc->sc_xfer[x]); 460 461 /* free TX list, if any */ 462 ZYD_LOCK(sc); 463 zyd_unsetup_tx_list(sc); 464 ZYD_UNLOCK(sc); 465 466 /* free USB transfers and some data buffers */ 467 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 468 469 if (ic->ic_softc == sc) 470 ieee80211_ifdetach(ic); 471 mtx_destroy(&sc->sc_mtx); 472 473 return (0); 474 } 475 476 static struct ieee80211vap * 477 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 478 enum ieee80211_opmode opmode, int flags, 479 const uint8_t bssid[IEEE80211_ADDR_LEN], 480 const uint8_t mac[IEEE80211_ADDR_LEN]) 481 { 482 struct zyd_vap *zvp; 483 struct ieee80211vap *vap; 484 485 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 486 return (NULL); 487 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 488 vap = &zvp->vap; 489 490 /* enable s/w bmiss handling for sta mode */ 491 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 492 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 493 /* out of memory */ 494 free(zvp, M_80211_VAP); 495 return (NULL); 496 } 497 498 /* override state transition machine */ 499 zvp->newstate = vap->iv_newstate; 500 vap->iv_newstate = zyd_newstate; 501 502 ieee80211_ratectl_init(vap); 503 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 504 505 /* complete setup */ 506 ieee80211_vap_attach(vap, ieee80211_media_change, 507 ieee80211_media_status, mac); 508 ic->ic_opmode = opmode; 509 return (vap); 510 } 511 512 static void 513 zyd_vap_delete(struct ieee80211vap *vap) 514 { 515 struct zyd_vap *zvp = ZYD_VAP(vap); 516 517 ieee80211_ratectl_deinit(vap); 518 ieee80211_vap_detach(vap); 519 free(zvp, M_80211_VAP); 520 } 521 522 static void 523 zyd_tx_free(struct zyd_tx_data *data, int txerr) 524 { 525 struct zyd_softc *sc = data->sc; 526 527 if (data->m != NULL) { 528 ieee80211_tx_complete(data->ni, data->m, txerr); 529 data->m = NULL; 530 data->ni = NULL; 531 } 532 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 533 sc->tx_nfree++; 534 } 535 536 static void 537 zyd_setup_tx_list(struct zyd_softc *sc) 538 { 539 struct zyd_tx_data *data; 540 int i; 541 542 sc->tx_nfree = 0; 543 STAILQ_INIT(&sc->tx_q); 544 STAILQ_INIT(&sc->tx_free); 545 546 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 547 data = &sc->tx_data[i]; 548 549 data->sc = sc; 550 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 551 sc->tx_nfree++; 552 } 553 } 554 555 static void 556 zyd_unsetup_tx_list(struct zyd_softc *sc) 557 { 558 struct zyd_tx_data *data; 559 int i; 560 561 /* make sure any subsequent use of the queues will fail */ 562 sc->tx_nfree = 0; 563 STAILQ_INIT(&sc->tx_q); 564 STAILQ_INIT(&sc->tx_free); 565 566 /* free up all node references and mbufs */ 567 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 568 data = &sc->tx_data[i]; 569 570 if (data->m != NULL) { 571 m_freem(data->m); 572 data->m = NULL; 573 } 574 if (data->ni != NULL) { 575 ieee80211_free_node(data->ni); 576 data->ni = NULL; 577 } 578 } 579 } 580 581 static int 582 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 583 { 584 struct zyd_vap *zvp = ZYD_VAP(vap); 585 struct ieee80211com *ic = vap->iv_ic; 586 struct zyd_softc *sc = ic->ic_softc; 587 int error; 588 589 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 590 ieee80211_state_name[vap->iv_state], 591 ieee80211_state_name[nstate]); 592 593 IEEE80211_UNLOCK(ic); 594 ZYD_LOCK(sc); 595 switch (nstate) { 596 case IEEE80211_S_AUTH: 597 zyd_set_chan(sc, ic->ic_curchan); 598 break; 599 case IEEE80211_S_RUN: 600 if (vap->iv_opmode == IEEE80211_M_MONITOR) 601 break; 602 603 /* turn link LED on */ 604 error = zyd_set_led(sc, ZYD_LED1, 1); 605 if (error != 0) 606 break; 607 608 /* make data LED blink upon Tx */ 609 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 610 611 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 612 zyd_set_bssid(sc, sc->sc_bssid); 613 break; 614 default: 615 break; 616 } 617 fail: 618 ZYD_UNLOCK(sc); 619 IEEE80211_LOCK(ic); 620 return (zvp->newstate(vap, nstate, arg)); 621 } 622 623 /* 624 * Callback handler for interrupt transfer 625 */ 626 static void 627 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 628 { 629 struct zyd_softc *sc = usbd_xfer_softc(xfer); 630 struct ieee80211com *ic = &sc->sc_ic; 631 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 632 struct ieee80211_node *ni; 633 struct zyd_cmd *cmd = &sc->sc_ibuf; 634 struct usb_page_cache *pc; 635 int datalen; 636 int actlen; 637 638 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 639 640 switch (USB_GET_STATE(xfer)) { 641 case USB_ST_TRANSFERRED: 642 pc = usbd_xfer_get_frame(xfer, 0); 643 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 644 645 switch (le16toh(cmd->code)) { 646 case ZYD_NOTIF_RETRYSTATUS: 647 { 648 struct zyd_notif_retry *retry = 649 (struct zyd_notif_retry *)cmd->data; 650 uint16_t count = le16toh(retry->count); 651 652 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 653 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 654 le16toh(retry->rate), ether_sprintf(retry->macaddr), 655 count & 0xff, count); 656 657 /* 658 * Find the node to which the packet was sent and 659 * update its retry statistics. In BSS mode, this node 660 * is the AP we're associated to so no lookup is 661 * actually needed. 662 */ 663 ni = ieee80211_find_txnode(vap, retry->macaddr); 664 if (ni != NULL) { 665 struct ieee80211_ratectl_tx_status *txs = 666 &sc->sc_txs; 667 int retrycnt = count & 0xff; 668 669 txs->flags = 670 IEEE80211_RATECTL_STATUS_LONG_RETRY; 671 txs->long_retries = retrycnt; 672 if (count & 0x100) { 673 txs->status = 674 IEEE80211_RATECTL_TX_FAIL_LONG; 675 } else { 676 txs->status = 677 IEEE80211_RATECTL_TX_SUCCESS; 678 } 679 680 681 ieee80211_ratectl_tx_complete(ni, txs); 682 ieee80211_free_node(ni); 683 } 684 if (count & 0x100) 685 /* too many retries */ 686 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 687 1); 688 break; 689 } 690 case ZYD_NOTIF_IORD: 691 { 692 struct zyd_rq *rqp; 693 694 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 695 break; /* HMAC interrupt */ 696 697 datalen = actlen - sizeof(cmd->code); 698 datalen -= 2; /* XXX: padding? */ 699 700 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 701 int i; 702 int count; 703 704 if (rqp->olen != datalen) 705 continue; 706 count = rqp->olen / sizeof(struct zyd_pair); 707 for (i = 0; i < count; i++) { 708 if (*(((const uint16_t *)rqp->idata) + i) != 709 (((struct zyd_pair *)cmd->data) + i)->reg) 710 break; 711 } 712 if (i != count) 713 continue; 714 /* copy answer into caller-supplied buffer */ 715 memcpy(rqp->odata, cmd->data, rqp->olen); 716 DPRINTF(sc, ZYD_DEBUG_CMD, 717 "command %p complete, data = %*D \n", 718 rqp, rqp->olen, (char *)rqp->odata, ":"); 719 wakeup(rqp); /* wakeup caller */ 720 break; 721 } 722 if (rqp == NULL) { 723 device_printf(sc->sc_dev, 724 "unexpected IORD notification %*D\n", 725 datalen, cmd->data, ":"); 726 } 727 break; 728 } 729 default: 730 device_printf(sc->sc_dev, "unknown notification %x\n", 731 le16toh(cmd->code)); 732 } 733 734 /* FALLTHROUGH */ 735 case USB_ST_SETUP: 736 tr_setup: 737 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 738 usbd_transfer_submit(xfer); 739 break; 740 741 default: /* Error */ 742 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 743 usbd_errstr(error)); 744 745 if (error != USB_ERR_CANCELLED) { 746 /* try to clear stall first */ 747 usbd_xfer_set_stall(xfer); 748 goto tr_setup; 749 } 750 break; 751 } 752 } 753 754 static void 755 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 756 { 757 struct zyd_softc *sc = usbd_xfer_softc(xfer); 758 struct zyd_rq *rqp, *cmd; 759 struct usb_page_cache *pc; 760 761 switch (USB_GET_STATE(xfer)) { 762 case USB_ST_TRANSFERRED: 763 cmd = usbd_xfer_get_priv(xfer); 764 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 765 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 766 /* Ensure the cached rq pointer is still valid */ 767 if (rqp == cmd && 768 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 769 wakeup(rqp); /* wakeup caller */ 770 } 771 772 /* FALLTHROUGH */ 773 case USB_ST_SETUP: 774 tr_setup: 775 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 776 if (rqp->flags & ZYD_CMD_FLAG_SENT) 777 continue; 778 779 pc = usbd_xfer_get_frame(xfer, 0); 780 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 781 782 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 783 usbd_xfer_set_priv(xfer, rqp); 784 rqp->flags |= ZYD_CMD_FLAG_SENT; 785 usbd_transfer_submit(xfer); 786 break; 787 } 788 break; 789 790 default: /* Error */ 791 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 792 usbd_errstr(error)); 793 794 if (error != USB_ERR_CANCELLED) { 795 /* try to clear stall first */ 796 usbd_xfer_set_stall(xfer); 797 goto tr_setup; 798 } 799 break; 800 } 801 } 802 803 static int 804 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 805 void *odata, int olen, int flags) 806 { 807 struct zyd_cmd cmd; 808 struct zyd_rq rq; 809 int error; 810 811 if (ilen > (int)sizeof(cmd.data)) 812 return (EINVAL); 813 814 cmd.code = htole16(code); 815 memcpy(cmd.data, idata, ilen); 816 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 817 &rq, ilen, idata, ":"); 818 819 rq.cmd = &cmd; 820 rq.idata = idata; 821 rq.odata = odata; 822 rq.ilen = sizeof(uint16_t) + ilen; 823 rq.olen = olen; 824 rq.flags = flags; 825 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 826 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 827 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 828 829 /* wait at most one second for command reply */ 830 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 831 if (error) 832 device_printf(sc->sc_dev, "command timeout\n"); 833 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 834 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 835 &rq, error); 836 837 return (error); 838 } 839 840 static int 841 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 842 { 843 struct zyd_pair tmp; 844 int error; 845 846 reg = htole16(reg); 847 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 848 ZYD_CMD_FLAG_READ); 849 if (error == 0) 850 *val = le16toh(tmp.val); 851 return (error); 852 } 853 854 static int 855 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 856 { 857 struct zyd_pair tmp[2]; 858 uint16_t regs[2]; 859 int error; 860 861 regs[0] = htole16(ZYD_REG32_HI(reg)); 862 regs[1] = htole16(ZYD_REG32_LO(reg)); 863 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 864 ZYD_CMD_FLAG_READ); 865 if (error == 0) 866 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 867 return (error); 868 } 869 870 static int 871 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 872 { 873 struct zyd_pair pair; 874 875 pair.reg = htole16(reg); 876 pair.val = htole16(val); 877 878 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 879 } 880 881 static int 882 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 883 { 884 struct zyd_pair pair[2]; 885 886 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 887 pair[0].val = htole16(val >> 16); 888 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 889 pair[1].val = htole16(val & 0xffff); 890 891 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 892 } 893 894 static int 895 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 896 { 897 struct zyd_rf *rf = &sc->sc_rf; 898 struct zyd_rfwrite_cmd req; 899 uint16_t cr203; 900 int error, i; 901 902 zyd_read16_m(sc, ZYD_CR203, &cr203); 903 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 904 905 req.code = htole16(2); 906 req.width = htole16(rf->width); 907 for (i = 0; i < rf->width; i++) { 908 req.bit[i] = htole16(cr203); 909 if (val & (1 << (rf->width - 1 - i))) 910 req.bit[i] |= htole16(ZYD_RF_DATA); 911 } 912 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 913 fail: 914 return (error); 915 } 916 917 static int 918 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 919 { 920 int error; 921 922 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 923 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 924 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 925 fail: 926 return (error); 927 } 928 929 static int 930 zyd_lock_phy(struct zyd_softc *sc) 931 { 932 int error; 933 uint32_t tmp; 934 935 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 936 tmp &= ~ZYD_UNLOCK_PHY_REGS; 937 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 938 fail: 939 return (error); 940 } 941 942 static int 943 zyd_unlock_phy(struct zyd_softc *sc) 944 { 945 int error; 946 uint32_t tmp; 947 948 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 949 tmp |= ZYD_UNLOCK_PHY_REGS; 950 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 951 fail: 952 return (error); 953 } 954 955 /* 956 * RFMD RF methods. 957 */ 958 static int 959 zyd_rfmd_init(struct zyd_rf *rf) 960 { 961 struct zyd_softc *sc = rf->rf_sc; 962 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 963 static const uint32_t rfini[] = ZYD_RFMD_RF; 964 int i, error; 965 966 /* init RF-dependent PHY registers */ 967 for (i = 0; i < nitems(phyini); i++) { 968 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 969 } 970 971 /* init RFMD radio */ 972 for (i = 0; i < nitems(rfini); i++) { 973 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 974 return (error); 975 } 976 fail: 977 return (error); 978 } 979 980 static int 981 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 982 { 983 int error; 984 struct zyd_softc *sc = rf->rf_sc; 985 986 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 987 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 988 fail: 989 return (error); 990 } 991 992 static int 993 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 994 { 995 int error; 996 struct zyd_softc *sc = rf->rf_sc; 997 static const struct { 998 uint32_t r1, r2; 999 } rfprog[] = ZYD_RFMD_CHANTABLE; 1000 1001 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1002 if (error != 0) 1003 goto fail; 1004 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1005 if (error != 0) 1006 goto fail; 1007 1008 fail: 1009 return (error); 1010 } 1011 1012 /* 1013 * AL2230 RF methods. 1014 */ 1015 static int 1016 zyd_al2230_init(struct zyd_rf *rf) 1017 { 1018 struct zyd_softc *sc = rf->rf_sc; 1019 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1020 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1021 static const struct zyd_phy_pair phypll[] = { 1022 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1023 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1024 }; 1025 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1026 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1027 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1028 int i, error; 1029 1030 /* init RF-dependent PHY registers */ 1031 for (i = 0; i < nitems(phyini); i++) 1032 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1033 1034 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1035 for (i = 0; i < nitems(phy2230s); i++) 1036 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1037 } 1038 1039 /* init AL2230 radio */ 1040 for (i = 0; i < nitems(rfini1); i++) { 1041 error = zyd_rfwrite(sc, rfini1[i]); 1042 if (error != 0) 1043 goto fail; 1044 } 1045 1046 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1047 error = zyd_rfwrite(sc, 0x000824); 1048 else 1049 error = zyd_rfwrite(sc, 0x0005a4); 1050 if (error != 0) 1051 goto fail; 1052 1053 for (i = 0; i < nitems(rfini2); i++) { 1054 error = zyd_rfwrite(sc, rfini2[i]); 1055 if (error != 0) 1056 goto fail; 1057 } 1058 1059 for (i = 0; i < nitems(phypll); i++) 1060 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1061 1062 for (i = 0; i < nitems(rfini3); i++) { 1063 error = zyd_rfwrite(sc, rfini3[i]); 1064 if (error != 0) 1065 goto fail; 1066 } 1067 fail: 1068 return (error); 1069 } 1070 1071 static int 1072 zyd_al2230_fini(struct zyd_rf *rf) 1073 { 1074 int error, i; 1075 struct zyd_softc *sc = rf->rf_sc; 1076 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1077 1078 for (i = 0; i < nitems(phy); i++) 1079 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1080 1081 if (sc->sc_newphy != 0) 1082 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1083 1084 zyd_write16_m(sc, ZYD_CR203, 0x6); 1085 fail: 1086 return (error); 1087 } 1088 1089 static int 1090 zyd_al2230_init_b(struct zyd_rf *rf) 1091 { 1092 struct zyd_softc *sc = rf->rf_sc; 1093 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1094 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1095 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1096 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1097 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1098 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1099 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1100 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1101 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1102 int i, error; 1103 1104 for (i = 0; i < nitems(phy1); i++) 1105 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1106 1107 /* init RF-dependent PHY registers */ 1108 for (i = 0; i < nitems(phyini); i++) 1109 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1110 1111 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1112 for (i = 0; i < nitems(phy2230s); i++) 1113 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1114 } 1115 1116 for (i = 0; i < 3; i++) { 1117 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1118 if (error != 0) 1119 return (error); 1120 } 1121 1122 for (i = 0; i < nitems(rfini_part1); i++) { 1123 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1124 if (error != 0) 1125 return (error); 1126 } 1127 1128 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1129 error = zyd_rfwrite(sc, 0x241000); 1130 else 1131 error = zyd_rfwrite(sc, 0x25a000); 1132 if (error != 0) 1133 goto fail; 1134 1135 for (i = 0; i < nitems(rfini_part2); i++) { 1136 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1137 if (error != 0) 1138 return (error); 1139 } 1140 1141 for (i = 0; i < nitems(phy2); i++) 1142 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1143 1144 for (i = 0; i < nitems(rfini_part3); i++) { 1145 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1146 if (error != 0) 1147 return (error); 1148 } 1149 1150 for (i = 0; i < nitems(phy3); i++) 1151 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1152 1153 error = zyd_al2230_fini(rf); 1154 fail: 1155 return (error); 1156 } 1157 1158 static int 1159 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1160 { 1161 struct zyd_softc *sc = rf->rf_sc; 1162 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1163 1164 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1165 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1166 fail: 1167 return (error); 1168 } 1169 1170 static int 1171 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1172 { 1173 int error, i; 1174 struct zyd_softc *sc = rf->rf_sc; 1175 static const struct zyd_phy_pair phy1[] = { 1176 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1177 }; 1178 static const struct { 1179 uint32_t r1, r2, r3; 1180 } rfprog[] = ZYD_AL2230_CHANTABLE; 1181 1182 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1183 if (error != 0) 1184 goto fail; 1185 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1186 if (error != 0) 1187 goto fail; 1188 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1189 if (error != 0) 1190 goto fail; 1191 1192 for (i = 0; i < nitems(phy1); i++) 1193 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1194 fail: 1195 return (error); 1196 } 1197 1198 static int 1199 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1200 { 1201 int error, i; 1202 struct zyd_softc *sc = rf->rf_sc; 1203 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1204 static const struct { 1205 uint32_t r1, r2, r3; 1206 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1207 1208 for (i = 0; i < nitems(phy1); i++) 1209 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1210 1211 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1212 if (error != 0) 1213 goto fail; 1214 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1215 if (error != 0) 1216 goto fail; 1217 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1218 if (error != 0) 1219 goto fail; 1220 error = zyd_al2230_fini(rf); 1221 fail: 1222 return (error); 1223 } 1224 1225 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1226 { \ 1227 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1228 { ZYD_CR47, 0x1e } \ 1229 } 1230 1231 static int 1232 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1233 { 1234 int error = 0, i; 1235 struct zyd_softc *sc = rf->rf_sc; 1236 struct ieee80211com *ic = &sc->sc_ic; 1237 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1238 int chan = ieee80211_chan2ieee(ic, c); 1239 1240 if (chan == 1 || chan == 11) 1241 r[0].val = 0x12; 1242 1243 for (i = 0; i < nitems(r); i++) 1244 zyd_write16_m(sc, r[i].reg, r[i].val); 1245 fail: 1246 return (error); 1247 } 1248 1249 /* 1250 * AL7230B RF methods. 1251 */ 1252 static int 1253 zyd_al7230B_init(struct zyd_rf *rf) 1254 { 1255 struct zyd_softc *sc = rf->rf_sc; 1256 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1257 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1258 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1259 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1260 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1261 int i, error; 1262 1263 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1264 1265 /* init RF-dependent PHY registers, part one */ 1266 for (i = 0; i < nitems(phyini_1); i++) 1267 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1268 1269 /* init AL7230B radio, part one */ 1270 for (i = 0; i < nitems(rfini_1); i++) { 1271 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1272 return (error); 1273 } 1274 /* init RF-dependent PHY registers, part two */ 1275 for (i = 0; i < nitems(phyini_2); i++) 1276 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1277 1278 /* init AL7230B radio, part two */ 1279 for (i = 0; i < nitems(rfini_2); i++) { 1280 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1281 return (error); 1282 } 1283 /* init RF-dependent PHY registers, part three */ 1284 for (i = 0; i < nitems(phyini_3); i++) 1285 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1286 fail: 1287 return (error); 1288 } 1289 1290 static int 1291 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1292 { 1293 int error; 1294 struct zyd_softc *sc = rf->rf_sc; 1295 1296 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1297 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1298 fail: 1299 return (error); 1300 } 1301 1302 static int 1303 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1304 { 1305 struct zyd_softc *sc = rf->rf_sc; 1306 static const struct { 1307 uint32_t r1, r2; 1308 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1309 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1310 int i, error; 1311 1312 zyd_write16_m(sc, ZYD_CR240, 0x57); 1313 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1314 1315 for (i = 0; i < nitems(rfsc); i++) { 1316 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1317 return (error); 1318 } 1319 1320 zyd_write16_m(sc, ZYD_CR128, 0x14); 1321 zyd_write16_m(sc, ZYD_CR129, 0x12); 1322 zyd_write16_m(sc, ZYD_CR130, 0x10); 1323 zyd_write16_m(sc, ZYD_CR38, 0x38); 1324 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1325 1326 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1327 if (error != 0) 1328 goto fail; 1329 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1330 if (error != 0) 1331 goto fail; 1332 error = zyd_rfwrite(sc, 0x3c9000); 1333 if (error != 0) 1334 goto fail; 1335 1336 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1337 zyd_write16_m(sc, ZYD_CR203, 0x06); 1338 zyd_write16_m(sc, ZYD_CR240, 0x08); 1339 fail: 1340 return (error); 1341 } 1342 1343 /* 1344 * AL2210 RF methods. 1345 */ 1346 static int 1347 zyd_al2210_init(struct zyd_rf *rf) 1348 { 1349 struct zyd_softc *sc = rf->rf_sc; 1350 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1351 static const uint32_t rfini[] = ZYD_AL2210_RF; 1352 uint32_t tmp; 1353 int i, error; 1354 1355 zyd_write32_m(sc, ZYD_CR18, 2); 1356 1357 /* init RF-dependent PHY registers */ 1358 for (i = 0; i < nitems(phyini); i++) 1359 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1360 1361 /* init AL2210 radio */ 1362 for (i = 0; i < nitems(rfini); i++) { 1363 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1364 return (error); 1365 } 1366 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1367 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1368 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1369 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1370 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1371 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1372 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1373 zyd_write32_m(sc, ZYD_CR18, 3); 1374 fail: 1375 return (error); 1376 } 1377 1378 static int 1379 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1380 { 1381 /* vendor driver does nothing for this RF chip */ 1382 1383 return (0); 1384 } 1385 1386 static int 1387 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1388 { 1389 int error; 1390 struct zyd_softc *sc = rf->rf_sc; 1391 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1392 uint32_t tmp; 1393 1394 zyd_write32_m(sc, ZYD_CR18, 2); 1395 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1396 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1397 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1398 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1399 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1400 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1401 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1402 1403 /* actually set the channel */ 1404 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1405 if (error != 0) 1406 goto fail; 1407 1408 zyd_write32_m(sc, ZYD_CR18, 3); 1409 fail: 1410 return (error); 1411 } 1412 1413 /* 1414 * GCT RF methods. 1415 */ 1416 static int 1417 zyd_gct_init(struct zyd_rf *rf) 1418 { 1419 #define ZYD_GCT_INTR_REG 0x85c1 1420 struct zyd_softc *sc = rf->rf_sc; 1421 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1422 static const uint32_t rfini[] = ZYD_GCT_RF; 1423 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1424 int i, idx = -1, error; 1425 uint16_t data; 1426 1427 /* init RF-dependent PHY registers */ 1428 for (i = 0; i < nitems(phyini); i++) 1429 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1430 1431 /* init cgt radio */ 1432 for (i = 0; i < nitems(rfini); i++) { 1433 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1434 return (error); 1435 } 1436 1437 error = zyd_gct_mode(rf); 1438 if (error != 0) 1439 return (error); 1440 1441 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1442 error = zyd_gct_set_channel_synth(rf, 1, 0); 1443 if (error != 0) 1444 goto fail; 1445 error = zyd_gct_write(rf, vco[i][0]); 1446 if (error != 0) 1447 goto fail; 1448 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1449 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1450 if ((data & 0xf) == 0) { 1451 idx = i; 1452 break; 1453 } 1454 } 1455 if (idx == -1) { 1456 error = zyd_gct_set_channel_synth(rf, 1, 1); 1457 if (error != 0) 1458 goto fail; 1459 error = zyd_gct_write(rf, 0x6662); 1460 if (error != 0) 1461 goto fail; 1462 } 1463 1464 rf->idx = idx; 1465 zyd_write16_m(sc, ZYD_CR203, 0x6); 1466 fail: 1467 return (error); 1468 #undef ZYD_GCT_INTR_REG 1469 } 1470 1471 static int 1472 zyd_gct_mode(struct zyd_rf *rf) 1473 { 1474 struct zyd_softc *sc = rf->rf_sc; 1475 static const uint32_t mode[] = { 1476 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1477 }; 1478 int i, error; 1479 1480 for (i = 0; i < nitems(mode); i++) { 1481 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1482 break; 1483 } 1484 return (error); 1485 } 1486 1487 static int 1488 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1489 { 1490 int error, idx = chan - 1; 1491 struct zyd_softc *sc = rf->rf_sc; 1492 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1493 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1494 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1495 1496 error = zyd_rfwrite(sc, 1497 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1498 if (error != 0) 1499 return (error); 1500 return zyd_rfwrite(sc, div_synth[idx]); 1501 } 1502 1503 static int 1504 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1505 { 1506 struct zyd_softc *sc = rf->rf_sc; 1507 1508 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1509 } 1510 1511 static int 1512 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1513 { 1514 int error; 1515 struct zyd_softc *sc = rf->rf_sc; 1516 1517 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1518 if (error != 0) 1519 return (error); 1520 1521 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1522 zyd_write16_m(sc, ZYD_CR251, 1523 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1524 fail: 1525 return (error); 1526 } 1527 1528 static int 1529 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1530 { 1531 int error, i; 1532 struct zyd_softc *sc = rf->rf_sc; 1533 static const struct zyd_phy_pair cmd[] = { 1534 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1535 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1536 }; 1537 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1538 1539 error = zyd_gct_set_channel_synth(rf, chan, 0); 1540 if (error != 0) 1541 goto fail; 1542 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1543 vco[rf->idx][((chan - 1) / 2)]); 1544 if (error != 0) 1545 goto fail; 1546 error = zyd_gct_mode(rf); 1547 if (error != 0) 1548 return (error); 1549 for (i = 0; i < nitems(cmd); i++) 1550 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1551 error = zyd_gct_txgain(rf, chan); 1552 if (error != 0) 1553 return (error); 1554 zyd_write16_m(sc, ZYD_CR203, 0x6); 1555 fail: 1556 return (error); 1557 } 1558 1559 static int 1560 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1561 { 1562 struct zyd_softc *sc = rf->rf_sc; 1563 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1564 uint8_t idx = sc->sc_pwrint[chan - 1]; 1565 1566 if (idx >= nitems(txgain)) { 1567 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1568 chan, idx); 1569 return 0; 1570 } 1571 1572 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1573 } 1574 1575 /* 1576 * Maxim2 RF methods. 1577 */ 1578 static int 1579 zyd_maxim2_init(struct zyd_rf *rf) 1580 { 1581 struct zyd_softc *sc = rf->rf_sc; 1582 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1583 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1584 uint16_t tmp; 1585 int i, error; 1586 1587 /* init RF-dependent PHY registers */ 1588 for (i = 0; i < nitems(phyini); i++) 1589 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1590 1591 zyd_read16_m(sc, ZYD_CR203, &tmp); 1592 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1593 1594 /* init maxim2 radio */ 1595 for (i = 0; i < nitems(rfini); i++) { 1596 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1597 return (error); 1598 } 1599 zyd_read16_m(sc, ZYD_CR203, &tmp); 1600 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1601 fail: 1602 return (error); 1603 } 1604 1605 static int 1606 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1607 { 1608 1609 /* vendor driver does nothing for this RF chip */ 1610 return (0); 1611 } 1612 1613 static int 1614 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1615 { 1616 struct zyd_softc *sc = rf->rf_sc; 1617 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1618 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1619 static const struct { 1620 uint32_t r1, r2; 1621 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1622 uint16_t tmp; 1623 int i, error; 1624 1625 /* 1626 * Do the same as we do when initializing it, except for the channel 1627 * values coming from the two channel tables. 1628 */ 1629 1630 /* init RF-dependent PHY registers */ 1631 for (i = 0; i < nitems(phyini); i++) 1632 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1633 1634 zyd_read16_m(sc, ZYD_CR203, &tmp); 1635 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1636 1637 /* first two values taken from the chantables */ 1638 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1639 if (error != 0) 1640 goto fail; 1641 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1642 if (error != 0) 1643 goto fail; 1644 1645 /* init maxim2 radio - skipping the two first values */ 1646 for (i = 2; i < nitems(rfini); i++) { 1647 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1648 return (error); 1649 } 1650 zyd_read16_m(sc, ZYD_CR203, &tmp); 1651 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1652 fail: 1653 return (error); 1654 } 1655 1656 static int 1657 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1658 { 1659 struct zyd_rf *rf = &sc->sc_rf; 1660 1661 rf->rf_sc = sc; 1662 rf->update_pwr = 1; 1663 1664 switch (type) { 1665 case ZYD_RF_RFMD: 1666 rf->init = zyd_rfmd_init; 1667 rf->switch_radio = zyd_rfmd_switch_radio; 1668 rf->set_channel = zyd_rfmd_set_channel; 1669 rf->width = 24; /* 24-bit RF values */ 1670 break; 1671 case ZYD_RF_AL2230: 1672 case ZYD_RF_AL2230S: 1673 if (sc->sc_macrev == ZYD_ZD1211B) { 1674 rf->init = zyd_al2230_init_b; 1675 rf->set_channel = zyd_al2230_set_channel_b; 1676 } else { 1677 rf->init = zyd_al2230_init; 1678 rf->set_channel = zyd_al2230_set_channel; 1679 } 1680 rf->switch_radio = zyd_al2230_switch_radio; 1681 rf->bandedge6 = zyd_al2230_bandedge6; 1682 rf->width = 24; /* 24-bit RF values */ 1683 break; 1684 case ZYD_RF_AL7230B: 1685 rf->init = zyd_al7230B_init; 1686 rf->switch_radio = zyd_al7230B_switch_radio; 1687 rf->set_channel = zyd_al7230B_set_channel; 1688 rf->width = 24; /* 24-bit RF values */ 1689 break; 1690 case ZYD_RF_AL2210: 1691 rf->init = zyd_al2210_init; 1692 rf->switch_radio = zyd_al2210_switch_radio; 1693 rf->set_channel = zyd_al2210_set_channel; 1694 rf->width = 24; /* 24-bit RF values */ 1695 break; 1696 case ZYD_RF_MAXIM_NEW: 1697 case ZYD_RF_GCT: 1698 rf->init = zyd_gct_init; 1699 rf->switch_radio = zyd_gct_switch_radio; 1700 rf->set_channel = zyd_gct_set_channel; 1701 rf->width = 24; /* 24-bit RF values */ 1702 rf->update_pwr = 0; 1703 break; 1704 case ZYD_RF_MAXIM_NEW2: 1705 rf->init = zyd_maxim2_init; 1706 rf->switch_radio = zyd_maxim2_switch_radio; 1707 rf->set_channel = zyd_maxim2_set_channel; 1708 rf->width = 18; /* 18-bit RF values */ 1709 break; 1710 default: 1711 device_printf(sc->sc_dev, 1712 "sorry, radio \"%s\" is not supported yet\n", 1713 zyd_rf_name(type)); 1714 return (EINVAL); 1715 } 1716 return (0); 1717 } 1718 1719 static const char * 1720 zyd_rf_name(uint8_t type) 1721 { 1722 static const char * const zyd_rfs[] = { 1723 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1724 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1725 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1726 "PHILIPS" 1727 }; 1728 1729 return zyd_rfs[(type > 15) ? 0 : type]; 1730 } 1731 1732 static int 1733 zyd_hw_init(struct zyd_softc *sc) 1734 { 1735 int error; 1736 const struct zyd_phy_pair *phyp; 1737 struct zyd_rf *rf = &sc->sc_rf; 1738 uint16_t val; 1739 1740 /* specify that the plug and play is finished */ 1741 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1742 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1743 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1744 sc->sc_fwbase); 1745 1746 /* retrieve firmware revision number */ 1747 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1748 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1749 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1750 /* set mandatory rates - XXX assumes 802.11b/g */ 1751 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1752 1753 /* disable interrupts */ 1754 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1755 1756 if ((error = zyd_read_pod(sc)) != 0) { 1757 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1758 goto fail; 1759 } 1760 1761 /* PHY init (resetting) */ 1762 error = zyd_lock_phy(sc); 1763 if (error != 0) 1764 goto fail; 1765 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1766 for (; phyp->reg != 0; phyp++) 1767 zyd_write16_m(sc, phyp->reg, phyp->val); 1768 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1769 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1770 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1771 } 1772 error = zyd_unlock_phy(sc); 1773 if (error != 0) 1774 goto fail; 1775 1776 /* HMAC init */ 1777 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1778 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1779 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1780 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1781 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1782 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1783 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1784 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1785 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1786 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1787 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1788 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1789 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1790 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1791 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1792 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1793 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1794 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1795 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1796 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1797 1798 if (sc->sc_macrev == ZYD_ZD1211) { 1799 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1800 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1801 } else { 1802 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1803 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1804 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1805 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1806 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1807 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1808 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1809 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1810 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1811 } 1812 1813 /* init beacon interval to 100ms */ 1814 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1815 goto fail; 1816 1817 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1818 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1819 sc->sc_rfrev); 1820 goto fail; 1821 } 1822 1823 /* RF chip init */ 1824 error = zyd_lock_phy(sc); 1825 if (error != 0) 1826 goto fail; 1827 error = (*rf->init)(rf); 1828 if (error != 0) { 1829 device_printf(sc->sc_dev, 1830 "radio initialization failed, error %d\n", error); 1831 goto fail; 1832 } 1833 error = zyd_unlock_phy(sc); 1834 if (error != 0) 1835 goto fail; 1836 1837 if ((error = zyd_read_eeprom(sc)) != 0) { 1838 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1839 goto fail; 1840 } 1841 1842 fail: return (error); 1843 } 1844 1845 static int 1846 zyd_read_pod(struct zyd_softc *sc) 1847 { 1848 int error; 1849 uint32_t tmp; 1850 1851 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1852 sc->sc_rfrev = tmp & 0x0f; 1853 sc->sc_ledtype = (tmp >> 4) & 0x01; 1854 sc->sc_al2230s = (tmp >> 7) & 0x01; 1855 sc->sc_cckgain = (tmp >> 8) & 0x01; 1856 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1857 sc->sc_parev = (tmp >> 16) & 0x0f; 1858 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1859 sc->sc_newphy = (tmp >> 31) & 0x01; 1860 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1861 fail: 1862 return (error); 1863 } 1864 1865 static int 1866 zyd_read_eeprom(struct zyd_softc *sc) 1867 { 1868 uint16_t val; 1869 int error, i; 1870 1871 /* read Tx power calibration tables */ 1872 for (i = 0; i < 7; i++) { 1873 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1874 sc->sc_pwrcal[i * 2] = val >> 8; 1875 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1876 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1877 sc->sc_pwrint[i * 2] = val >> 8; 1878 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1879 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1880 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1881 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1882 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1883 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1884 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1885 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1886 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1887 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1888 } 1889 fail: 1890 return (error); 1891 } 1892 1893 static int 1894 zyd_get_macaddr(struct zyd_softc *sc) 1895 { 1896 struct usb_device_request req; 1897 usb_error_t error; 1898 1899 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1900 req.bRequest = ZYD_READFWDATAREQ; 1901 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1902 USETW(req.wIndex, 0); 1903 USETW(req.wLength, IEEE80211_ADDR_LEN); 1904 1905 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1906 if (error != 0) { 1907 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1908 usbd_errstr(error)); 1909 } 1910 1911 return (error); 1912 } 1913 1914 static int 1915 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1916 { 1917 int error; 1918 uint32_t tmp; 1919 1920 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1921 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1922 tmp = addr[5] << 8 | addr[4]; 1923 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1924 fail: 1925 return (error); 1926 } 1927 1928 static int 1929 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1930 { 1931 int error; 1932 uint32_t tmp; 1933 1934 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1935 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1936 tmp = addr[5] << 8 | addr[4]; 1937 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1938 fail: 1939 return (error); 1940 } 1941 1942 static int 1943 zyd_switch_radio(struct zyd_softc *sc, int on) 1944 { 1945 struct zyd_rf *rf = &sc->sc_rf; 1946 int error; 1947 1948 error = zyd_lock_phy(sc); 1949 if (error != 0) 1950 goto fail; 1951 error = (*rf->switch_radio)(rf, on); 1952 if (error != 0) 1953 goto fail; 1954 error = zyd_unlock_phy(sc); 1955 fail: 1956 return (error); 1957 } 1958 1959 static int 1960 zyd_set_led(struct zyd_softc *sc, int which, int on) 1961 { 1962 int error; 1963 uint32_t tmp; 1964 1965 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1966 tmp &= ~which; 1967 if (on) 1968 tmp |= which; 1969 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1970 fail: 1971 return (error); 1972 } 1973 1974 static u_int 1975 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1976 { 1977 uint32_t *hash = arg; 1978 uint8_t v; 1979 1980 v = ((uint8_t *)LLADDR(sdl))[5] >> 2; 1981 if (v < 32) 1982 hash[0] |= 1 << v; 1983 else 1984 hash[1] |= 1 << (v - 32); 1985 1986 return (1); 1987 } 1988 1989 static void 1990 zyd_set_multi(struct zyd_softc *sc) 1991 { 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 uint32_t hash[2]; 1994 int error; 1995 1996 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1997 return; 1998 1999 hash[0] = 0x00000000; 2000 hash[1] = 0x80000000; 2001 2002 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 2003 ic->ic_promisc > 0) { 2004 hash[0] = 0xffffffff; 2005 hash[1] = 0xffffffff; 2006 } else { 2007 struct ieee80211vap *vap; 2008 2009 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2010 if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash); 2011 } 2012 2013 /* reprogram multicast global hash table */ 2014 zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]); 2015 zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]); 2016 fail: 2017 if (error != 0) 2018 device_printf(sc->sc_dev, 2019 "could not set multicast hash table\n"); 2020 } 2021 2022 static void 2023 zyd_update_mcast(struct ieee80211com *ic) 2024 { 2025 struct zyd_softc *sc = ic->ic_softc; 2026 2027 ZYD_LOCK(sc); 2028 zyd_set_multi(sc); 2029 ZYD_UNLOCK(sc); 2030 } 2031 2032 static int 2033 zyd_set_rxfilter(struct zyd_softc *sc) 2034 { 2035 struct ieee80211com *ic = &sc->sc_ic; 2036 uint32_t rxfilter; 2037 2038 switch (ic->ic_opmode) { 2039 case IEEE80211_M_STA: 2040 rxfilter = ZYD_FILTER_BSS; 2041 break; 2042 case IEEE80211_M_IBSS: 2043 case IEEE80211_M_HOSTAP: 2044 rxfilter = ZYD_FILTER_HOSTAP; 2045 break; 2046 case IEEE80211_M_MONITOR: 2047 rxfilter = ZYD_FILTER_MONITOR; 2048 break; 2049 default: 2050 /* should not get there */ 2051 return (EINVAL); 2052 } 2053 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2054 } 2055 2056 static void 2057 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2058 { 2059 int error; 2060 struct ieee80211com *ic = &sc->sc_ic; 2061 struct zyd_rf *rf = &sc->sc_rf; 2062 uint32_t tmp; 2063 int chan; 2064 2065 chan = ieee80211_chan2ieee(ic, c); 2066 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2067 /* XXX should NEVER happen */ 2068 device_printf(sc->sc_dev, 2069 "%s: invalid channel %x\n", __func__, chan); 2070 return; 2071 } 2072 2073 error = zyd_lock_phy(sc); 2074 if (error != 0) 2075 goto fail; 2076 2077 error = (*rf->set_channel)(rf, chan); 2078 if (error != 0) 2079 goto fail; 2080 2081 if (rf->update_pwr) { 2082 /* update Tx power */ 2083 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2084 2085 if (sc->sc_macrev == ZYD_ZD1211B) { 2086 zyd_write16_m(sc, ZYD_CR67, 2087 sc->sc_ofdm36_cal[chan - 1]); 2088 zyd_write16_m(sc, ZYD_CR66, 2089 sc->sc_ofdm48_cal[chan - 1]); 2090 zyd_write16_m(sc, ZYD_CR65, 2091 sc->sc_ofdm54_cal[chan - 1]); 2092 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2093 zyd_write16_m(sc, ZYD_CR69, 0x28); 2094 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2095 } 2096 } 2097 if (sc->sc_cckgain) { 2098 /* set CCK baseband gain from EEPROM */ 2099 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2100 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2101 } 2102 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2103 error = (*rf->bandedge6)(rf, c); 2104 if (error != 0) 2105 goto fail; 2106 } 2107 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2108 2109 error = zyd_unlock_phy(sc); 2110 if (error != 0) 2111 goto fail; 2112 2113 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2114 htole16(c->ic_freq); 2115 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2116 htole16(c->ic_flags); 2117 fail: 2118 return; 2119 } 2120 2121 static int 2122 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2123 { 2124 int error; 2125 uint32_t val; 2126 2127 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2128 sc->sc_atim_wnd = val; 2129 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2130 sc->sc_pre_tbtt = val; 2131 sc->sc_bcn_int = bintval; 2132 2133 if (sc->sc_bcn_int <= 5) 2134 sc->sc_bcn_int = 5; 2135 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2136 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2137 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2138 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2139 2140 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2141 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2142 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2143 fail: 2144 return (error); 2145 } 2146 2147 static void 2148 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2149 { 2150 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2151 struct ieee80211com *ic = &sc->sc_ic; 2152 struct zyd_plcphdr plcp; 2153 struct zyd_rx_stat stat; 2154 struct usb_page_cache *pc; 2155 struct mbuf *m; 2156 int rlen, rssi; 2157 2158 if (len < ZYD_MIN_FRAGSZ) { 2159 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2160 device_get_nameunit(sc->sc_dev), len); 2161 counter_u64_add(ic->ic_ierrors, 1); 2162 return; 2163 } 2164 pc = usbd_xfer_get_frame(xfer, 0); 2165 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2166 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2167 2168 if (stat.flags & ZYD_RX_ERROR) { 2169 DPRINTF(sc, ZYD_DEBUG_RECV, 2170 "%s: RX status indicated error (%x)\n", 2171 device_get_nameunit(sc->sc_dev), stat.flags); 2172 counter_u64_add(ic->ic_ierrors, 1); 2173 return; 2174 } 2175 2176 /* compute actual frame length */ 2177 rlen = len - sizeof(struct zyd_plcphdr) - 2178 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2179 2180 /* allocate a mbuf to store the frame */ 2181 if (rlen > (int)MCLBYTES) { 2182 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2183 device_get_nameunit(sc->sc_dev), rlen); 2184 counter_u64_add(ic->ic_ierrors, 1); 2185 return; 2186 } else if (rlen > (int)MHLEN) 2187 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2188 else 2189 m = m_gethdr(M_NOWAIT, MT_DATA); 2190 if (m == NULL) { 2191 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2192 device_get_nameunit(sc->sc_dev)); 2193 counter_u64_add(ic->ic_ierrors, 1); 2194 return; 2195 } 2196 m->m_pkthdr.len = m->m_len = rlen; 2197 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2198 2199 if (ieee80211_radiotap_active(ic)) { 2200 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2201 2202 tap->wr_flags = 0; 2203 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2204 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2205 /* XXX toss, no way to express errors */ 2206 if (stat.flags & ZYD_RX_DECRYPTERR) 2207 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2208 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2209 (stat.flags & ZYD_RX_OFDM) ? 2210 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2211 tap->wr_antsignal = stat.rssi + -95; 2212 tap->wr_antnoise = -95; /* XXX */ 2213 } 2214 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2215 2216 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2217 sc->sc_rx_data[sc->sc_rx_count].m = m; 2218 sc->sc_rx_count++; 2219 } 2220 2221 static void 2222 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2223 { 2224 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2225 struct ieee80211com *ic = &sc->sc_ic; 2226 struct ieee80211_node *ni; 2227 struct epoch_tracker et; 2228 struct zyd_rx_desc desc; 2229 struct mbuf *m; 2230 struct usb_page_cache *pc; 2231 uint32_t offset; 2232 uint8_t rssi; 2233 int8_t nf; 2234 int i; 2235 int actlen; 2236 2237 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2238 2239 sc->sc_rx_count = 0; 2240 switch (USB_GET_STATE(xfer)) { 2241 case USB_ST_TRANSFERRED: 2242 pc = usbd_xfer_get_frame(xfer, 0); 2243 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2244 2245 offset = 0; 2246 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2247 DPRINTF(sc, ZYD_DEBUG_RECV, 2248 "%s: received multi-frame transfer\n", __func__); 2249 2250 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2251 uint16_t len16 = UGETW(desc.len[i]); 2252 2253 if (len16 == 0 || len16 > actlen) 2254 break; 2255 2256 zyd_rx_data(xfer, offset, len16); 2257 2258 /* next frame is aligned on a 32-bit boundary */ 2259 len16 = (len16 + 3) & ~3; 2260 offset += len16; 2261 if (len16 > actlen) 2262 break; 2263 actlen -= len16; 2264 } 2265 } else { 2266 DPRINTF(sc, ZYD_DEBUG_RECV, 2267 "%s: received single-frame transfer\n", __func__); 2268 2269 zyd_rx_data(xfer, 0, actlen); 2270 } 2271 /* FALLTHROUGH */ 2272 case USB_ST_SETUP: 2273 tr_setup: 2274 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2275 usbd_transfer_submit(xfer); 2276 2277 /* 2278 * At the end of a USB callback it is always safe to unlock 2279 * the private mutex of a device! That is why we do the 2280 * "ieee80211_input" here, and not some lines up! 2281 */ 2282 ZYD_UNLOCK(sc); 2283 NET_EPOCH_ENTER(et); 2284 for (i = 0; i < sc->sc_rx_count; i++) { 2285 rssi = sc->sc_rx_data[i].rssi; 2286 m = sc->sc_rx_data[i].m; 2287 sc->sc_rx_data[i].m = NULL; 2288 2289 nf = -95; /* XXX */ 2290 2291 ni = ieee80211_find_rxnode(ic, 2292 mtod(m, struct ieee80211_frame_min *)); 2293 if (ni != NULL) { 2294 (void)ieee80211_input(ni, m, rssi, nf); 2295 ieee80211_free_node(ni); 2296 } else 2297 (void)ieee80211_input_all(ic, m, rssi, nf); 2298 } 2299 NET_EPOCH_EXIT(et); 2300 ZYD_LOCK(sc); 2301 zyd_start(sc); 2302 break; 2303 2304 default: /* Error */ 2305 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2306 2307 if (error != USB_ERR_CANCELLED) { 2308 /* try to clear stall first */ 2309 usbd_xfer_set_stall(xfer); 2310 goto tr_setup; 2311 } 2312 break; 2313 } 2314 } 2315 2316 static uint8_t 2317 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2318 { 2319 switch (rate) { 2320 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2321 case 12: 2322 return (0xb); 2323 case 18: 2324 return (0xf); 2325 case 24: 2326 return (0xa); 2327 case 36: 2328 return (0xe); 2329 case 48: 2330 return (0x9); 2331 case 72: 2332 return (0xd); 2333 case 96: 2334 return (0x8); 2335 case 108: 2336 return (0xc); 2337 /* CCK rates (NB: not IEEE std, device-specific) */ 2338 case 2: 2339 return (0x0); 2340 case 4: 2341 return (0x1); 2342 case 11: 2343 return (0x2); 2344 case 22: 2345 return (0x3); 2346 } 2347 2348 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2349 return (0x0); 2350 } 2351 2352 static void 2353 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2354 { 2355 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2356 struct ieee80211vap *vap; 2357 struct zyd_tx_data *data; 2358 struct mbuf *m; 2359 struct usb_page_cache *pc; 2360 int actlen; 2361 2362 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2363 2364 switch (USB_GET_STATE(xfer)) { 2365 case USB_ST_TRANSFERRED: 2366 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2367 actlen); 2368 2369 /* free resources */ 2370 data = usbd_xfer_get_priv(xfer); 2371 zyd_tx_free(data, 0); 2372 usbd_xfer_set_priv(xfer, NULL); 2373 2374 /* FALLTHROUGH */ 2375 case USB_ST_SETUP: 2376 tr_setup: 2377 data = STAILQ_FIRST(&sc->tx_q); 2378 if (data) { 2379 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2380 m = data->m; 2381 2382 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2383 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2384 m->m_pkthdr.len); 2385 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2386 } 2387 pc = usbd_xfer_get_frame(xfer, 0); 2388 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2389 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2390 m->m_pkthdr.len); 2391 2392 vap = data->ni->ni_vap; 2393 if (ieee80211_radiotap_active_vap(vap)) { 2394 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2395 2396 tap->wt_flags = 0; 2397 tap->wt_rate = data->rate; 2398 2399 ieee80211_radiotap_tx(vap, m); 2400 } 2401 2402 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2403 usbd_xfer_set_priv(xfer, data); 2404 usbd_transfer_submit(xfer); 2405 } 2406 zyd_start(sc); 2407 break; 2408 2409 default: /* Error */ 2410 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2411 usbd_errstr(error)); 2412 2413 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2414 data = usbd_xfer_get_priv(xfer); 2415 usbd_xfer_set_priv(xfer, NULL); 2416 if (data != NULL) 2417 zyd_tx_free(data, error); 2418 2419 if (error != USB_ERR_CANCELLED) { 2420 if (error == USB_ERR_TIMEOUT) 2421 device_printf(sc->sc_dev, "device timeout\n"); 2422 2423 /* 2424 * Try to clear stall first, also if other 2425 * errors occur, hence clearing stall 2426 * introduces a 50 ms delay: 2427 */ 2428 usbd_xfer_set_stall(xfer); 2429 goto tr_setup; 2430 } 2431 break; 2432 } 2433 } 2434 2435 static int 2436 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2437 { 2438 struct ieee80211vap *vap = ni->ni_vap; 2439 struct ieee80211com *ic = ni->ni_ic; 2440 struct zyd_tx_desc *desc; 2441 struct zyd_tx_data *data; 2442 struct ieee80211_frame *wh; 2443 const struct ieee80211_txparam *tp = ni->ni_txparms; 2444 struct ieee80211_key *k; 2445 int rate, totlen, type, ismcast; 2446 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2447 uint8_t phy; 2448 uint16_t pktlen; 2449 uint32_t bits; 2450 2451 wh = mtod(m0, struct ieee80211_frame *); 2452 data = STAILQ_FIRST(&sc->tx_free); 2453 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2454 sc->tx_nfree--; 2455 2456 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2457 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2458 2459 if (type == IEEE80211_FC0_TYPE_MGT || 2460 type == IEEE80211_FC0_TYPE_CTL || 2461 (m0->m_flags & M_EAPOL) != 0) { 2462 rate = tp->mgmtrate; 2463 } else { 2464 /* for data frames */ 2465 if (ismcast) 2466 rate = tp->mcastrate; 2467 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2468 rate = tp->ucastrate; 2469 else { 2470 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2471 rate = ni->ni_txrate; 2472 } 2473 } 2474 2475 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2476 k = ieee80211_crypto_encap(ni, m0); 2477 if (k == NULL) { 2478 return (ENOBUFS); 2479 } 2480 /* packet header may have moved, reset our local pointer */ 2481 wh = mtod(m0, struct ieee80211_frame *); 2482 } 2483 2484 data->ni = ni; 2485 data->m = m0; 2486 data->rate = rate; 2487 2488 /* fill Tx descriptor */ 2489 desc = &data->desc; 2490 phy = zyd_plcp_signal(sc, rate); 2491 desc->phy = phy; 2492 if (ZYD_RATE_IS_OFDM(rate)) { 2493 desc->phy |= ZYD_TX_PHY_OFDM; 2494 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2495 desc->phy |= ZYD_TX_PHY_5GHZ; 2496 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2497 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2498 2499 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2500 desc->len = htole16(totlen); 2501 2502 desc->flags = ZYD_TX_FLAG_BACKOFF; 2503 if (!ismcast) { 2504 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2505 if (totlen > vap->iv_rtsthreshold) { 2506 desc->flags |= ZYD_TX_FLAG_RTS; 2507 } else if (ZYD_RATE_IS_OFDM(rate) && 2508 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2509 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2510 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2511 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2512 desc->flags |= ZYD_TX_FLAG_RTS; 2513 } 2514 } else 2515 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2516 if ((wh->i_fc[0] & 2517 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2518 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2519 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2520 2521 /* actual transmit length (XXX why +10?) */ 2522 pktlen = ZYD_TX_DESC_SIZE + 10; 2523 if (sc->sc_macrev == ZYD_ZD1211) 2524 pktlen += totlen; 2525 desc->pktlen = htole16(pktlen); 2526 2527 bits = (rate == 11) ? (totlen * 16) + 10 : 2528 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2529 desc->plcp_length = htole16(bits / ratediv[phy]); 2530 desc->plcp_service = 0; 2531 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2532 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2533 desc->nextlen = 0; 2534 2535 if (ieee80211_radiotap_active_vap(vap)) { 2536 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2537 2538 tap->wt_flags = 0; 2539 tap->wt_rate = rate; 2540 2541 ieee80211_radiotap_tx(vap, m0); 2542 } 2543 2544 DPRINTF(sc, ZYD_DEBUG_XMIT, 2545 "%s: sending data frame len=%zu rate=%u\n", 2546 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2547 rate); 2548 2549 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2550 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2551 2552 return (0); 2553 } 2554 2555 static int 2556 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2557 { 2558 struct zyd_softc *sc = ic->ic_softc; 2559 int error; 2560 2561 ZYD_LOCK(sc); 2562 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2563 ZYD_UNLOCK(sc); 2564 return (ENXIO); 2565 } 2566 error = mbufq_enqueue(&sc->sc_snd, m); 2567 if (error) { 2568 ZYD_UNLOCK(sc); 2569 return (error); 2570 } 2571 zyd_start(sc); 2572 ZYD_UNLOCK(sc); 2573 2574 return (0); 2575 } 2576 2577 static void 2578 zyd_start(struct zyd_softc *sc) 2579 { 2580 struct ieee80211_node *ni; 2581 struct mbuf *m; 2582 2583 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2584 2585 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2586 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2587 if (zyd_tx_start(sc, m, ni) != 0) { 2588 m_freem(m); 2589 if_inc_counter(ni->ni_vap->iv_ifp, 2590 IFCOUNTER_OERRORS, 1); 2591 ieee80211_free_node(ni); 2592 break; 2593 } 2594 } 2595 } 2596 2597 static int 2598 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2599 const struct ieee80211_bpf_params *params) 2600 { 2601 struct ieee80211com *ic = ni->ni_ic; 2602 struct zyd_softc *sc = ic->ic_softc; 2603 2604 ZYD_LOCK(sc); 2605 /* prevent management frames from being sent if we're not ready */ 2606 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2607 ZYD_UNLOCK(sc); 2608 m_freem(m); 2609 return (ENETDOWN); 2610 } 2611 if (sc->tx_nfree == 0) { 2612 ZYD_UNLOCK(sc); 2613 m_freem(m); 2614 return (ENOBUFS); /* XXX */ 2615 } 2616 2617 /* 2618 * Legacy path; interpret frame contents to decide 2619 * precisely how to send the frame. 2620 * XXX raw path 2621 */ 2622 if (zyd_tx_start(sc, m, ni) != 0) { 2623 ZYD_UNLOCK(sc); 2624 m_freem(m); 2625 return (EIO); 2626 } 2627 ZYD_UNLOCK(sc); 2628 return (0); 2629 } 2630 2631 static void 2632 zyd_parent(struct ieee80211com *ic) 2633 { 2634 struct zyd_softc *sc = ic->ic_softc; 2635 int startall = 0; 2636 2637 ZYD_LOCK(sc); 2638 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2639 ZYD_UNLOCK(sc); 2640 return; 2641 } 2642 if (ic->ic_nrunning > 0) { 2643 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2644 zyd_init_locked(sc); 2645 startall = 1; 2646 } else 2647 zyd_set_multi(sc); 2648 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2649 zyd_stop(sc); 2650 ZYD_UNLOCK(sc); 2651 if (startall) 2652 ieee80211_start_all(ic); 2653 } 2654 2655 static void 2656 zyd_init_locked(struct zyd_softc *sc) 2657 { 2658 struct ieee80211com *ic = &sc->sc_ic; 2659 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2660 struct usb_config_descriptor *cd; 2661 int error; 2662 uint32_t val; 2663 2664 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2665 2666 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2667 error = zyd_loadfirmware(sc); 2668 if (error != 0) { 2669 device_printf(sc->sc_dev, 2670 "could not load firmware (error=%d)\n", error); 2671 goto fail; 2672 } 2673 2674 /* reset device */ 2675 cd = usbd_get_config_descriptor(sc->sc_udev); 2676 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2677 cd->bConfigurationValue); 2678 if (error) 2679 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2680 2681 error = zyd_hw_init(sc); 2682 if (error) { 2683 device_printf(sc->sc_dev, 2684 "hardware initialization failed\n"); 2685 goto fail; 2686 } 2687 2688 device_printf(sc->sc_dev, 2689 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2690 "BE%x NP%x Gain%x F%x\n", 2691 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2692 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2693 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2694 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2695 sc->sc_cckgain, sc->sc_fix_cr157); 2696 2697 /* read regulatory domain (currently unused) */ 2698 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2699 sc->sc_regdomain = val >> 16; 2700 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2701 sc->sc_regdomain); 2702 2703 /* we'll do software WEP decryption for now */ 2704 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2705 __func__); 2706 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2707 2708 sc->sc_flags |= ZYD_FLAG_INITONCE; 2709 } 2710 2711 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2712 zyd_stop(sc); 2713 2714 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2715 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2716 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2717 if (error != 0) 2718 return; 2719 2720 /* set basic rates */ 2721 if (ic->ic_curmode == IEEE80211_MODE_11B) 2722 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2723 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2724 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2725 else /* assumes 802.11b/g */ 2726 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2727 2728 /* promiscuous mode */ 2729 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2730 /* multicast setup */ 2731 zyd_set_multi(sc); 2732 /* set RX filter */ 2733 error = zyd_set_rxfilter(sc); 2734 if (error != 0) 2735 goto fail; 2736 2737 /* switch radio transmitter ON */ 2738 error = zyd_switch_radio(sc, 1); 2739 if (error != 0) 2740 goto fail; 2741 /* set default BSS channel */ 2742 zyd_set_chan(sc, ic->ic_curchan); 2743 2744 /* 2745 * Allocate Tx and Rx xfer queues. 2746 */ 2747 zyd_setup_tx_list(sc); 2748 2749 /* enable interrupts */ 2750 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2751 2752 sc->sc_flags |= ZYD_FLAG_RUNNING; 2753 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2754 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2755 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2756 2757 return; 2758 2759 fail: zyd_stop(sc); 2760 return; 2761 } 2762 2763 static void 2764 zyd_stop(struct zyd_softc *sc) 2765 { 2766 int error; 2767 2768 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2769 2770 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2771 zyd_drain_mbufq(sc); 2772 2773 /* 2774 * Drain all the transfers, if not already drained: 2775 */ 2776 ZYD_UNLOCK(sc); 2777 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2778 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2779 ZYD_LOCK(sc); 2780 2781 zyd_unsetup_tx_list(sc); 2782 2783 /* Stop now if the device was never set up */ 2784 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2785 return; 2786 2787 /* switch radio transmitter OFF */ 2788 error = zyd_switch_radio(sc, 0); 2789 if (error != 0) 2790 goto fail; 2791 /* disable Rx */ 2792 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2793 /* disable interrupts */ 2794 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2795 2796 fail: 2797 return; 2798 } 2799 2800 static int 2801 zyd_loadfirmware(struct zyd_softc *sc) 2802 { 2803 struct usb_device_request req; 2804 size_t size; 2805 u_char *fw; 2806 uint8_t stat; 2807 uint16_t addr; 2808 2809 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2810 return (0); 2811 2812 if (sc->sc_macrev == ZYD_ZD1211) { 2813 fw = (u_char *)zd1211_firmware; 2814 size = sizeof(zd1211_firmware); 2815 } else { 2816 fw = (u_char *)zd1211b_firmware; 2817 size = sizeof(zd1211b_firmware); 2818 } 2819 2820 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2821 req.bRequest = ZYD_DOWNLOADREQ; 2822 USETW(req.wIndex, 0); 2823 2824 addr = ZYD_FIRMWARE_START_ADDR; 2825 while (size > 0) { 2826 /* 2827 * When the transfer size is 4096 bytes, it is not 2828 * likely to be able to transfer it. 2829 * The cause is port or machine or chip? 2830 */ 2831 const int mlen = min(size, 64); 2832 2833 DPRINTF(sc, ZYD_DEBUG_FW, 2834 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2835 2836 USETW(req.wValue, addr); 2837 USETW(req.wLength, mlen); 2838 if (zyd_do_request(sc, &req, fw) != 0) 2839 return (EIO); 2840 2841 addr += mlen / 2; 2842 fw += mlen; 2843 size -= mlen; 2844 } 2845 2846 /* check whether the upload succeeded */ 2847 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2848 req.bRequest = ZYD_DOWNLOADSTS; 2849 USETW(req.wValue, 0); 2850 USETW(req.wIndex, 0); 2851 USETW(req.wLength, sizeof(stat)); 2852 if (zyd_do_request(sc, &req, &stat) != 0) 2853 return (EIO); 2854 2855 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2856 2857 return (stat & 0x80) ? (EIO) : (0); 2858 } 2859 2860 static void 2861 zyd_scan_start(struct ieee80211com *ic) 2862 { 2863 struct zyd_softc *sc = ic->ic_softc; 2864 2865 ZYD_LOCK(sc); 2866 /* want broadcast address while scanning */ 2867 zyd_set_bssid(sc, ieee80211broadcastaddr); 2868 ZYD_UNLOCK(sc); 2869 } 2870 2871 static void 2872 zyd_scan_end(struct ieee80211com *ic) 2873 { 2874 struct zyd_softc *sc = ic->ic_softc; 2875 2876 ZYD_LOCK(sc); 2877 /* restore previous bssid */ 2878 zyd_set_bssid(sc, sc->sc_bssid); 2879 ZYD_UNLOCK(sc); 2880 } 2881 2882 static void 2883 zyd_getradiocaps(struct ieee80211com *ic, 2884 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2885 { 2886 uint8_t bands[IEEE80211_MODE_BYTES]; 2887 2888 memset(bands, 0, sizeof(bands)); 2889 setbit(bands, IEEE80211_MODE_11B); 2890 setbit(bands, IEEE80211_MODE_11G); 2891 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 2892 } 2893 2894 static void 2895 zyd_set_channel(struct ieee80211com *ic) 2896 { 2897 struct zyd_softc *sc = ic->ic_softc; 2898 2899 ZYD_LOCK(sc); 2900 zyd_set_chan(sc, ic->ic_curchan); 2901 ZYD_UNLOCK(sc); 2902 } 2903 2904 static device_method_t zyd_methods[] = { 2905 /* Device interface */ 2906 DEVMETHOD(device_probe, zyd_match), 2907 DEVMETHOD(device_attach, zyd_attach), 2908 DEVMETHOD(device_detach, zyd_detach), 2909 DEVMETHOD_END 2910 }; 2911 2912 static driver_t zyd_driver = { 2913 .name = "zyd", 2914 .methods = zyd_methods, 2915 .size = sizeof(struct zyd_softc) 2916 }; 2917 2918 static devclass_t zyd_devclass; 2919 2920 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2921 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2922 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2923 MODULE_VERSION(zyd, 1); 2924 USB_PNP_HOST_INFO(zyd_devs); 2925