1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include <dev/usb/usbdi_util.h> 74 #include "usbdevs.h" 75 76 #include <dev/usb/wlan/if_zydreg.h> 77 #include <dev/usb/wlan/if_zydfw.h> 78 79 #ifdef USB_DEBUG 80 static int zyd_debug = 0; 81 82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 84 "zyd debug level"); 85 86 enum { 87 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 88 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 89 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 90 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 91 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 92 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 93 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 94 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 95 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 96 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 97 ZYD_DEBUG_ANY = 0xffffffff 98 }; 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 if (zyd_debug & (m)) \ 101 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 102 } while (0) 103 #else 104 #define DPRINTF(sc, m, fmt, ...) do { \ 105 (void) sc; \ 106 } while (0) 107 #endif 108 109 #define zyd_do_request(sc,req,data) \ 110 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 111 112 static device_probe_t zyd_match; 113 static device_attach_t zyd_attach; 114 static device_detach_t zyd_detach; 115 116 static usb_callback_t zyd_intr_read_callback; 117 static usb_callback_t zyd_intr_write_callback; 118 static usb_callback_t zyd_bulk_read_callback; 119 static usb_callback_t zyd_bulk_write_callback; 120 121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 122 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 123 const uint8_t [IEEE80211_ADDR_LEN], 124 const uint8_t [IEEE80211_ADDR_LEN]); 125 static void zyd_vap_delete(struct ieee80211vap *); 126 static void zyd_tx_free(struct zyd_tx_data *, int); 127 static void zyd_setup_tx_list(struct zyd_softc *); 128 static void zyd_unsetup_tx_list(struct zyd_softc *); 129 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 130 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 131 void *, int, int); 132 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 133 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 134 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 135 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 136 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 137 static int zyd_lock_phy(struct zyd_softc *); 138 static int zyd_unlock_phy(struct zyd_softc *); 139 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 140 static const char *zyd_rf_name(uint8_t); 141 static int zyd_hw_init(struct zyd_softc *); 142 static int zyd_read_pod(struct zyd_softc *); 143 static int zyd_read_eeprom(struct zyd_softc *); 144 static int zyd_get_macaddr(struct zyd_softc *); 145 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 146 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 147 static int zyd_switch_radio(struct zyd_softc *, int); 148 static int zyd_set_led(struct zyd_softc *, int, int); 149 static void zyd_set_multi(struct zyd_softc *); 150 static void zyd_update_mcast(struct ieee80211com *); 151 static int zyd_set_rxfilter(struct zyd_softc *); 152 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 153 static int zyd_set_beacon_interval(struct zyd_softc *, int); 154 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 155 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 156 struct ieee80211_node *); 157 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 158 static void zyd_start(struct zyd_softc *); 159 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 160 const struct ieee80211_bpf_params *); 161 static void zyd_parent(struct ieee80211com *); 162 static void zyd_init_locked(struct zyd_softc *); 163 static void zyd_stop(struct zyd_softc *); 164 static int zyd_loadfirmware(struct zyd_softc *); 165 static void zyd_scan_start(struct ieee80211com *); 166 static void zyd_scan_end(struct ieee80211com *); 167 static void zyd_set_channel(struct ieee80211com *); 168 static int zyd_rfmd_init(struct zyd_rf *); 169 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 170 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_init(struct zyd_rf *); 172 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 173 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init_b(struct zyd_rf *); 176 static int zyd_al7230B_init(struct zyd_rf *); 177 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 178 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_al2210_init(struct zyd_rf *); 180 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 181 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_init(struct zyd_rf *); 183 static int zyd_gct_switch_radio(struct zyd_rf *, int); 184 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 185 static int zyd_gct_mode(struct zyd_rf *); 186 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 187 static int zyd_gct_write(struct zyd_rf *, uint16_t); 188 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 189 static int zyd_maxim2_init(struct zyd_rf *); 190 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 191 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 192 193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 195 196 /* various supported device vendors/products */ 197 #define ZYD_ZD1211 0 198 #define ZYD_ZD1211B 1 199 200 #define ZYD_ZD1211_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 202 #define ZYD_ZD1211B_DEV(v,p) \ 203 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 204 static const STRUCT_USB_HOST_ID zyd_devs[] = { 205 /* ZYD_ZD1211 */ 206 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 207 ZYD_ZD1211_DEV(ABOCOM, WL54), 208 ZYD_ZD1211_DEV(ASUS, WL159G), 209 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 210 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 215 ZYD_ZD1211_DEV(SAGEM, XG760A), 216 ZYD_ZD1211_DEV(SENAO, NUB8301), 217 ZYD_ZD1211_DEV(SITECOMEU, WL113), 218 ZYD_ZD1211_DEV(SWEEX, ZD1211), 219 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 222 ZYD_ZD1211_DEV(TWINMOS, G240), 223 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 226 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 227 ZYD_ZD1211_DEV(ZCOM, ZD1211), 228 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 229 ZYD_ZD1211_DEV(ZYXEL, AG225H), 230 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 231 ZYD_ZD1211_DEV(ZYXEL, G200V2), 232 /* ZYD_ZD1211B */ 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 235 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 236 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 237 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 238 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 239 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 240 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 241 ZYD_ZD1211B_DEV(MELCO, KG54L), 242 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 243 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 244 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 245 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 246 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 247 ZYD_ZD1211B_DEV(USR, USR5423), 248 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 249 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYXEL, M202), 252 ZYD_ZD1211B_DEV(ZYXEL, G202), 253 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 254 }; 255 256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 257 [ZYD_BULK_WR] = { 258 .type = UE_BULK, 259 .endpoint = UE_ADDR_ANY, 260 .direction = UE_DIR_OUT, 261 .bufsize = ZYD_MAX_TXBUFSZ, 262 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 263 .callback = zyd_bulk_write_callback, 264 .ep_index = 0, 265 .timeout = 10000, /* 10 seconds */ 266 }, 267 [ZYD_BULK_RD] = { 268 .type = UE_BULK, 269 .endpoint = UE_ADDR_ANY, 270 .direction = UE_DIR_IN, 271 .bufsize = ZYX_MAX_RXBUFSZ, 272 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 273 .callback = zyd_bulk_read_callback, 274 .ep_index = 0, 275 }, 276 [ZYD_INTR_WR] = { 277 .type = UE_BULK_INTR, 278 .endpoint = UE_ADDR_ANY, 279 .direction = UE_DIR_OUT, 280 .bufsize = sizeof(struct zyd_cmd), 281 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 282 .callback = zyd_intr_write_callback, 283 .timeout = 1000, /* 1 second */ 284 .ep_index = 1, 285 }, 286 [ZYD_INTR_RD] = { 287 .type = UE_INTERRUPT, 288 .endpoint = UE_ADDR_ANY, 289 .direction = UE_DIR_IN, 290 .bufsize = sizeof(struct zyd_cmd), 291 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 292 .callback = zyd_intr_read_callback, 293 }, 294 }; 295 #define zyd_read16_m(sc, val, data) do { \ 296 error = zyd_read16(sc, val, data); \ 297 if (error != 0) \ 298 goto fail; \ 299 } while (0) 300 #define zyd_write16_m(sc, val, data) do { \ 301 error = zyd_write16(sc, val, data); \ 302 if (error != 0) \ 303 goto fail; \ 304 } while (0) 305 #define zyd_read32_m(sc, val, data) do { \ 306 error = zyd_read32(sc, val, data); \ 307 if (error != 0) \ 308 goto fail; \ 309 } while (0) 310 #define zyd_write32_m(sc, val, data) do { \ 311 error = zyd_write32(sc, val, data); \ 312 if (error != 0) \ 313 goto fail; \ 314 } while (0) 315 316 static int 317 zyd_match(device_t dev) 318 { 319 struct usb_attach_arg *uaa = device_get_ivars(dev); 320 321 if (uaa->usb_mode != USB_MODE_HOST) 322 return (ENXIO); 323 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 324 return (ENXIO); 325 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 326 return (ENXIO); 327 328 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 329 } 330 331 static int 332 zyd_attach(device_t dev) 333 { 334 struct usb_attach_arg *uaa = device_get_ivars(dev); 335 struct zyd_softc *sc = device_get_softc(dev); 336 struct ieee80211com *ic = &sc->sc_ic; 337 uint8_t bands[IEEE80211_MODE_BYTES]; 338 uint8_t iface_index; 339 int error; 340 341 if (uaa->info.bcdDevice < 0x4330) { 342 device_printf(dev, "device version mismatch: 0x%X " 343 "(only >= 43.30 supported)\n", 344 uaa->info.bcdDevice); 345 return (EINVAL); 346 } 347 348 device_set_usb_desc(dev); 349 sc->sc_dev = dev; 350 sc->sc_udev = uaa->device; 351 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 352 353 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 354 MTX_NETWORK_LOCK, MTX_DEF); 355 STAILQ_INIT(&sc->sc_rqh); 356 mbufq_init(&sc->sc_snd, ifqmaxlen); 357 358 iface_index = ZYD_IFACE_INDEX; 359 error = usbd_transfer_setup(uaa->device, 360 &iface_index, sc->sc_xfer, zyd_config, 361 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 362 if (error) { 363 device_printf(dev, "could not allocate USB transfers, " 364 "err=%s\n", usbd_errstr(error)); 365 goto detach; 366 } 367 368 ZYD_LOCK(sc); 369 if ((error = zyd_get_macaddr(sc)) != 0) { 370 device_printf(sc->sc_dev, "could not read EEPROM\n"); 371 ZYD_UNLOCK(sc); 372 goto detach; 373 } 374 ZYD_UNLOCK(sc); 375 376 ic->ic_softc = sc; 377 ic->ic_name = device_get_nameunit(dev); 378 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 379 ic->ic_opmode = IEEE80211_M_STA; 380 381 /* set device capabilities */ 382 ic->ic_caps = 383 IEEE80211_C_STA /* station mode */ 384 | IEEE80211_C_MONITOR /* monitor mode */ 385 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 386 | IEEE80211_C_SHSLOT /* short slot time supported */ 387 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 388 | IEEE80211_C_WPA /* 802.11i */ 389 ; 390 391 memset(bands, 0, sizeof(bands)); 392 setbit(bands, IEEE80211_MODE_11B); 393 setbit(bands, IEEE80211_MODE_11G); 394 ieee80211_init_channels(ic, NULL, bands); 395 396 ieee80211_ifattach(ic); 397 ic->ic_raw_xmit = zyd_raw_xmit; 398 ic->ic_scan_start = zyd_scan_start; 399 ic->ic_scan_end = zyd_scan_end; 400 ic->ic_set_channel = zyd_set_channel; 401 ic->ic_vap_create = zyd_vap_create; 402 ic->ic_vap_delete = zyd_vap_delete; 403 ic->ic_update_mcast = zyd_update_mcast; 404 ic->ic_update_promisc = zyd_update_mcast; 405 ic->ic_parent = zyd_parent; 406 ic->ic_transmit = zyd_transmit; 407 408 ieee80211_radiotap_attach(ic, 409 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 410 ZYD_TX_RADIOTAP_PRESENT, 411 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 412 ZYD_RX_RADIOTAP_PRESENT); 413 414 if (bootverbose) 415 ieee80211_announce(ic); 416 417 return (0); 418 419 detach: 420 zyd_detach(dev); 421 return (ENXIO); /* failure */ 422 } 423 424 static void 425 zyd_drain_mbufq(struct zyd_softc *sc) 426 { 427 struct mbuf *m; 428 struct ieee80211_node *ni; 429 430 ZYD_LOCK_ASSERT(sc, MA_OWNED); 431 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 432 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 433 m->m_pkthdr.rcvif = NULL; 434 ieee80211_free_node(ni); 435 m_freem(m); 436 } 437 } 438 439 440 static int 441 zyd_detach(device_t dev) 442 { 443 struct zyd_softc *sc = device_get_softc(dev); 444 struct ieee80211com *ic = &sc->sc_ic; 445 unsigned int x; 446 447 /* 448 * Prevent further allocations from RX/TX data 449 * lists and ioctls: 450 */ 451 ZYD_LOCK(sc); 452 sc->sc_flags |= ZYD_FLAG_DETACHED; 453 zyd_drain_mbufq(sc); 454 STAILQ_INIT(&sc->tx_q); 455 STAILQ_INIT(&sc->tx_free); 456 ZYD_UNLOCK(sc); 457 458 /* drain USB transfers */ 459 for (x = 0; x != ZYD_N_TRANSFER; x++) 460 usbd_transfer_drain(sc->sc_xfer[x]); 461 462 /* free TX list, if any */ 463 ZYD_LOCK(sc); 464 zyd_unsetup_tx_list(sc); 465 ZYD_UNLOCK(sc); 466 467 /* free USB transfers and some data buffers */ 468 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 469 470 if (ic->ic_softc == sc) 471 ieee80211_ifdetach(ic); 472 mtx_destroy(&sc->sc_mtx); 473 474 return (0); 475 } 476 477 static struct ieee80211vap * 478 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 479 enum ieee80211_opmode opmode, int flags, 480 const uint8_t bssid[IEEE80211_ADDR_LEN], 481 const uint8_t mac[IEEE80211_ADDR_LEN]) 482 { 483 struct zyd_vap *zvp; 484 struct ieee80211vap *vap; 485 486 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 487 return (NULL); 488 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 489 vap = &zvp->vap; 490 491 /* enable s/w bmiss handling for sta mode */ 492 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 493 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 494 /* out of memory */ 495 free(zvp, M_80211_VAP); 496 return (NULL); 497 } 498 499 /* override state transition machine */ 500 zvp->newstate = vap->iv_newstate; 501 vap->iv_newstate = zyd_newstate; 502 503 ieee80211_ratectl_init(vap); 504 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 505 506 /* complete setup */ 507 ieee80211_vap_attach(vap, ieee80211_media_change, 508 ieee80211_media_status, mac); 509 ic->ic_opmode = opmode; 510 return (vap); 511 } 512 513 static void 514 zyd_vap_delete(struct ieee80211vap *vap) 515 { 516 struct zyd_vap *zvp = ZYD_VAP(vap); 517 518 ieee80211_ratectl_deinit(vap); 519 ieee80211_vap_detach(vap); 520 free(zvp, M_80211_VAP); 521 } 522 523 static void 524 zyd_tx_free(struct zyd_tx_data *data, int txerr) 525 { 526 struct zyd_softc *sc = data->sc; 527 528 if (data->m != NULL) { 529 ieee80211_tx_complete(data->ni, data->m, txerr); 530 data->m = NULL; 531 data->ni = NULL; 532 } 533 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 534 sc->tx_nfree++; 535 } 536 537 static void 538 zyd_setup_tx_list(struct zyd_softc *sc) 539 { 540 struct zyd_tx_data *data; 541 int i; 542 543 sc->tx_nfree = 0; 544 STAILQ_INIT(&sc->tx_q); 545 STAILQ_INIT(&sc->tx_free); 546 547 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 548 data = &sc->tx_data[i]; 549 550 data->sc = sc; 551 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 552 sc->tx_nfree++; 553 } 554 } 555 556 static void 557 zyd_unsetup_tx_list(struct zyd_softc *sc) 558 { 559 struct zyd_tx_data *data; 560 int i; 561 562 /* make sure any subsequent use of the queues will fail */ 563 sc->tx_nfree = 0; 564 STAILQ_INIT(&sc->tx_q); 565 STAILQ_INIT(&sc->tx_free); 566 567 /* free up all node references and mbufs */ 568 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 569 data = &sc->tx_data[i]; 570 571 if (data->m != NULL) { 572 m_freem(data->m); 573 data->m = NULL; 574 } 575 if (data->ni != NULL) { 576 ieee80211_free_node(data->ni); 577 data->ni = NULL; 578 } 579 } 580 } 581 582 static int 583 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 584 { 585 struct zyd_vap *zvp = ZYD_VAP(vap); 586 struct ieee80211com *ic = vap->iv_ic; 587 struct zyd_softc *sc = ic->ic_softc; 588 int error; 589 590 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 591 ieee80211_state_name[vap->iv_state], 592 ieee80211_state_name[nstate]); 593 594 IEEE80211_UNLOCK(ic); 595 ZYD_LOCK(sc); 596 switch (nstate) { 597 case IEEE80211_S_AUTH: 598 zyd_set_chan(sc, ic->ic_curchan); 599 break; 600 case IEEE80211_S_RUN: 601 if (vap->iv_opmode == IEEE80211_M_MONITOR) 602 break; 603 604 /* turn link LED on */ 605 error = zyd_set_led(sc, ZYD_LED1, 1); 606 if (error != 0) 607 break; 608 609 /* make data LED blink upon Tx */ 610 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 611 612 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 613 zyd_set_bssid(sc, sc->sc_bssid); 614 break; 615 default: 616 break; 617 } 618 fail: 619 ZYD_UNLOCK(sc); 620 IEEE80211_LOCK(ic); 621 return (zvp->newstate(vap, nstate, arg)); 622 } 623 624 /* 625 * Callback handler for interrupt transfer 626 */ 627 static void 628 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 629 { 630 struct zyd_softc *sc = usbd_xfer_softc(xfer); 631 struct ieee80211com *ic = &sc->sc_ic; 632 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 633 struct ieee80211_node *ni; 634 struct zyd_cmd *cmd = &sc->sc_ibuf; 635 struct usb_page_cache *pc; 636 int datalen; 637 int actlen; 638 639 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 640 641 switch (USB_GET_STATE(xfer)) { 642 case USB_ST_TRANSFERRED: 643 pc = usbd_xfer_get_frame(xfer, 0); 644 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 645 646 switch (le16toh(cmd->code)) { 647 case ZYD_NOTIF_RETRYSTATUS: 648 { 649 struct zyd_notif_retry *retry = 650 (struct zyd_notif_retry *)cmd->data; 651 652 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 653 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 654 le16toh(retry->rate), ether_sprintf(retry->macaddr), 655 le16toh(retry->count)&0xff, le16toh(retry->count)); 656 657 /* 658 * Find the node to which the packet was sent and 659 * update its retry statistics. In BSS mode, this node 660 * is the AP we're associated to so no lookup is 661 * actually needed. 662 */ 663 ni = ieee80211_find_txnode(vap, retry->macaddr); 664 if (ni != NULL) { 665 int retrycnt = 666 (int)(le16toh(retry->count) & 0xff); 667 668 ieee80211_ratectl_tx_complete(vap, ni, 669 IEEE80211_RATECTL_TX_FAILURE, 670 &retrycnt, NULL); 671 ieee80211_free_node(ni); 672 } 673 if (le16toh(retry->count) & 0x100) 674 /* too many retries */ 675 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 676 1); 677 break; 678 } 679 case ZYD_NOTIF_IORD: 680 { 681 struct zyd_rq *rqp; 682 683 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 684 break; /* HMAC interrupt */ 685 686 datalen = actlen - sizeof(cmd->code); 687 datalen -= 2; /* XXX: padding? */ 688 689 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 690 int i; 691 int count; 692 693 if (rqp->olen != datalen) 694 continue; 695 count = rqp->olen / sizeof(struct zyd_pair); 696 for (i = 0; i < count; i++) { 697 if (*(((const uint16_t *)rqp->idata) + i) != 698 (((struct zyd_pair *)cmd->data) + i)->reg) 699 break; 700 } 701 if (i != count) 702 continue; 703 /* copy answer into caller-supplied buffer */ 704 memcpy(rqp->odata, cmd->data, rqp->olen); 705 DPRINTF(sc, ZYD_DEBUG_CMD, 706 "command %p complete, data = %*D \n", 707 rqp, rqp->olen, (char *)rqp->odata, ":"); 708 wakeup(rqp); /* wakeup caller */ 709 break; 710 } 711 if (rqp == NULL) { 712 device_printf(sc->sc_dev, 713 "unexpected IORD notification %*D\n", 714 datalen, cmd->data, ":"); 715 } 716 break; 717 } 718 default: 719 device_printf(sc->sc_dev, "unknown notification %x\n", 720 le16toh(cmd->code)); 721 } 722 723 /* FALLTHROUGH */ 724 case USB_ST_SETUP: 725 tr_setup: 726 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 727 usbd_transfer_submit(xfer); 728 break; 729 730 default: /* Error */ 731 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 732 usbd_errstr(error)); 733 734 if (error != USB_ERR_CANCELLED) { 735 /* try to clear stall first */ 736 usbd_xfer_set_stall(xfer); 737 goto tr_setup; 738 } 739 break; 740 } 741 } 742 743 static void 744 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 745 { 746 struct zyd_softc *sc = usbd_xfer_softc(xfer); 747 struct zyd_rq *rqp, *cmd; 748 struct usb_page_cache *pc; 749 750 switch (USB_GET_STATE(xfer)) { 751 case USB_ST_TRANSFERRED: 752 cmd = usbd_xfer_get_priv(xfer); 753 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 754 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 755 /* Ensure the cached rq pointer is still valid */ 756 if (rqp == cmd && 757 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 758 wakeup(rqp); /* wakeup caller */ 759 } 760 761 /* FALLTHROUGH */ 762 case USB_ST_SETUP: 763 tr_setup: 764 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 765 if (rqp->flags & ZYD_CMD_FLAG_SENT) 766 continue; 767 768 pc = usbd_xfer_get_frame(xfer, 0); 769 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 770 771 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 772 usbd_xfer_set_priv(xfer, rqp); 773 rqp->flags |= ZYD_CMD_FLAG_SENT; 774 usbd_transfer_submit(xfer); 775 break; 776 } 777 break; 778 779 default: /* Error */ 780 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 781 usbd_errstr(error)); 782 783 if (error != USB_ERR_CANCELLED) { 784 /* try to clear stall first */ 785 usbd_xfer_set_stall(xfer); 786 goto tr_setup; 787 } 788 break; 789 } 790 } 791 792 static int 793 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 794 void *odata, int olen, int flags) 795 { 796 struct zyd_cmd cmd; 797 struct zyd_rq rq; 798 int error; 799 800 if (ilen > (int)sizeof(cmd.data)) 801 return (EINVAL); 802 803 cmd.code = htole16(code); 804 memcpy(cmd.data, idata, ilen); 805 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 806 &rq, ilen, idata, ":"); 807 808 rq.cmd = &cmd; 809 rq.idata = idata; 810 rq.odata = odata; 811 rq.ilen = sizeof(uint16_t) + ilen; 812 rq.olen = olen; 813 rq.flags = flags; 814 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 815 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 816 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 817 818 /* wait at most one second for command reply */ 819 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 820 if (error) 821 device_printf(sc->sc_dev, "command timeout\n"); 822 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 823 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 824 &rq, error); 825 826 return (error); 827 } 828 829 static int 830 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 831 { 832 struct zyd_pair tmp; 833 int error; 834 835 reg = htole16(reg); 836 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 837 ZYD_CMD_FLAG_READ); 838 if (error == 0) 839 *val = le16toh(tmp.val); 840 return (error); 841 } 842 843 static int 844 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 845 { 846 struct zyd_pair tmp[2]; 847 uint16_t regs[2]; 848 int error; 849 850 regs[0] = htole16(ZYD_REG32_HI(reg)); 851 regs[1] = htole16(ZYD_REG32_LO(reg)); 852 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 853 ZYD_CMD_FLAG_READ); 854 if (error == 0) 855 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 856 return (error); 857 } 858 859 static int 860 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 861 { 862 struct zyd_pair pair; 863 864 pair.reg = htole16(reg); 865 pair.val = htole16(val); 866 867 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 868 } 869 870 static int 871 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 872 { 873 struct zyd_pair pair[2]; 874 875 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 876 pair[0].val = htole16(val >> 16); 877 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 878 pair[1].val = htole16(val & 0xffff); 879 880 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 881 } 882 883 static int 884 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 885 { 886 struct zyd_rf *rf = &sc->sc_rf; 887 struct zyd_rfwrite_cmd req; 888 uint16_t cr203; 889 int error, i; 890 891 zyd_read16_m(sc, ZYD_CR203, &cr203); 892 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 893 894 req.code = htole16(2); 895 req.width = htole16(rf->width); 896 for (i = 0; i < rf->width; i++) { 897 req.bit[i] = htole16(cr203); 898 if (val & (1 << (rf->width - 1 - i))) 899 req.bit[i] |= htole16(ZYD_RF_DATA); 900 } 901 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 902 fail: 903 return (error); 904 } 905 906 static int 907 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 908 { 909 int error; 910 911 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 912 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 913 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 914 fail: 915 return (error); 916 } 917 918 static int 919 zyd_lock_phy(struct zyd_softc *sc) 920 { 921 int error; 922 uint32_t tmp; 923 924 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 925 tmp &= ~ZYD_UNLOCK_PHY_REGS; 926 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 927 fail: 928 return (error); 929 } 930 931 static int 932 zyd_unlock_phy(struct zyd_softc *sc) 933 { 934 int error; 935 uint32_t tmp; 936 937 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 938 tmp |= ZYD_UNLOCK_PHY_REGS; 939 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 940 fail: 941 return (error); 942 } 943 944 /* 945 * RFMD RF methods. 946 */ 947 static int 948 zyd_rfmd_init(struct zyd_rf *rf) 949 { 950 struct zyd_softc *sc = rf->rf_sc; 951 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 952 static const uint32_t rfini[] = ZYD_RFMD_RF; 953 int i, error; 954 955 /* init RF-dependent PHY registers */ 956 for (i = 0; i < nitems(phyini); i++) { 957 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 958 } 959 960 /* init RFMD radio */ 961 for (i = 0; i < nitems(rfini); i++) { 962 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 963 return (error); 964 } 965 fail: 966 return (error); 967 } 968 969 static int 970 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 971 { 972 int error; 973 struct zyd_softc *sc = rf->rf_sc; 974 975 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 976 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 977 fail: 978 return (error); 979 } 980 981 static int 982 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 983 { 984 int error; 985 struct zyd_softc *sc = rf->rf_sc; 986 static const struct { 987 uint32_t r1, r2; 988 } rfprog[] = ZYD_RFMD_CHANTABLE; 989 990 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 991 if (error != 0) 992 goto fail; 993 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 994 if (error != 0) 995 goto fail; 996 997 fail: 998 return (error); 999 } 1000 1001 /* 1002 * AL2230 RF methods. 1003 */ 1004 static int 1005 zyd_al2230_init(struct zyd_rf *rf) 1006 { 1007 struct zyd_softc *sc = rf->rf_sc; 1008 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1009 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1010 static const struct zyd_phy_pair phypll[] = { 1011 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1012 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1013 }; 1014 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1015 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1016 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1017 int i, error; 1018 1019 /* init RF-dependent PHY registers */ 1020 for (i = 0; i < nitems(phyini); i++) 1021 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1022 1023 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1024 for (i = 0; i < nitems(phy2230s); i++) 1025 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1026 } 1027 1028 /* init AL2230 radio */ 1029 for (i = 0; i < nitems(rfini1); i++) { 1030 error = zyd_rfwrite(sc, rfini1[i]); 1031 if (error != 0) 1032 goto fail; 1033 } 1034 1035 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1036 error = zyd_rfwrite(sc, 0x000824); 1037 else 1038 error = zyd_rfwrite(sc, 0x0005a4); 1039 if (error != 0) 1040 goto fail; 1041 1042 for (i = 0; i < nitems(rfini2); i++) { 1043 error = zyd_rfwrite(sc, rfini2[i]); 1044 if (error != 0) 1045 goto fail; 1046 } 1047 1048 for (i = 0; i < nitems(phypll); i++) 1049 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1050 1051 for (i = 0; i < nitems(rfini3); i++) { 1052 error = zyd_rfwrite(sc, rfini3[i]); 1053 if (error != 0) 1054 goto fail; 1055 } 1056 fail: 1057 return (error); 1058 } 1059 1060 static int 1061 zyd_al2230_fini(struct zyd_rf *rf) 1062 { 1063 int error, i; 1064 struct zyd_softc *sc = rf->rf_sc; 1065 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1066 1067 for (i = 0; i < nitems(phy); i++) 1068 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1069 1070 if (sc->sc_newphy != 0) 1071 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1072 1073 zyd_write16_m(sc, ZYD_CR203, 0x6); 1074 fail: 1075 return (error); 1076 } 1077 1078 static int 1079 zyd_al2230_init_b(struct zyd_rf *rf) 1080 { 1081 struct zyd_softc *sc = rf->rf_sc; 1082 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1083 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1084 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1085 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1086 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1087 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1088 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1089 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1090 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1091 int i, error; 1092 1093 for (i = 0; i < nitems(phy1); i++) 1094 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1095 1096 /* init RF-dependent PHY registers */ 1097 for (i = 0; i < nitems(phyini); i++) 1098 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1099 1100 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1101 for (i = 0; i < nitems(phy2230s); i++) 1102 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1103 } 1104 1105 for (i = 0; i < 3; i++) { 1106 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1107 if (error != 0) 1108 return (error); 1109 } 1110 1111 for (i = 0; i < nitems(rfini_part1); i++) { 1112 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1113 if (error != 0) 1114 return (error); 1115 } 1116 1117 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1118 error = zyd_rfwrite(sc, 0x241000); 1119 else 1120 error = zyd_rfwrite(sc, 0x25a000); 1121 if (error != 0) 1122 goto fail; 1123 1124 for (i = 0; i < nitems(rfini_part2); i++) { 1125 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1126 if (error != 0) 1127 return (error); 1128 } 1129 1130 for (i = 0; i < nitems(phy2); i++) 1131 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1132 1133 for (i = 0; i < nitems(rfini_part3); i++) { 1134 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1135 if (error != 0) 1136 return (error); 1137 } 1138 1139 for (i = 0; i < nitems(phy3); i++) 1140 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1141 1142 error = zyd_al2230_fini(rf); 1143 fail: 1144 return (error); 1145 } 1146 1147 static int 1148 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1149 { 1150 struct zyd_softc *sc = rf->rf_sc; 1151 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1152 1153 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1154 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1155 fail: 1156 return (error); 1157 } 1158 1159 static int 1160 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1161 { 1162 int error, i; 1163 struct zyd_softc *sc = rf->rf_sc; 1164 static const struct zyd_phy_pair phy1[] = { 1165 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1166 }; 1167 static const struct { 1168 uint32_t r1, r2, r3; 1169 } rfprog[] = ZYD_AL2230_CHANTABLE; 1170 1171 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1172 if (error != 0) 1173 goto fail; 1174 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1175 if (error != 0) 1176 goto fail; 1177 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1178 if (error != 0) 1179 goto fail; 1180 1181 for (i = 0; i < nitems(phy1); i++) 1182 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1183 fail: 1184 return (error); 1185 } 1186 1187 static int 1188 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1189 { 1190 int error, i; 1191 struct zyd_softc *sc = rf->rf_sc; 1192 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1193 static const struct { 1194 uint32_t r1, r2, r3; 1195 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1196 1197 for (i = 0; i < nitems(phy1); i++) 1198 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1199 1200 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1201 if (error != 0) 1202 goto fail; 1203 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1204 if (error != 0) 1205 goto fail; 1206 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1207 if (error != 0) 1208 goto fail; 1209 error = zyd_al2230_fini(rf); 1210 fail: 1211 return (error); 1212 } 1213 1214 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1215 { \ 1216 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1217 { ZYD_CR47, 0x1e } \ 1218 } 1219 1220 static int 1221 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1222 { 1223 int error = 0, i; 1224 struct zyd_softc *sc = rf->rf_sc; 1225 struct ieee80211com *ic = &sc->sc_ic; 1226 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1227 int chan = ieee80211_chan2ieee(ic, c); 1228 1229 if (chan == 1 || chan == 11) 1230 r[0].val = 0x12; 1231 1232 for (i = 0; i < nitems(r); i++) 1233 zyd_write16_m(sc, r[i].reg, r[i].val); 1234 fail: 1235 return (error); 1236 } 1237 1238 /* 1239 * AL7230B RF methods. 1240 */ 1241 static int 1242 zyd_al7230B_init(struct zyd_rf *rf) 1243 { 1244 struct zyd_softc *sc = rf->rf_sc; 1245 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1246 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1247 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1248 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1249 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1250 int i, error; 1251 1252 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1253 1254 /* init RF-dependent PHY registers, part one */ 1255 for (i = 0; i < nitems(phyini_1); i++) 1256 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1257 1258 /* init AL7230B radio, part one */ 1259 for (i = 0; i < nitems(rfini_1); i++) { 1260 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1261 return (error); 1262 } 1263 /* init RF-dependent PHY registers, part two */ 1264 for (i = 0; i < nitems(phyini_2); i++) 1265 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1266 1267 /* init AL7230B radio, part two */ 1268 for (i = 0; i < nitems(rfini_2); i++) { 1269 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1270 return (error); 1271 } 1272 /* init RF-dependent PHY registers, part three */ 1273 for (i = 0; i < nitems(phyini_3); i++) 1274 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1275 fail: 1276 return (error); 1277 } 1278 1279 static int 1280 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1281 { 1282 int error; 1283 struct zyd_softc *sc = rf->rf_sc; 1284 1285 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1286 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1287 fail: 1288 return (error); 1289 } 1290 1291 static int 1292 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1293 { 1294 struct zyd_softc *sc = rf->rf_sc; 1295 static const struct { 1296 uint32_t r1, r2; 1297 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1298 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1299 int i, error; 1300 1301 zyd_write16_m(sc, ZYD_CR240, 0x57); 1302 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1303 1304 for (i = 0; i < nitems(rfsc); i++) { 1305 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1306 return (error); 1307 } 1308 1309 zyd_write16_m(sc, ZYD_CR128, 0x14); 1310 zyd_write16_m(sc, ZYD_CR129, 0x12); 1311 zyd_write16_m(sc, ZYD_CR130, 0x10); 1312 zyd_write16_m(sc, ZYD_CR38, 0x38); 1313 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1314 1315 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1316 if (error != 0) 1317 goto fail; 1318 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1319 if (error != 0) 1320 goto fail; 1321 error = zyd_rfwrite(sc, 0x3c9000); 1322 if (error != 0) 1323 goto fail; 1324 1325 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1326 zyd_write16_m(sc, ZYD_CR203, 0x06); 1327 zyd_write16_m(sc, ZYD_CR240, 0x08); 1328 fail: 1329 return (error); 1330 } 1331 1332 /* 1333 * AL2210 RF methods. 1334 */ 1335 static int 1336 zyd_al2210_init(struct zyd_rf *rf) 1337 { 1338 struct zyd_softc *sc = rf->rf_sc; 1339 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1340 static const uint32_t rfini[] = ZYD_AL2210_RF; 1341 uint32_t tmp; 1342 int i, error; 1343 1344 zyd_write32_m(sc, ZYD_CR18, 2); 1345 1346 /* init RF-dependent PHY registers */ 1347 for (i = 0; i < nitems(phyini); i++) 1348 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1349 1350 /* init AL2210 radio */ 1351 for (i = 0; i < nitems(rfini); i++) { 1352 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1353 return (error); 1354 } 1355 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1356 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1357 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1358 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1359 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1360 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1361 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1362 zyd_write32_m(sc, ZYD_CR18, 3); 1363 fail: 1364 return (error); 1365 } 1366 1367 static int 1368 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1369 { 1370 /* vendor driver does nothing for this RF chip */ 1371 1372 return (0); 1373 } 1374 1375 static int 1376 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1377 { 1378 int error; 1379 struct zyd_softc *sc = rf->rf_sc; 1380 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1381 uint32_t tmp; 1382 1383 zyd_write32_m(sc, ZYD_CR18, 2); 1384 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1385 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1386 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1387 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1388 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1389 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1390 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1391 1392 /* actually set the channel */ 1393 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1394 if (error != 0) 1395 goto fail; 1396 1397 zyd_write32_m(sc, ZYD_CR18, 3); 1398 fail: 1399 return (error); 1400 } 1401 1402 /* 1403 * GCT RF methods. 1404 */ 1405 static int 1406 zyd_gct_init(struct zyd_rf *rf) 1407 { 1408 #define ZYD_GCT_INTR_REG 0x85c1 1409 struct zyd_softc *sc = rf->rf_sc; 1410 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1411 static const uint32_t rfini[] = ZYD_GCT_RF; 1412 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1413 int i, idx = -1, error; 1414 uint16_t data; 1415 1416 /* init RF-dependent PHY registers */ 1417 for (i = 0; i < nitems(phyini); i++) 1418 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1419 1420 /* init cgt radio */ 1421 for (i = 0; i < nitems(rfini); i++) { 1422 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1423 return (error); 1424 } 1425 1426 error = zyd_gct_mode(rf); 1427 if (error != 0) 1428 return (error); 1429 1430 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1431 error = zyd_gct_set_channel_synth(rf, 1, 0); 1432 if (error != 0) 1433 goto fail; 1434 error = zyd_gct_write(rf, vco[i][0]); 1435 if (error != 0) 1436 goto fail; 1437 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1438 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1439 if ((data & 0xf) == 0) { 1440 idx = i; 1441 break; 1442 } 1443 } 1444 if (idx == -1) { 1445 error = zyd_gct_set_channel_synth(rf, 1, 1); 1446 if (error != 0) 1447 goto fail; 1448 error = zyd_gct_write(rf, 0x6662); 1449 if (error != 0) 1450 goto fail; 1451 } 1452 1453 rf->idx = idx; 1454 zyd_write16_m(sc, ZYD_CR203, 0x6); 1455 fail: 1456 return (error); 1457 #undef ZYD_GCT_INTR_REG 1458 } 1459 1460 static int 1461 zyd_gct_mode(struct zyd_rf *rf) 1462 { 1463 struct zyd_softc *sc = rf->rf_sc; 1464 static const uint32_t mode[] = { 1465 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1466 }; 1467 int i, error; 1468 1469 for (i = 0; i < nitems(mode); i++) { 1470 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1471 break; 1472 } 1473 return (error); 1474 } 1475 1476 static int 1477 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1478 { 1479 int error, idx = chan - 1; 1480 struct zyd_softc *sc = rf->rf_sc; 1481 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1482 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1483 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1484 1485 error = zyd_rfwrite(sc, 1486 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1487 if (error != 0) 1488 return (error); 1489 return zyd_rfwrite(sc, div_synth[idx]); 1490 } 1491 1492 static int 1493 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1494 { 1495 struct zyd_softc *sc = rf->rf_sc; 1496 1497 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1498 } 1499 1500 static int 1501 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1502 { 1503 int error; 1504 struct zyd_softc *sc = rf->rf_sc; 1505 1506 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1507 if (error != 0) 1508 return (error); 1509 1510 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1511 zyd_write16_m(sc, ZYD_CR251, 1512 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1513 fail: 1514 return (error); 1515 } 1516 1517 static int 1518 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1519 { 1520 int error, i; 1521 struct zyd_softc *sc = rf->rf_sc; 1522 static const struct zyd_phy_pair cmd[] = { 1523 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1524 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1525 }; 1526 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1527 1528 error = zyd_gct_set_channel_synth(rf, chan, 0); 1529 if (error != 0) 1530 goto fail; 1531 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1532 vco[rf->idx][((chan - 1) / 2)]); 1533 if (error != 0) 1534 goto fail; 1535 error = zyd_gct_mode(rf); 1536 if (error != 0) 1537 return (error); 1538 for (i = 0; i < nitems(cmd); i++) 1539 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1540 error = zyd_gct_txgain(rf, chan); 1541 if (error != 0) 1542 return (error); 1543 zyd_write16_m(sc, ZYD_CR203, 0x6); 1544 fail: 1545 return (error); 1546 } 1547 1548 static int 1549 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1550 { 1551 struct zyd_softc *sc = rf->rf_sc; 1552 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1553 uint8_t idx = sc->sc_pwrint[chan - 1]; 1554 1555 if (idx >= nitems(txgain)) { 1556 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1557 chan, idx); 1558 return 0; 1559 } 1560 1561 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1562 } 1563 1564 /* 1565 * Maxim2 RF methods. 1566 */ 1567 static int 1568 zyd_maxim2_init(struct zyd_rf *rf) 1569 { 1570 struct zyd_softc *sc = rf->rf_sc; 1571 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1572 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1573 uint16_t tmp; 1574 int i, error; 1575 1576 /* init RF-dependent PHY registers */ 1577 for (i = 0; i < nitems(phyini); i++) 1578 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1579 1580 zyd_read16_m(sc, ZYD_CR203, &tmp); 1581 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1582 1583 /* init maxim2 radio */ 1584 for (i = 0; i < nitems(rfini); i++) { 1585 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1586 return (error); 1587 } 1588 zyd_read16_m(sc, ZYD_CR203, &tmp); 1589 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1590 fail: 1591 return (error); 1592 } 1593 1594 static int 1595 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1596 { 1597 1598 /* vendor driver does nothing for this RF chip */ 1599 return (0); 1600 } 1601 1602 static int 1603 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1604 { 1605 struct zyd_softc *sc = rf->rf_sc; 1606 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1607 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1608 static const struct { 1609 uint32_t r1, r2; 1610 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1611 uint16_t tmp; 1612 int i, error; 1613 1614 /* 1615 * Do the same as we do when initializing it, except for the channel 1616 * values coming from the two channel tables. 1617 */ 1618 1619 /* init RF-dependent PHY registers */ 1620 for (i = 0; i < nitems(phyini); i++) 1621 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1622 1623 zyd_read16_m(sc, ZYD_CR203, &tmp); 1624 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1625 1626 /* first two values taken from the chantables */ 1627 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1628 if (error != 0) 1629 goto fail; 1630 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1631 if (error != 0) 1632 goto fail; 1633 1634 /* init maxim2 radio - skipping the two first values */ 1635 for (i = 2; i < nitems(rfini); i++) { 1636 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1637 return (error); 1638 } 1639 zyd_read16_m(sc, ZYD_CR203, &tmp); 1640 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1641 fail: 1642 return (error); 1643 } 1644 1645 static int 1646 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1647 { 1648 struct zyd_rf *rf = &sc->sc_rf; 1649 1650 rf->rf_sc = sc; 1651 rf->update_pwr = 1; 1652 1653 switch (type) { 1654 case ZYD_RF_RFMD: 1655 rf->init = zyd_rfmd_init; 1656 rf->switch_radio = zyd_rfmd_switch_radio; 1657 rf->set_channel = zyd_rfmd_set_channel; 1658 rf->width = 24; /* 24-bit RF values */ 1659 break; 1660 case ZYD_RF_AL2230: 1661 case ZYD_RF_AL2230S: 1662 if (sc->sc_macrev == ZYD_ZD1211B) { 1663 rf->init = zyd_al2230_init_b; 1664 rf->set_channel = zyd_al2230_set_channel_b; 1665 } else { 1666 rf->init = zyd_al2230_init; 1667 rf->set_channel = zyd_al2230_set_channel; 1668 } 1669 rf->switch_radio = zyd_al2230_switch_radio; 1670 rf->bandedge6 = zyd_al2230_bandedge6; 1671 rf->width = 24; /* 24-bit RF values */ 1672 break; 1673 case ZYD_RF_AL7230B: 1674 rf->init = zyd_al7230B_init; 1675 rf->switch_radio = zyd_al7230B_switch_radio; 1676 rf->set_channel = zyd_al7230B_set_channel; 1677 rf->width = 24; /* 24-bit RF values */ 1678 break; 1679 case ZYD_RF_AL2210: 1680 rf->init = zyd_al2210_init; 1681 rf->switch_radio = zyd_al2210_switch_radio; 1682 rf->set_channel = zyd_al2210_set_channel; 1683 rf->width = 24; /* 24-bit RF values */ 1684 break; 1685 case ZYD_RF_MAXIM_NEW: 1686 case ZYD_RF_GCT: 1687 rf->init = zyd_gct_init; 1688 rf->switch_radio = zyd_gct_switch_radio; 1689 rf->set_channel = zyd_gct_set_channel; 1690 rf->width = 24; /* 24-bit RF values */ 1691 rf->update_pwr = 0; 1692 break; 1693 case ZYD_RF_MAXIM_NEW2: 1694 rf->init = zyd_maxim2_init; 1695 rf->switch_radio = zyd_maxim2_switch_radio; 1696 rf->set_channel = zyd_maxim2_set_channel; 1697 rf->width = 18; /* 18-bit RF values */ 1698 break; 1699 default: 1700 device_printf(sc->sc_dev, 1701 "sorry, radio \"%s\" is not supported yet\n", 1702 zyd_rf_name(type)); 1703 return (EINVAL); 1704 } 1705 return (0); 1706 } 1707 1708 static const char * 1709 zyd_rf_name(uint8_t type) 1710 { 1711 static const char * const zyd_rfs[] = { 1712 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1713 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1714 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1715 "PHILIPS" 1716 }; 1717 1718 return zyd_rfs[(type > 15) ? 0 : type]; 1719 } 1720 1721 static int 1722 zyd_hw_init(struct zyd_softc *sc) 1723 { 1724 int error; 1725 const struct zyd_phy_pair *phyp; 1726 struct zyd_rf *rf = &sc->sc_rf; 1727 uint16_t val; 1728 1729 /* specify that the plug and play is finished */ 1730 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1731 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1732 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1733 sc->sc_fwbase); 1734 1735 /* retrieve firmware revision number */ 1736 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1737 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1738 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1739 /* set mandatory rates - XXX assumes 802.11b/g */ 1740 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1741 1742 /* disable interrupts */ 1743 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1744 1745 if ((error = zyd_read_pod(sc)) != 0) { 1746 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1747 goto fail; 1748 } 1749 1750 /* PHY init (resetting) */ 1751 error = zyd_lock_phy(sc); 1752 if (error != 0) 1753 goto fail; 1754 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1755 for (; phyp->reg != 0; phyp++) 1756 zyd_write16_m(sc, phyp->reg, phyp->val); 1757 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1758 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1759 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1760 } 1761 error = zyd_unlock_phy(sc); 1762 if (error != 0) 1763 goto fail; 1764 1765 /* HMAC init */ 1766 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1767 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1768 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1769 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1770 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1771 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1772 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1773 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1774 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1775 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1776 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1777 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1778 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1779 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1780 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1781 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1782 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1783 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1784 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1785 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1786 1787 if (sc->sc_macrev == ZYD_ZD1211) { 1788 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1789 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1790 } else { 1791 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1792 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1793 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1794 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1795 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1796 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1797 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1798 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1799 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1800 } 1801 1802 /* init beacon interval to 100ms */ 1803 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1804 goto fail; 1805 1806 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1807 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1808 sc->sc_rfrev); 1809 goto fail; 1810 } 1811 1812 /* RF chip init */ 1813 error = zyd_lock_phy(sc); 1814 if (error != 0) 1815 goto fail; 1816 error = (*rf->init)(rf); 1817 if (error != 0) { 1818 device_printf(sc->sc_dev, 1819 "radio initialization failed, error %d\n", error); 1820 goto fail; 1821 } 1822 error = zyd_unlock_phy(sc); 1823 if (error != 0) 1824 goto fail; 1825 1826 if ((error = zyd_read_eeprom(sc)) != 0) { 1827 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1828 goto fail; 1829 } 1830 1831 fail: return (error); 1832 } 1833 1834 static int 1835 zyd_read_pod(struct zyd_softc *sc) 1836 { 1837 int error; 1838 uint32_t tmp; 1839 1840 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1841 sc->sc_rfrev = tmp & 0x0f; 1842 sc->sc_ledtype = (tmp >> 4) & 0x01; 1843 sc->sc_al2230s = (tmp >> 7) & 0x01; 1844 sc->sc_cckgain = (tmp >> 8) & 0x01; 1845 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1846 sc->sc_parev = (tmp >> 16) & 0x0f; 1847 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1848 sc->sc_newphy = (tmp >> 31) & 0x01; 1849 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1850 fail: 1851 return (error); 1852 } 1853 1854 static int 1855 zyd_read_eeprom(struct zyd_softc *sc) 1856 { 1857 uint16_t val; 1858 int error, i; 1859 1860 /* read Tx power calibration tables */ 1861 for (i = 0; i < 7; i++) { 1862 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1863 sc->sc_pwrcal[i * 2] = val >> 8; 1864 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1865 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1866 sc->sc_pwrint[i * 2] = val >> 8; 1867 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1868 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1869 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1870 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1871 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1872 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1873 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1874 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1875 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1876 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1877 } 1878 fail: 1879 return (error); 1880 } 1881 1882 static int 1883 zyd_get_macaddr(struct zyd_softc *sc) 1884 { 1885 struct usb_device_request req; 1886 usb_error_t error; 1887 1888 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1889 req.bRequest = ZYD_READFWDATAREQ; 1890 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1891 USETW(req.wIndex, 0); 1892 USETW(req.wLength, IEEE80211_ADDR_LEN); 1893 1894 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1895 if (error != 0) { 1896 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1897 usbd_errstr(error)); 1898 } 1899 1900 return (error); 1901 } 1902 1903 static int 1904 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1905 { 1906 int error; 1907 uint32_t tmp; 1908 1909 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1910 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1911 tmp = addr[5] << 8 | addr[4]; 1912 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1913 fail: 1914 return (error); 1915 } 1916 1917 static int 1918 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1919 { 1920 int error; 1921 uint32_t tmp; 1922 1923 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1924 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1925 tmp = addr[5] << 8 | addr[4]; 1926 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1927 fail: 1928 return (error); 1929 } 1930 1931 static int 1932 zyd_switch_radio(struct zyd_softc *sc, int on) 1933 { 1934 struct zyd_rf *rf = &sc->sc_rf; 1935 int error; 1936 1937 error = zyd_lock_phy(sc); 1938 if (error != 0) 1939 goto fail; 1940 error = (*rf->switch_radio)(rf, on); 1941 if (error != 0) 1942 goto fail; 1943 error = zyd_unlock_phy(sc); 1944 fail: 1945 return (error); 1946 } 1947 1948 static int 1949 zyd_set_led(struct zyd_softc *sc, int which, int on) 1950 { 1951 int error; 1952 uint32_t tmp; 1953 1954 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1955 tmp &= ~which; 1956 if (on) 1957 tmp |= which; 1958 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1959 fail: 1960 return (error); 1961 } 1962 1963 static void 1964 zyd_set_multi(struct zyd_softc *sc) 1965 { 1966 struct ieee80211com *ic = &sc->sc_ic; 1967 uint32_t low, high; 1968 int error; 1969 1970 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1971 return; 1972 1973 low = 0x00000000; 1974 high = 0x80000000; 1975 1976 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1977 ic->ic_promisc > 0) { 1978 low = 0xffffffff; 1979 high = 0xffffffff; 1980 } else { 1981 struct ieee80211vap *vap; 1982 struct ifnet *ifp; 1983 struct ifmultiaddr *ifma; 1984 uint8_t v; 1985 1986 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1987 ifp = vap->iv_ifp; 1988 if_maddr_rlock(ifp); 1989 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1990 if (ifma->ifma_addr->sa_family != AF_LINK) 1991 continue; 1992 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 1993 ifma->ifma_addr))[5] >> 2; 1994 if (v < 32) 1995 low |= 1 << v; 1996 else 1997 high |= 1 << (v - 32); 1998 } 1999 if_maddr_runlock(ifp); 2000 } 2001 } 2002 2003 /* reprogram multicast global hash table */ 2004 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2005 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2006 fail: 2007 if (error != 0) 2008 device_printf(sc->sc_dev, 2009 "could not set multicast hash table\n"); 2010 } 2011 2012 static void 2013 zyd_update_mcast(struct ieee80211com *ic) 2014 { 2015 struct zyd_softc *sc = ic->ic_softc; 2016 2017 ZYD_LOCK(sc); 2018 zyd_set_multi(sc); 2019 ZYD_UNLOCK(sc); 2020 } 2021 2022 static int 2023 zyd_set_rxfilter(struct zyd_softc *sc) 2024 { 2025 struct ieee80211com *ic = &sc->sc_ic; 2026 uint32_t rxfilter; 2027 2028 switch (ic->ic_opmode) { 2029 case IEEE80211_M_STA: 2030 rxfilter = ZYD_FILTER_BSS; 2031 break; 2032 case IEEE80211_M_IBSS: 2033 case IEEE80211_M_HOSTAP: 2034 rxfilter = ZYD_FILTER_HOSTAP; 2035 break; 2036 case IEEE80211_M_MONITOR: 2037 rxfilter = ZYD_FILTER_MONITOR; 2038 break; 2039 default: 2040 /* should not get there */ 2041 return (EINVAL); 2042 } 2043 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2044 } 2045 2046 static void 2047 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2048 { 2049 int error; 2050 struct ieee80211com *ic = &sc->sc_ic; 2051 struct zyd_rf *rf = &sc->sc_rf; 2052 uint32_t tmp; 2053 int chan; 2054 2055 chan = ieee80211_chan2ieee(ic, c); 2056 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2057 /* XXX should NEVER happen */ 2058 device_printf(sc->sc_dev, 2059 "%s: invalid channel %x\n", __func__, chan); 2060 return; 2061 } 2062 2063 error = zyd_lock_phy(sc); 2064 if (error != 0) 2065 goto fail; 2066 2067 error = (*rf->set_channel)(rf, chan); 2068 if (error != 0) 2069 goto fail; 2070 2071 if (rf->update_pwr) { 2072 /* update Tx power */ 2073 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2074 2075 if (sc->sc_macrev == ZYD_ZD1211B) { 2076 zyd_write16_m(sc, ZYD_CR67, 2077 sc->sc_ofdm36_cal[chan - 1]); 2078 zyd_write16_m(sc, ZYD_CR66, 2079 sc->sc_ofdm48_cal[chan - 1]); 2080 zyd_write16_m(sc, ZYD_CR65, 2081 sc->sc_ofdm54_cal[chan - 1]); 2082 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2083 zyd_write16_m(sc, ZYD_CR69, 0x28); 2084 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2085 } 2086 } 2087 if (sc->sc_cckgain) { 2088 /* set CCK baseband gain from EEPROM */ 2089 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2090 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2091 } 2092 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2093 error = (*rf->bandedge6)(rf, c); 2094 if (error != 0) 2095 goto fail; 2096 } 2097 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2098 2099 error = zyd_unlock_phy(sc); 2100 if (error != 0) 2101 goto fail; 2102 2103 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2104 htole16(c->ic_freq); 2105 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2106 htole16(c->ic_flags); 2107 fail: 2108 return; 2109 } 2110 2111 static int 2112 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2113 { 2114 int error; 2115 uint32_t val; 2116 2117 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2118 sc->sc_atim_wnd = val; 2119 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2120 sc->sc_pre_tbtt = val; 2121 sc->sc_bcn_int = bintval; 2122 2123 if (sc->sc_bcn_int <= 5) 2124 sc->sc_bcn_int = 5; 2125 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2126 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2127 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2128 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2129 2130 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2131 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2132 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2133 fail: 2134 return (error); 2135 } 2136 2137 static void 2138 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2139 { 2140 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2141 struct ieee80211com *ic = &sc->sc_ic; 2142 struct zyd_plcphdr plcp; 2143 struct zyd_rx_stat stat; 2144 struct usb_page_cache *pc; 2145 struct mbuf *m; 2146 int rlen, rssi; 2147 2148 if (len < ZYD_MIN_FRAGSZ) { 2149 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2150 device_get_nameunit(sc->sc_dev), len); 2151 counter_u64_add(ic->ic_ierrors, 1); 2152 return; 2153 } 2154 pc = usbd_xfer_get_frame(xfer, 0); 2155 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2156 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2157 2158 if (stat.flags & ZYD_RX_ERROR) { 2159 DPRINTF(sc, ZYD_DEBUG_RECV, 2160 "%s: RX status indicated error (%x)\n", 2161 device_get_nameunit(sc->sc_dev), stat.flags); 2162 counter_u64_add(ic->ic_ierrors, 1); 2163 return; 2164 } 2165 2166 /* compute actual frame length */ 2167 rlen = len - sizeof(struct zyd_plcphdr) - 2168 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2169 2170 /* allocate a mbuf to store the frame */ 2171 if (rlen > (int)MCLBYTES) { 2172 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2173 device_get_nameunit(sc->sc_dev), rlen); 2174 counter_u64_add(ic->ic_ierrors, 1); 2175 return; 2176 } else if (rlen > (int)MHLEN) 2177 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2178 else 2179 m = m_gethdr(M_NOWAIT, MT_DATA); 2180 if (m == NULL) { 2181 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2182 device_get_nameunit(sc->sc_dev)); 2183 counter_u64_add(ic->ic_ierrors, 1); 2184 return; 2185 } 2186 m->m_pkthdr.len = m->m_len = rlen; 2187 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2188 2189 if (ieee80211_radiotap_active(ic)) { 2190 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2191 2192 tap->wr_flags = 0; 2193 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2194 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2195 /* XXX toss, no way to express errors */ 2196 if (stat.flags & ZYD_RX_DECRYPTERR) 2197 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2198 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2199 (stat.flags & ZYD_RX_OFDM) ? 2200 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2201 tap->wr_antsignal = stat.rssi + -95; 2202 tap->wr_antnoise = -95; /* XXX */ 2203 } 2204 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2205 2206 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2207 sc->sc_rx_data[sc->sc_rx_count].m = m; 2208 sc->sc_rx_count++; 2209 } 2210 2211 static void 2212 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2213 { 2214 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2215 struct ieee80211com *ic = &sc->sc_ic; 2216 struct ieee80211_node *ni; 2217 struct zyd_rx_desc desc; 2218 struct mbuf *m; 2219 struct usb_page_cache *pc; 2220 uint32_t offset; 2221 uint8_t rssi; 2222 int8_t nf; 2223 int i; 2224 int actlen; 2225 2226 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2227 2228 sc->sc_rx_count = 0; 2229 switch (USB_GET_STATE(xfer)) { 2230 case USB_ST_TRANSFERRED: 2231 pc = usbd_xfer_get_frame(xfer, 0); 2232 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2233 2234 offset = 0; 2235 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2236 DPRINTF(sc, ZYD_DEBUG_RECV, 2237 "%s: received multi-frame transfer\n", __func__); 2238 2239 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2240 uint16_t len16 = UGETW(desc.len[i]); 2241 2242 if (len16 == 0 || len16 > actlen) 2243 break; 2244 2245 zyd_rx_data(xfer, offset, len16); 2246 2247 /* next frame is aligned on a 32-bit boundary */ 2248 len16 = (len16 + 3) & ~3; 2249 offset += len16; 2250 if (len16 > actlen) 2251 break; 2252 actlen -= len16; 2253 } 2254 } else { 2255 DPRINTF(sc, ZYD_DEBUG_RECV, 2256 "%s: received single-frame transfer\n", __func__); 2257 2258 zyd_rx_data(xfer, 0, actlen); 2259 } 2260 /* FALLTHROUGH */ 2261 case USB_ST_SETUP: 2262 tr_setup: 2263 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2264 usbd_transfer_submit(xfer); 2265 2266 /* 2267 * At the end of a USB callback it is always safe to unlock 2268 * the private mutex of a device! That is why we do the 2269 * "ieee80211_input" here, and not some lines up! 2270 */ 2271 ZYD_UNLOCK(sc); 2272 for (i = 0; i < sc->sc_rx_count; i++) { 2273 rssi = sc->sc_rx_data[i].rssi; 2274 m = sc->sc_rx_data[i].m; 2275 sc->sc_rx_data[i].m = NULL; 2276 2277 nf = -95; /* XXX */ 2278 2279 ni = ieee80211_find_rxnode(ic, 2280 mtod(m, struct ieee80211_frame_min *)); 2281 if (ni != NULL) { 2282 (void)ieee80211_input(ni, m, rssi, nf); 2283 ieee80211_free_node(ni); 2284 } else 2285 (void)ieee80211_input_all(ic, m, rssi, nf); 2286 } 2287 ZYD_LOCK(sc); 2288 zyd_start(sc); 2289 break; 2290 2291 default: /* Error */ 2292 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2293 2294 if (error != USB_ERR_CANCELLED) { 2295 /* try to clear stall first */ 2296 usbd_xfer_set_stall(xfer); 2297 goto tr_setup; 2298 } 2299 break; 2300 } 2301 } 2302 2303 static uint8_t 2304 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2305 { 2306 switch (rate) { 2307 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2308 case 12: 2309 return (0xb); 2310 case 18: 2311 return (0xf); 2312 case 24: 2313 return (0xa); 2314 case 36: 2315 return (0xe); 2316 case 48: 2317 return (0x9); 2318 case 72: 2319 return (0xd); 2320 case 96: 2321 return (0x8); 2322 case 108: 2323 return (0xc); 2324 /* CCK rates (NB: not IEEE std, device-specific) */ 2325 case 2: 2326 return (0x0); 2327 case 4: 2328 return (0x1); 2329 case 11: 2330 return (0x2); 2331 case 22: 2332 return (0x3); 2333 } 2334 2335 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2336 return (0x0); 2337 } 2338 2339 static void 2340 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2341 { 2342 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2343 struct ieee80211vap *vap; 2344 struct zyd_tx_data *data; 2345 struct mbuf *m; 2346 struct usb_page_cache *pc; 2347 int actlen; 2348 2349 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2350 2351 switch (USB_GET_STATE(xfer)) { 2352 case USB_ST_TRANSFERRED: 2353 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2354 actlen); 2355 2356 /* free resources */ 2357 data = usbd_xfer_get_priv(xfer); 2358 zyd_tx_free(data, 0); 2359 usbd_xfer_set_priv(xfer, NULL); 2360 2361 /* FALLTHROUGH */ 2362 case USB_ST_SETUP: 2363 tr_setup: 2364 data = STAILQ_FIRST(&sc->tx_q); 2365 if (data) { 2366 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2367 m = data->m; 2368 2369 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2370 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2371 m->m_pkthdr.len); 2372 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2373 } 2374 pc = usbd_xfer_get_frame(xfer, 0); 2375 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2376 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2377 m->m_pkthdr.len); 2378 2379 vap = data->ni->ni_vap; 2380 if (ieee80211_radiotap_active_vap(vap)) { 2381 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2382 2383 tap->wt_flags = 0; 2384 tap->wt_rate = data->rate; 2385 2386 ieee80211_radiotap_tx(vap, m); 2387 } 2388 2389 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2390 usbd_xfer_set_priv(xfer, data); 2391 usbd_transfer_submit(xfer); 2392 } 2393 zyd_start(sc); 2394 break; 2395 2396 default: /* Error */ 2397 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2398 usbd_errstr(error)); 2399 2400 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2401 data = usbd_xfer_get_priv(xfer); 2402 usbd_xfer_set_priv(xfer, NULL); 2403 if (data != NULL) 2404 zyd_tx_free(data, error); 2405 2406 if (error != USB_ERR_CANCELLED) { 2407 if (error == USB_ERR_TIMEOUT) 2408 device_printf(sc->sc_dev, "device timeout\n"); 2409 2410 /* 2411 * Try to clear stall first, also if other 2412 * errors occur, hence clearing stall 2413 * introduces a 50 ms delay: 2414 */ 2415 usbd_xfer_set_stall(xfer); 2416 goto tr_setup; 2417 } 2418 break; 2419 } 2420 } 2421 2422 static int 2423 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2424 { 2425 struct ieee80211vap *vap = ni->ni_vap; 2426 struct ieee80211com *ic = ni->ni_ic; 2427 struct zyd_tx_desc *desc; 2428 struct zyd_tx_data *data; 2429 struct ieee80211_frame *wh; 2430 const struct ieee80211_txparam *tp; 2431 struct ieee80211_key *k; 2432 int rate, totlen; 2433 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2434 uint8_t phy; 2435 uint16_t pktlen; 2436 uint32_t bits; 2437 2438 wh = mtod(m0, struct ieee80211_frame *); 2439 data = STAILQ_FIRST(&sc->tx_free); 2440 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2441 sc->tx_nfree--; 2442 2443 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2444 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2445 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2446 rate = tp->mgmtrate; 2447 } else { 2448 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2449 /* for data frames */ 2450 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2451 rate = tp->mcastrate; 2452 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2453 rate = tp->ucastrate; 2454 else { 2455 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2456 rate = ni->ni_txrate; 2457 } 2458 } 2459 2460 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2461 k = ieee80211_crypto_encap(ni, m0); 2462 if (k == NULL) { 2463 return (ENOBUFS); 2464 } 2465 /* packet header may have moved, reset our local pointer */ 2466 wh = mtod(m0, struct ieee80211_frame *); 2467 } 2468 2469 data->ni = ni; 2470 data->m = m0; 2471 data->rate = rate; 2472 2473 /* fill Tx descriptor */ 2474 desc = &data->desc; 2475 phy = zyd_plcp_signal(sc, rate); 2476 desc->phy = phy; 2477 if (ZYD_RATE_IS_OFDM(rate)) { 2478 desc->phy |= ZYD_TX_PHY_OFDM; 2479 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2480 desc->phy |= ZYD_TX_PHY_5GHZ; 2481 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2482 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2483 2484 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2485 desc->len = htole16(totlen); 2486 2487 desc->flags = ZYD_TX_FLAG_BACKOFF; 2488 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2489 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2490 if (totlen > vap->iv_rtsthreshold) { 2491 desc->flags |= ZYD_TX_FLAG_RTS; 2492 } else if (ZYD_RATE_IS_OFDM(rate) && 2493 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2494 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2495 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2496 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2497 desc->flags |= ZYD_TX_FLAG_RTS; 2498 } 2499 } else 2500 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2501 if ((wh->i_fc[0] & 2502 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2503 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2504 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2505 2506 /* actual transmit length (XXX why +10?) */ 2507 pktlen = ZYD_TX_DESC_SIZE + 10; 2508 if (sc->sc_macrev == ZYD_ZD1211) 2509 pktlen += totlen; 2510 desc->pktlen = htole16(pktlen); 2511 2512 bits = (rate == 11) ? (totlen * 16) + 10 : 2513 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2514 desc->plcp_length = htole16(bits / ratediv[phy]); 2515 desc->plcp_service = 0; 2516 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2517 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2518 desc->nextlen = 0; 2519 2520 if (ieee80211_radiotap_active_vap(vap)) { 2521 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2522 2523 tap->wt_flags = 0; 2524 tap->wt_rate = rate; 2525 2526 ieee80211_radiotap_tx(vap, m0); 2527 } 2528 2529 DPRINTF(sc, ZYD_DEBUG_XMIT, 2530 "%s: sending data frame len=%zu rate=%u\n", 2531 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2532 rate); 2533 2534 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2535 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2536 2537 return (0); 2538 } 2539 2540 static int 2541 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2542 { 2543 struct zyd_softc *sc = ic->ic_softc; 2544 int error; 2545 2546 ZYD_LOCK(sc); 2547 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2548 ZYD_UNLOCK(sc); 2549 return (ENXIO); 2550 } 2551 error = mbufq_enqueue(&sc->sc_snd, m); 2552 if (error) { 2553 ZYD_UNLOCK(sc); 2554 return (error); 2555 } 2556 zyd_start(sc); 2557 ZYD_UNLOCK(sc); 2558 2559 return (0); 2560 } 2561 2562 static void 2563 zyd_start(struct zyd_softc *sc) 2564 { 2565 struct ieee80211_node *ni; 2566 struct mbuf *m; 2567 2568 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2569 2570 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2571 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2572 if (zyd_tx_start(sc, m, ni) != 0) { 2573 ieee80211_free_node(ni); 2574 m_freem(m); 2575 if_inc_counter(ni->ni_vap->iv_ifp, 2576 IFCOUNTER_OERRORS, 1); 2577 break; 2578 } 2579 } 2580 } 2581 2582 static int 2583 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2584 const struct ieee80211_bpf_params *params) 2585 { 2586 struct ieee80211com *ic = ni->ni_ic; 2587 struct zyd_softc *sc = ic->ic_softc; 2588 2589 ZYD_LOCK(sc); 2590 /* prevent management frames from being sent if we're not ready */ 2591 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2592 ZYD_UNLOCK(sc); 2593 m_freem(m); 2594 return (ENETDOWN); 2595 } 2596 if (sc->tx_nfree == 0) { 2597 ZYD_UNLOCK(sc); 2598 m_freem(m); 2599 return (ENOBUFS); /* XXX */ 2600 } 2601 2602 /* 2603 * Legacy path; interpret frame contents to decide 2604 * precisely how to send the frame. 2605 * XXX raw path 2606 */ 2607 if (zyd_tx_start(sc, m, ni) != 0) { 2608 ZYD_UNLOCK(sc); 2609 m_freem(m); 2610 return (EIO); 2611 } 2612 ZYD_UNLOCK(sc); 2613 return (0); 2614 } 2615 2616 static void 2617 zyd_parent(struct ieee80211com *ic) 2618 { 2619 struct zyd_softc *sc = ic->ic_softc; 2620 int startall = 0; 2621 2622 ZYD_LOCK(sc); 2623 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2624 ZYD_UNLOCK(sc); 2625 return; 2626 } 2627 if (ic->ic_nrunning > 0) { 2628 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2629 zyd_init_locked(sc); 2630 startall = 1; 2631 } else 2632 zyd_set_multi(sc); 2633 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2634 zyd_stop(sc); 2635 ZYD_UNLOCK(sc); 2636 if (startall) 2637 ieee80211_start_all(ic); 2638 } 2639 2640 static void 2641 zyd_init_locked(struct zyd_softc *sc) 2642 { 2643 struct ieee80211com *ic = &sc->sc_ic; 2644 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2645 struct usb_config_descriptor *cd; 2646 int error; 2647 uint32_t val; 2648 2649 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2650 2651 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2652 error = zyd_loadfirmware(sc); 2653 if (error != 0) { 2654 device_printf(sc->sc_dev, 2655 "could not load firmware (error=%d)\n", error); 2656 goto fail; 2657 } 2658 2659 /* reset device */ 2660 cd = usbd_get_config_descriptor(sc->sc_udev); 2661 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2662 cd->bConfigurationValue); 2663 if (error) 2664 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2665 2666 error = zyd_hw_init(sc); 2667 if (error) { 2668 device_printf(sc->sc_dev, 2669 "hardware initialization failed\n"); 2670 goto fail; 2671 } 2672 2673 device_printf(sc->sc_dev, 2674 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2675 "BE%x NP%x Gain%x F%x\n", 2676 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2677 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2678 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2679 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2680 sc->sc_cckgain, sc->sc_fix_cr157); 2681 2682 /* read regulatory domain (currently unused) */ 2683 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2684 sc->sc_regdomain = val >> 16; 2685 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2686 sc->sc_regdomain); 2687 2688 /* we'll do software WEP decryption for now */ 2689 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2690 __func__); 2691 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2692 2693 sc->sc_flags |= ZYD_FLAG_INITONCE; 2694 } 2695 2696 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2697 zyd_stop(sc); 2698 2699 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2700 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2701 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2702 if (error != 0) 2703 return; 2704 2705 /* set basic rates */ 2706 if (ic->ic_curmode == IEEE80211_MODE_11B) 2707 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2708 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2709 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2710 else /* assumes 802.11b/g */ 2711 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2712 2713 /* promiscuous mode */ 2714 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2715 /* multicast setup */ 2716 zyd_set_multi(sc); 2717 /* set RX filter */ 2718 error = zyd_set_rxfilter(sc); 2719 if (error != 0) 2720 goto fail; 2721 2722 /* switch radio transmitter ON */ 2723 error = zyd_switch_radio(sc, 1); 2724 if (error != 0) 2725 goto fail; 2726 /* set default BSS channel */ 2727 zyd_set_chan(sc, ic->ic_curchan); 2728 2729 /* 2730 * Allocate Tx and Rx xfer queues. 2731 */ 2732 zyd_setup_tx_list(sc); 2733 2734 /* enable interrupts */ 2735 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2736 2737 sc->sc_flags |= ZYD_FLAG_RUNNING; 2738 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2739 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2740 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2741 2742 return; 2743 2744 fail: zyd_stop(sc); 2745 return; 2746 } 2747 2748 static void 2749 zyd_stop(struct zyd_softc *sc) 2750 { 2751 int error; 2752 2753 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2754 2755 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2756 zyd_drain_mbufq(sc); 2757 2758 /* 2759 * Drain all the transfers, if not already drained: 2760 */ 2761 ZYD_UNLOCK(sc); 2762 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2763 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2764 ZYD_LOCK(sc); 2765 2766 zyd_unsetup_tx_list(sc); 2767 2768 /* Stop now if the device was never set up */ 2769 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2770 return; 2771 2772 /* switch radio transmitter OFF */ 2773 error = zyd_switch_radio(sc, 0); 2774 if (error != 0) 2775 goto fail; 2776 /* disable Rx */ 2777 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2778 /* disable interrupts */ 2779 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2780 2781 fail: 2782 return; 2783 } 2784 2785 static int 2786 zyd_loadfirmware(struct zyd_softc *sc) 2787 { 2788 struct usb_device_request req; 2789 size_t size; 2790 u_char *fw; 2791 uint8_t stat; 2792 uint16_t addr; 2793 2794 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2795 return (0); 2796 2797 if (sc->sc_macrev == ZYD_ZD1211) { 2798 fw = (u_char *)zd1211_firmware; 2799 size = sizeof(zd1211_firmware); 2800 } else { 2801 fw = (u_char *)zd1211b_firmware; 2802 size = sizeof(zd1211b_firmware); 2803 } 2804 2805 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2806 req.bRequest = ZYD_DOWNLOADREQ; 2807 USETW(req.wIndex, 0); 2808 2809 addr = ZYD_FIRMWARE_START_ADDR; 2810 while (size > 0) { 2811 /* 2812 * When the transfer size is 4096 bytes, it is not 2813 * likely to be able to transfer it. 2814 * The cause is port or machine or chip? 2815 */ 2816 const int mlen = min(size, 64); 2817 2818 DPRINTF(sc, ZYD_DEBUG_FW, 2819 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2820 2821 USETW(req.wValue, addr); 2822 USETW(req.wLength, mlen); 2823 if (zyd_do_request(sc, &req, fw) != 0) 2824 return (EIO); 2825 2826 addr += mlen / 2; 2827 fw += mlen; 2828 size -= mlen; 2829 } 2830 2831 /* check whether the upload succeeded */ 2832 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2833 req.bRequest = ZYD_DOWNLOADSTS; 2834 USETW(req.wValue, 0); 2835 USETW(req.wIndex, 0); 2836 USETW(req.wLength, sizeof(stat)); 2837 if (zyd_do_request(sc, &req, &stat) != 0) 2838 return (EIO); 2839 2840 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2841 2842 return (stat & 0x80) ? (EIO) : (0); 2843 } 2844 2845 static void 2846 zyd_scan_start(struct ieee80211com *ic) 2847 { 2848 struct zyd_softc *sc = ic->ic_softc; 2849 2850 ZYD_LOCK(sc); 2851 /* want broadcast address while scanning */ 2852 zyd_set_bssid(sc, ieee80211broadcastaddr); 2853 ZYD_UNLOCK(sc); 2854 } 2855 2856 static void 2857 zyd_scan_end(struct ieee80211com *ic) 2858 { 2859 struct zyd_softc *sc = ic->ic_softc; 2860 2861 ZYD_LOCK(sc); 2862 /* restore previous bssid */ 2863 zyd_set_bssid(sc, sc->sc_bssid); 2864 ZYD_UNLOCK(sc); 2865 } 2866 2867 static void 2868 zyd_set_channel(struct ieee80211com *ic) 2869 { 2870 struct zyd_softc *sc = ic->ic_softc; 2871 2872 ZYD_LOCK(sc); 2873 zyd_set_chan(sc, ic->ic_curchan); 2874 ZYD_UNLOCK(sc); 2875 } 2876 2877 static device_method_t zyd_methods[] = { 2878 /* Device interface */ 2879 DEVMETHOD(device_probe, zyd_match), 2880 DEVMETHOD(device_attach, zyd_attach), 2881 DEVMETHOD(device_detach, zyd_detach), 2882 DEVMETHOD_END 2883 }; 2884 2885 static driver_t zyd_driver = { 2886 .name = "zyd", 2887 .methods = zyd_methods, 2888 .size = sizeof(struct zyd_softc) 2889 }; 2890 2891 static devclass_t zyd_devclass; 2892 2893 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2894 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2895 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2896 MODULE_VERSION(zyd, 1); 2897 USB_PNP_HOST_INFO(zyd_devs); 2898