xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/kdb.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <sys/rman.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_ratectl.h>
70 
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include <dev/usb/usbdi_util.h>
74 #include "usbdevs.h"
75 
76 #include <dev/usb/wlan/if_zydreg.h>
77 #include <dev/usb/wlan/if_zydfw.h>
78 
79 #ifdef USB_DEBUG
80 static int zyd_debug = 0;
81 
82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0,
84     "zyd debug level");
85 
86 enum {
87 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
88 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
89 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
90 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
91 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
92 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
93 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
94 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
95 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
96 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
97 	ZYD_DEBUG_ANY		= 0xffffffff
98 };
99 #define	DPRINTF(sc, m, fmt, ...) do {				\
100 	if (zyd_debug & (m))					\
101 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
102 } while (0)
103 #else
104 #define	DPRINTF(sc, m, fmt, ...) do {				\
105 	(void) sc;						\
106 } while (0)
107 #endif
108 
109 #define	zyd_do_request(sc,req,data) \
110     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
111 
112 static device_probe_t zyd_match;
113 static device_attach_t zyd_attach;
114 static device_detach_t zyd_detach;
115 
116 static usb_callback_t zyd_intr_read_callback;
117 static usb_callback_t zyd_intr_write_callback;
118 static usb_callback_t zyd_bulk_read_callback;
119 static usb_callback_t zyd_bulk_write_callback;
120 
121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
122 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
123 		    const uint8_t [IEEE80211_ADDR_LEN],
124 		    const uint8_t [IEEE80211_ADDR_LEN]);
125 static void	zyd_vap_delete(struct ieee80211vap *);
126 static void	zyd_tx_free(struct zyd_tx_data *, int);
127 static void	zyd_setup_tx_list(struct zyd_softc *);
128 static void	zyd_unsetup_tx_list(struct zyd_softc *);
129 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
130 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
131 		    void *, int, int);
132 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
133 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
134 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
135 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
136 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
137 static int	zyd_lock_phy(struct zyd_softc *);
138 static int	zyd_unlock_phy(struct zyd_softc *);
139 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
140 static const char *zyd_rf_name(uint8_t);
141 static int	zyd_hw_init(struct zyd_softc *);
142 static int	zyd_read_pod(struct zyd_softc *);
143 static int	zyd_read_eeprom(struct zyd_softc *);
144 static int	zyd_get_macaddr(struct zyd_softc *);
145 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
146 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
147 static int	zyd_switch_radio(struct zyd_softc *, int);
148 static int	zyd_set_led(struct zyd_softc *, int, int);
149 static void	zyd_set_multi(struct zyd_softc *);
150 static void	zyd_update_mcast(struct ieee80211com *);
151 static int	zyd_set_rxfilter(struct zyd_softc *);
152 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
153 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
154 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
155 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
156 		    struct ieee80211_node *);
157 static int	zyd_transmit(struct ieee80211com *, struct mbuf *);
158 static void	zyd_start(struct zyd_softc *);
159 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
160 		    const struct ieee80211_bpf_params *);
161 static void	zyd_parent(struct ieee80211com *);
162 static void	zyd_init_locked(struct zyd_softc *);
163 static void	zyd_stop(struct zyd_softc *);
164 static int	zyd_loadfirmware(struct zyd_softc *);
165 static void	zyd_scan_start(struct ieee80211com *);
166 static void	zyd_scan_end(struct ieee80211com *);
167 static void	zyd_set_channel(struct ieee80211com *);
168 static int	zyd_rfmd_init(struct zyd_rf *);
169 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
170 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
171 static int	zyd_al2230_init(struct zyd_rf *);
172 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
173 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
174 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
175 static int	zyd_al2230_init_b(struct zyd_rf *);
176 static int	zyd_al7230B_init(struct zyd_rf *);
177 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
178 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
179 static int	zyd_al2210_init(struct zyd_rf *);
180 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
181 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
182 static int	zyd_gct_init(struct zyd_rf *);
183 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
184 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
185 static int	zyd_gct_mode(struct zyd_rf *);
186 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
187 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
188 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
189 static int	zyd_maxim2_init(struct zyd_rf *);
190 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
191 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
192 
193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
195 
196 /* various supported device vendors/products */
197 #define ZYD_ZD1211	0
198 #define ZYD_ZD1211B	1
199 
200 #define	ZYD_ZD1211_DEV(v,p)	\
201 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
202 #define	ZYD_ZD1211B_DEV(v,p)	\
203 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
204 static const STRUCT_USB_HOST_ID zyd_devs[] = {
205 	/* ZYD_ZD1211 */
206 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
207 	ZYD_ZD1211_DEV(ABOCOM, WL54),
208 	ZYD_ZD1211_DEV(ASUS, WL159G),
209 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
210 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
211 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
212 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
213 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
214 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
215 	ZYD_ZD1211_DEV(SAGEM, XG760A),
216 	ZYD_ZD1211_DEV(SENAO, NUB8301),
217 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
218 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
219 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
220 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
221 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
222 	ZYD_ZD1211_DEV(TWINMOS, G240),
223 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
224 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
225 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
226 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
227 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
228 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
229 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
230 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
231 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
232 	/* ZYD_ZD1211B */
233 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
234 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
235 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
236 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
237 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
238 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
239 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
240 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
241 	ZYD_ZD1211B_DEV(MELCO, KG54L),
242 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
243 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
244 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
245 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
246 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
247 	ZYD_ZD1211B_DEV(USR, USR5423),
248 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
249 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
250 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
251 	ZYD_ZD1211B_DEV(ZYXEL, M202),
252 	ZYD_ZD1211B_DEV(ZYXEL, G202),
253 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
254 };
255 
256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
257 	[ZYD_BULK_WR] = {
258 		.type = UE_BULK,
259 		.endpoint = UE_ADDR_ANY,
260 		.direction = UE_DIR_OUT,
261 		.bufsize = ZYD_MAX_TXBUFSZ,
262 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
263 		.callback = zyd_bulk_write_callback,
264 		.ep_index = 0,
265 		.timeout = 10000,	/* 10 seconds */
266 	},
267 	[ZYD_BULK_RD] = {
268 		.type = UE_BULK,
269 		.endpoint = UE_ADDR_ANY,
270 		.direction = UE_DIR_IN,
271 		.bufsize = ZYX_MAX_RXBUFSZ,
272 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
273 		.callback = zyd_bulk_read_callback,
274 		.ep_index = 0,
275 	},
276 	[ZYD_INTR_WR] = {
277 		.type = UE_BULK_INTR,
278 		.endpoint = UE_ADDR_ANY,
279 		.direction = UE_DIR_OUT,
280 		.bufsize = sizeof(struct zyd_cmd),
281 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
282 		.callback = zyd_intr_write_callback,
283 		.timeout = 1000,	/* 1 second */
284 		.ep_index = 1,
285 	},
286 	[ZYD_INTR_RD] = {
287 		.type = UE_INTERRUPT,
288 		.endpoint = UE_ADDR_ANY,
289 		.direction = UE_DIR_IN,
290 		.bufsize = sizeof(struct zyd_cmd),
291 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
292 		.callback = zyd_intr_read_callback,
293 	},
294 };
295 #define zyd_read16_m(sc, val, data)	do {				\
296 	error = zyd_read16(sc, val, data);				\
297 	if (error != 0)							\
298 		goto fail;						\
299 } while (0)
300 #define zyd_write16_m(sc, val, data)	do {				\
301 	error = zyd_write16(sc, val, data);				\
302 	if (error != 0)							\
303 		goto fail;						\
304 } while (0)
305 #define zyd_read32_m(sc, val, data)	do {				\
306 	error = zyd_read32(sc, val, data);				\
307 	if (error != 0)							\
308 		goto fail;						\
309 } while (0)
310 #define zyd_write32_m(sc, val, data)	do {				\
311 	error = zyd_write32(sc, val, data);				\
312 	if (error != 0)							\
313 		goto fail;						\
314 } while (0)
315 
316 static int
317 zyd_match(device_t dev)
318 {
319 	struct usb_attach_arg *uaa = device_get_ivars(dev);
320 
321 	if (uaa->usb_mode != USB_MODE_HOST)
322 		return (ENXIO);
323 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
324 		return (ENXIO);
325 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
326 		return (ENXIO);
327 
328 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
329 }
330 
331 static int
332 zyd_attach(device_t dev)
333 {
334 	struct usb_attach_arg *uaa = device_get_ivars(dev);
335 	struct zyd_softc *sc = device_get_softc(dev);
336 	struct ieee80211com *ic = &sc->sc_ic;
337 	uint8_t bands[IEEE80211_MODE_BYTES];
338 	uint8_t iface_index;
339 	int error;
340 
341 	if (uaa->info.bcdDevice < 0x4330) {
342 		device_printf(dev, "device version mismatch: 0x%X "
343 		    "(only >= 43.30 supported)\n",
344 		    uaa->info.bcdDevice);
345 		return (EINVAL);
346 	}
347 
348 	device_set_usb_desc(dev);
349 	sc->sc_dev = dev;
350 	sc->sc_udev = uaa->device;
351 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
352 
353 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
354 	    MTX_NETWORK_LOCK, MTX_DEF);
355 	STAILQ_INIT(&sc->sc_rqh);
356 	mbufq_init(&sc->sc_snd, ifqmaxlen);
357 
358 	iface_index = ZYD_IFACE_INDEX;
359 	error = usbd_transfer_setup(uaa->device,
360 	    &iface_index, sc->sc_xfer, zyd_config,
361 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
362 	if (error) {
363 		device_printf(dev, "could not allocate USB transfers, "
364 		    "err=%s\n", usbd_errstr(error));
365 		goto detach;
366 	}
367 
368 	ZYD_LOCK(sc);
369 	if ((error = zyd_get_macaddr(sc)) != 0) {
370 		device_printf(sc->sc_dev, "could not read EEPROM\n");
371 		ZYD_UNLOCK(sc);
372 		goto detach;
373 	}
374 	ZYD_UNLOCK(sc);
375 
376 	ic->ic_softc = sc;
377 	ic->ic_name = device_get_nameunit(dev);
378 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
379 	ic->ic_opmode = IEEE80211_M_STA;
380 
381 	/* set device capabilities */
382 	ic->ic_caps =
383 		  IEEE80211_C_STA		/* station mode */
384 		| IEEE80211_C_MONITOR		/* monitor mode */
385 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
386 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
387 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
388 	        | IEEE80211_C_WPA		/* 802.11i */
389 		;
390 
391 	memset(bands, 0, sizeof(bands));
392 	setbit(bands, IEEE80211_MODE_11B);
393 	setbit(bands, IEEE80211_MODE_11G);
394 	ieee80211_init_channels(ic, NULL, bands);
395 
396 	ieee80211_ifattach(ic);
397 	ic->ic_raw_xmit = zyd_raw_xmit;
398 	ic->ic_scan_start = zyd_scan_start;
399 	ic->ic_scan_end = zyd_scan_end;
400 	ic->ic_set_channel = zyd_set_channel;
401 	ic->ic_vap_create = zyd_vap_create;
402 	ic->ic_vap_delete = zyd_vap_delete;
403 	ic->ic_update_mcast = zyd_update_mcast;
404 	ic->ic_update_promisc = zyd_update_mcast;
405 	ic->ic_parent = zyd_parent;
406 	ic->ic_transmit = zyd_transmit;
407 
408 	ieee80211_radiotap_attach(ic,
409 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
410 		ZYD_TX_RADIOTAP_PRESENT,
411 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
412 		ZYD_RX_RADIOTAP_PRESENT);
413 
414 	if (bootverbose)
415 		ieee80211_announce(ic);
416 
417 	return (0);
418 
419 detach:
420 	zyd_detach(dev);
421 	return (ENXIO);			/* failure */
422 }
423 
424 static void
425 zyd_drain_mbufq(struct zyd_softc *sc)
426 {
427 	struct mbuf *m;
428 	struct ieee80211_node *ni;
429 
430 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
431 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
432 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
433 		m->m_pkthdr.rcvif = NULL;
434 		ieee80211_free_node(ni);
435 		m_freem(m);
436 	}
437 }
438 
439 
440 static int
441 zyd_detach(device_t dev)
442 {
443 	struct zyd_softc *sc = device_get_softc(dev);
444 	struct ieee80211com *ic = &sc->sc_ic;
445 	unsigned int x;
446 
447 	/*
448 	 * Prevent further allocations from RX/TX data
449 	 * lists and ioctls:
450 	 */
451 	ZYD_LOCK(sc);
452 	sc->sc_flags |= ZYD_FLAG_DETACHED;
453 	zyd_drain_mbufq(sc);
454 	STAILQ_INIT(&sc->tx_q);
455 	STAILQ_INIT(&sc->tx_free);
456 	ZYD_UNLOCK(sc);
457 
458 	/* drain USB transfers */
459 	for (x = 0; x != ZYD_N_TRANSFER; x++)
460 		usbd_transfer_drain(sc->sc_xfer[x]);
461 
462 	/* free TX list, if any */
463 	ZYD_LOCK(sc);
464 	zyd_unsetup_tx_list(sc);
465 	ZYD_UNLOCK(sc);
466 
467 	/* free USB transfers and some data buffers */
468 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
469 
470 	if (ic->ic_softc == sc)
471 		ieee80211_ifdetach(ic);
472 	mtx_destroy(&sc->sc_mtx);
473 
474 	return (0);
475 }
476 
477 static struct ieee80211vap *
478 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
479     enum ieee80211_opmode opmode, int flags,
480     const uint8_t bssid[IEEE80211_ADDR_LEN],
481     const uint8_t mac[IEEE80211_ADDR_LEN])
482 {
483 	struct zyd_vap *zvp;
484 	struct ieee80211vap *vap;
485 
486 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
487 		return (NULL);
488 	zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO);
489 	vap = &zvp->vap;
490 
491 	/* enable s/w bmiss handling for sta mode */
492 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
493 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
494 		/* out of memory */
495 		free(zvp, M_80211_VAP);
496 		return (NULL);
497 	}
498 
499 	/* override state transition machine */
500 	zvp->newstate = vap->iv_newstate;
501 	vap->iv_newstate = zyd_newstate;
502 
503 	ieee80211_ratectl_init(vap);
504 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
505 
506 	/* complete setup */
507 	ieee80211_vap_attach(vap, ieee80211_media_change,
508 	    ieee80211_media_status, mac);
509 	ic->ic_opmode = opmode;
510 	return (vap);
511 }
512 
513 static void
514 zyd_vap_delete(struct ieee80211vap *vap)
515 {
516 	struct zyd_vap *zvp = ZYD_VAP(vap);
517 
518 	ieee80211_ratectl_deinit(vap);
519 	ieee80211_vap_detach(vap);
520 	free(zvp, M_80211_VAP);
521 }
522 
523 static void
524 zyd_tx_free(struct zyd_tx_data *data, int txerr)
525 {
526 	struct zyd_softc *sc = data->sc;
527 
528 	if (data->m != NULL) {
529 		ieee80211_tx_complete(data->ni, data->m, txerr);
530 		data->m = NULL;
531 		data->ni = NULL;
532 	}
533 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
534 	sc->tx_nfree++;
535 }
536 
537 static void
538 zyd_setup_tx_list(struct zyd_softc *sc)
539 {
540 	struct zyd_tx_data *data;
541 	int i;
542 
543 	sc->tx_nfree = 0;
544 	STAILQ_INIT(&sc->tx_q);
545 	STAILQ_INIT(&sc->tx_free);
546 
547 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
548 		data = &sc->tx_data[i];
549 
550 		data->sc = sc;
551 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
552 		sc->tx_nfree++;
553 	}
554 }
555 
556 static void
557 zyd_unsetup_tx_list(struct zyd_softc *sc)
558 {
559 	struct zyd_tx_data *data;
560 	int i;
561 
562 	/* make sure any subsequent use of the queues will fail */
563 	sc->tx_nfree = 0;
564 	STAILQ_INIT(&sc->tx_q);
565 	STAILQ_INIT(&sc->tx_free);
566 
567 	/* free up all node references and mbufs */
568 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
569 		data = &sc->tx_data[i];
570 
571 		if (data->m != NULL) {
572 			m_freem(data->m);
573 			data->m = NULL;
574 		}
575 		if (data->ni != NULL) {
576 			ieee80211_free_node(data->ni);
577 			data->ni = NULL;
578 		}
579 	}
580 }
581 
582 static int
583 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
584 {
585 	struct zyd_vap *zvp = ZYD_VAP(vap);
586 	struct ieee80211com *ic = vap->iv_ic;
587 	struct zyd_softc *sc = ic->ic_softc;
588 	int error;
589 
590 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
591 	    ieee80211_state_name[vap->iv_state],
592 	    ieee80211_state_name[nstate]);
593 
594 	IEEE80211_UNLOCK(ic);
595 	ZYD_LOCK(sc);
596 	switch (nstate) {
597 	case IEEE80211_S_AUTH:
598 		zyd_set_chan(sc, ic->ic_curchan);
599 		break;
600 	case IEEE80211_S_RUN:
601 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
602 			break;
603 
604 		/* turn link LED on */
605 		error = zyd_set_led(sc, ZYD_LED1, 1);
606 		if (error != 0)
607 			break;
608 
609 		/* make data LED blink upon Tx */
610 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
611 
612 		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
613 		zyd_set_bssid(sc, sc->sc_bssid);
614 		break;
615 	default:
616 		break;
617 	}
618 fail:
619 	ZYD_UNLOCK(sc);
620 	IEEE80211_LOCK(ic);
621 	return (zvp->newstate(vap, nstate, arg));
622 }
623 
624 /*
625  * Callback handler for interrupt transfer
626  */
627 static void
628 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
629 {
630 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
631 	struct ieee80211com *ic = &sc->sc_ic;
632 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
633 	struct ieee80211_node *ni;
634 	struct zyd_cmd *cmd = &sc->sc_ibuf;
635 	struct usb_page_cache *pc;
636 	int datalen;
637 	int actlen;
638 
639 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
640 
641 	switch (USB_GET_STATE(xfer)) {
642 	case USB_ST_TRANSFERRED:
643 		pc = usbd_xfer_get_frame(xfer, 0);
644 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
645 
646 		switch (le16toh(cmd->code)) {
647 		case ZYD_NOTIF_RETRYSTATUS:
648 		{
649 			struct zyd_notif_retry *retry =
650 			    (struct zyd_notif_retry *)cmd->data;
651 
652 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
653 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
654 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
655 			    le16toh(retry->count)&0xff, le16toh(retry->count));
656 
657 			/*
658 			 * Find the node to which the packet was sent and
659 			 * update its retry statistics.  In BSS mode, this node
660 			 * is the AP we're associated to so no lookup is
661 			 * actually needed.
662 			 */
663 			ni = ieee80211_find_txnode(vap, retry->macaddr);
664 			if (ni != NULL) {
665 				int retrycnt =
666 				    (int)(le16toh(retry->count) & 0xff);
667 
668 				ieee80211_ratectl_tx_complete(vap, ni,
669 				    IEEE80211_RATECTL_TX_FAILURE,
670 				    &retrycnt, NULL);
671 				ieee80211_free_node(ni);
672 			}
673 			if (le16toh(retry->count) & 0x100)
674 				/* too many retries */
675 				if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS,
676 				    1);
677 			break;
678 		}
679 		case ZYD_NOTIF_IORD:
680 		{
681 			struct zyd_rq *rqp;
682 
683 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
684 				break;	/* HMAC interrupt */
685 
686 			datalen = actlen - sizeof(cmd->code);
687 			datalen -= 2;	/* XXX: padding? */
688 
689 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
690 				int i;
691 				int count;
692 
693 				if (rqp->olen != datalen)
694 					continue;
695 				count = rqp->olen / sizeof(struct zyd_pair);
696 				for (i = 0; i < count; i++) {
697 					if (*(((const uint16_t *)rqp->idata) + i) !=
698 					    (((struct zyd_pair *)cmd->data) + i)->reg)
699 						break;
700 				}
701 				if (i != count)
702 					continue;
703 				/* copy answer into caller-supplied buffer */
704 				memcpy(rqp->odata, cmd->data, rqp->olen);
705 				DPRINTF(sc, ZYD_DEBUG_CMD,
706 				    "command %p complete, data = %*D \n",
707 				    rqp, rqp->olen, (char *)rqp->odata, ":");
708 				wakeup(rqp);	/* wakeup caller */
709 				break;
710 			}
711 			if (rqp == NULL) {
712 				device_printf(sc->sc_dev,
713 				    "unexpected IORD notification %*D\n",
714 				    datalen, cmd->data, ":");
715 			}
716 			break;
717 		}
718 		default:
719 			device_printf(sc->sc_dev, "unknown notification %x\n",
720 			    le16toh(cmd->code));
721 		}
722 
723 		/* FALLTHROUGH */
724 	case USB_ST_SETUP:
725 tr_setup:
726 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
727 		usbd_transfer_submit(xfer);
728 		break;
729 
730 	default:			/* Error */
731 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
732 		    usbd_errstr(error));
733 
734 		if (error != USB_ERR_CANCELLED) {
735 			/* try to clear stall first */
736 			usbd_xfer_set_stall(xfer);
737 			goto tr_setup;
738 		}
739 		break;
740 	}
741 }
742 
743 static void
744 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
745 {
746 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
747 	struct zyd_rq *rqp, *cmd;
748 	struct usb_page_cache *pc;
749 
750 	switch (USB_GET_STATE(xfer)) {
751 	case USB_ST_TRANSFERRED:
752 		cmd = usbd_xfer_get_priv(xfer);
753 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
754 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
755 			/* Ensure the cached rq pointer is still valid */
756 			if (rqp == cmd &&
757 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
758 				wakeup(rqp);	/* wakeup caller */
759 		}
760 
761 		/* FALLTHROUGH */
762 	case USB_ST_SETUP:
763 tr_setup:
764 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
765 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
766 				continue;
767 
768 			pc = usbd_xfer_get_frame(xfer, 0);
769 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
770 
771 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
772 			usbd_xfer_set_priv(xfer, rqp);
773 			rqp->flags |= ZYD_CMD_FLAG_SENT;
774 			usbd_transfer_submit(xfer);
775 			break;
776 		}
777 		break;
778 
779 	default:			/* Error */
780 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
781 		    usbd_errstr(error));
782 
783 		if (error != USB_ERR_CANCELLED) {
784 			/* try to clear stall first */
785 			usbd_xfer_set_stall(xfer);
786 			goto tr_setup;
787 		}
788 		break;
789 	}
790 }
791 
792 static int
793 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
794     void *odata, int olen, int flags)
795 {
796 	struct zyd_cmd cmd;
797 	struct zyd_rq rq;
798 	int error;
799 
800 	if (ilen > (int)sizeof(cmd.data))
801 		return (EINVAL);
802 
803 	cmd.code = htole16(code);
804 	memcpy(cmd.data, idata, ilen);
805 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
806 	    &rq, ilen, idata, ":");
807 
808 	rq.cmd = &cmd;
809 	rq.idata = idata;
810 	rq.odata = odata;
811 	rq.ilen = sizeof(uint16_t) + ilen;
812 	rq.olen = olen;
813 	rq.flags = flags;
814 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
815 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
816 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
817 
818 	/* wait at most one second for command reply */
819 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
820 	if (error)
821 		device_printf(sc->sc_dev, "command timeout\n");
822 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
823 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
824 	    &rq, error);
825 
826 	return (error);
827 }
828 
829 static int
830 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
831 {
832 	struct zyd_pair tmp;
833 	int error;
834 
835 	reg = htole16(reg);
836 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
837 	    ZYD_CMD_FLAG_READ);
838 	if (error == 0)
839 		*val = le16toh(tmp.val);
840 	return (error);
841 }
842 
843 static int
844 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
845 {
846 	struct zyd_pair tmp[2];
847 	uint16_t regs[2];
848 	int error;
849 
850 	regs[0] = htole16(ZYD_REG32_HI(reg));
851 	regs[1] = htole16(ZYD_REG32_LO(reg));
852 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
853 	    ZYD_CMD_FLAG_READ);
854 	if (error == 0)
855 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
856 	return (error);
857 }
858 
859 static int
860 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
861 {
862 	struct zyd_pair pair;
863 
864 	pair.reg = htole16(reg);
865 	pair.val = htole16(val);
866 
867 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
868 }
869 
870 static int
871 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
872 {
873 	struct zyd_pair pair[2];
874 
875 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
876 	pair[0].val = htole16(val >> 16);
877 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
878 	pair[1].val = htole16(val & 0xffff);
879 
880 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
881 }
882 
883 static int
884 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
885 {
886 	struct zyd_rf *rf = &sc->sc_rf;
887 	struct zyd_rfwrite_cmd req;
888 	uint16_t cr203;
889 	int error, i;
890 
891 	zyd_read16_m(sc, ZYD_CR203, &cr203);
892 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
893 
894 	req.code  = htole16(2);
895 	req.width = htole16(rf->width);
896 	for (i = 0; i < rf->width; i++) {
897 		req.bit[i] = htole16(cr203);
898 		if (val & (1 << (rf->width - 1 - i)))
899 			req.bit[i] |= htole16(ZYD_RF_DATA);
900 	}
901 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
902 fail:
903 	return (error);
904 }
905 
906 static int
907 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
908 {
909 	int error;
910 
911 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
912 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
913 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
914 fail:
915 	return (error);
916 }
917 
918 static int
919 zyd_lock_phy(struct zyd_softc *sc)
920 {
921 	int error;
922 	uint32_t tmp;
923 
924 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
925 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
926 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
927 fail:
928 	return (error);
929 }
930 
931 static int
932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 	int error;
935 	uint32_t tmp;
936 
937 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
938 	tmp |= ZYD_UNLOCK_PHY_REGS;
939 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
940 fail:
941 	return (error);
942 }
943 
944 /*
945  * RFMD RF methods.
946  */
947 static int
948 zyd_rfmd_init(struct zyd_rf *rf)
949 {
950 	struct zyd_softc *sc = rf->rf_sc;
951 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
952 	static const uint32_t rfini[] = ZYD_RFMD_RF;
953 	int i, error;
954 
955 	/* init RF-dependent PHY registers */
956 	for (i = 0; i < nitems(phyini); i++) {
957 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
958 	}
959 
960 	/* init RFMD radio */
961 	for (i = 0; i < nitems(rfini); i++) {
962 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
963 			return (error);
964 	}
965 fail:
966 	return (error);
967 }
968 
969 static int
970 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
971 {
972 	int error;
973 	struct zyd_softc *sc = rf->rf_sc;
974 
975 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
976 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
977 fail:
978 	return (error);
979 }
980 
981 static int
982 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
983 {
984 	int error;
985 	struct zyd_softc *sc = rf->rf_sc;
986 	static const struct {
987 		uint32_t	r1, r2;
988 	} rfprog[] = ZYD_RFMD_CHANTABLE;
989 
990 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
991 	if (error != 0)
992 		goto fail;
993 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
994 	if (error != 0)
995 		goto fail;
996 
997 fail:
998 	return (error);
999 }
1000 
1001 /*
1002  * AL2230 RF methods.
1003  */
1004 static int
1005 zyd_al2230_init(struct zyd_rf *rf)
1006 {
1007 	struct zyd_softc *sc = rf->rf_sc;
1008 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1009 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1010 	static const struct zyd_phy_pair phypll[] = {
1011 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1012 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1013 	};
1014 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1015 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1016 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1017 	int i, error;
1018 
1019 	/* init RF-dependent PHY registers */
1020 	for (i = 0; i < nitems(phyini); i++)
1021 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1022 
1023 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1024 		for (i = 0; i < nitems(phy2230s); i++)
1025 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1026 	}
1027 
1028 	/* init AL2230 radio */
1029 	for (i = 0; i < nitems(rfini1); i++) {
1030 		error = zyd_rfwrite(sc, rfini1[i]);
1031 		if (error != 0)
1032 			goto fail;
1033 	}
1034 
1035 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1036 		error = zyd_rfwrite(sc, 0x000824);
1037 	else
1038 		error = zyd_rfwrite(sc, 0x0005a4);
1039 	if (error != 0)
1040 		goto fail;
1041 
1042 	for (i = 0; i < nitems(rfini2); i++) {
1043 		error = zyd_rfwrite(sc, rfini2[i]);
1044 		if (error != 0)
1045 			goto fail;
1046 	}
1047 
1048 	for (i = 0; i < nitems(phypll); i++)
1049 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1050 
1051 	for (i = 0; i < nitems(rfini3); i++) {
1052 		error = zyd_rfwrite(sc, rfini3[i]);
1053 		if (error != 0)
1054 			goto fail;
1055 	}
1056 fail:
1057 	return (error);
1058 }
1059 
1060 static int
1061 zyd_al2230_fini(struct zyd_rf *rf)
1062 {
1063 	int error, i;
1064 	struct zyd_softc *sc = rf->rf_sc;
1065 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1066 
1067 	for (i = 0; i < nitems(phy); i++)
1068 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1069 
1070 	if (sc->sc_newphy != 0)
1071 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1072 
1073 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1074 fail:
1075 	return (error);
1076 }
1077 
1078 static int
1079 zyd_al2230_init_b(struct zyd_rf *rf)
1080 {
1081 	struct zyd_softc *sc = rf->rf_sc;
1082 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1083 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1084 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1085 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1086 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1087 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1088 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1089 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1090 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1091 	int i, error;
1092 
1093 	for (i = 0; i < nitems(phy1); i++)
1094 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1095 
1096 	/* init RF-dependent PHY registers */
1097 	for (i = 0; i < nitems(phyini); i++)
1098 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1099 
1100 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1101 		for (i = 0; i < nitems(phy2230s); i++)
1102 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1103 	}
1104 
1105 	for (i = 0; i < 3; i++) {
1106 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1107 		if (error != 0)
1108 			return (error);
1109 	}
1110 
1111 	for (i = 0; i < nitems(rfini_part1); i++) {
1112 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1113 		if (error != 0)
1114 			return (error);
1115 	}
1116 
1117 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1118 		error = zyd_rfwrite(sc, 0x241000);
1119 	else
1120 		error = zyd_rfwrite(sc, 0x25a000);
1121 	if (error != 0)
1122 		goto fail;
1123 
1124 	for (i = 0; i < nitems(rfini_part2); i++) {
1125 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1126 		if (error != 0)
1127 			return (error);
1128 	}
1129 
1130 	for (i = 0; i < nitems(phy2); i++)
1131 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1132 
1133 	for (i = 0; i < nitems(rfini_part3); i++) {
1134 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1135 		if (error != 0)
1136 			return (error);
1137 	}
1138 
1139 	for (i = 0; i < nitems(phy3); i++)
1140 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1141 
1142 	error = zyd_al2230_fini(rf);
1143 fail:
1144 	return (error);
1145 }
1146 
1147 static int
1148 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1149 {
1150 	struct zyd_softc *sc = rf->rf_sc;
1151 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1152 
1153 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1154 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1155 fail:
1156 	return (error);
1157 }
1158 
1159 static int
1160 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1161 {
1162 	int error, i;
1163 	struct zyd_softc *sc = rf->rf_sc;
1164 	static const struct zyd_phy_pair phy1[] = {
1165 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1166 	};
1167 	static const struct {
1168 		uint32_t	r1, r2, r3;
1169 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1170 
1171 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1172 	if (error != 0)
1173 		goto fail;
1174 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1175 	if (error != 0)
1176 		goto fail;
1177 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1178 	if (error != 0)
1179 		goto fail;
1180 
1181 	for (i = 0; i < nitems(phy1); i++)
1182 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1183 fail:
1184 	return (error);
1185 }
1186 
1187 static int
1188 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1189 {
1190 	int error, i;
1191 	struct zyd_softc *sc = rf->rf_sc;
1192 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1193 	static const struct {
1194 		uint32_t	r1, r2, r3;
1195 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1196 
1197 	for (i = 0; i < nitems(phy1); i++)
1198 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1199 
1200 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1201 	if (error != 0)
1202 		goto fail;
1203 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1204 	if (error != 0)
1205 		goto fail;
1206 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1207 	if (error != 0)
1208 		goto fail;
1209 	error = zyd_al2230_fini(rf);
1210 fail:
1211 	return (error);
1212 }
1213 
1214 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1215 {									\
1216 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1217 	{ ZYD_CR47,  0x1e }						\
1218 }
1219 
1220 static int
1221 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1222 {
1223 	int error = 0, i;
1224 	struct zyd_softc *sc = rf->rf_sc;
1225 	struct ieee80211com *ic = &sc->sc_ic;
1226 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1227 	int chan = ieee80211_chan2ieee(ic, c);
1228 
1229 	if (chan == 1 || chan == 11)
1230 		r[0].val = 0x12;
1231 
1232 	for (i = 0; i < nitems(r); i++)
1233 		zyd_write16_m(sc, r[i].reg, r[i].val);
1234 fail:
1235 	return (error);
1236 }
1237 
1238 /*
1239  * AL7230B RF methods.
1240  */
1241 static int
1242 zyd_al7230B_init(struct zyd_rf *rf)
1243 {
1244 	struct zyd_softc *sc = rf->rf_sc;
1245 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1246 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1247 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1248 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1249 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1250 	int i, error;
1251 
1252 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1253 
1254 	/* init RF-dependent PHY registers, part one */
1255 	for (i = 0; i < nitems(phyini_1); i++)
1256 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1257 
1258 	/* init AL7230B radio, part one */
1259 	for (i = 0; i < nitems(rfini_1); i++) {
1260 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1261 			return (error);
1262 	}
1263 	/* init RF-dependent PHY registers, part two */
1264 	for (i = 0; i < nitems(phyini_2); i++)
1265 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1266 
1267 	/* init AL7230B radio, part two */
1268 	for (i = 0; i < nitems(rfini_2); i++) {
1269 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1270 			return (error);
1271 	}
1272 	/* init RF-dependent PHY registers, part three */
1273 	for (i = 0; i < nitems(phyini_3); i++)
1274 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1275 fail:
1276 	return (error);
1277 }
1278 
1279 static int
1280 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1281 {
1282 	int error;
1283 	struct zyd_softc *sc = rf->rf_sc;
1284 
1285 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1286 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1287 fail:
1288 	return (error);
1289 }
1290 
1291 static int
1292 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1293 {
1294 	struct zyd_softc *sc = rf->rf_sc;
1295 	static const struct {
1296 		uint32_t	r1, r2;
1297 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1298 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1299 	int i, error;
1300 
1301 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1302 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1303 
1304 	for (i = 0; i < nitems(rfsc); i++) {
1305 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1306 			return (error);
1307 	}
1308 
1309 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1310 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1311 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1312 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1313 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1314 
1315 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1316 	if (error != 0)
1317 		goto fail;
1318 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1319 	if (error != 0)
1320 		goto fail;
1321 	error = zyd_rfwrite(sc, 0x3c9000);
1322 	if (error != 0)
1323 		goto fail;
1324 
1325 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1326 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1327 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1328 fail:
1329 	return (error);
1330 }
1331 
1332 /*
1333  * AL2210 RF methods.
1334  */
1335 static int
1336 zyd_al2210_init(struct zyd_rf *rf)
1337 {
1338 	struct zyd_softc *sc = rf->rf_sc;
1339 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1340 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1341 	uint32_t tmp;
1342 	int i, error;
1343 
1344 	zyd_write32_m(sc, ZYD_CR18, 2);
1345 
1346 	/* init RF-dependent PHY registers */
1347 	for (i = 0; i < nitems(phyini); i++)
1348 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1349 
1350 	/* init AL2210 radio */
1351 	for (i = 0; i < nitems(rfini); i++) {
1352 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1353 			return (error);
1354 	}
1355 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1356 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1357 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1358 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1359 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1360 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1361 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1362 	zyd_write32_m(sc, ZYD_CR18, 3);
1363 fail:
1364 	return (error);
1365 }
1366 
1367 static int
1368 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1369 {
1370 	/* vendor driver does nothing for this RF chip */
1371 
1372 	return (0);
1373 }
1374 
1375 static int
1376 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1377 {
1378 	int error;
1379 	struct zyd_softc *sc = rf->rf_sc;
1380 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1381 	uint32_t tmp;
1382 
1383 	zyd_write32_m(sc, ZYD_CR18, 2);
1384 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1385 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1386 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1387 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1388 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1389 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1390 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1391 
1392 	/* actually set the channel */
1393 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1394 	if (error != 0)
1395 		goto fail;
1396 
1397 	zyd_write32_m(sc, ZYD_CR18, 3);
1398 fail:
1399 	return (error);
1400 }
1401 
1402 /*
1403  * GCT RF methods.
1404  */
1405 static int
1406 zyd_gct_init(struct zyd_rf *rf)
1407 {
1408 #define	ZYD_GCT_INTR_REG	0x85c1
1409 	struct zyd_softc *sc = rf->rf_sc;
1410 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1411 	static const uint32_t rfini[] = ZYD_GCT_RF;
1412 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1413 	int i, idx = -1, error;
1414 	uint16_t data;
1415 
1416 	/* init RF-dependent PHY registers */
1417 	for (i = 0; i < nitems(phyini); i++)
1418 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1419 
1420 	/* init cgt radio */
1421 	for (i = 0; i < nitems(rfini); i++) {
1422 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1423 			return (error);
1424 	}
1425 
1426 	error = zyd_gct_mode(rf);
1427 	if (error != 0)
1428 		return (error);
1429 
1430 	for (i = 0; i < (int)(nitems(vco) - 1); i++) {
1431 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1432 		if (error != 0)
1433 			goto fail;
1434 		error = zyd_gct_write(rf, vco[i][0]);
1435 		if (error != 0)
1436 			goto fail;
1437 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1438 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1439 		if ((data & 0xf) == 0) {
1440 			idx = i;
1441 			break;
1442 		}
1443 	}
1444 	if (idx == -1) {
1445 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1446 		if (error != 0)
1447 			goto fail;
1448 		error = zyd_gct_write(rf, 0x6662);
1449 		if (error != 0)
1450 			goto fail;
1451 	}
1452 
1453 	rf->idx = idx;
1454 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1455 fail:
1456 	return (error);
1457 #undef ZYD_GCT_INTR_REG
1458 }
1459 
1460 static int
1461 zyd_gct_mode(struct zyd_rf *rf)
1462 {
1463 	struct zyd_softc *sc = rf->rf_sc;
1464 	static const uint32_t mode[] = {
1465 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1466 	};
1467 	int i, error;
1468 
1469 	for (i = 0; i < nitems(mode); i++) {
1470 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1471 			break;
1472 	}
1473 	return (error);
1474 }
1475 
1476 static int
1477 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1478 {
1479 	int error, idx = chan - 1;
1480 	struct zyd_softc *sc = rf->rf_sc;
1481 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1482 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1483 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1484 
1485 	error = zyd_rfwrite(sc,
1486 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1487 	if (error != 0)
1488 		return (error);
1489 	return zyd_rfwrite(sc, div_synth[idx]);
1490 }
1491 
1492 static int
1493 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1494 {
1495 	struct zyd_softc *sc = rf->rf_sc;
1496 
1497 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1498 }
1499 
1500 static int
1501 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1502 {
1503 	int error;
1504 	struct zyd_softc *sc = rf->rf_sc;
1505 
1506 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1507 	if (error != 0)
1508 		return (error);
1509 
1510 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1511 	zyd_write16_m(sc, ZYD_CR251,
1512 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1513 fail:
1514 	return (error);
1515 }
1516 
1517 static int
1518 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1519 {
1520 	int error, i;
1521 	struct zyd_softc *sc = rf->rf_sc;
1522 	static const struct zyd_phy_pair cmd[] = {
1523 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1524 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1525 	};
1526 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1527 
1528 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1529 	if (error != 0)
1530 		goto fail;
1531 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1532 	    vco[rf->idx][((chan - 1) / 2)]);
1533 	if (error != 0)
1534 		goto fail;
1535 	error = zyd_gct_mode(rf);
1536 	if (error != 0)
1537 		return (error);
1538 	for (i = 0; i < nitems(cmd); i++)
1539 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1540 	error = zyd_gct_txgain(rf, chan);
1541 	if (error != 0)
1542 		return (error);
1543 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1544 fail:
1545 	return (error);
1546 }
1547 
1548 static int
1549 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1550 {
1551 	struct zyd_softc *sc = rf->rf_sc;
1552 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1553 	uint8_t idx = sc->sc_pwrint[chan - 1];
1554 
1555 	if (idx >= nitems(txgain)) {
1556 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1557 		    chan, idx);
1558 		return 0;
1559 	}
1560 
1561 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1562 }
1563 
1564 /*
1565  * Maxim2 RF methods.
1566  */
1567 static int
1568 zyd_maxim2_init(struct zyd_rf *rf)
1569 {
1570 	struct zyd_softc *sc = rf->rf_sc;
1571 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1572 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1573 	uint16_t tmp;
1574 	int i, error;
1575 
1576 	/* init RF-dependent PHY registers */
1577 	for (i = 0; i < nitems(phyini); i++)
1578 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1579 
1580 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1581 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1582 
1583 	/* init maxim2 radio */
1584 	for (i = 0; i < nitems(rfini); i++) {
1585 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1586 			return (error);
1587 	}
1588 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1589 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1590 fail:
1591 	return (error);
1592 }
1593 
1594 static int
1595 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1596 {
1597 
1598 	/* vendor driver does nothing for this RF chip */
1599 	return (0);
1600 }
1601 
1602 static int
1603 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1604 {
1605 	struct zyd_softc *sc = rf->rf_sc;
1606 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1607 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1608 	static const struct {
1609 		uint32_t	r1, r2;
1610 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1611 	uint16_t tmp;
1612 	int i, error;
1613 
1614 	/*
1615 	 * Do the same as we do when initializing it, except for the channel
1616 	 * values coming from the two channel tables.
1617 	 */
1618 
1619 	/* init RF-dependent PHY registers */
1620 	for (i = 0; i < nitems(phyini); i++)
1621 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1622 
1623 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1624 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1625 
1626 	/* first two values taken from the chantables */
1627 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1628 	if (error != 0)
1629 		goto fail;
1630 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1631 	if (error != 0)
1632 		goto fail;
1633 
1634 	/* init maxim2 radio - skipping the two first values */
1635 	for (i = 2; i < nitems(rfini); i++) {
1636 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1637 			return (error);
1638 	}
1639 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1640 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1641 fail:
1642 	return (error);
1643 }
1644 
1645 static int
1646 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1647 {
1648 	struct zyd_rf *rf = &sc->sc_rf;
1649 
1650 	rf->rf_sc = sc;
1651 	rf->update_pwr = 1;
1652 
1653 	switch (type) {
1654 	case ZYD_RF_RFMD:
1655 		rf->init         = zyd_rfmd_init;
1656 		rf->switch_radio = zyd_rfmd_switch_radio;
1657 		rf->set_channel  = zyd_rfmd_set_channel;
1658 		rf->width        = 24;	/* 24-bit RF values */
1659 		break;
1660 	case ZYD_RF_AL2230:
1661 	case ZYD_RF_AL2230S:
1662 		if (sc->sc_macrev == ZYD_ZD1211B) {
1663 			rf->init = zyd_al2230_init_b;
1664 			rf->set_channel = zyd_al2230_set_channel_b;
1665 		} else {
1666 			rf->init = zyd_al2230_init;
1667 			rf->set_channel = zyd_al2230_set_channel;
1668 		}
1669 		rf->switch_radio = zyd_al2230_switch_radio;
1670 		rf->bandedge6	 = zyd_al2230_bandedge6;
1671 		rf->width        = 24;	/* 24-bit RF values */
1672 		break;
1673 	case ZYD_RF_AL7230B:
1674 		rf->init         = zyd_al7230B_init;
1675 		rf->switch_radio = zyd_al7230B_switch_radio;
1676 		rf->set_channel  = zyd_al7230B_set_channel;
1677 		rf->width        = 24;	/* 24-bit RF values */
1678 		break;
1679 	case ZYD_RF_AL2210:
1680 		rf->init         = zyd_al2210_init;
1681 		rf->switch_radio = zyd_al2210_switch_radio;
1682 		rf->set_channel  = zyd_al2210_set_channel;
1683 		rf->width        = 24;	/* 24-bit RF values */
1684 		break;
1685 	case ZYD_RF_MAXIM_NEW:
1686 	case ZYD_RF_GCT:
1687 		rf->init         = zyd_gct_init;
1688 		rf->switch_radio = zyd_gct_switch_radio;
1689 		rf->set_channel  = zyd_gct_set_channel;
1690 		rf->width        = 24;	/* 24-bit RF values */
1691 		rf->update_pwr   = 0;
1692 		break;
1693 	case ZYD_RF_MAXIM_NEW2:
1694 		rf->init         = zyd_maxim2_init;
1695 		rf->switch_radio = zyd_maxim2_switch_radio;
1696 		rf->set_channel  = zyd_maxim2_set_channel;
1697 		rf->width        = 18;	/* 18-bit RF values */
1698 		break;
1699 	default:
1700 		device_printf(sc->sc_dev,
1701 		    "sorry, radio \"%s\" is not supported yet\n",
1702 		    zyd_rf_name(type));
1703 		return (EINVAL);
1704 	}
1705 	return (0);
1706 }
1707 
1708 static const char *
1709 zyd_rf_name(uint8_t type)
1710 {
1711 	static const char * const zyd_rfs[] = {
1712 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1713 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1714 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1715 		"PHILIPS"
1716 	};
1717 
1718 	return zyd_rfs[(type > 15) ? 0 : type];
1719 }
1720 
1721 static int
1722 zyd_hw_init(struct zyd_softc *sc)
1723 {
1724 	int error;
1725 	const struct zyd_phy_pair *phyp;
1726 	struct zyd_rf *rf = &sc->sc_rf;
1727 	uint16_t val;
1728 
1729 	/* specify that the plug and play is finished */
1730 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1731 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1732 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1733 	    sc->sc_fwbase);
1734 
1735 	/* retrieve firmware revision number */
1736 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1737 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1738 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1739 	/* set mandatory rates - XXX assumes 802.11b/g */
1740 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1741 
1742 	/* disable interrupts */
1743 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1744 
1745 	if ((error = zyd_read_pod(sc)) != 0) {
1746 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1747 		goto fail;
1748 	}
1749 
1750 	/* PHY init (resetting) */
1751 	error = zyd_lock_phy(sc);
1752 	if (error != 0)
1753 		goto fail;
1754 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1755 	for (; phyp->reg != 0; phyp++)
1756 		zyd_write16_m(sc, phyp->reg, phyp->val);
1757 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1758 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1759 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1760 	}
1761 	error = zyd_unlock_phy(sc);
1762 	if (error != 0)
1763 		goto fail;
1764 
1765 	/* HMAC init */
1766 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1767 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1768 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1769 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1770 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1771 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1772 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1773 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1774 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1775 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1776 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1777 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1778 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1779 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1780 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1781 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1782 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1783 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1784 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1785 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1786 
1787 	if (sc->sc_macrev == ZYD_ZD1211) {
1788 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1789 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1790 	} else {
1791 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1792 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1793 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1794 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1795 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1796 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1797 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1798 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1799 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1800 	}
1801 
1802 	/* init beacon interval to 100ms */
1803 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1804 		goto fail;
1805 
1806 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1807 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1808 		    sc->sc_rfrev);
1809 		goto fail;
1810 	}
1811 
1812 	/* RF chip init */
1813 	error = zyd_lock_phy(sc);
1814 	if (error != 0)
1815 		goto fail;
1816 	error = (*rf->init)(rf);
1817 	if (error != 0) {
1818 		device_printf(sc->sc_dev,
1819 		    "radio initialization failed, error %d\n", error);
1820 		goto fail;
1821 	}
1822 	error = zyd_unlock_phy(sc);
1823 	if (error != 0)
1824 		goto fail;
1825 
1826 	if ((error = zyd_read_eeprom(sc)) != 0) {
1827 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1828 		goto fail;
1829 	}
1830 
1831 fail:	return (error);
1832 }
1833 
1834 static int
1835 zyd_read_pod(struct zyd_softc *sc)
1836 {
1837 	int error;
1838 	uint32_t tmp;
1839 
1840 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1841 	sc->sc_rfrev     = tmp & 0x0f;
1842 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1843 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1844 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1845 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1846 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1847 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1848 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1849 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1850 fail:
1851 	return (error);
1852 }
1853 
1854 static int
1855 zyd_read_eeprom(struct zyd_softc *sc)
1856 {
1857 	uint16_t val;
1858 	int error, i;
1859 
1860 	/* read Tx power calibration tables */
1861 	for (i = 0; i < 7; i++) {
1862 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1863 		sc->sc_pwrcal[i * 2] = val >> 8;
1864 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1865 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1866 		sc->sc_pwrint[i * 2] = val >> 8;
1867 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1868 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1869 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1870 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1871 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1872 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1873 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1874 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1875 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1876 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1877 	}
1878 fail:
1879 	return (error);
1880 }
1881 
1882 static int
1883 zyd_get_macaddr(struct zyd_softc *sc)
1884 {
1885 	struct usb_device_request req;
1886 	usb_error_t error;
1887 
1888 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1889 	req.bRequest = ZYD_READFWDATAREQ;
1890 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1891 	USETW(req.wIndex, 0);
1892 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1893 
1894 	error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr);
1895 	if (error != 0) {
1896 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1897 		    usbd_errstr(error));
1898 	}
1899 
1900 	return (error);
1901 }
1902 
1903 static int
1904 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1905 {
1906 	int error;
1907 	uint32_t tmp;
1908 
1909 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1910 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1911 	tmp = addr[5] << 8 | addr[4];
1912 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1913 fail:
1914 	return (error);
1915 }
1916 
1917 static int
1918 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1919 {
1920 	int error;
1921 	uint32_t tmp;
1922 
1923 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1924 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1925 	tmp = addr[5] << 8 | addr[4];
1926 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1927 fail:
1928 	return (error);
1929 }
1930 
1931 static int
1932 zyd_switch_radio(struct zyd_softc *sc, int on)
1933 {
1934 	struct zyd_rf *rf = &sc->sc_rf;
1935 	int error;
1936 
1937 	error = zyd_lock_phy(sc);
1938 	if (error != 0)
1939 		goto fail;
1940 	error = (*rf->switch_radio)(rf, on);
1941 	if (error != 0)
1942 		goto fail;
1943 	error = zyd_unlock_phy(sc);
1944 fail:
1945 	return (error);
1946 }
1947 
1948 static int
1949 zyd_set_led(struct zyd_softc *sc, int which, int on)
1950 {
1951 	int error;
1952 	uint32_t tmp;
1953 
1954 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1955 	tmp &= ~which;
1956 	if (on)
1957 		tmp |= which;
1958 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1959 fail:
1960 	return (error);
1961 }
1962 
1963 static void
1964 zyd_set_multi(struct zyd_softc *sc)
1965 {
1966 	struct ieee80211com *ic = &sc->sc_ic;
1967 	uint32_t low, high;
1968 	int error;
1969 
1970 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0)
1971 		return;
1972 
1973 	low = 0x00000000;
1974 	high = 0x80000000;
1975 
1976 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
1977 	    ic->ic_promisc > 0) {
1978 		low = 0xffffffff;
1979 		high = 0xffffffff;
1980 	} else {
1981 		struct ieee80211vap *vap;
1982 		struct ifnet *ifp;
1983 		struct ifmultiaddr *ifma;
1984 		uint8_t v;
1985 
1986 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1987 			ifp = vap->iv_ifp;
1988 			if_maddr_rlock(ifp);
1989 			TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1990 				if (ifma->ifma_addr->sa_family != AF_LINK)
1991 					continue;
1992 				v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
1993 				    ifma->ifma_addr))[5] >> 2;
1994 				if (v < 32)
1995 					low |= 1 << v;
1996 				else
1997 					high |= 1 << (v - 32);
1998 			}
1999 			if_maddr_runlock(ifp);
2000 		}
2001 	}
2002 
2003 	/* reprogram multicast global hash table */
2004 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2005 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2006 fail:
2007 	if (error != 0)
2008 		device_printf(sc->sc_dev,
2009 		    "could not set multicast hash table\n");
2010 }
2011 
2012 static void
2013 zyd_update_mcast(struct ieee80211com *ic)
2014 {
2015 	struct zyd_softc *sc = ic->ic_softc;
2016 
2017 	ZYD_LOCK(sc);
2018 	zyd_set_multi(sc);
2019 	ZYD_UNLOCK(sc);
2020 }
2021 
2022 static int
2023 zyd_set_rxfilter(struct zyd_softc *sc)
2024 {
2025 	struct ieee80211com *ic = &sc->sc_ic;
2026 	uint32_t rxfilter;
2027 
2028 	switch (ic->ic_opmode) {
2029 	case IEEE80211_M_STA:
2030 		rxfilter = ZYD_FILTER_BSS;
2031 		break;
2032 	case IEEE80211_M_IBSS:
2033 	case IEEE80211_M_HOSTAP:
2034 		rxfilter = ZYD_FILTER_HOSTAP;
2035 		break;
2036 	case IEEE80211_M_MONITOR:
2037 		rxfilter = ZYD_FILTER_MONITOR;
2038 		break;
2039 	default:
2040 		/* should not get there */
2041 		return (EINVAL);
2042 	}
2043 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2044 }
2045 
2046 static void
2047 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2048 {
2049 	int error;
2050 	struct ieee80211com *ic = &sc->sc_ic;
2051 	struct zyd_rf *rf = &sc->sc_rf;
2052 	uint32_t tmp;
2053 	int chan;
2054 
2055 	chan = ieee80211_chan2ieee(ic, c);
2056 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2057 		/* XXX should NEVER happen */
2058 		device_printf(sc->sc_dev,
2059 		    "%s: invalid channel %x\n", __func__, chan);
2060 		return;
2061 	}
2062 
2063 	error = zyd_lock_phy(sc);
2064 	if (error != 0)
2065 		goto fail;
2066 
2067 	error = (*rf->set_channel)(rf, chan);
2068 	if (error != 0)
2069 		goto fail;
2070 
2071 	if (rf->update_pwr) {
2072 		/* update Tx power */
2073 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2074 
2075 		if (sc->sc_macrev == ZYD_ZD1211B) {
2076 			zyd_write16_m(sc, ZYD_CR67,
2077 			    sc->sc_ofdm36_cal[chan - 1]);
2078 			zyd_write16_m(sc, ZYD_CR66,
2079 			    sc->sc_ofdm48_cal[chan - 1]);
2080 			zyd_write16_m(sc, ZYD_CR65,
2081 			    sc->sc_ofdm54_cal[chan - 1]);
2082 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2083 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2084 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2085 		}
2086 	}
2087 	if (sc->sc_cckgain) {
2088 		/* set CCK baseband gain from EEPROM */
2089 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2090 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2091 	}
2092 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2093 		error = (*rf->bandedge6)(rf, c);
2094 		if (error != 0)
2095 			goto fail;
2096 	}
2097 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2098 
2099 	error = zyd_unlock_phy(sc);
2100 	if (error != 0)
2101 		goto fail;
2102 
2103 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2104 	    htole16(c->ic_freq);
2105 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2106 	    htole16(c->ic_flags);
2107 fail:
2108 	return;
2109 }
2110 
2111 static int
2112 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2113 {
2114 	int error;
2115 	uint32_t val;
2116 
2117 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2118 	sc->sc_atim_wnd = val;
2119 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2120 	sc->sc_pre_tbtt = val;
2121 	sc->sc_bcn_int = bintval;
2122 
2123 	if (sc->sc_bcn_int <= 5)
2124 		sc->sc_bcn_int = 5;
2125 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2126 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2127 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2128 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2129 
2130 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2131 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2132 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2133 fail:
2134 	return (error);
2135 }
2136 
2137 static void
2138 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2139 {
2140 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2141 	struct ieee80211com *ic = &sc->sc_ic;
2142 	struct zyd_plcphdr plcp;
2143 	struct zyd_rx_stat stat;
2144 	struct usb_page_cache *pc;
2145 	struct mbuf *m;
2146 	int rlen, rssi;
2147 
2148 	if (len < ZYD_MIN_FRAGSZ) {
2149 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2150 		    device_get_nameunit(sc->sc_dev), len);
2151 		counter_u64_add(ic->ic_ierrors, 1);
2152 		return;
2153 	}
2154 	pc = usbd_xfer_get_frame(xfer, 0);
2155 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2156 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2157 
2158 	if (stat.flags & ZYD_RX_ERROR) {
2159 		DPRINTF(sc, ZYD_DEBUG_RECV,
2160 		    "%s: RX status indicated error (%x)\n",
2161 		    device_get_nameunit(sc->sc_dev), stat.flags);
2162 		counter_u64_add(ic->ic_ierrors, 1);
2163 		return;
2164 	}
2165 
2166 	/* compute actual frame length */
2167 	rlen = len - sizeof(struct zyd_plcphdr) -
2168 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2169 
2170 	/* allocate a mbuf to store the frame */
2171 	if (rlen > (int)MCLBYTES) {
2172 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2173 		    device_get_nameunit(sc->sc_dev), rlen);
2174 		counter_u64_add(ic->ic_ierrors, 1);
2175 		return;
2176 	} else if (rlen > (int)MHLEN)
2177 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2178 	else
2179 		m = m_gethdr(M_NOWAIT, MT_DATA);
2180 	if (m == NULL) {
2181 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2182 		    device_get_nameunit(sc->sc_dev));
2183 		counter_u64_add(ic->ic_ierrors, 1);
2184 		return;
2185 	}
2186 	m->m_pkthdr.len = m->m_len = rlen;
2187 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2188 
2189 	if (ieee80211_radiotap_active(ic)) {
2190 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2191 
2192 		tap->wr_flags = 0;
2193 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2194 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2195 		/* XXX toss, no way to express errors */
2196 		if (stat.flags & ZYD_RX_DECRYPTERR)
2197 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2198 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2199 		    (stat.flags & ZYD_RX_OFDM) ?
2200 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2201 		tap->wr_antsignal = stat.rssi + -95;
2202 		tap->wr_antnoise = -95;	/* XXX */
2203 	}
2204 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2205 
2206 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2207 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2208 	sc->sc_rx_count++;
2209 }
2210 
2211 static void
2212 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2213 {
2214 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2215 	struct ieee80211com *ic = &sc->sc_ic;
2216 	struct ieee80211_node *ni;
2217 	struct zyd_rx_desc desc;
2218 	struct mbuf *m;
2219 	struct usb_page_cache *pc;
2220 	uint32_t offset;
2221 	uint8_t rssi;
2222 	int8_t nf;
2223 	int i;
2224 	int actlen;
2225 
2226 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2227 
2228 	sc->sc_rx_count = 0;
2229 	switch (USB_GET_STATE(xfer)) {
2230 	case USB_ST_TRANSFERRED:
2231 		pc = usbd_xfer_get_frame(xfer, 0);
2232 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2233 
2234 		offset = 0;
2235 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2236 			DPRINTF(sc, ZYD_DEBUG_RECV,
2237 			    "%s: received multi-frame transfer\n", __func__);
2238 
2239 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2240 				uint16_t len16 = UGETW(desc.len[i]);
2241 
2242 				if (len16 == 0 || len16 > actlen)
2243 					break;
2244 
2245 				zyd_rx_data(xfer, offset, len16);
2246 
2247 				/* next frame is aligned on a 32-bit boundary */
2248 				len16 = (len16 + 3) & ~3;
2249 				offset += len16;
2250 				if (len16 > actlen)
2251 					break;
2252 				actlen -= len16;
2253 			}
2254 		} else {
2255 			DPRINTF(sc, ZYD_DEBUG_RECV,
2256 			    "%s: received single-frame transfer\n", __func__);
2257 
2258 			zyd_rx_data(xfer, 0, actlen);
2259 		}
2260 		/* FALLTHROUGH */
2261 	case USB_ST_SETUP:
2262 tr_setup:
2263 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2264 		usbd_transfer_submit(xfer);
2265 
2266 		/*
2267 		 * At the end of a USB callback it is always safe to unlock
2268 		 * the private mutex of a device! That is why we do the
2269 		 * "ieee80211_input" here, and not some lines up!
2270 		 */
2271 		ZYD_UNLOCK(sc);
2272 		for (i = 0; i < sc->sc_rx_count; i++) {
2273 			rssi = sc->sc_rx_data[i].rssi;
2274 			m = sc->sc_rx_data[i].m;
2275 			sc->sc_rx_data[i].m = NULL;
2276 
2277 			nf = -95;	/* XXX */
2278 
2279 			ni = ieee80211_find_rxnode(ic,
2280 			    mtod(m, struct ieee80211_frame_min *));
2281 			if (ni != NULL) {
2282 				(void)ieee80211_input(ni, m, rssi, nf);
2283 				ieee80211_free_node(ni);
2284 			} else
2285 				(void)ieee80211_input_all(ic, m, rssi, nf);
2286 		}
2287 		ZYD_LOCK(sc);
2288 		zyd_start(sc);
2289 		break;
2290 
2291 	default:			/* Error */
2292 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2293 
2294 		if (error != USB_ERR_CANCELLED) {
2295 			/* try to clear stall first */
2296 			usbd_xfer_set_stall(xfer);
2297 			goto tr_setup;
2298 		}
2299 		break;
2300 	}
2301 }
2302 
2303 static uint8_t
2304 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2305 {
2306 	switch (rate) {
2307 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2308 	case 12:
2309 		return (0xb);
2310 	case 18:
2311 		return (0xf);
2312 	case 24:
2313 		return (0xa);
2314 	case 36:
2315 		return (0xe);
2316 	case 48:
2317 		return (0x9);
2318 	case 72:
2319 		return (0xd);
2320 	case 96:
2321 		return (0x8);
2322 	case 108:
2323 		return (0xc);
2324 	/* CCK rates (NB: not IEEE std, device-specific) */
2325 	case 2:
2326 		return (0x0);
2327 	case 4:
2328 		return (0x1);
2329 	case 11:
2330 		return (0x2);
2331 	case 22:
2332 		return (0x3);
2333 	}
2334 
2335 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2336 	return (0x0);
2337 }
2338 
2339 static void
2340 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2341 {
2342 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2343 	struct ieee80211vap *vap;
2344 	struct zyd_tx_data *data;
2345 	struct mbuf *m;
2346 	struct usb_page_cache *pc;
2347 	int actlen;
2348 
2349 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2350 
2351 	switch (USB_GET_STATE(xfer)) {
2352 	case USB_ST_TRANSFERRED:
2353 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2354 		    actlen);
2355 
2356 		/* free resources */
2357 		data = usbd_xfer_get_priv(xfer);
2358 		zyd_tx_free(data, 0);
2359 		usbd_xfer_set_priv(xfer, NULL);
2360 
2361 		/* FALLTHROUGH */
2362 	case USB_ST_SETUP:
2363 tr_setup:
2364 		data = STAILQ_FIRST(&sc->tx_q);
2365 		if (data) {
2366 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2367 			m = data->m;
2368 
2369 			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2370 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2371 				    m->m_pkthdr.len);
2372 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2373 			}
2374 			pc = usbd_xfer_get_frame(xfer, 0);
2375 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2376 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2377 			    m->m_pkthdr.len);
2378 
2379 			vap = data->ni->ni_vap;
2380 			if (ieee80211_radiotap_active_vap(vap)) {
2381 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2382 
2383 				tap->wt_flags = 0;
2384 				tap->wt_rate = data->rate;
2385 
2386 				ieee80211_radiotap_tx(vap, m);
2387 			}
2388 
2389 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2390 			usbd_xfer_set_priv(xfer, data);
2391 			usbd_transfer_submit(xfer);
2392 		}
2393 		zyd_start(sc);
2394 		break;
2395 
2396 	default:			/* Error */
2397 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2398 		    usbd_errstr(error));
2399 
2400 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
2401 		data = usbd_xfer_get_priv(xfer);
2402 		usbd_xfer_set_priv(xfer, NULL);
2403 		if (data != NULL)
2404 			zyd_tx_free(data, error);
2405 
2406 		if (error != USB_ERR_CANCELLED) {
2407 			if (error == USB_ERR_TIMEOUT)
2408 				device_printf(sc->sc_dev, "device timeout\n");
2409 
2410 			/*
2411 			 * Try to clear stall first, also if other
2412 			 * errors occur, hence clearing stall
2413 			 * introduces a 50 ms delay:
2414 			 */
2415 			usbd_xfer_set_stall(xfer);
2416 			goto tr_setup;
2417 		}
2418 		break;
2419 	}
2420 }
2421 
2422 static int
2423 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2424 {
2425 	struct ieee80211vap *vap = ni->ni_vap;
2426 	struct ieee80211com *ic = ni->ni_ic;
2427 	struct zyd_tx_desc *desc;
2428 	struct zyd_tx_data *data;
2429 	struct ieee80211_frame *wh;
2430 	const struct ieee80211_txparam *tp;
2431 	struct ieee80211_key *k;
2432 	int rate, totlen;
2433 	static const uint8_t ratediv[] = ZYD_TX_RATEDIV;
2434 	uint8_t phy;
2435 	uint16_t pktlen;
2436 	uint32_t bits;
2437 
2438 	wh = mtod(m0, struct ieee80211_frame *);
2439 	data = STAILQ_FIRST(&sc->tx_free);
2440 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2441 	sc->tx_nfree--;
2442 
2443 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT ||
2444 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2445 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2446 		rate = tp->mgmtrate;
2447 	} else {
2448 		tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2449 		/* for data frames */
2450 		if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2451 			rate = tp->mcastrate;
2452 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2453 			rate = tp->ucastrate;
2454 		else {
2455 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2456 			rate = ni->ni_txrate;
2457 		}
2458 	}
2459 
2460 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2461 		k = ieee80211_crypto_encap(ni, m0);
2462 		if (k == NULL) {
2463 			return (ENOBUFS);
2464 		}
2465 		/* packet header may have moved, reset our local pointer */
2466 		wh = mtod(m0, struct ieee80211_frame *);
2467 	}
2468 
2469 	data->ni = ni;
2470 	data->m = m0;
2471 	data->rate = rate;
2472 
2473 	/* fill Tx descriptor */
2474 	desc = &data->desc;
2475 	phy = zyd_plcp_signal(sc, rate);
2476 	desc->phy = phy;
2477 	if (ZYD_RATE_IS_OFDM(rate)) {
2478 		desc->phy |= ZYD_TX_PHY_OFDM;
2479 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2480 			desc->phy |= ZYD_TX_PHY_5GHZ;
2481 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2482 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2483 
2484 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2485 	desc->len = htole16(totlen);
2486 
2487 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2488 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2489 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2490 		if (totlen > vap->iv_rtsthreshold) {
2491 			desc->flags |= ZYD_TX_FLAG_RTS;
2492 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2493 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2494 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2495 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2496 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2497 				desc->flags |= ZYD_TX_FLAG_RTS;
2498 		}
2499 	} else
2500 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2501 	if ((wh->i_fc[0] &
2502 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2503 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2504 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2505 
2506 	/* actual transmit length (XXX why +10?) */
2507 	pktlen = ZYD_TX_DESC_SIZE + 10;
2508 	if (sc->sc_macrev == ZYD_ZD1211)
2509 		pktlen += totlen;
2510 	desc->pktlen = htole16(pktlen);
2511 
2512 	bits = (rate == 11) ? (totlen * 16) + 10 :
2513 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2514 	desc->plcp_length = htole16(bits / ratediv[phy]);
2515 	desc->plcp_service = 0;
2516 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2517 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2518 	desc->nextlen = 0;
2519 
2520 	if (ieee80211_radiotap_active_vap(vap)) {
2521 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2522 
2523 		tap->wt_flags = 0;
2524 		tap->wt_rate = rate;
2525 
2526 		ieee80211_radiotap_tx(vap, m0);
2527 	}
2528 
2529 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2530 	    "%s: sending data frame len=%zu rate=%u\n",
2531 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2532 		rate);
2533 
2534 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2535 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2536 
2537 	return (0);
2538 }
2539 
2540 static int
2541 zyd_transmit(struct ieee80211com *ic, struct mbuf *m)
2542 {
2543 	struct zyd_softc *sc = ic->ic_softc;
2544 	int error;
2545 
2546 	ZYD_LOCK(sc);
2547 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2548 		ZYD_UNLOCK(sc);
2549 		return (ENXIO);
2550 	}
2551 	error = mbufq_enqueue(&sc->sc_snd, m);
2552 	if (error) {
2553 		ZYD_UNLOCK(sc);
2554 		return (error);
2555 	}
2556 	zyd_start(sc);
2557 	ZYD_UNLOCK(sc);
2558 
2559 	return (0);
2560 }
2561 
2562 static void
2563 zyd_start(struct zyd_softc *sc)
2564 {
2565 	struct ieee80211_node *ni;
2566 	struct mbuf *m;
2567 
2568 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2569 
2570 	while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
2571 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2572 		if (zyd_tx_start(sc, m, ni) != 0) {
2573 			ieee80211_free_node(ni);
2574 			m_freem(m);
2575 			if_inc_counter(ni->ni_vap->iv_ifp,
2576 			    IFCOUNTER_OERRORS, 1);
2577 			break;
2578 		}
2579 	}
2580 }
2581 
2582 static int
2583 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2584 	const struct ieee80211_bpf_params *params)
2585 {
2586 	struct ieee80211com *ic = ni->ni_ic;
2587 	struct zyd_softc *sc = ic->ic_softc;
2588 
2589 	ZYD_LOCK(sc);
2590 	/* prevent management frames from being sent if we're not ready */
2591 	if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) {
2592 		ZYD_UNLOCK(sc);
2593 		m_freem(m);
2594 		return (ENETDOWN);
2595 	}
2596 	if (sc->tx_nfree == 0) {
2597 		ZYD_UNLOCK(sc);
2598 		m_freem(m);
2599 		return (ENOBUFS);		/* XXX */
2600 	}
2601 
2602 	/*
2603 	 * Legacy path; interpret frame contents to decide
2604 	 * precisely how to send the frame.
2605 	 * XXX raw path
2606 	 */
2607 	if (zyd_tx_start(sc, m, ni) != 0) {
2608 		ZYD_UNLOCK(sc);
2609 		m_freem(m);
2610 		return (EIO);
2611 	}
2612 	ZYD_UNLOCK(sc);
2613 	return (0);
2614 }
2615 
2616 static void
2617 zyd_parent(struct ieee80211com *ic)
2618 {
2619 	struct zyd_softc *sc = ic->ic_softc;
2620 	int startall = 0;
2621 
2622 	ZYD_LOCK(sc);
2623 	if (sc->sc_flags & ZYD_FLAG_DETACHED) {
2624 		ZYD_UNLOCK(sc);
2625 		return;
2626 	}
2627 	if (ic->ic_nrunning > 0) {
2628 		if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2629 			zyd_init_locked(sc);
2630 			startall = 1;
2631 		} else
2632 			zyd_set_multi(sc);
2633 	} else if (sc->sc_flags & ZYD_FLAG_RUNNING)
2634 		zyd_stop(sc);
2635 	ZYD_UNLOCK(sc);
2636 	if (startall)
2637 		ieee80211_start_all(ic);
2638 }
2639 
2640 static void
2641 zyd_init_locked(struct zyd_softc *sc)
2642 {
2643 	struct ieee80211com *ic = &sc->sc_ic;
2644 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2645 	struct usb_config_descriptor *cd;
2646 	int error;
2647 	uint32_t val;
2648 
2649 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2650 
2651 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2652 		error = zyd_loadfirmware(sc);
2653 		if (error != 0) {
2654 			device_printf(sc->sc_dev,
2655 			    "could not load firmware (error=%d)\n", error);
2656 			goto fail;
2657 		}
2658 
2659 		/* reset device */
2660 		cd = usbd_get_config_descriptor(sc->sc_udev);
2661 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2662 		    cd->bConfigurationValue);
2663 		if (error)
2664 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2665 
2666 		error = zyd_hw_init(sc);
2667 		if (error) {
2668 			device_printf(sc->sc_dev,
2669 			    "hardware initialization failed\n");
2670 			goto fail;
2671 		}
2672 
2673 		device_printf(sc->sc_dev,
2674 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2675 		    "BE%x NP%x Gain%x F%x\n",
2676 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2677 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2678 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2679 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2680 		    sc->sc_cckgain, sc->sc_fix_cr157);
2681 
2682 		/* read regulatory domain (currently unused) */
2683 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2684 		sc->sc_regdomain = val >> 16;
2685 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2686 		    sc->sc_regdomain);
2687 
2688 		/* we'll do software WEP decryption for now */
2689 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2690 		    __func__);
2691 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2692 
2693 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2694 	}
2695 
2696 	if (sc->sc_flags & ZYD_FLAG_RUNNING)
2697 		zyd_stop(sc);
2698 
2699 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2700 	    vap ? vap->iv_myaddr : ic->ic_macaddr, ":");
2701 	error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2702 	if (error != 0)
2703 		return;
2704 
2705 	/* set basic rates */
2706 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2707 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2708 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2709 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2710 	else	/* assumes 802.11b/g */
2711 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2712 
2713 	/* promiscuous mode */
2714 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2715 	/* multicast setup */
2716 	zyd_set_multi(sc);
2717 	/* set RX filter  */
2718 	error = zyd_set_rxfilter(sc);
2719 	if (error != 0)
2720 		goto fail;
2721 
2722 	/* switch radio transmitter ON */
2723 	error = zyd_switch_radio(sc, 1);
2724 	if (error != 0)
2725 		goto fail;
2726 	/* set default BSS channel */
2727 	zyd_set_chan(sc, ic->ic_curchan);
2728 
2729 	/*
2730 	 * Allocate Tx and Rx xfer queues.
2731 	 */
2732 	zyd_setup_tx_list(sc);
2733 
2734 	/* enable interrupts */
2735 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2736 
2737 	sc->sc_flags |= ZYD_FLAG_RUNNING;
2738 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2739 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2740 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2741 
2742 	return;
2743 
2744 fail:	zyd_stop(sc);
2745 	return;
2746 }
2747 
2748 static void
2749 zyd_stop(struct zyd_softc *sc)
2750 {
2751 	int error;
2752 
2753 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2754 
2755 	sc->sc_flags &= ~ZYD_FLAG_RUNNING;
2756 	zyd_drain_mbufq(sc);
2757 
2758 	/*
2759 	 * Drain all the transfers, if not already drained:
2760 	 */
2761 	ZYD_UNLOCK(sc);
2762 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2763 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2764 	ZYD_LOCK(sc);
2765 
2766 	zyd_unsetup_tx_list(sc);
2767 
2768 	/* Stop now if the device was never set up */
2769 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2770 		return;
2771 
2772 	/* switch radio transmitter OFF */
2773 	error = zyd_switch_radio(sc, 0);
2774 	if (error != 0)
2775 		goto fail;
2776 	/* disable Rx */
2777 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2778 	/* disable interrupts */
2779 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2780 
2781 fail:
2782 	return;
2783 }
2784 
2785 static int
2786 zyd_loadfirmware(struct zyd_softc *sc)
2787 {
2788 	struct usb_device_request req;
2789 	size_t size;
2790 	u_char *fw;
2791 	uint8_t stat;
2792 	uint16_t addr;
2793 
2794 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2795 		return (0);
2796 
2797 	if (sc->sc_macrev == ZYD_ZD1211) {
2798 		fw = (u_char *)zd1211_firmware;
2799 		size = sizeof(zd1211_firmware);
2800 	} else {
2801 		fw = (u_char *)zd1211b_firmware;
2802 		size = sizeof(zd1211b_firmware);
2803 	}
2804 
2805 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2806 	req.bRequest = ZYD_DOWNLOADREQ;
2807 	USETW(req.wIndex, 0);
2808 
2809 	addr = ZYD_FIRMWARE_START_ADDR;
2810 	while (size > 0) {
2811 		/*
2812 		 * When the transfer size is 4096 bytes, it is not
2813 		 * likely to be able to transfer it.
2814 		 * The cause is port or machine or chip?
2815 		 */
2816 		const int mlen = min(size, 64);
2817 
2818 		DPRINTF(sc, ZYD_DEBUG_FW,
2819 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2820 
2821 		USETW(req.wValue, addr);
2822 		USETW(req.wLength, mlen);
2823 		if (zyd_do_request(sc, &req, fw) != 0)
2824 			return (EIO);
2825 
2826 		addr += mlen / 2;
2827 		fw   += mlen;
2828 		size -= mlen;
2829 	}
2830 
2831 	/* check whether the upload succeeded */
2832 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2833 	req.bRequest = ZYD_DOWNLOADSTS;
2834 	USETW(req.wValue, 0);
2835 	USETW(req.wIndex, 0);
2836 	USETW(req.wLength, sizeof(stat));
2837 	if (zyd_do_request(sc, &req, &stat) != 0)
2838 		return (EIO);
2839 
2840 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2841 
2842 	return (stat & 0x80) ? (EIO) : (0);
2843 }
2844 
2845 static void
2846 zyd_scan_start(struct ieee80211com *ic)
2847 {
2848 	struct zyd_softc *sc = ic->ic_softc;
2849 
2850 	ZYD_LOCK(sc);
2851 	/* want broadcast address while scanning */
2852 	zyd_set_bssid(sc, ieee80211broadcastaddr);
2853 	ZYD_UNLOCK(sc);
2854 }
2855 
2856 static void
2857 zyd_scan_end(struct ieee80211com *ic)
2858 {
2859 	struct zyd_softc *sc = ic->ic_softc;
2860 
2861 	ZYD_LOCK(sc);
2862 	/* restore previous bssid */
2863 	zyd_set_bssid(sc, sc->sc_bssid);
2864 	ZYD_UNLOCK(sc);
2865 }
2866 
2867 static void
2868 zyd_set_channel(struct ieee80211com *ic)
2869 {
2870 	struct zyd_softc *sc = ic->ic_softc;
2871 
2872 	ZYD_LOCK(sc);
2873 	zyd_set_chan(sc, ic->ic_curchan);
2874 	ZYD_UNLOCK(sc);
2875 }
2876 
2877 static device_method_t zyd_methods[] = {
2878         /* Device interface */
2879         DEVMETHOD(device_probe, zyd_match),
2880         DEVMETHOD(device_attach, zyd_attach),
2881         DEVMETHOD(device_detach, zyd_detach),
2882 	DEVMETHOD_END
2883 };
2884 
2885 static driver_t zyd_driver = {
2886 	.name = "zyd",
2887 	.methods = zyd_methods,
2888 	.size = sizeof(struct zyd_softc)
2889 };
2890 
2891 static devclass_t zyd_devclass;
2892 
2893 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2894 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2895 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2896 MODULE_VERSION(zyd, 1);
2897 USB_PNP_HOST_INFO(zyd_devs);
2898