1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include <dev/usb/usbdi_util.h> 73 #include "usbdevs.h" 74 75 #include <dev/usb/wlan/if_zydreg.h> 76 #include <dev/usb/wlan/if_zydfw.h> 77 78 #ifdef USB_DEBUG 79 static int zyd_debug = 0; 80 81 SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0, 83 "zyd debug level"); 84 85 enum { 86 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 87 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 88 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 89 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 90 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 91 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 92 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 93 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 94 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 95 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 96 ZYD_DEBUG_ANY = 0xffffffff 97 }; 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 if (zyd_debug & (m)) \ 100 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 101 } while (0) 102 #else 103 #define DPRINTF(sc, m, fmt, ...) do { \ 104 (void) sc; \ 105 } while (0) 106 #endif 107 108 #define zyd_do_request(sc,req,data) \ 109 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 110 111 static device_probe_t zyd_match; 112 static device_attach_t zyd_attach; 113 static device_detach_t zyd_detach; 114 115 static usb_callback_t zyd_intr_read_callback; 116 static usb_callback_t zyd_intr_write_callback; 117 static usb_callback_t zyd_bulk_read_callback; 118 static usb_callback_t zyd_bulk_write_callback; 119 120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 121 const char name[IFNAMSIZ], int unit, int opmode, 122 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 123 const uint8_t mac[IEEE80211_ADDR_LEN]); 124 static void zyd_vap_delete(struct ieee80211vap *); 125 static void zyd_tx_free(struct zyd_tx_data *, int); 126 static void zyd_setup_tx_list(struct zyd_softc *); 127 static void zyd_unsetup_tx_list(struct zyd_softc *); 128 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 129 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 130 void *, int, int); 131 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 132 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 133 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 134 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 135 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 136 static int zyd_lock_phy(struct zyd_softc *); 137 static int zyd_unlock_phy(struct zyd_softc *); 138 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 139 static const char *zyd_rf_name(uint8_t); 140 static int zyd_hw_init(struct zyd_softc *); 141 static int zyd_read_pod(struct zyd_softc *); 142 static int zyd_read_eeprom(struct zyd_softc *); 143 static int zyd_get_macaddr(struct zyd_softc *); 144 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 145 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 146 static int zyd_switch_radio(struct zyd_softc *, int); 147 static int zyd_set_led(struct zyd_softc *, int, int); 148 static void zyd_set_multi(struct zyd_softc *); 149 static void zyd_update_mcast(struct ifnet *); 150 static int zyd_set_rxfilter(struct zyd_softc *); 151 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 152 static int zyd_set_beacon_interval(struct zyd_softc *, int); 153 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 154 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 155 struct ieee80211_node *); 156 static void zyd_start(struct ifnet *); 157 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 158 const struct ieee80211_bpf_params *); 159 static int zyd_ioctl(struct ifnet *, u_long, caddr_t); 160 static void zyd_init_locked(struct zyd_softc *); 161 static void zyd_init(void *); 162 static void zyd_stop(struct zyd_softc *); 163 static int zyd_loadfirmware(struct zyd_softc *); 164 static void zyd_scan_start(struct ieee80211com *); 165 static void zyd_scan_end(struct ieee80211com *); 166 static void zyd_set_channel(struct ieee80211com *); 167 static int zyd_rfmd_init(struct zyd_rf *); 168 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 169 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 170 static int zyd_al2230_init(struct zyd_rf *); 171 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 172 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 173 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_init_b(struct zyd_rf *); 175 static int zyd_al7230B_init(struct zyd_rf *); 176 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 177 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 178 static int zyd_al2210_init(struct zyd_rf *); 179 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 180 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 181 static int zyd_gct_init(struct zyd_rf *); 182 static int zyd_gct_switch_radio(struct zyd_rf *, int); 183 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 184 static int zyd_gct_mode(struct zyd_rf *); 185 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 186 static int zyd_gct_write(struct zyd_rf *, uint16_t); 187 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 188 static int zyd_maxim2_init(struct zyd_rf *); 189 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 190 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 191 192 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 193 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 194 195 /* various supported device vendors/products */ 196 #define ZYD_ZD1211 0 197 #define ZYD_ZD1211B 1 198 199 #define ZYD_ZD1211_DEV(v,p) \ 200 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 201 #define ZYD_ZD1211B_DEV(v,p) \ 202 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 203 static const struct usb_device_id zyd_devs[] = { 204 /* ZYD_ZD1211 */ 205 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 206 ZYD_ZD1211_DEV(ABOCOM, WL54), 207 ZYD_ZD1211_DEV(ASUS, WL159G), 208 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 209 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 210 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 212 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 214 ZYD_ZD1211_DEV(SAGEM, XG760A), 215 ZYD_ZD1211_DEV(SENAO, NUB8301), 216 ZYD_ZD1211_DEV(SITECOMEU, WL113), 217 ZYD_ZD1211_DEV(SWEEX, ZD1211), 218 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 219 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 221 ZYD_ZD1211_DEV(TWINMOS, G240), 222 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 223 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 225 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 226 ZYD_ZD1211_DEV(ZCOM, ZD1211), 227 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 228 ZYD_ZD1211_DEV(ZYXEL, AG225H), 229 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 230 ZYD_ZD1211_DEV(ZYXEL, G200V2), 231 /* ZYD_ZD1211B */ 232 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 233 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 234 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 235 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 236 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 237 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 238 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 239 ZYD_ZD1211B_DEV(MELCO, KG54L), 240 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 241 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 242 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 243 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 244 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 245 ZYD_ZD1211B_DEV(USR, USR5423), 246 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 247 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 248 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 249 ZYD_ZD1211B_DEV(ZYXEL, M202), 250 ZYD_ZD1211B_DEV(ZYXEL, G202), 251 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 252 }; 253 254 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 255 [ZYD_BULK_WR] = { 256 .type = UE_BULK, 257 .endpoint = UE_ADDR_ANY, 258 .direction = UE_DIR_OUT, 259 .bufsize = ZYD_MAX_TXBUFSZ, 260 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 261 .callback = zyd_bulk_write_callback, 262 .ep_index = 0, 263 .timeout = 10000, /* 10 seconds */ 264 }, 265 [ZYD_BULK_RD] = { 266 .type = UE_BULK, 267 .endpoint = UE_ADDR_ANY, 268 .direction = UE_DIR_IN, 269 .bufsize = ZYX_MAX_RXBUFSZ, 270 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 271 .callback = zyd_bulk_read_callback, 272 .ep_index = 0, 273 }, 274 [ZYD_INTR_WR] = { 275 .type = UE_BULK_INTR, 276 .endpoint = UE_ADDR_ANY, 277 .direction = UE_DIR_OUT, 278 .bufsize = sizeof(struct zyd_cmd), 279 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 280 .callback = zyd_intr_write_callback, 281 .timeout = 1000, /* 1 second */ 282 .ep_index = 1, 283 }, 284 [ZYD_INTR_RD] = { 285 .type = UE_INTERRUPT, 286 .endpoint = UE_ADDR_ANY, 287 .direction = UE_DIR_IN, 288 .bufsize = sizeof(struct zyd_cmd), 289 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 290 .callback = zyd_intr_read_callback, 291 }, 292 }; 293 #define zyd_read16_m(sc, val, data) do { \ 294 error = zyd_read16(sc, val, data); \ 295 if (error != 0) \ 296 goto fail; \ 297 } while (0) 298 #define zyd_write16_m(sc, val, data) do { \ 299 error = zyd_write16(sc, val, data); \ 300 if (error != 0) \ 301 goto fail; \ 302 } while (0) 303 #define zyd_read32_m(sc, val, data) do { \ 304 error = zyd_read32(sc, val, data); \ 305 if (error != 0) \ 306 goto fail; \ 307 } while (0) 308 #define zyd_write32_m(sc, val, data) do { \ 309 error = zyd_write32(sc, val, data); \ 310 if (error != 0) \ 311 goto fail; \ 312 } while (0) 313 314 static int 315 zyd_match(device_t dev) 316 { 317 struct usb_attach_arg *uaa = device_get_ivars(dev); 318 319 if (uaa->usb_mode != USB_MODE_HOST) 320 return (ENXIO); 321 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 322 return (ENXIO); 323 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 324 return (ENXIO); 325 326 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 327 } 328 329 static int 330 zyd_attach(device_t dev) 331 { 332 struct usb_attach_arg *uaa = device_get_ivars(dev); 333 struct zyd_softc *sc = device_get_softc(dev); 334 struct ifnet *ifp; 335 struct ieee80211com *ic; 336 uint8_t iface_index, bands; 337 int error; 338 339 if (uaa->info.bcdDevice < 0x4330) { 340 device_printf(dev, "device version mismatch: 0x%X " 341 "(only >= 43.30 supported)\n", 342 uaa->info.bcdDevice); 343 return (EINVAL); 344 } 345 346 device_set_usb_desc(dev); 347 sc->sc_dev = dev; 348 sc->sc_udev = uaa->device; 349 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 350 351 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 352 MTX_NETWORK_LOCK, MTX_DEF); 353 STAILQ_INIT(&sc->sc_rqh); 354 355 iface_index = ZYD_IFACE_INDEX; 356 error = usbd_transfer_setup(uaa->device, 357 &iface_index, sc->sc_xfer, zyd_config, 358 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 359 if (error) { 360 device_printf(dev, "could not allocate USB transfers, " 361 "err=%s\n", usbd_errstr(error)); 362 goto detach; 363 } 364 365 ZYD_LOCK(sc); 366 if ((error = zyd_get_macaddr(sc)) != 0) { 367 device_printf(sc->sc_dev, "could not read EEPROM\n"); 368 ZYD_UNLOCK(sc); 369 goto detach; 370 } 371 ZYD_UNLOCK(sc); 372 373 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 374 if (ifp == NULL) { 375 device_printf(sc->sc_dev, "can not if_alloc()\n"); 376 goto detach; 377 } 378 ifp->if_softc = sc; 379 if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); 380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 381 ifp->if_init = zyd_init; 382 ifp->if_ioctl = zyd_ioctl; 383 ifp->if_start = zyd_start; 384 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 385 IFQ_SET_READY(&ifp->if_snd); 386 387 ic = ifp->if_l2com; 388 ic->ic_ifp = ifp; 389 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 390 ic->ic_opmode = IEEE80211_M_STA; 391 392 /* set device capabilities */ 393 ic->ic_caps = 394 IEEE80211_C_STA /* station mode */ 395 | IEEE80211_C_MONITOR /* monitor mode */ 396 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 397 | IEEE80211_C_SHSLOT /* short slot time supported */ 398 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 399 | IEEE80211_C_WPA /* 802.11i */ 400 ; 401 402 bands = 0; 403 setbit(&bands, IEEE80211_MODE_11B); 404 setbit(&bands, IEEE80211_MODE_11G); 405 ieee80211_init_channels(ic, NULL, &bands); 406 407 ieee80211_ifattach(ic, sc->sc_bssid); 408 ic->ic_raw_xmit = zyd_raw_xmit; 409 ic->ic_scan_start = zyd_scan_start; 410 ic->ic_scan_end = zyd_scan_end; 411 ic->ic_set_channel = zyd_set_channel; 412 413 ic->ic_vap_create = zyd_vap_create; 414 ic->ic_vap_delete = zyd_vap_delete; 415 ic->ic_update_mcast = zyd_update_mcast; 416 ic->ic_update_promisc = zyd_update_mcast; 417 418 ieee80211_radiotap_attach(ic, 419 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 420 ZYD_TX_RADIOTAP_PRESENT, 421 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 422 ZYD_RX_RADIOTAP_PRESENT); 423 424 if (bootverbose) 425 ieee80211_announce(ic); 426 427 return (0); 428 429 detach: 430 zyd_detach(dev); 431 return (ENXIO); /* failure */ 432 } 433 434 static int 435 zyd_detach(device_t dev) 436 { 437 struct zyd_softc *sc = device_get_softc(dev); 438 struct ifnet *ifp = sc->sc_ifp; 439 struct ieee80211com *ic; 440 441 /* stop all USB transfers */ 442 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 443 444 /* free TX list, if any */ 445 zyd_unsetup_tx_list(sc); 446 447 if (ifp) { 448 ic = ifp->if_l2com; 449 ieee80211_ifdetach(ic); 450 if_free(ifp); 451 } 452 mtx_destroy(&sc->sc_mtx); 453 454 return (0); 455 } 456 457 static struct ieee80211vap * 458 zyd_vap_create(struct ieee80211com *ic, 459 const char name[IFNAMSIZ], int unit, int opmode, int flags, 460 const uint8_t bssid[IEEE80211_ADDR_LEN], 461 const uint8_t mac[IEEE80211_ADDR_LEN]) 462 { 463 struct zyd_vap *zvp; 464 struct ieee80211vap *vap; 465 466 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 467 return (NULL); 468 zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap), 469 M_80211_VAP, M_NOWAIT | M_ZERO); 470 if (zvp == NULL) 471 return (NULL); 472 vap = &zvp->vap; 473 /* enable s/w bmiss handling for sta mode */ 474 ieee80211_vap_setup(ic, vap, name, unit, opmode, 475 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 476 477 /* override state transition machine */ 478 zvp->newstate = vap->iv_newstate; 479 vap->iv_newstate = zyd_newstate; 480 481 ieee80211_ratectl_init(vap); 482 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 483 484 /* complete setup */ 485 ieee80211_vap_attach(vap, ieee80211_media_change, 486 ieee80211_media_status); 487 ic->ic_opmode = opmode; 488 return (vap); 489 } 490 491 static void 492 zyd_vap_delete(struct ieee80211vap *vap) 493 { 494 struct zyd_vap *zvp = ZYD_VAP(vap); 495 496 ieee80211_ratectl_deinit(vap); 497 ieee80211_vap_detach(vap); 498 free(zvp, M_80211_VAP); 499 } 500 501 static void 502 zyd_tx_free(struct zyd_tx_data *data, int txerr) 503 { 504 struct zyd_softc *sc = data->sc; 505 506 if (data->m != NULL) { 507 if (data->m->m_flags & M_TXCB) 508 ieee80211_process_callback(data->ni, data->m, 509 txerr ? ETIMEDOUT : 0); 510 m_freem(data->m); 511 data->m = NULL; 512 513 if (txerr == 0) 514 ieee80211_ratectl_tx_complete(data->ni->ni_vap, 515 data->ni, IEEE80211_RATECTL_TX_SUCCESS, NULL, NULL); 516 ieee80211_free_node(data->ni); 517 data->ni = NULL; 518 } 519 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 520 sc->tx_nfree++; 521 } 522 523 static void 524 zyd_setup_tx_list(struct zyd_softc *sc) 525 { 526 struct zyd_tx_data *data; 527 int i; 528 529 sc->tx_nfree = 0; 530 STAILQ_INIT(&sc->tx_q); 531 STAILQ_INIT(&sc->tx_free); 532 533 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 534 data = &sc->tx_data[i]; 535 536 data->sc = sc; 537 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 538 sc->tx_nfree++; 539 } 540 } 541 542 static void 543 zyd_unsetup_tx_list(struct zyd_softc *sc) 544 { 545 struct zyd_tx_data *data; 546 int i; 547 548 /* make sure any subsequent use of the queues will fail */ 549 sc->tx_nfree = 0; 550 STAILQ_INIT(&sc->tx_q); 551 STAILQ_INIT(&sc->tx_free); 552 553 /* free up all node references and mbufs */ 554 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 555 data = &sc->tx_data[i]; 556 557 if (data->m != NULL) { 558 m_freem(data->m); 559 data->m = NULL; 560 } 561 if (data->ni != NULL) { 562 ieee80211_free_node(data->ni); 563 data->ni = NULL; 564 } 565 } 566 } 567 568 static int 569 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 570 { 571 struct zyd_vap *zvp = ZYD_VAP(vap); 572 struct ieee80211com *ic = vap->iv_ic; 573 struct zyd_softc *sc = ic->ic_ifp->if_softc; 574 int error; 575 576 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 577 ieee80211_state_name[vap->iv_state], 578 ieee80211_state_name[nstate]); 579 580 IEEE80211_UNLOCK(ic); 581 ZYD_LOCK(sc); 582 switch (nstate) { 583 case IEEE80211_S_AUTH: 584 zyd_set_chan(sc, ic->ic_curchan); 585 break; 586 case IEEE80211_S_RUN: 587 if (vap->iv_opmode == IEEE80211_M_MONITOR) 588 break; 589 590 /* turn link LED on */ 591 error = zyd_set_led(sc, ZYD_LED1, 1); 592 if (error != 0) 593 break; 594 595 /* make data LED blink upon Tx */ 596 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 597 598 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 599 zyd_set_bssid(sc, sc->sc_bssid); 600 break; 601 default: 602 break; 603 } 604 fail: 605 ZYD_UNLOCK(sc); 606 IEEE80211_LOCK(ic); 607 return (zvp->newstate(vap, nstate, arg)); 608 } 609 610 /* 611 * Callback handler for interrupt transfer 612 */ 613 static void 614 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 615 { 616 struct zyd_softc *sc = usbd_xfer_softc(xfer); 617 struct ifnet *ifp = sc->sc_ifp; 618 struct ieee80211com *ic = ifp->if_l2com; 619 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 620 struct ieee80211_node *ni; 621 struct zyd_cmd *cmd = &sc->sc_ibuf; 622 struct usb_page_cache *pc; 623 int datalen; 624 int actlen; 625 626 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 627 628 switch (USB_GET_STATE(xfer)) { 629 case USB_ST_TRANSFERRED: 630 pc = usbd_xfer_get_frame(xfer, 0); 631 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 632 633 switch (le16toh(cmd->code)) { 634 case ZYD_NOTIF_RETRYSTATUS: 635 { 636 struct zyd_notif_retry *retry = 637 (struct zyd_notif_retry *)cmd->data; 638 639 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 640 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 641 le16toh(retry->rate), ether_sprintf(retry->macaddr), 642 le16toh(retry->count)&0xff, le16toh(retry->count)); 643 644 /* 645 * Find the node to which the packet was sent and 646 * update its retry statistics. In BSS mode, this node 647 * is the AP we're associated to so no lookup is 648 * actually needed. 649 */ 650 ni = ieee80211_find_txnode(vap, retry->macaddr); 651 if (ni != NULL) { 652 int retrycnt = 653 (int)(le16toh(retry->count) & 0xff); 654 655 ieee80211_ratectl_tx_complete(vap, ni, 656 IEEE80211_RATECTL_TX_FAILURE, 657 &retrycnt, NULL); 658 ieee80211_free_node(ni); 659 } 660 if (le16toh(retry->count) & 0x100) 661 ifp->if_oerrors++; /* too many retries */ 662 break; 663 } 664 case ZYD_NOTIF_IORD: 665 { 666 struct zyd_rq *rqp; 667 668 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 669 break; /* HMAC interrupt */ 670 671 datalen = actlen - sizeof(cmd->code); 672 datalen -= 2; /* XXX: padding? */ 673 674 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 675 int i, cnt; 676 677 if (rqp->olen != datalen) 678 continue; 679 cnt = rqp->olen / sizeof(struct zyd_pair); 680 for (i = 0; i < cnt; i++) { 681 if (*(((const uint16_t *)rqp->idata) + i) != 682 (((struct zyd_pair *)cmd->data) + i)->reg) 683 break; 684 } 685 if (i != cnt) 686 continue; 687 /* copy answer into caller-supplied buffer */ 688 bcopy(cmd->data, rqp->odata, rqp->olen); 689 DPRINTF(sc, ZYD_DEBUG_CMD, 690 "command %p complete, data = %*D \n", 691 rqp, rqp->olen, rqp->odata, ":"); 692 wakeup(rqp); /* wakeup caller */ 693 break; 694 } 695 if (rqp == NULL) { 696 device_printf(sc->sc_dev, 697 "unexpected IORD notification %*D\n", 698 datalen, cmd->data, ":"); 699 } 700 break; 701 } 702 default: 703 device_printf(sc->sc_dev, "unknown notification %x\n", 704 le16toh(cmd->code)); 705 } 706 707 /* FALLTHROUGH */ 708 case USB_ST_SETUP: 709 tr_setup: 710 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 711 usbd_transfer_submit(xfer); 712 break; 713 714 default: /* Error */ 715 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 716 usbd_errstr(error)); 717 718 if (error != USB_ERR_CANCELLED) { 719 /* try to clear stall first */ 720 usbd_xfer_set_stall(xfer); 721 goto tr_setup; 722 } 723 break; 724 } 725 } 726 727 static void 728 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 729 { 730 struct zyd_softc *sc = usbd_xfer_softc(xfer); 731 struct zyd_rq *rqp, *cmd; 732 struct usb_page_cache *pc; 733 734 switch (USB_GET_STATE(xfer)) { 735 case USB_ST_TRANSFERRED: 736 cmd = usbd_xfer_get_priv(xfer); 737 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 738 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 739 /* Ensure the cached rq pointer is still valid */ 740 if (rqp == cmd && 741 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 742 wakeup(rqp); /* wakeup caller */ 743 } 744 745 /* FALLTHROUGH */ 746 case USB_ST_SETUP: 747 tr_setup: 748 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 749 if (rqp->flags & ZYD_CMD_FLAG_SENT) 750 continue; 751 752 pc = usbd_xfer_get_frame(xfer, 0); 753 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 754 755 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 756 usbd_xfer_set_priv(xfer, rqp); 757 rqp->flags |= ZYD_CMD_FLAG_SENT; 758 usbd_transfer_submit(xfer); 759 break; 760 } 761 break; 762 763 default: /* Error */ 764 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 765 usbd_errstr(error)); 766 767 if (error != USB_ERR_CANCELLED) { 768 /* try to clear stall first */ 769 usbd_xfer_set_stall(xfer); 770 goto tr_setup; 771 } 772 break; 773 } 774 } 775 776 static int 777 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 778 void *odata, int olen, int flags) 779 { 780 struct zyd_cmd cmd; 781 struct zyd_rq rq; 782 int error; 783 784 if (ilen > sizeof(cmd.data)) 785 return (EINVAL); 786 787 cmd.code = htole16(code); 788 bcopy(idata, cmd.data, ilen); 789 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 790 &rq, ilen, idata, ":"); 791 792 rq.cmd = &cmd; 793 rq.idata = idata; 794 rq.odata = odata; 795 rq.ilen = sizeof(uint16_t) + ilen; 796 rq.olen = olen; 797 rq.flags = flags; 798 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 799 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 800 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 801 802 /* wait at most one second for command reply */ 803 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 804 if (error) 805 device_printf(sc->sc_dev, "command timeout\n"); 806 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 807 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 808 &rq, error); 809 810 return (error); 811 } 812 813 static int 814 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 815 { 816 struct zyd_pair tmp; 817 int error; 818 819 reg = htole16(reg); 820 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 821 ZYD_CMD_FLAG_READ); 822 if (error == 0) 823 *val = le16toh(tmp.val); 824 return (error); 825 } 826 827 static int 828 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 829 { 830 struct zyd_pair tmp[2]; 831 uint16_t regs[2]; 832 int error; 833 834 regs[0] = htole16(ZYD_REG32_HI(reg)); 835 regs[1] = htole16(ZYD_REG32_LO(reg)); 836 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 837 ZYD_CMD_FLAG_READ); 838 if (error == 0) 839 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 840 return (error); 841 } 842 843 static int 844 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 845 { 846 struct zyd_pair pair; 847 848 pair.reg = htole16(reg); 849 pair.val = htole16(val); 850 851 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 852 } 853 854 static int 855 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 856 { 857 struct zyd_pair pair[2]; 858 859 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 860 pair[0].val = htole16(val >> 16); 861 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 862 pair[1].val = htole16(val & 0xffff); 863 864 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 865 } 866 867 static int 868 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 869 { 870 struct zyd_rf *rf = &sc->sc_rf; 871 struct zyd_rfwrite_cmd req; 872 uint16_t cr203; 873 int error, i; 874 875 zyd_read16_m(sc, ZYD_CR203, &cr203); 876 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 877 878 req.code = htole16(2); 879 req.width = htole16(rf->width); 880 for (i = 0; i < rf->width; i++) { 881 req.bit[i] = htole16(cr203); 882 if (val & (1 << (rf->width - 1 - i))) 883 req.bit[i] |= htole16(ZYD_RF_DATA); 884 } 885 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 886 fail: 887 return (error); 888 } 889 890 static int 891 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 892 { 893 int error; 894 895 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 896 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 897 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 898 fail: 899 return (error); 900 } 901 902 static int 903 zyd_lock_phy(struct zyd_softc *sc) 904 { 905 int error; 906 uint32_t tmp; 907 908 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 909 tmp &= ~ZYD_UNLOCK_PHY_REGS; 910 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 911 fail: 912 return (error); 913 } 914 915 static int 916 zyd_unlock_phy(struct zyd_softc *sc) 917 { 918 int error; 919 uint32_t tmp; 920 921 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 922 tmp |= ZYD_UNLOCK_PHY_REGS; 923 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 924 fail: 925 return (error); 926 } 927 928 /* 929 * RFMD RF methods. 930 */ 931 static int 932 zyd_rfmd_init(struct zyd_rf *rf) 933 { 934 #define N(a) (sizeof(a) / sizeof((a)[0])) 935 struct zyd_softc *sc = rf->rf_sc; 936 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 937 static const uint32_t rfini[] = ZYD_RFMD_RF; 938 int i, error; 939 940 /* init RF-dependent PHY registers */ 941 for (i = 0; i < N(phyini); i++) { 942 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 943 } 944 945 /* init RFMD radio */ 946 for (i = 0; i < N(rfini); i++) { 947 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 948 return (error); 949 } 950 fail: 951 return (error); 952 #undef N 953 } 954 955 static int 956 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 957 { 958 int error; 959 struct zyd_softc *sc = rf->rf_sc; 960 961 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 962 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 963 fail: 964 return (error); 965 } 966 967 static int 968 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 969 { 970 int error; 971 struct zyd_softc *sc = rf->rf_sc; 972 static const struct { 973 uint32_t r1, r2; 974 } rfprog[] = ZYD_RFMD_CHANTABLE; 975 976 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 977 if (error != 0) 978 goto fail; 979 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 980 if (error != 0) 981 goto fail; 982 983 fail: 984 return (error); 985 } 986 987 /* 988 * AL2230 RF methods. 989 */ 990 static int 991 zyd_al2230_init(struct zyd_rf *rf) 992 { 993 #define N(a) (sizeof(a) / sizeof((a)[0])) 994 struct zyd_softc *sc = rf->rf_sc; 995 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 996 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 997 static const struct zyd_phy_pair phypll[] = { 998 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 999 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1000 }; 1001 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1002 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1003 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1004 int i, error; 1005 1006 /* init RF-dependent PHY registers */ 1007 for (i = 0; i < N(phyini); i++) 1008 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1009 1010 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1011 for (i = 0; i < N(phy2230s); i++) 1012 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1013 } 1014 1015 /* init AL2230 radio */ 1016 for (i = 0; i < N(rfini1); i++) { 1017 error = zyd_rfwrite(sc, rfini1[i]); 1018 if (error != 0) 1019 goto fail; 1020 } 1021 1022 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1023 error = zyd_rfwrite(sc, 0x000824); 1024 else 1025 error = zyd_rfwrite(sc, 0x0005a4); 1026 if (error != 0) 1027 goto fail; 1028 1029 for (i = 0; i < N(rfini2); i++) { 1030 error = zyd_rfwrite(sc, rfini2[i]); 1031 if (error != 0) 1032 goto fail; 1033 } 1034 1035 for (i = 0; i < N(phypll); i++) 1036 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1037 1038 for (i = 0; i < N(rfini3); i++) { 1039 error = zyd_rfwrite(sc, rfini3[i]); 1040 if (error != 0) 1041 goto fail; 1042 } 1043 fail: 1044 return (error); 1045 #undef N 1046 } 1047 1048 static int 1049 zyd_al2230_fini(struct zyd_rf *rf) 1050 { 1051 #define N(a) (sizeof(a) / sizeof((a)[0])) 1052 int error, i; 1053 struct zyd_softc *sc = rf->rf_sc; 1054 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1055 1056 for (i = 0; i < N(phy); i++) 1057 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1058 1059 if (sc->sc_newphy != 0) 1060 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1061 1062 zyd_write16_m(sc, ZYD_CR203, 0x6); 1063 fail: 1064 return (error); 1065 #undef N 1066 } 1067 1068 static int 1069 zyd_al2230_init_b(struct zyd_rf *rf) 1070 { 1071 #define N(a) (sizeof(a) / sizeof((a)[0])) 1072 struct zyd_softc *sc = rf->rf_sc; 1073 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1074 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1075 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1076 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1077 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1078 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1079 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1080 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1081 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1082 int i, error; 1083 1084 for (i = 0; i < N(phy1); i++) 1085 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1086 1087 /* init RF-dependent PHY registers */ 1088 for (i = 0; i < N(phyini); i++) 1089 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1090 1091 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1092 for (i = 0; i < N(phy2230s); i++) 1093 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1094 } 1095 1096 for (i = 0; i < 3; i++) { 1097 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1098 if (error != 0) 1099 return (error); 1100 } 1101 1102 for (i = 0; i < N(rfini_part1); i++) { 1103 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1104 if (error != 0) 1105 return (error); 1106 } 1107 1108 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1109 error = zyd_rfwrite(sc, 0x241000); 1110 else 1111 error = zyd_rfwrite(sc, 0x25a000); 1112 if (error != 0) 1113 goto fail; 1114 1115 for (i = 0; i < N(rfini_part2); i++) { 1116 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1117 if (error != 0) 1118 return (error); 1119 } 1120 1121 for (i = 0; i < N(phy2); i++) 1122 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1123 1124 for (i = 0; i < N(rfini_part3); i++) { 1125 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1126 if (error != 0) 1127 return (error); 1128 } 1129 1130 for (i = 0; i < N(phy3); i++) 1131 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1132 1133 error = zyd_al2230_fini(rf); 1134 fail: 1135 return (error); 1136 #undef N 1137 } 1138 1139 static int 1140 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1141 { 1142 struct zyd_softc *sc = rf->rf_sc; 1143 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1144 1145 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1146 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1147 fail: 1148 return (error); 1149 } 1150 1151 static int 1152 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1153 { 1154 #define N(a) (sizeof(a) / sizeof((a)[0])) 1155 int error, i; 1156 struct zyd_softc *sc = rf->rf_sc; 1157 static const struct zyd_phy_pair phy1[] = { 1158 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1159 }; 1160 static const struct { 1161 uint32_t r1, r2, r3; 1162 } rfprog[] = ZYD_AL2230_CHANTABLE; 1163 1164 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1165 if (error != 0) 1166 goto fail; 1167 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1168 if (error != 0) 1169 goto fail; 1170 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1171 if (error != 0) 1172 goto fail; 1173 1174 for (i = 0; i < N(phy1); i++) 1175 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1176 fail: 1177 return (error); 1178 #undef N 1179 } 1180 1181 static int 1182 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1183 { 1184 #define N(a) (sizeof(a) / sizeof((a)[0])) 1185 int error, i; 1186 struct zyd_softc *sc = rf->rf_sc; 1187 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1188 static const struct { 1189 uint32_t r1, r2, r3; 1190 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1191 1192 for (i = 0; i < N(phy1); i++) 1193 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1194 1195 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1196 if (error != 0) 1197 goto fail; 1198 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1199 if (error != 0) 1200 goto fail; 1201 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1202 if (error != 0) 1203 goto fail; 1204 error = zyd_al2230_fini(rf); 1205 fail: 1206 return (error); 1207 #undef N 1208 } 1209 1210 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1211 { \ 1212 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1213 { ZYD_CR47, 0x1e } \ 1214 } 1215 1216 static int 1217 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1218 { 1219 #define N(a) (sizeof(a) / sizeof((a)[0])) 1220 int error = 0, i; 1221 struct zyd_softc *sc = rf->rf_sc; 1222 struct ifnet *ifp = sc->sc_ifp; 1223 struct ieee80211com *ic = ifp->if_l2com; 1224 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1225 int chan = ieee80211_chan2ieee(ic, c); 1226 1227 if (chan == 1 || chan == 11) 1228 r[0].val = 0x12; 1229 1230 for (i = 0; i < N(r); i++) 1231 zyd_write16_m(sc, r[i].reg, r[i].val); 1232 fail: 1233 return (error); 1234 #undef N 1235 } 1236 1237 /* 1238 * AL7230B RF methods. 1239 */ 1240 static int 1241 zyd_al7230B_init(struct zyd_rf *rf) 1242 { 1243 #define N(a) (sizeof(a) / sizeof((a)[0])) 1244 struct zyd_softc *sc = rf->rf_sc; 1245 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1246 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1247 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1248 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1249 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1250 int i, error; 1251 1252 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1253 1254 /* init RF-dependent PHY registers, part one */ 1255 for (i = 0; i < N(phyini_1); i++) 1256 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1257 1258 /* init AL7230B radio, part one */ 1259 for (i = 0; i < N(rfini_1); i++) { 1260 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1261 return (error); 1262 } 1263 /* init RF-dependent PHY registers, part two */ 1264 for (i = 0; i < N(phyini_2); i++) 1265 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1266 1267 /* init AL7230B radio, part two */ 1268 for (i = 0; i < N(rfini_2); i++) { 1269 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1270 return (error); 1271 } 1272 /* init RF-dependent PHY registers, part three */ 1273 for (i = 0; i < N(phyini_3); i++) 1274 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1275 fail: 1276 return (error); 1277 #undef N 1278 } 1279 1280 static int 1281 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1282 { 1283 int error; 1284 struct zyd_softc *sc = rf->rf_sc; 1285 1286 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1287 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1288 fail: 1289 return (error); 1290 } 1291 1292 static int 1293 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1294 { 1295 #define N(a) (sizeof(a) / sizeof((a)[0])) 1296 struct zyd_softc *sc = rf->rf_sc; 1297 static const struct { 1298 uint32_t r1, r2; 1299 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1300 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1301 int i, error; 1302 1303 zyd_write16_m(sc, ZYD_CR240, 0x57); 1304 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1305 1306 for (i = 0; i < N(rfsc); i++) { 1307 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1308 return (error); 1309 } 1310 1311 zyd_write16_m(sc, ZYD_CR128, 0x14); 1312 zyd_write16_m(sc, ZYD_CR129, 0x12); 1313 zyd_write16_m(sc, ZYD_CR130, 0x10); 1314 zyd_write16_m(sc, ZYD_CR38, 0x38); 1315 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1316 1317 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1318 if (error != 0) 1319 goto fail; 1320 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1321 if (error != 0) 1322 goto fail; 1323 error = zyd_rfwrite(sc, 0x3c9000); 1324 if (error != 0) 1325 goto fail; 1326 1327 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1328 zyd_write16_m(sc, ZYD_CR203, 0x06); 1329 zyd_write16_m(sc, ZYD_CR240, 0x08); 1330 fail: 1331 return (error); 1332 #undef N 1333 } 1334 1335 /* 1336 * AL2210 RF methods. 1337 */ 1338 static int 1339 zyd_al2210_init(struct zyd_rf *rf) 1340 { 1341 #define N(a) (sizeof(a) / sizeof((a)[0])) 1342 struct zyd_softc *sc = rf->rf_sc; 1343 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1344 static const uint32_t rfini[] = ZYD_AL2210_RF; 1345 uint32_t tmp; 1346 int i, error; 1347 1348 zyd_write32_m(sc, ZYD_CR18, 2); 1349 1350 /* init RF-dependent PHY registers */ 1351 for (i = 0; i < N(phyini); i++) 1352 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1353 1354 /* init AL2210 radio */ 1355 for (i = 0; i < N(rfini); i++) { 1356 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1357 return (error); 1358 } 1359 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1360 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1361 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1362 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1363 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1364 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1365 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1366 zyd_write32_m(sc, ZYD_CR18, 3); 1367 fail: 1368 return (error); 1369 #undef N 1370 } 1371 1372 static int 1373 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1374 { 1375 /* vendor driver does nothing for this RF chip */ 1376 1377 return (0); 1378 } 1379 1380 static int 1381 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1382 { 1383 int error; 1384 struct zyd_softc *sc = rf->rf_sc; 1385 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1386 uint32_t tmp; 1387 1388 zyd_write32_m(sc, ZYD_CR18, 2); 1389 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1390 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1391 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1392 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1393 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1394 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1395 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1396 1397 /* actually set the channel */ 1398 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1399 if (error != 0) 1400 goto fail; 1401 1402 zyd_write32_m(sc, ZYD_CR18, 3); 1403 fail: 1404 return (error); 1405 } 1406 1407 /* 1408 * GCT RF methods. 1409 */ 1410 static int 1411 zyd_gct_init(struct zyd_rf *rf) 1412 { 1413 #define ZYD_GCT_INTR_REG 0x85c1 1414 #define N(a) (sizeof(a) / sizeof((a)[0])) 1415 struct zyd_softc *sc = rf->rf_sc; 1416 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1417 static const uint32_t rfini[] = ZYD_GCT_RF; 1418 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1419 int i, idx = -1, error; 1420 uint16_t data; 1421 1422 /* init RF-dependent PHY registers */ 1423 for (i = 0; i < N(phyini); i++) 1424 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1425 1426 /* init cgt radio */ 1427 for (i = 0; i < N(rfini); i++) { 1428 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1429 return (error); 1430 } 1431 1432 error = zyd_gct_mode(rf); 1433 if (error != 0) 1434 return (error); 1435 1436 for (i = 0; i < N(vco) - 1; i++) { 1437 error = zyd_gct_set_channel_synth(rf, 1, 0); 1438 if (error != 0) 1439 goto fail; 1440 error = zyd_gct_write(rf, vco[i][0]); 1441 if (error != 0) 1442 goto fail; 1443 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1444 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1445 if ((data & 0xf) == 0) { 1446 idx = i; 1447 break; 1448 } 1449 } 1450 if (idx == -1) { 1451 error = zyd_gct_set_channel_synth(rf, 1, 1); 1452 if (error != 0) 1453 goto fail; 1454 error = zyd_gct_write(rf, 0x6662); 1455 if (error != 0) 1456 goto fail; 1457 } 1458 1459 rf->idx = idx; 1460 zyd_write16_m(sc, ZYD_CR203, 0x6); 1461 fail: 1462 return (error); 1463 #undef N 1464 #undef ZYD_GCT_INTR_REG 1465 } 1466 1467 static int 1468 zyd_gct_mode(struct zyd_rf *rf) 1469 { 1470 #define N(a) (sizeof(a) / sizeof((a)[0])) 1471 struct zyd_softc *sc = rf->rf_sc; 1472 static const uint32_t mode[] = { 1473 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1474 }; 1475 int i, error; 1476 1477 for (i = 0; i < N(mode); i++) { 1478 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1479 break; 1480 } 1481 return (error); 1482 #undef N 1483 } 1484 1485 static int 1486 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1487 { 1488 int error, idx = chan - 1; 1489 struct zyd_softc *sc = rf->rf_sc; 1490 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1491 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1492 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1493 1494 error = zyd_rfwrite(sc, 1495 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1496 if (error != 0) 1497 return (error); 1498 return zyd_rfwrite(sc, div_synth[idx]); 1499 } 1500 1501 static int 1502 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1503 { 1504 struct zyd_softc *sc = rf->rf_sc; 1505 1506 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1507 } 1508 1509 static int 1510 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1511 { 1512 #define N(a) (sizeof(a) / sizeof((a)[0])) 1513 int error; 1514 struct zyd_softc *sc = rf->rf_sc; 1515 1516 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1517 if (error != 0) 1518 return (error); 1519 1520 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1521 zyd_write16_m(sc, ZYD_CR251, 1522 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1523 fail: 1524 return (error); 1525 } 1526 1527 static int 1528 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1529 { 1530 #define N(a) (sizeof(a) / sizeof((a)[0])) 1531 int error, i; 1532 struct zyd_softc *sc = rf->rf_sc; 1533 static const struct zyd_phy_pair cmd[] = { 1534 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1535 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1536 }; 1537 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1538 1539 error = zyd_gct_set_channel_synth(rf, chan, 0); 1540 if (error != 0) 1541 goto fail; 1542 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1543 vco[rf->idx][((chan - 1) / 2)]); 1544 if (error != 0) 1545 goto fail; 1546 error = zyd_gct_mode(rf); 1547 if (error != 0) 1548 return (error); 1549 for (i = 0; i < N(cmd); i++) 1550 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1551 error = zyd_gct_txgain(rf, chan); 1552 if (error != 0) 1553 return (error); 1554 zyd_write16_m(sc, ZYD_CR203, 0x6); 1555 fail: 1556 return (error); 1557 #undef N 1558 } 1559 1560 static int 1561 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1562 { 1563 #define N(a) (sizeof(a) / sizeof((a)[0])) 1564 struct zyd_softc *sc = rf->rf_sc; 1565 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1566 uint8_t idx = sc->sc_pwrint[chan - 1]; 1567 1568 if (idx >= N(txgain)) { 1569 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1570 chan, idx); 1571 return 0; 1572 } 1573 1574 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1575 #undef N 1576 } 1577 1578 /* 1579 * Maxim2 RF methods. 1580 */ 1581 static int 1582 zyd_maxim2_init(struct zyd_rf *rf) 1583 { 1584 #define N(a) (sizeof(a) / sizeof((a)[0])) 1585 struct zyd_softc *sc = rf->rf_sc; 1586 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1587 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1588 uint16_t tmp; 1589 int i, error; 1590 1591 /* init RF-dependent PHY registers */ 1592 for (i = 0; i < N(phyini); i++) 1593 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1594 1595 zyd_read16_m(sc, ZYD_CR203, &tmp); 1596 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1597 1598 /* init maxim2 radio */ 1599 for (i = 0; i < N(rfini); i++) { 1600 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1601 return (error); 1602 } 1603 zyd_read16_m(sc, ZYD_CR203, &tmp); 1604 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1605 fail: 1606 return (error); 1607 #undef N 1608 } 1609 1610 static int 1611 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1612 { 1613 1614 /* vendor driver does nothing for this RF chip */ 1615 return (0); 1616 } 1617 1618 static int 1619 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1620 { 1621 #define N(a) (sizeof(a) / sizeof((a)[0])) 1622 struct zyd_softc *sc = rf->rf_sc; 1623 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1624 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1625 static const struct { 1626 uint32_t r1, r2; 1627 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1628 uint16_t tmp; 1629 int i, error; 1630 1631 /* 1632 * Do the same as we do when initializing it, except for the channel 1633 * values coming from the two channel tables. 1634 */ 1635 1636 /* init RF-dependent PHY registers */ 1637 for (i = 0; i < N(phyini); i++) 1638 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1639 1640 zyd_read16_m(sc, ZYD_CR203, &tmp); 1641 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1642 1643 /* first two values taken from the chantables */ 1644 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1645 if (error != 0) 1646 goto fail; 1647 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1648 if (error != 0) 1649 goto fail; 1650 1651 /* init maxim2 radio - skipping the two first values */ 1652 for (i = 2; i < N(rfini); i++) { 1653 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1654 return (error); 1655 } 1656 zyd_read16_m(sc, ZYD_CR203, &tmp); 1657 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1658 fail: 1659 return (error); 1660 #undef N 1661 } 1662 1663 static int 1664 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1665 { 1666 struct zyd_rf *rf = &sc->sc_rf; 1667 1668 rf->rf_sc = sc; 1669 rf->update_pwr = 1; 1670 1671 switch (type) { 1672 case ZYD_RF_RFMD: 1673 rf->init = zyd_rfmd_init; 1674 rf->switch_radio = zyd_rfmd_switch_radio; 1675 rf->set_channel = zyd_rfmd_set_channel; 1676 rf->width = 24; /* 24-bit RF values */ 1677 break; 1678 case ZYD_RF_AL2230: 1679 case ZYD_RF_AL2230S: 1680 if (sc->sc_macrev == ZYD_ZD1211B) { 1681 rf->init = zyd_al2230_init_b; 1682 rf->set_channel = zyd_al2230_set_channel_b; 1683 } else { 1684 rf->init = zyd_al2230_init; 1685 rf->set_channel = zyd_al2230_set_channel; 1686 } 1687 rf->switch_radio = zyd_al2230_switch_radio; 1688 rf->bandedge6 = zyd_al2230_bandedge6; 1689 rf->width = 24; /* 24-bit RF values */ 1690 break; 1691 case ZYD_RF_AL7230B: 1692 rf->init = zyd_al7230B_init; 1693 rf->switch_radio = zyd_al7230B_switch_radio; 1694 rf->set_channel = zyd_al7230B_set_channel; 1695 rf->width = 24; /* 24-bit RF values */ 1696 break; 1697 case ZYD_RF_AL2210: 1698 rf->init = zyd_al2210_init; 1699 rf->switch_radio = zyd_al2210_switch_radio; 1700 rf->set_channel = zyd_al2210_set_channel; 1701 rf->width = 24; /* 24-bit RF values */ 1702 break; 1703 case ZYD_RF_MAXIM_NEW: 1704 case ZYD_RF_GCT: 1705 rf->init = zyd_gct_init; 1706 rf->switch_radio = zyd_gct_switch_radio; 1707 rf->set_channel = zyd_gct_set_channel; 1708 rf->width = 24; /* 24-bit RF values */ 1709 rf->update_pwr = 0; 1710 break; 1711 case ZYD_RF_MAXIM_NEW2: 1712 rf->init = zyd_maxim2_init; 1713 rf->switch_radio = zyd_maxim2_switch_radio; 1714 rf->set_channel = zyd_maxim2_set_channel; 1715 rf->width = 18; /* 18-bit RF values */ 1716 break; 1717 default: 1718 device_printf(sc->sc_dev, 1719 "sorry, radio \"%s\" is not supported yet\n", 1720 zyd_rf_name(type)); 1721 return (EINVAL); 1722 } 1723 return (0); 1724 } 1725 1726 static const char * 1727 zyd_rf_name(uint8_t type) 1728 { 1729 static const char * const zyd_rfs[] = { 1730 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1731 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1732 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1733 "PHILIPS" 1734 }; 1735 1736 return zyd_rfs[(type > 15) ? 0 : type]; 1737 } 1738 1739 static int 1740 zyd_hw_init(struct zyd_softc *sc) 1741 { 1742 int error; 1743 const struct zyd_phy_pair *phyp; 1744 struct zyd_rf *rf = &sc->sc_rf; 1745 uint16_t val; 1746 1747 /* specify that the plug and play is finished */ 1748 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1749 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1750 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1751 sc->sc_fwbase); 1752 1753 /* retrieve firmware revision number */ 1754 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1755 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1756 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1757 /* set mandatory rates - XXX assumes 802.11b/g */ 1758 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1759 1760 /* disable interrupts */ 1761 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1762 1763 if ((error = zyd_read_pod(sc)) != 0) { 1764 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1765 goto fail; 1766 } 1767 1768 /* PHY init (resetting) */ 1769 error = zyd_lock_phy(sc); 1770 if (error != 0) 1771 goto fail; 1772 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1773 for (; phyp->reg != 0; phyp++) 1774 zyd_write16_m(sc, phyp->reg, phyp->val); 1775 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1776 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1777 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1778 } 1779 error = zyd_unlock_phy(sc); 1780 if (error != 0) 1781 goto fail; 1782 1783 /* HMAC init */ 1784 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1785 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1786 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1787 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1788 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1789 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1790 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1791 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1792 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1793 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1794 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1795 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1796 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1797 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1798 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1799 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1800 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1801 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1802 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1803 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1804 1805 if (sc->sc_macrev == ZYD_ZD1211) { 1806 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1807 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1808 } else { 1809 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1810 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1811 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1812 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1813 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1814 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1815 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1816 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1817 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1818 } 1819 1820 /* init beacon interval to 100ms */ 1821 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1822 goto fail; 1823 1824 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1825 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1826 sc->sc_rfrev); 1827 goto fail; 1828 } 1829 1830 /* RF chip init */ 1831 error = zyd_lock_phy(sc); 1832 if (error != 0) 1833 goto fail; 1834 error = (*rf->init)(rf); 1835 if (error != 0) { 1836 device_printf(sc->sc_dev, 1837 "radio initialization failed, error %d\n", error); 1838 goto fail; 1839 } 1840 error = zyd_unlock_phy(sc); 1841 if (error != 0) 1842 goto fail; 1843 1844 if ((error = zyd_read_eeprom(sc)) != 0) { 1845 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1846 goto fail; 1847 } 1848 1849 fail: return (error); 1850 } 1851 1852 static int 1853 zyd_read_pod(struct zyd_softc *sc) 1854 { 1855 int error; 1856 uint32_t tmp; 1857 1858 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1859 sc->sc_rfrev = tmp & 0x0f; 1860 sc->sc_ledtype = (tmp >> 4) & 0x01; 1861 sc->sc_al2230s = (tmp >> 7) & 0x01; 1862 sc->sc_cckgain = (tmp >> 8) & 0x01; 1863 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1864 sc->sc_parev = (tmp >> 16) & 0x0f; 1865 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1866 sc->sc_newphy = (tmp >> 31) & 0x01; 1867 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1868 fail: 1869 return (error); 1870 } 1871 1872 static int 1873 zyd_read_eeprom(struct zyd_softc *sc) 1874 { 1875 uint16_t val; 1876 int error, i; 1877 1878 /* read Tx power calibration tables */ 1879 for (i = 0; i < 7; i++) { 1880 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1881 sc->sc_pwrcal[i * 2] = val >> 8; 1882 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1883 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1884 sc->sc_pwrint[i * 2] = val >> 8; 1885 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1886 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1887 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1888 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1889 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1890 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1891 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1892 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1893 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1894 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1895 } 1896 fail: 1897 return (error); 1898 } 1899 1900 static int 1901 zyd_get_macaddr(struct zyd_softc *sc) 1902 { 1903 struct usb_device_request req; 1904 usb_error_t error; 1905 1906 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1907 req.bRequest = ZYD_READFWDATAREQ; 1908 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1909 USETW(req.wIndex, 0); 1910 USETW(req.wLength, IEEE80211_ADDR_LEN); 1911 1912 error = zyd_do_request(sc, &req, sc->sc_bssid); 1913 if (error != 0) { 1914 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1915 usbd_errstr(error)); 1916 } 1917 1918 return (error); 1919 } 1920 1921 static int 1922 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1923 { 1924 int error; 1925 uint32_t tmp; 1926 1927 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1928 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1929 tmp = addr[5] << 8 | addr[4]; 1930 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1931 fail: 1932 return (error); 1933 } 1934 1935 static int 1936 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1937 { 1938 int error; 1939 uint32_t tmp; 1940 1941 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1942 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1943 tmp = addr[5] << 8 | addr[4]; 1944 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1945 fail: 1946 return (error); 1947 } 1948 1949 static int 1950 zyd_switch_radio(struct zyd_softc *sc, int on) 1951 { 1952 struct zyd_rf *rf = &sc->sc_rf; 1953 int error; 1954 1955 error = zyd_lock_phy(sc); 1956 if (error != 0) 1957 goto fail; 1958 error = (*rf->switch_radio)(rf, on); 1959 if (error != 0) 1960 goto fail; 1961 error = zyd_unlock_phy(sc); 1962 fail: 1963 return (error); 1964 } 1965 1966 static int 1967 zyd_set_led(struct zyd_softc *sc, int which, int on) 1968 { 1969 int error; 1970 uint32_t tmp; 1971 1972 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1973 tmp &= ~which; 1974 if (on) 1975 tmp |= which; 1976 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1977 fail: 1978 return (error); 1979 } 1980 1981 static void 1982 zyd_set_multi(struct zyd_softc *sc) 1983 { 1984 int error; 1985 struct ifnet *ifp = sc->sc_ifp; 1986 struct ieee80211com *ic = ifp->if_l2com; 1987 struct ifmultiaddr *ifma; 1988 uint32_t low, high; 1989 uint8_t v; 1990 1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1992 return; 1993 1994 low = 0x00000000; 1995 high = 0x80000000; 1996 1997 if (ic->ic_opmode == IEEE80211_M_MONITOR || 1998 (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { 1999 low = 0xffffffff; 2000 high = 0xffffffff; 2001 } else { 2002 if_maddr_rlock(ifp); 2003 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2004 if (ifma->ifma_addr->sa_family != AF_LINK) 2005 continue; 2006 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2007 ifma->ifma_addr))[5] >> 2; 2008 if (v < 32) 2009 low |= 1 << v; 2010 else 2011 high |= 1 << (v - 32); 2012 } 2013 if_maddr_runlock(ifp); 2014 } 2015 2016 /* reprogram multicast global hash table */ 2017 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2018 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2019 fail: 2020 if (error != 0) 2021 device_printf(sc->sc_dev, 2022 "could not set multicast hash table\n"); 2023 } 2024 2025 static void 2026 zyd_update_mcast(struct ifnet *ifp) 2027 { 2028 struct zyd_softc *sc = ifp->if_softc; 2029 2030 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2031 return; 2032 2033 ZYD_LOCK(sc); 2034 zyd_set_multi(sc); 2035 ZYD_UNLOCK(sc); 2036 } 2037 2038 static int 2039 zyd_set_rxfilter(struct zyd_softc *sc) 2040 { 2041 struct ifnet *ifp = sc->sc_ifp; 2042 struct ieee80211com *ic = ifp->if_l2com; 2043 uint32_t rxfilter; 2044 2045 switch (ic->ic_opmode) { 2046 case IEEE80211_M_STA: 2047 rxfilter = ZYD_FILTER_BSS; 2048 break; 2049 case IEEE80211_M_IBSS: 2050 case IEEE80211_M_HOSTAP: 2051 rxfilter = ZYD_FILTER_HOSTAP; 2052 break; 2053 case IEEE80211_M_MONITOR: 2054 rxfilter = ZYD_FILTER_MONITOR; 2055 break; 2056 default: 2057 /* should not get there */ 2058 return (EINVAL); 2059 } 2060 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2061 } 2062 2063 static void 2064 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2065 { 2066 int error; 2067 struct ifnet *ifp = sc->sc_ifp; 2068 struct ieee80211com *ic = ifp->if_l2com; 2069 struct zyd_rf *rf = &sc->sc_rf; 2070 uint32_t tmp; 2071 int chan; 2072 2073 chan = ieee80211_chan2ieee(ic, c); 2074 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2075 /* XXX should NEVER happen */ 2076 device_printf(sc->sc_dev, 2077 "%s: invalid channel %x\n", __func__, chan); 2078 return; 2079 } 2080 2081 error = zyd_lock_phy(sc); 2082 if (error != 0) 2083 goto fail; 2084 2085 error = (*rf->set_channel)(rf, chan); 2086 if (error != 0) 2087 goto fail; 2088 2089 if (rf->update_pwr) { 2090 /* update Tx power */ 2091 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2092 2093 if (sc->sc_macrev == ZYD_ZD1211B) { 2094 zyd_write16_m(sc, ZYD_CR67, 2095 sc->sc_ofdm36_cal[chan - 1]); 2096 zyd_write16_m(sc, ZYD_CR66, 2097 sc->sc_ofdm48_cal[chan - 1]); 2098 zyd_write16_m(sc, ZYD_CR65, 2099 sc->sc_ofdm54_cal[chan - 1]); 2100 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2101 zyd_write16_m(sc, ZYD_CR69, 0x28); 2102 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2103 } 2104 } 2105 if (sc->sc_cckgain) { 2106 /* set CCK baseband gain from EEPROM */ 2107 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2108 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2109 } 2110 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2111 error = (*rf->bandedge6)(rf, c); 2112 if (error != 0) 2113 goto fail; 2114 } 2115 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2116 2117 error = zyd_unlock_phy(sc); 2118 if (error != 0) 2119 goto fail; 2120 2121 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2122 htole16(c->ic_freq); 2123 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2124 htole16(c->ic_flags); 2125 fail: 2126 return; 2127 } 2128 2129 static int 2130 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2131 { 2132 int error; 2133 uint32_t val; 2134 2135 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2136 sc->sc_atim_wnd = val; 2137 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2138 sc->sc_pre_tbtt = val; 2139 sc->sc_bcn_int = bintval; 2140 2141 if (sc->sc_bcn_int <= 5) 2142 sc->sc_bcn_int = 5; 2143 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2144 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2145 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2146 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2147 2148 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2149 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2150 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2151 fail: 2152 return (error); 2153 } 2154 2155 static void 2156 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2157 { 2158 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2159 struct ifnet *ifp = sc->sc_ifp; 2160 struct ieee80211com *ic = ifp->if_l2com; 2161 struct zyd_plcphdr plcp; 2162 struct zyd_rx_stat stat; 2163 struct usb_page_cache *pc; 2164 struct mbuf *m; 2165 int rlen, rssi; 2166 2167 if (len < ZYD_MIN_FRAGSZ) { 2168 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2169 device_get_nameunit(sc->sc_dev), len); 2170 ifp->if_ierrors++; 2171 return; 2172 } 2173 pc = usbd_xfer_get_frame(xfer, 0); 2174 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2175 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2176 2177 if (stat.flags & ZYD_RX_ERROR) { 2178 DPRINTF(sc, ZYD_DEBUG_RECV, 2179 "%s: RX status indicated error (%x)\n", 2180 device_get_nameunit(sc->sc_dev), stat.flags); 2181 ifp->if_ierrors++; 2182 return; 2183 } 2184 2185 /* compute actual frame length */ 2186 rlen = len - sizeof(struct zyd_plcphdr) - 2187 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2188 2189 /* allocate a mbuf to store the frame */ 2190 if (rlen > MCLBYTES) { 2191 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2192 device_get_nameunit(sc->sc_dev), rlen); 2193 ifp->if_ierrors++; 2194 return; 2195 } else if (rlen > MHLEN) 2196 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2197 else 2198 m = m_gethdr(M_DONTWAIT, MT_DATA); 2199 if (m == NULL) { 2200 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2201 device_get_nameunit(sc->sc_dev)); 2202 ifp->if_ierrors++; 2203 return; 2204 } 2205 m->m_pkthdr.rcvif = ifp; 2206 m->m_pkthdr.len = m->m_len = rlen; 2207 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2208 2209 if (ieee80211_radiotap_active(ic)) { 2210 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2211 2212 tap->wr_flags = 0; 2213 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2214 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2215 /* XXX toss, no way to express errors */ 2216 if (stat.flags & ZYD_RX_DECRYPTERR) 2217 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2218 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2219 (stat.flags & ZYD_RX_OFDM) ? 2220 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2221 tap->wr_antsignal = stat.rssi + -95; 2222 tap->wr_antnoise = -95; /* XXX */ 2223 } 2224 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2225 2226 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2227 sc->sc_rx_data[sc->sc_rx_count].m = m; 2228 sc->sc_rx_count++; 2229 } 2230 2231 static void 2232 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2233 { 2234 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2235 struct ifnet *ifp = sc->sc_ifp; 2236 struct ieee80211com *ic = ifp->if_l2com; 2237 struct ieee80211_node *ni; 2238 struct zyd_rx_desc desc; 2239 struct mbuf *m; 2240 struct usb_page_cache *pc; 2241 uint32_t offset; 2242 uint8_t rssi; 2243 int8_t nf; 2244 int i; 2245 int actlen; 2246 2247 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2248 2249 sc->sc_rx_count = 0; 2250 switch (USB_GET_STATE(xfer)) { 2251 case USB_ST_TRANSFERRED: 2252 pc = usbd_xfer_get_frame(xfer, 0); 2253 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2254 2255 offset = 0; 2256 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2257 DPRINTF(sc, ZYD_DEBUG_RECV, 2258 "%s: received multi-frame transfer\n", __func__); 2259 2260 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2261 uint16_t len16 = UGETW(desc.len[i]); 2262 2263 if (len16 == 0 || len16 > actlen) 2264 break; 2265 2266 zyd_rx_data(xfer, offset, len16); 2267 2268 /* next frame is aligned on a 32-bit boundary */ 2269 len16 = (len16 + 3) & ~3; 2270 offset += len16; 2271 if (len16 > actlen) 2272 break; 2273 actlen -= len16; 2274 } 2275 } else { 2276 DPRINTF(sc, ZYD_DEBUG_RECV, 2277 "%s: received single-frame transfer\n", __func__); 2278 2279 zyd_rx_data(xfer, 0, actlen); 2280 } 2281 /* FALLTHROUGH */ 2282 case USB_ST_SETUP: 2283 tr_setup: 2284 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2285 usbd_transfer_submit(xfer); 2286 2287 /* 2288 * At the end of a USB callback it is always safe to unlock 2289 * the private mutex of a device! That is why we do the 2290 * "ieee80211_input" here, and not some lines up! 2291 */ 2292 ZYD_UNLOCK(sc); 2293 for (i = 0; i < sc->sc_rx_count; i++) { 2294 rssi = sc->sc_rx_data[i].rssi; 2295 m = sc->sc_rx_data[i].m; 2296 sc->sc_rx_data[i].m = NULL; 2297 2298 nf = -95; /* XXX */ 2299 2300 ni = ieee80211_find_rxnode(ic, 2301 mtod(m, struct ieee80211_frame_min *)); 2302 if (ni != NULL) { 2303 (void)ieee80211_input(ni, m, rssi, nf); 2304 ieee80211_free_node(ni); 2305 } else 2306 (void)ieee80211_input_all(ic, m, rssi, nf); 2307 } 2308 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2309 !IFQ_IS_EMPTY(&ifp->if_snd)) 2310 zyd_start(ifp); 2311 ZYD_LOCK(sc); 2312 break; 2313 2314 default: /* Error */ 2315 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2316 2317 if (error != USB_ERR_CANCELLED) { 2318 /* try to clear stall first */ 2319 usbd_xfer_set_stall(xfer); 2320 goto tr_setup; 2321 } 2322 break; 2323 } 2324 } 2325 2326 static uint8_t 2327 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2328 { 2329 switch (rate) { 2330 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2331 case 12: 2332 return (0xb); 2333 case 18: 2334 return (0xf); 2335 case 24: 2336 return (0xa); 2337 case 36: 2338 return (0xe); 2339 case 48: 2340 return (0x9); 2341 case 72: 2342 return (0xd); 2343 case 96: 2344 return (0x8); 2345 case 108: 2346 return (0xc); 2347 /* CCK rates (NB: not IEEE std, device-specific) */ 2348 case 2: 2349 return (0x0); 2350 case 4: 2351 return (0x1); 2352 case 11: 2353 return (0x2); 2354 case 22: 2355 return (0x3); 2356 } 2357 2358 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2359 return (0x0); 2360 } 2361 2362 static void 2363 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2364 { 2365 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2366 struct ifnet *ifp = sc->sc_ifp; 2367 struct ieee80211vap *vap; 2368 struct zyd_tx_data *data; 2369 struct mbuf *m; 2370 struct usb_page_cache *pc; 2371 int actlen; 2372 2373 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2374 2375 switch (USB_GET_STATE(xfer)) { 2376 case USB_ST_TRANSFERRED: 2377 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2378 actlen); 2379 2380 /* free resources */ 2381 data = usbd_xfer_get_priv(xfer); 2382 zyd_tx_free(data, 0); 2383 usbd_xfer_set_priv(xfer, NULL); 2384 2385 ifp->if_opackets++; 2386 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2387 2388 /* FALLTHROUGH */ 2389 case USB_ST_SETUP: 2390 tr_setup: 2391 data = STAILQ_FIRST(&sc->tx_q); 2392 if (data) { 2393 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2394 m = data->m; 2395 2396 if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) { 2397 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2398 m->m_pkthdr.len); 2399 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2400 } 2401 pc = usbd_xfer_get_frame(xfer, 0); 2402 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2403 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2404 m->m_pkthdr.len); 2405 2406 vap = data->ni->ni_vap; 2407 if (ieee80211_radiotap_active_vap(vap)) { 2408 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2409 2410 tap->wt_flags = 0; 2411 tap->wt_rate = data->rate; 2412 2413 ieee80211_radiotap_tx(vap, m); 2414 } 2415 2416 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2417 usbd_xfer_set_priv(xfer, data); 2418 usbd_transfer_submit(xfer); 2419 } 2420 ZYD_UNLOCK(sc); 2421 zyd_start(ifp); 2422 ZYD_LOCK(sc); 2423 break; 2424 2425 default: /* Error */ 2426 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2427 usbd_errstr(error)); 2428 2429 ifp->if_oerrors++; 2430 data = usbd_xfer_get_priv(xfer); 2431 usbd_xfer_set_priv(xfer, NULL); 2432 if (data != NULL) 2433 zyd_tx_free(data, error); 2434 2435 if (error != USB_ERR_CANCELLED) { 2436 if (error == USB_ERR_TIMEOUT) 2437 device_printf(sc->sc_dev, "device timeout\n"); 2438 2439 /* 2440 * Try to clear stall first, also if other 2441 * errors occur, hence clearing stall 2442 * introduces a 50 ms delay: 2443 */ 2444 usbd_xfer_set_stall(xfer); 2445 goto tr_setup; 2446 } 2447 break; 2448 } 2449 } 2450 2451 static int 2452 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2453 { 2454 struct ieee80211vap *vap = ni->ni_vap; 2455 struct ieee80211com *ic = ni->ni_ic; 2456 struct zyd_tx_desc *desc; 2457 struct zyd_tx_data *data; 2458 struct ieee80211_frame *wh; 2459 const struct ieee80211_txparam *tp; 2460 struct ieee80211_key *k; 2461 int rate, totlen; 2462 static uint8_t ratediv[] = ZYD_TX_RATEDIV; 2463 uint8_t phy; 2464 uint16_t pktlen; 2465 uint32_t bits; 2466 2467 wh = mtod(m0, struct ieee80211_frame *); 2468 data = STAILQ_FIRST(&sc->tx_free); 2469 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2470 sc->tx_nfree--; 2471 2472 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2473 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2474 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2475 rate = tp->mgmtrate; 2476 } else { 2477 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2478 /* for data frames */ 2479 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2480 rate = tp->mcastrate; 2481 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2482 rate = tp->ucastrate; 2483 else { 2484 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2485 rate = ni->ni_txrate; 2486 } 2487 } 2488 2489 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2490 k = ieee80211_crypto_encap(ni, m0); 2491 if (k == NULL) { 2492 m_freem(m0); 2493 return (ENOBUFS); 2494 } 2495 /* packet header may have moved, reset our local pointer */ 2496 wh = mtod(m0, struct ieee80211_frame *); 2497 } 2498 2499 data->ni = ni; 2500 data->m = m0; 2501 data->rate = rate; 2502 2503 /* fill Tx descriptor */ 2504 desc = &data->desc; 2505 phy = zyd_plcp_signal(sc, rate); 2506 desc->phy = phy; 2507 if (ZYD_RATE_IS_OFDM(rate)) { 2508 desc->phy |= ZYD_TX_PHY_OFDM; 2509 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2510 desc->phy |= ZYD_TX_PHY_5GHZ; 2511 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2512 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2513 2514 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2515 desc->len = htole16(totlen); 2516 2517 desc->flags = ZYD_TX_FLAG_BACKOFF; 2518 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2519 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2520 if (totlen > vap->iv_rtsthreshold) { 2521 desc->flags |= ZYD_TX_FLAG_RTS; 2522 } else if (ZYD_RATE_IS_OFDM(rate) && 2523 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2524 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2525 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2526 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2527 desc->flags |= ZYD_TX_FLAG_RTS; 2528 } 2529 } else 2530 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2531 if ((wh->i_fc[0] & 2532 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2533 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2534 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2535 2536 /* actual transmit length (XXX why +10?) */ 2537 pktlen = ZYD_TX_DESC_SIZE + 10; 2538 if (sc->sc_macrev == ZYD_ZD1211) 2539 pktlen += totlen; 2540 desc->pktlen = htole16(pktlen); 2541 2542 bits = (rate == 11) ? (totlen * 16) + 10 : 2543 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2544 desc->plcp_length = htole16(bits / ratediv[phy]); 2545 desc->plcp_service = 0; 2546 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2547 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2548 desc->nextlen = 0; 2549 2550 if (ieee80211_radiotap_active_vap(vap)) { 2551 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2552 2553 tap->wt_flags = 0; 2554 tap->wt_rate = rate; 2555 2556 ieee80211_radiotap_tx(vap, m0); 2557 } 2558 2559 DPRINTF(sc, ZYD_DEBUG_XMIT, 2560 "%s: sending data frame len=%zu rate=%u\n", 2561 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2562 rate); 2563 2564 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2565 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2566 2567 return (0); 2568 } 2569 2570 static void 2571 zyd_start(struct ifnet *ifp) 2572 { 2573 struct zyd_softc *sc = ifp->if_softc; 2574 struct ieee80211_node *ni; 2575 struct mbuf *m; 2576 2577 ZYD_LOCK(sc); 2578 for (;;) { 2579 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2580 if (m == NULL) 2581 break; 2582 if (sc->tx_nfree == 0) { 2583 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2584 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2585 break; 2586 } 2587 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2588 if (zyd_tx_start(sc, m, ni) != 0) { 2589 ieee80211_free_node(ni); 2590 ifp->if_oerrors++; 2591 break; 2592 } 2593 } 2594 ZYD_UNLOCK(sc); 2595 } 2596 2597 static int 2598 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2599 const struct ieee80211_bpf_params *params) 2600 { 2601 struct ieee80211com *ic = ni->ni_ic; 2602 struct ifnet *ifp = ic->ic_ifp; 2603 struct zyd_softc *sc = ifp->if_softc; 2604 2605 ZYD_LOCK(sc); 2606 /* prevent management frames from being sent if we're not ready */ 2607 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2608 ZYD_UNLOCK(sc); 2609 m_freem(m); 2610 ieee80211_free_node(ni); 2611 return (ENETDOWN); 2612 } 2613 if (sc->tx_nfree == 0) { 2614 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2615 ZYD_UNLOCK(sc); 2616 m_freem(m); 2617 ieee80211_free_node(ni); 2618 return (ENOBUFS); /* XXX */ 2619 } 2620 2621 /* 2622 * Legacy path; interpret frame contents to decide 2623 * precisely how to send the frame. 2624 * XXX raw path 2625 */ 2626 if (zyd_tx_start(sc, m, ni) != 0) { 2627 ZYD_UNLOCK(sc); 2628 ifp->if_oerrors++; 2629 ieee80211_free_node(ni); 2630 return (EIO); 2631 } 2632 ZYD_UNLOCK(sc); 2633 return (0); 2634 } 2635 2636 static int 2637 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2638 { 2639 struct zyd_softc *sc = ifp->if_softc; 2640 struct ieee80211com *ic = ifp->if_l2com; 2641 struct ifreq *ifr = (struct ifreq *) data; 2642 int error = 0, startall = 0; 2643 2644 switch (cmd) { 2645 case SIOCSIFFLAGS: 2646 ZYD_LOCK(sc); 2647 if (ifp->if_flags & IFF_UP) { 2648 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2649 zyd_init_locked(sc); 2650 startall = 1; 2651 } else 2652 zyd_set_multi(sc); 2653 } else { 2654 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2655 zyd_stop(sc); 2656 } 2657 ZYD_UNLOCK(sc); 2658 if (startall) 2659 ieee80211_start_all(ic); 2660 break; 2661 case SIOCGIFMEDIA: 2662 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2663 break; 2664 case SIOCGIFADDR: 2665 error = ether_ioctl(ifp, cmd, data); 2666 break; 2667 default: 2668 error = EINVAL; 2669 break; 2670 } 2671 return (error); 2672 } 2673 2674 static void 2675 zyd_init_locked(struct zyd_softc *sc) 2676 { 2677 struct ifnet *ifp = sc->sc_ifp; 2678 struct ieee80211com *ic = ifp->if_l2com; 2679 struct usb_config_descriptor *cd; 2680 int error; 2681 uint32_t val; 2682 2683 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2684 2685 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2686 error = zyd_loadfirmware(sc); 2687 if (error != 0) { 2688 device_printf(sc->sc_dev, 2689 "could not load firmware (error=%d)\n", error); 2690 goto fail; 2691 } 2692 2693 /* reset device */ 2694 cd = usbd_get_config_descriptor(sc->sc_udev); 2695 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2696 cd->bConfigurationValue); 2697 if (error) 2698 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2699 2700 error = zyd_hw_init(sc); 2701 if (error) { 2702 device_printf(sc->sc_dev, 2703 "hardware initialization failed\n"); 2704 goto fail; 2705 } 2706 2707 device_printf(sc->sc_dev, 2708 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2709 "BE%x NP%x Gain%x F%x\n", 2710 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2711 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2712 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2713 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2714 sc->sc_cckgain, sc->sc_fix_cr157); 2715 2716 /* read regulatory domain (currently unused) */ 2717 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2718 sc->sc_regdomain = val >> 16; 2719 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2720 sc->sc_regdomain); 2721 2722 /* we'll do software WEP decryption for now */ 2723 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2724 __func__); 2725 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2726 2727 sc->sc_flags |= ZYD_FLAG_INITONCE; 2728 } 2729 2730 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2731 zyd_stop(sc); 2732 2733 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2734 IF_LLADDR(ifp), ":"); 2735 error = zyd_set_macaddr(sc, IF_LLADDR(ifp)); 2736 if (error != 0) 2737 return; 2738 2739 /* set basic rates */ 2740 if (ic->ic_curmode == IEEE80211_MODE_11B) 2741 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2742 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2743 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2744 else /* assumes 802.11b/g */ 2745 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2746 2747 /* promiscuous mode */ 2748 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2749 /* multicast setup */ 2750 zyd_set_multi(sc); 2751 /* set RX filter */ 2752 error = zyd_set_rxfilter(sc); 2753 if (error != 0) 2754 goto fail; 2755 2756 /* switch radio transmitter ON */ 2757 error = zyd_switch_radio(sc, 1); 2758 if (error != 0) 2759 goto fail; 2760 /* set default BSS channel */ 2761 zyd_set_chan(sc, ic->ic_curchan); 2762 2763 /* 2764 * Allocate Tx and Rx xfer queues. 2765 */ 2766 zyd_setup_tx_list(sc); 2767 2768 /* enable interrupts */ 2769 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2770 2771 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2772 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2773 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2774 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2775 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2776 2777 return; 2778 2779 fail: zyd_stop(sc); 2780 return; 2781 } 2782 2783 static void 2784 zyd_init(void *priv) 2785 { 2786 struct zyd_softc *sc = priv; 2787 struct ifnet *ifp = sc->sc_ifp; 2788 struct ieee80211com *ic = ifp->if_l2com; 2789 2790 ZYD_LOCK(sc); 2791 zyd_init_locked(sc); 2792 ZYD_UNLOCK(sc); 2793 2794 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2795 ieee80211_start_all(ic); /* start all vap's */ 2796 } 2797 2798 static void 2799 zyd_stop(struct zyd_softc *sc) 2800 { 2801 struct ifnet *ifp = sc->sc_ifp; 2802 int error; 2803 2804 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2805 2806 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2807 2808 /* 2809 * Drain all the transfers, if not already drained: 2810 */ 2811 ZYD_UNLOCK(sc); 2812 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2813 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2814 ZYD_LOCK(sc); 2815 2816 zyd_unsetup_tx_list(sc); 2817 2818 /* Stop now if the device was never set up */ 2819 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2820 return; 2821 2822 /* switch radio transmitter OFF */ 2823 error = zyd_switch_radio(sc, 0); 2824 if (error != 0) 2825 goto fail; 2826 /* disable Rx */ 2827 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2828 /* disable interrupts */ 2829 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2830 2831 fail: 2832 return; 2833 } 2834 2835 static int 2836 zyd_loadfirmware(struct zyd_softc *sc) 2837 { 2838 struct usb_device_request req; 2839 size_t size; 2840 u_char *fw; 2841 uint8_t stat; 2842 uint16_t addr; 2843 2844 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2845 return (0); 2846 2847 if (sc->sc_macrev == ZYD_ZD1211) { 2848 fw = (u_char *)zd1211_firmware; 2849 size = sizeof(zd1211_firmware); 2850 } else { 2851 fw = (u_char *)zd1211b_firmware; 2852 size = sizeof(zd1211b_firmware); 2853 } 2854 2855 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2856 req.bRequest = ZYD_DOWNLOADREQ; 2857 USETW(req.wIndex, 0); 2858 2859 addr = ZYD_FIRMWARE_START_ADDR; 2860 while (size > 0) { 2861 /* 2862 * When the transfer size is 4096 bytes, it is not 2863 * likely to be able to transfer it. 2864 * The cause is port or machine or chip? 2865 */ 2866 const int mlen = min(size, 64); 2867 2868 DPRINTF(sc, ZYD_DEBUG_FW, 2869 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2870 2871 USETW(req.wValue, addr); 2872 USETW(req.wLength, mlen); 2873 if (zyd_do_request(sc, &req, fw) != 0) 2874 return (EIO); 2875 2876 addr += mlen / 2; 2877 fw += mlen; 2878 size -= mlen; 2879 } 2880 2881 /* check whether the upload succeeded */ 2882 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2883 req.bRequest = ZYD_DOWNLOADSTS; 2884 USETW(req.wValue, 0); 2885 USETW(req.wIndex, 0); 2886 USETW(req.wLength, sizeof(stat)); 2887 if (zyd_do_request(sc, &req, &stat) != 0) 2888 return (EIO); 2889 2890 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2891 2892 return (stat & 0x80) ? (EIO) : (0); 2893 } 2894 2895 static void 2896 zyd_scan_start(struct ieee80211com *ic) 2897 { 2898 struct ifnet *ifp = ic->ic_ifp; 2899 struct zyd_softc *sc = ifp->if_softc; 2900 2901 ZYD_LOCK(sc); 2902 /* want broadcast address while scanning */ 2903 zyd_set_bssid(sc, ifp->if_broadcastaddr); 2904 ZYD_UNLOCK(sc); 2905 } 2906 2907 static void 2908 zyd_scan_end(struct ieee80211com *ic) 2909 { 2910 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2911 2912 ZYD_LOCK(sc); 2913 /* restore previous bssid */ 2914 zyd_set_bssid(sc, sc->sc_bssid); 2915 ZYD_UNLOCK(sc); 2916 } 2917 2918 static void 2919 zyd_set_channel(struct ieee80211com *ic) 2920 { 2921 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2922 2923 ZYD_LOCK(sc); 2924 zyd_set_chan(sc, ic->ic_curchan); 2925 ZYD_UNLOCK(sc); 2926 } 2927 2928 static device_method_t zyd_methods[] = { 2929 /* Device interface */ 2930 DEVMETHOD(device_probe, zyd_match), 2931 DEVMETHOD(device_attach, zyd_attach), 2932 DEVMETHOD(device_detach, zyd_detach), 2933 2934 { 0, 0 } 2935 }; 2936 2937 static driver_t zyd_driver = { 2938 "zyd", 2939 zyd_methods, 2940 sizeof(struct zyd_softc) 2941 }; 2942 2943 static devclass_t zyd_devclass; 2944 2945 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2946 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2947 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2948 MODULE_VERSION(zyd, 1); 2949