xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 8be96e101f2691b80ff9562b72f874da82e735aa)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/kdb.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <sys/rman.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include <dev/usb/usbdi_util.h>
73 #include "usbdevs.h"
74 
75 #include <dev/usb/wlan/if_zydreg.h>
76 #include <dev/usb/wlan/if_zydfw.h>
77 
78 #ifdef USB_DEBUG
79 static int zyd_debug = 0;
80 
81 SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
83     "zyd debug level");
84 
85 enum {
86 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
87 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
88 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
89 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
90 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
91 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
92 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
93 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
94 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
95 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
96 	ZYD_DEBUG_ANY		= 0xffffffff
97 };
98 #define	DPRINTF(sc, m, fmt, ...) do {				\
99 	if (zyd_debug & (m))					\
100 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
101 } while (0)
102 #else
103 #define	DPRINTF(sc, m, fmt, ...) do {				\
104 	(void) sc;						\
105 } while (0)
106 #endif
107 
108 #define	zyd_do_request(sc,req,data) \
109     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
110 
111 static device_probe_t zyd_match;
112 static device_attach_t zyd_attach;
113 static device_detach_t zyd_detach;
114 
115 static usb_callback_t zyd_intr_read_callback;
116 static usb_callback_t zyd_intr_write_callback;
117 static usb_callback_t zyd_bulk_read_callback;
118 static usb_callback_t zyd_bulk_write_callback;
119 
120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
121 		    const char name[IFNAMSIZ], int unit, int opmode,
122 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124 static void	zyd_vap_delete(struct ieee80211vap *);
125 static void	zyd_tx_free(struct zyd_tx_data *, int);
126 static void	zyd_setup_tx_list(struct zyd_softc *);
127 static void	zyd_unsetup_tx_list(struct zyd_softc *);
128 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
130 		    void *, int, int);
131 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
132 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
133 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
134 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
135 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
136 static int	zyd_lock_phy(struct zyd_softc *);
137 static int	zyd_unlock_phy(struct zyd_softc *);
138 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
139 static const char *zyd_rf_name(uint8_t);
140 static int	zyd_hw_init(struct zyd_softc *);
141 static int	zyd_read_pod(struct zyd_softc *);
142 static int	zyd_read_eeprom(struct zyd_softc *);
143 static int	zyd_get_macaddr(struct zyd_softc *);
144 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
145 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
146 static int	zyd_switch_radio(struct zyd_softc *, int);
147 static int	zyd_set_led(struct zyd_softc *, int, int);
148 static void	zyd_set_multi(struct zyd_softc *);
149 static void	zyd_update_mcast(struct ifnet *);
150 static int	zyd_set_rxfilter(struct zyd_softc *);
151 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
152 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
153 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
154 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
155 		    struct ieee80211_node *);
156 static void	zyd_start(struct ifnet *);
157 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
158 		    const struct ieee80211_bpf_params *);
159 static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
160 static void	zyd_init_locked(struct zyd_softc *);
161 static void	zyd_init(void *);
162 static void	zyd_stop(struct zyd_softc *);
163 static int	zyd_loadfirmware(struct zyd_softc *);
164 static void	zyd_scan_start(struct ieee80211com *);
165 static void	zyd_scan_end(struct ieee80211com *);
166 static void	zyd_set_channel(struct ieee80211com *);
167 static int	zyd_rfmd_init(struct zyd_rf *);
168 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
169 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
170 static int	zyd_al2230_init(struct zyd_rf *);
171 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
172 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
173 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
174 static int	zyd_al2230_init_b(struct zyd_rf *);
175 static int	zyd_al7230B_init(struct zyd_rf *);
176 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
177 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
178 static int	zyd_al2210_init(struct zyd_rf *);
179 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
180 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
181 static int	zyd_gct_init(struct zyd_rf *);
182 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
183 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
184 static int	zyd_gct_mode(struct zyd_rf *);
185 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
186 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
187 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
188 static int	zyd_maxim2_init(struct zyd_rf *);
189 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
190 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
191 
192 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
193 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
194 
195 /* various supported device vendors/products */
196 #define ZYD_ZD1211	0
197 #define ZYD_ZD1211B	1
198 
199 #define	ZYD_ZD1211_DEV(v,p)	\
200 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
201 #define	ZYD_ZD1211B_DEV(v,p)	\
202 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
203 static const struct usb_device_id zyd_devs[] = {
204 	/* ZYD_ZD1211 */
205 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
206 	ZYD_ZD1211_DEV(ABOCOM, WL54),
207 	ZYD_ZD1211_DEV(ASUS, WL159G),
208 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
209 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
210 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
211 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
212 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
213 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
214 	ZYD_ZD1211_DEV(SAGEM, XG760A),
215 	ZYD_ZD1211_DEV(SENAO, NUB8301),
216 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
217 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
218 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
219 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
220 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
221 	ZYD_ZD1211_DEV(TWINMOS, G240),
222 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
223 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
224 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
225 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
226 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
227 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
228 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
229 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
230 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
231 	/* ZYD_ZD1211B */
232 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
233 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
234 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
235 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
236 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
237 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
238 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
239 	ZYD_ZD1211B_DEV(MELCO, KG54L),
240 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
241 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
242 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
243 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
244 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
245 	ZYD_ZD1211B_DEV(USR, USR5423),
246 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
247 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
248 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
249 	ZYD_ZD1211B_DEV(ZYXEL, M202),
250 	ZYD_ZD1211B_DEV(ZYXEL, G202),
251 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
252 };
253 
254 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
255 	[ZYD_BULK_WR] = {
256 		.type = UE_BULK,
257 		.endpoint = UE_ADDR_ANY,
258 		.direction = UE_DIR_OUT,
259 		.bufsize = ZYD_MAX_TXBUFSZ,
260 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
261 		.callback = zyd_bulk_write_callback,
262 		.ep_index = 0,
263 		.timeout = 10000,	/* 10 seconds */
264 	},
265 	[ZYD_BULK_RD] = {
266 		.type = UE_BULK,
267 		.endpoint = UE_ADDR_ANY,
268 		.direction = UE_DIR_IN,
269 		.bufsize = ZYX_MAX_RXBUFSZ,
270 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
271 		.callback = zyd_bulk_read_callback,
272 		.ep_index = 0,
273 	},
274 	[ZYD_INTR_WR] = {
275 		.type = UE_BULK_INTR,
276 		.endpoint = UE_ADDR_ANY,
277 		.direction = UE_DIR_OUT,
278 		.bufsize = sizeof(struct zyd_cmd),
279 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
280 		.callback = zyd_intr_write_callback,
281 		.timeout = 1000,	/* 1 second */
282 		.ep_index = 1,
283 	},
284 	[ZYD_INTR_RD] = {
285 		.type = UE_INTERRUPT,
286 		.endpoint = UE_ADDR_ANY,
287 		.direction = UE_DIR_IN,
288 		.bufsize = sizeof(struct zyd_cmd),
289 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
290 		.callback = zyd_intr_read_callback,
291 	},
292 };
293 #define zyd_read16_m(sc, val, data)	do {				\
294 	error = zyd_read16(sc, val, data);				\
295 	if (error != 0)							\
296 		goto fail;						\
297 } while (0)
298 #define zyd_write16_m(sc, val, data)	do {				\
299 	error = zyd_write16(sc, val, data);				\
300 	if (error != 0)							\
301 		goto fail;						\
302 } while (0)
303 #define zyd_read32_m(sc, val, data)	do {				\
304 	error = zyd_read32(sc, val, data);				\
305 	if (error != 0)							\
306 		goto fail;						\
307 } while (0)
308 #define zyd_write32_m(sc, val, data)	do {				\
309 	error = zyd_write32(sc, val, data);				\
310 	if (error != 0)							\
311 		goto fail;						\
312 } while (0)
313 
314 static int
315 zyd_match(device_t dev)
316 {
317 	struct usb_attach_arg *uaa = device_get_ivars(dev);
318 
319 	if (uaa->usb_mode != USB_MODE_HOST)
320 		return (ENXIO);
321 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
322 		return (ENXIO);
323 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
324 		return (ENXIO);
325 
326 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
327 }
328 
329 static int
330 zyd_attach(device_t dev)
331 {
332 	struct usb_attach_arg *uaa = device_get_ivars(dev);
333 	struct zyd_softc *sc = device_get_softc(dev);
334 	struct ifnet *ifp;
335 	struct ieee80211com *ic;
336 	uint8_t iface_index, bands;
337 	int error;
338 
339 	if (uaa->info.bcdDevice < 0x4330) {
340 		device_printf(dev, "device version mismatch: 0x%X "
341 		    "(only >= 43.30 supported)\n",
342 		    uaa->info.bcdDevice);
343 		return (EINVAL);
344 	}
345 
346 	device_set_usb_desc(dev);
347 	sc->sc_dev = dev;
348 	sc->sc_udev = uaa->device;
349 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
350 
351 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
352 	    MTX_NETWORK_LOCK, MTX_DEF);
353 	STAILQ_INIT(&sc->sc_rqh);
354 
355 	iface_index = ZYD_IFACE_INDEX;
356 	error = usbd_transfer_setup(uaa->device,
357 	    &iface_index, sc->sc_xfer, zyd_config,
358 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
359 	if (error) {
360 		device_printf(dev, "could not allocate USB transfers, "
361 		    "err=%s\n", usbd_errstr(error));
362 		goto detach;
363 	}
364 
365 	ZYD_LOCK(sc);
366 	if ((error = zyd_get_macaddr(sc)) != 0) {
367 		device_printf(sc->sc_dev, "could not read EEPROM\n");
368 		ZYD_UNLOCK(sc);
369 		goto detach;
370 	}
371 	ZYD_UNLOCK(sc);
372 
373 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
374 	if (ifp == NULL) {
375 		device_printf(sc->sc_dev, "can not if_alloc()\n");
376 		goto detach;
377 	}
378 	ifp->if_softc = sc;
379 	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
380 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
381 	ifp->if_init = zyd_init;
382 	ifp->if_ioctl = zyd_ioctl;
383 	ifp->if_start = zyd_start;
384 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
385 	IFQ_SET_READY(&ifp->if_snd);
386 
387 	ic = ifp->if_l2com;
388 	ic->ic_ifp = ifp;
389 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
390 	ic->ic_opmode = IEEE80211_M_STA;
391 
392 	/* set device capabilities */
393 	ic->ic_caps =
394 		  IEEE80211_C_STA		/* station mode */
395 		| IEEE80211_C_MONITOR		/* monitor mode */
396 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
397 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
398 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
399 	        | IEEE80211_C_WPA		/* 802.11i */
400 		;
401 
402 	bands = 0;
403 	setbit(&bands, IEEE80211_MODE_11B);
404 	setbit(&bands, IEEE80211_MODE_11G);
405 	ieee80211_init_channels(ic, NULL, &bands);
406 
407 	ieee80211_ifattach(ic, sc->sc_bssid);
408 	ic->ic_raw_xmit = zyd_raw_xmit;
409 	ic->ic_scan_start = zyd_scan_start;
410 	ic->ic_scan_end = zyd_scan_end;
411 	ic->ic_set_channel = zyd_set_channel;
412 
413 	ic->ic_vap_create = zyd_vap_create;
414 	ic->ic_vap_delete = zyd_vap_delete;
415 	ic->ic_update_mcast = zyd_update_mcast;
416 	ic->ic_update_promisc = zyd_update_mcast;
417 
418 	ieee80211_radiotap_attach(ic,
419 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
420 		ZYD_TX_RADIOTAP_PRESENT,
421 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
422 		ZYD_RX_RADIOTAP_PRESENT);
423 
424 	if (bootverbose)
425 		ieee80211_announce(ic);
426 
427 	return (0);
428 
429 detach:
430 	zyd_detach(dev);
431 	return (ENXIO);			/* failure */
432 }
433 
434 static int
435 zyd_detach(device_t dev)
436 {
437 	struct zyd_softc *sc = device_get_softc(dev);
438 	struct ifnet *ifp = sc->sc_ifp;
439 	struct ieee80211com *ic;
440 
441 	/* stop all USB transfers */
442 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
443 
444 	/* free TX list, if any */
445 	zyd_unsetup_tx_list(sc);
446 
447 	if (ifp) {
448 		ic = ifp->if_l2com;
449 		ieee80211_ifdetach(ic);
450 		if_free(ifp);
451 	}
452 	mtx_destroy(&sc->sc_mtx);
453 
454 	return (0);
455 }
456 
457 static struct ieee80211vap *
458 zyd_vap_create(struct ieee80211com *ic,
459 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
460 	const uint8_t bssid[IEEE80211_ADDR_LEN],
461 	const uint8_t mac[IEEE80211_ADDR_LEN])
462 {
463 	struct zyd_vap *zvp;
464 	struct ieee80211vap *vap;
465 
466 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
467 		return (NULL);
468 	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
469 	    M_80211_VAP, M_NOWAIT | M_ZERO);
470 	if (zvp == NULL)
471 		return (NULL);
472 	vap = &zvp->vap;
473 	/* enable s/w bmiss handling for sta mode */
474 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
475 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
476 
477 	/* override state transition machine */
478 	zvp->newstate = vap->iv_newstate;
479 	vap->iv_newstate = zyd_newstate;
480 
481 	ieee80211_ratectl_init(vap);
482 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
483 
484 	/* complete setup */
485 	ieee80211_vap_attach(vap, ieee80211_media_change,
486 	    ieee80211_media_status);
487 	ic->ic_opmode = opmode;
488 	return (vap);
489 }
490 
491 static void
492 zyd_vap_delete(struct ieee80211vap *vap)
493 {
494 	struct zyd_vap *zvp = ZYD_VAP(vap);
495 
496 	ieee80211_ratectl_deinit(vap);
497 	ieee80211_vap_detach(vap);
498 	free(zvp, M_80211_VAP);
499 }
500 
501 static void
502 zyd_tx_free(struct zyd_tx_data *data, int txerr)
503 {
504 	struct zyd_softc *sc = data->sc;
505 
506 	if (data->m != NULL) {
507 		if (data->m->m_flags & M_TXCB)
508 			ieee80211_process_callback(data->ni, data->m,
509 			    txerr ? ETIMEDOUT : 0);
510 		m_freem(data->m);
511 		data->m = NULL;
512 
513 		if (txerr == 0)
514 			ieee80211_ratectl_tx_complete(data->ni->ni_vap,
515 			    data->ni, IEEE80211_RATECTL_TX_SUCCESS, NULL, NULL);
516 		ieee80211_free_node(data->ni);
517 		data->ni = NULL;
518 	}
519 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
520 	sc->tx_nfree++;
521 }
522 
523 static void
524 zyd_setup_tx_list(struct zyd_softc *sc)
525 {
526 	struct zyd_tx_data *data;
527 	int i;
528 
529 	sc->tx_nfree = 0;
530 	STAILQ_INIT(&sc->tx_q);
531 	STAILQ_INIT(&sc->tx_free);
532 
533 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
534 		data = &sc->tx_data[i];
535 
536 		data->sc = sc;
537 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
538 		sc->tx_nfree++;
539 	}
540 }
541 
542 static void
543 zyd_unsetup_tx_list(struct zyd_softc *sc)
544 {
545 	struct zyd_tx_data *data;
546 	int i;
547 
548 	/* make sure any subsequent use of the queues will fail */
549 	sc->tx_nfree = 0;
550 	STAILQ_INIT(&sc->tx_q);
551 	STAILQ_INIT(&sc->tx_free);
552 
553 	/* free up all node references and mbufs */
554 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
555 		data = &sc->tx_data[i];
556 
557 		if (data->m != NULL) {
558 			m_freem(data->m);
559 			data->m = NULL;
560 		}
561 		if (data->ni != NULL) {
562 			ieee80211_free_node(data->ni);
563 			data->ni = NULL;
564 		}
565 	}
566 }
567 
568 static int
569 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
570 {
571 	struct zyd_vap *zvp = ZYD_VAP(vap);
572 	struct ieee80211com *ic = vap->iv_ic;
573 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
574 	struct ieee80211_node *ni;
575 	int error;
576 
577 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
578 	    ieee80211_state_name[vap->iv_state],
579 	    ieee80211_state_name[nstate]);
580 
581 	IEEE80211_UNLOCK(ic);
582 	ZYD_LOCK(sc);
583 	switch (nstate) {
584 	case IEEE80211_S_AUTH:
585 		zyd_set_chan(sc, ic->ic_curchan);
586 		break;
587 	case IEEE80211_S_RUN:
588 		ni = vap->iv_bss;
589 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
590 			break;
591 
592 		/* turn link LED on */
593 		error = zyd_set_led(sc, ZYD_LED1, 1);
594 		if (error != 0)
595 			break;
596 
597 		/* make data LED blink upon Tx */
598 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
599 
600 		IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
601 		zyd_set_bssid(sc, sc->sc_bssid);
602 		break;
603 	default:
604 		break;
605 	}
606 fail:
607 	ZYD_UNLOCK(sc);
608 	IEEE80211_LOCK(ic);
609 	return (zvp->newstate(vap, nstate, arg));
610 }
611 
612 /*
613  * Callback handler for interrupt transfer
614  */
615 static void
616 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
617 {
618 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
619 	struct ifnet *ifp = sc->sc_ifp;
620 	struct ieee80211com *ic = ifp->if_l2com;
621 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
622 	struct ieee80211_node *ni;
623 	struct zyd_cmd *cmd = &sc->sc_ibuf;
624 	struct usb_page_cache *pc;
625 	int datalen;
626 	int actlen;
627 
628 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
629 
630 	switch (USB_GET_STATE(xfer)) {
631 	case USB_ST_TRANSFERRED:
632 		pc = usbd_xfer_get_frame(xfer, 0);
633 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
634 
635 		switch (le16toh(cmd->code)) {
636 		case ZYD_NOTIF_RETRYSTATUS:
637 		{
638 			struct zyd_notif_retry *retry =
639 			    (struct zyd_notif_retry *)cmd->data;
640 
641 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
642 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
643 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
644 			    le16toh(retry->count)&0xff, le16toh(retry->count));
645 
646 			/*
647 			 * Find the node to which the packet was sent and
648 			 * update its retry statistics.  In BSS mode, this node
649 			 * is the AP we're associated to so no lookup is
650 			 * actually needed.
651 			 */
652 			ni = ieee80211_find_txnode(vap, retry->macaddr);
653 			if (ni != NULL) {
654 				int retrycnt =
655 				    (int)(le16toh(retry->count) & 0xff);
656 
657 				ieee80211_ratectl_tx_complete(vap, ni,
658 				    IEEE80211_RATECTL_TX_FAILURE,
659 				    &retrycnt, NULL);
660 				ieee80211_free_node(ni);
661 			}
662 			if (le16toh(retry->count) & 0x100)
663 				ifp->if_oerrors++;	/* too many retries */
664 			break;
665 		}
666 		case ZYD_NOTIF_IORD:
667 		{
668 			struct zyd_rq *rqp;
669 
670 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
671 				break;	/* HMAC interrupt */
672 
673 			datalen = actlen - sizeof(cmd->code);
674 			datalen -= 2;	/* XXX: padding? */
675 
676 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
677 				int i, cnt;
678 
679 				if (rqp->olen != datalen)
680 					continue;
681 				cnt = rqp->olen / sizeof(struct zyd_pair);
682 				for (i = 0; i < cnt; i++) {
683 					if (*(((const uint16_t *)rqp->idata) + i) !=
684 					    (((struct zyd_pair *)cmd->data) + i)->reg)
685 						break;
686 				}
687 				if (i != cnt)
688 					continue;
689 				/* copy answer into caller-supplied buffer */
690 				bcopy(cmd->data, rqp->odata, rqp->olen);
691 				DPRINTF(sc, ZYD_DEBUG_CMD,
692 				    "command %p complete, data = %*D \n",
693 				    rqp, rqp->olen, rqp->odata, ":");
694 				wakeup(rqp);	/* wakeup caller */
695 				break;
696 			}
697 			if (rqp == NULL) {
698 				device_printf(sc->sc_dev,
699 				    "unexpected IORD notification %*D\n",
700 				    datalen, cmd->data, ":");
701 			}
702 			break;
703 		}
704 		default:
705 			device_printf(sc->sc_dev, "unknown notification %x\n",
706 			    le16toh(cmd->code));
707 		}
708 
709 		/* FALLTHROUGH */
710 	case USB_ST_SETUP:
711 tr_setup:
712 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
713 		usbd_transfer_submit(xfer);
714 		break;
715 
716 	default:			/* Error */
717 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
718 		    usbd_errstr(error));
719 
720 		if (error != USB_ERR_CANCELLED) {
721 			/* try to clear stall first */
722 			usbd_xfer_set_stall(xfer);
723 			goto tr_setup;
724 		}
725 		break;
726 	}
727 }
728 
729 static void
730 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
731 {
732 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
733 	struct zyd_rq *rqp, *cmd;
734 	struct usb_page_cache *pc;
735 
736 	switch (USB_GET_STATE(xfer)) {
737 	case USB_ST_TRANSFERRED:
738 		cmd = usbd_xfer_get_priv(xfer);
739 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
740 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
741 			/* Ensure the cached rq pointer is still valid */
742 			if (rqp == cmd &&
743 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
744 				wakeup(rqp);	/* wakeup caller */
745 		}
746 
747 		/* FALLTHROUGH */
748 	case USB_ST_SETUP:
749 tr_setup:
750 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
751 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
752 				continue;
753 
754 			pc = usbd_xfer_get_frame(xfer, 0);
755 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
756 
757 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
758 			usbd_xfer_set_priv(xfer, rqp);
759 			rqp->flags |= ZYD_CMD_FLAG_SENT;
760 			usbd_transfer_submit(xfer);
761 			break;
762 		}
763 		break;
764 
765 	default:			/* Error */
766 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
767 		    usbd_errstr(error));
768 
769 		if (error != USB_ERR_CANCELLED) {
770 			/* try to clear stall first */
771 			usbd_xfer_set_stall(xfer);
772 			goto tr_setup;
773 		}
774 		break;
775 	}
776 }
777 
778 static int
779 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
780     void *odata, int olen, int flags)
781 {
782 	struct zyd_cmd cmd;
783 	struct zyd_rq rq;
784 	int error;
785 
786 	if (ilen > sizeof(cmd.data))
787 		return (EINVAL);
788 
789 	cmd.code = htole16(code);
790 	bcopy(idata, cmd.data, ilen);
791 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
792 	    &rq, ilen, idata, ":");
793 
794 	rq.cmd = &cmd;
795 	rq.idata = idata;
796 	rq.odata = odata;
797 	rq.ilen = sizeof(uint16_t) + ilen;
798 	rq.olen = olen;
799 	rq.flags = flags;
800 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
801 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
802 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
803 
804 	/* wait at most one second for command reply */
805 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
806 	if (error)
807 		device_printf(sc->sc_dev, "command timeout\n");
808 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
809 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
810 	    &rq, error);
811 
812 	return (error);
813 }
814 
815 static int
816 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
817 {
818 	struct zyd_pair tmp;
819 	int error;
820 
821 	reg = htole16(reg);
822 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
823 	    ZYD_CMD_FLAG_READ);
824 	if (error == 0)
825 		*val = le16toh(tmp.val);
826 	return (error);
827 }
828 
829 static int
830 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
831 {
832 	struct zyd_pair tmp[2];
833 	uint16_t regs[2];
834 	int error;
835 
836 	regs[0] = htole16(ZYD_REG32_HI(reg));
837 	regs[1] = htole16(ZYD_REG32_LO(reg));
838 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
839 	    ZYD_CMD_FLAG_READ);
840 	if (error == 0)
841 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
842 	return (error);
843 }
844 
845 static int
846 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
847 {
848 	struct zyd_pair pair;
849 
850 	pair.reg = htole16(reg);
851 	pair.val = htole16(val);
852 
853 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
854 }
855 
856 static int
857 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
858 {
859 	struct zyd_pair pair[2];
860 
861 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
862 	pair[0].val = htole16(val >> 16);
863 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
864 	pair[1].val = htole16(val & 0xffff);
865 
866 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
867 }
868 
869 static int
870 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
871 {
872 	struct zyd_rf *rf = &sc->sc_rf;
873 	struct zyd_rfwrite_cmd req;
874 	uint16_t cr203;
875 	int error, i;
876 
877 	zyd_read16_m(sc, ZYD_CR203, &cr203);
878 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
879 
880 	req.code  = htole16(2);
881 	req.width = htole16(rf->width);
882 	for (i = 0; i < rf->width; i++) {
883 		req.bit[i] = htole16(cr203);
884 		if (val & (1 << (rf->width - 1 - i)))
885 			req.bit[i] |= htole16(ZYD_RF_DATA);
886 	}
887 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
888 fail:
889 	return (error);
890 }
891 
892 static int
893 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
894 {
895 	int error;
896 
897 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
898 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
899 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
900 fail:
901 	return (error);
902 }
903 
904 static int
905 zyd_lock_phy(struct zyd_softc *sc)
906 {
907 	int error;
908 	uint32_t tmp;
909 
910 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
911 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
912 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
913 fail:
914 	return (error);
915 }
916 
917 static int
918 zyd_unlock_phy(struct zyd_softc *sc)
919 {
920 	int error;
921 	uint32_t tmp;
922 
923 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
924 	tmp |= ZYD_UNLOCK_PHY_REGS;
925 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
926 fail:
927 	return (error);
928 }
929 
930 /*
931  * RFMD RF methods.
932  */
933 static int
934 zyd_rfmd_init(struct zyd_rf *rf)
935 {
936 #define N(a)	(sizeof(a) / sizeof((a)[0]))
937 	struct zyd_softc *sc = rf->rf_sc;
938 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
939 	static const uint32_t rfini[] = ZYD_RFMD_RF;
940 	int i, error;
941 
942 	/* init RF-dependent PHY registers */
943 	for (i = 0; i < N(phyini); i++) {
944 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
945 	}
946 
947 	/* init RFMD radio */
948 	for (i = 0; i < N(rfini); i++) {
949 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
950 			return (error);
951 	}
952 fail:
953 	return (error);
954 #undef N
955 }
956 
957 static int
958 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
959 {
960 	int error;
961 	struct zyd_softc *sc = rf->rf_sc;
962 
963 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
964 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
965 fail:
966 	return (error);
967 }
968 
969 static int
970 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
971 {
972 	int error;
973 	struct zyd_softc *sc = rf->rf_sc;
974 	static const struct {
975 		uint32_t	r1, r2;
976 	} rfprog[] = ZYD_RFMD_CHANTABLE;
977 
978 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
979 	if (error != 0)
980 		goto fail;
981 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
982 	if (error != 0)
983 		goto fail;
984 
985 fail:
986 	return (error);
987 }
988 
989 /*
990  * AL2230 RF methods.
991  */
992 static int
993 zyd_al2230_init(struct zyd_rf *rf)
994 {
995 #define N(a)	(sizeof(a) / sizeof((a)[0]))
996 	struct zyd_softc *sc = rf->rf_sc;
997 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
999 	static const struct zyd_phy_pair phypll[] = {
1000 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1001 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1002 	};
1003 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1004 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1005 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1006 	int i, error;
1007 
1008 	/* init RF-dependent PHY registers */
1009 	for (i = 0; i < N(phyini); i++)
1010 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1011 
1012 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1013 		for (i = 0; i < N(phy2230s); i++)
1014 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1015 	}
1016 
1017 	/* init AL2230 radio */
1018 	for (i = 0; i < N(rfini1); i++) {
1019 		error = zyd_rfwrite(sc, rfini1[i]);
1020 		if (error != 0)
1021 			goto fail;
1022 	}
1023 
1024 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1025 		error = zyd_rfwrite(sc, 0x000824);
1026 	else
1027 		error = zyd_rfwrite(sc, 0x0005a4);
1028 	if (error != 0)
1029 		goto fail;
1030 
1031 	for (i = 0; i < N(rfini2); i++) {
1032 		error = zyd_rfwrite(sc, rfini2[i]);
1033 		if (error != 0)
1034 			goto fail;
1035 	}
1036 
1037 	for (i = 0; i < N(phypll); i++)
1038 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1039 
1040 	for (i = 0; i < N(rfini3); i++) {
1041 		error = zyd_rfwrite(sc, rfini3[i]);
1042 		if (error != 0)
1043 			goto fail;
1044 	}
1045 fail:
1046 	return (error);
1047 #undef N
1048 }
1049 
1050 static int
1051 zyd_al2230_fini(struct zyd_rf *rf)
1052 {
1053 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1054 	int error, i;
1055 	struct zyd_softc *sc = rf->rf_sc;
1056 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1057 
1058 	for (i = 0; i < N(phy); i++)
1059 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1060 
1061 	if (sc->sc_newphy != 0)
1062 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1063 
1064 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1065 fail:
1066 	return (error);
1067 #undef N
1068 }
1069 
1070 static int
1071 zyd_al2230_init_b(struct zyd_rf *rf)
1072 {
1073 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1074 	struct zyd_softc *sc = rf->rf_sc;
1075 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1076 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1077 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1078 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1079 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1080 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1081 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1082 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1083 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1084 	int i, error;
1085 
1086 	for (i = 0; i < N(phy1); i++)
1087 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1088 
1089 	/* init RF-dependent PHY registers */
1090 	for (i = 0; i < N(phyini); i++)
1091 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1092 
1093 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1094 		for (i = 0; i < N(phy2230s); i++)
1095 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1096 	}
1097 
1098 	for (i = 0; i < 3; i++) {
1099 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1100 		if (error != 0)
1101 			return (error);
1102 	}
1103 
1104 	for (i = 0; i < N(rfini_part1); i++) {
1105 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1106 		if (error != 0)
1107 			return (error);
1108 	}
1109 
1110 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1111 		error = zyd_rfwrite(sc, 0x241000);
1112 	else
1113 		error = zyd_rfwrite(sc, 0x25a000);
1114 	if (error != 0)
1115 		goto fail;
1116 
1117 	for (i = 0; i < N(rfini_part2); i++) {
1118 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1119 		if (error != 0)
1120 			return (error);
1121 	}
1122 
1123 	for (i = 0; i < N(phy2); i++)
1124 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1125 
1126 	for (i = 0; i < N(rfini_part3); i++) {
1127 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1128 		if (error != 0)
1129 			return (error);
1130 	}
1131 
1132 	for (i = 0; i < N(phy3); i++)
1133 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1134 
1135 	error = zyd_al2230_fini(rf);
1136 fail:
1137 	return (error);
1138 #undef N
1139 }
1140 
1141 static int
1142 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1143 {
1144 	struct zyd_softc *sc = rf->rf_sc;
1145 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1146 
1147 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1148 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1149 fail:
1150 	return (error);
1151 }
1152 
1153 static int
1154 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1155 {
1156 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1157 	int error, i;
1158 	struct zyd_softc *sc = rf->rf_sc;
1159 	static const struct zyd_phy_pair phy1[] = {
1160 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1161 	};
1162 	static const struct {
1163 		uint32_t	r1, r2, r3;
1164 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1165 
1166 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1167 	if (error != 0)
1168 		goto fail;
1169 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1170 	if (error != 0)
1171 		goto fail;
1172 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1173 	if (error != 0)
1174 		goto fail;
1175 
1176 	for (i = 0; i < N(phy1); i++)
1177 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1178 fail:
1179 	return (error);
1180 #undef N
1181 }
1182 
1183 static int
1184 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1185 {
1186 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1187 	int error, i;
1188 	struct zyd_softc *sc = rf->rf_sc;
1189 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1190 	static const struct {
1191 		uint32_t	r1, r2, r3;
1192 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1193 
1194 	for (i = 0; i < N(phy1); i++)
1195 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1196 
1197 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1198 	if (error != 0)
1199 		goto fail;
1200 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1201 	if (error != 0)
1202 		goto fail;
1203 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1204 	if (error != 0)
1205 		goto fail;
1206 	error = zyd_al2230_fini(rf);
1207 fail:
1208 	return (error);
1209 #undef N
1210 }
1211 
1212 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1213 {									\
1214 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1215 	{ ZYD_CR47,  0x1e }						\
1216 }
1217 
1218 static int
1219 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1220 {
1221 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1222 	int error = 0, i;
1223 	struct zyd_softc *sc = rf->rf_sc;
1224 	struct ifnet *ifp = sc->sc_ifp;
1225 	struct ieee80211com *ic = ifp->if_l2com;
1226 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1227 	int chan = ieee80211_chan2ieee(ic, c);
1228 
1229 	if (chan == 1 || chan == 11)
1230 		r[0].val = 0x12;
1231 
1232 	for (i = 0; i < N(r); i++)
1233 		zyd_write16_m(sc, r[i].reg, r[i].val);
1234 fail:
1235 	return (error);
1236 #undef N
1237 }
1238 
1239 /*
1240  * AL7230B RF methods.
1241  */
1242 static int
1243 zyd_al7230B_init(struct zyd_rf *rf)
1244 {
1245 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1246 	struct zyd_softc *sc = rf->rf_sc;
1247 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1248 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1249 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1250 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1251 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1252 	int i, error;
1253 
1254 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1255 
1256 	/* init RF-dependent PHY registers, part one */
1257 	for (i = 0; i < N(phyini_1); i++)
1258 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1259 
1260 	/* init AL7230B radio, part one */
1261 	for (i = 0; i < N(rfini_1); i++) {
1262 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1263 			return (error);
1264 	}
1265 	/* init RF-dependent PHY registers, part two */
1266 	for (i = 0; i < N(phyini_2); i++)
1267 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1268 
1269 	/* init AL7230B radio, part two */
1270 	for (i = 0; i < N(rfini_2); i++) {
1271 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1272 			return (error);
1273 	}
1274 	/* init RF-dependent PHY registers, part three */
1275 	for (i = 0; i < N(phyini_3); i++)
1276 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1277 fail:
1278 	return (error);
1279 #undef N
1280 }
1281 
1282 static int
1283 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1284 {
1285 	int error;
1286 	struct zyd_softc *sc = rf->rf_sc;
1287 
1288 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1289 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1290 fail:
1291 	return (error);
1292 }
1293 
1294 static int
1295 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1296 {
1297 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1298 	struct zyd_softc *sc = rf->rf_sc;
1299 	static const struct {
1300 		uint32_t	r1, r2;
1301 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1302 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1303 	int i, error;
1304 
1305 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1306 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1307 
1308 	for (i = 0; i < N(rfsc); i++) {
1309 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1310 			return (error);
1311 	}
1312 
1313 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1314 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1315 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1316 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1317 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1318 
1319 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1320 	if (error != 0)
1321 		goto fail;
1322 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1323 	if (error != 0)
1324 		goto fail;
1325 	error = zyd_rfwrite(sc, 0x3c9000);
1326 	if (error != 0)
1327 		goto fail;
1328 
1329 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1330 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1331 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1332 fail:
1333 	return (error);
1334 #undef N
1335 }
1336 
1337 /*
1338  * AL2210 RF methods.
1339  */
1340 static int
1341 zyd_al2210_init(struct zyd_rf *rf)
1342 {
1343 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1344 	struct zyd_softc *sc = rf->rf_sc;
1345 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1346 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1347 	uint32_t tmp;
1348 	int i, error;
1349 
1350 	zyd_write32_m(sc, ZYD_CR18, 2);
1351 
1352 	/* init RF-dependent PHY registers */
1353 	for (i = 0; i < N(phyini); i++)
1354 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1355 
1356 	/* init AL2210 radio */
1357 	for (i = 0; i < N(rfini); i++) {
1358 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1359 			return (error);
1360 	}
1361 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1362 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1363 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1364 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1365 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1366 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1367 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1368 	zyd_write32_m(sc, ZYD_CR18, 3);
1369 fail:
1370 	return (error);
1371 #undef N
1372 }
1373 
1374 static int
1375 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1376 {
1377 	/* vendor driver does nothing for this RF chip */
1378 
1379 	return (0);
1380 }
1381 
1382 static int
1383 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1384 {
1385 	int error;
1386 	struct zyd_softc *sc = rf->rf_sc;
1387 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1388 	uint32_t tmp;
1389 
1390 	zyd_write32_m(sc, ZYD_CR18, 2);
1391 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1392 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1393 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1394 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1395 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1396 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1397 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1398 
1399 	/* actually set the channel */
1400 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1401 	if (error != 0)
1402 		goto fail;
1403 
1404 	zyd_write32_m(sc, ZYD_CR18, 3);
1405 fail:
1406 	return (error);
1407 }
1408 
1409 /*
1410  * GCT RF methods.
1411  */
1412 static int
1413 zyd_gct_init(struct zyd_rf *rf)
1414 {
1415 #define	ZYD_GCT_INTR_REG	0x85c1
1416 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1417 	struct zyd_softc *sc = rf->rf_sc;
1418 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1419 	static const uint32_t rfini[] = ZYD_GCT_RF;
1420 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1421 	int i, idx = -1, error;
1422 	uint16_t data;
1423 
1424 	/* init RF-dependent PHY registers */
1425 	for (i = 0; i < N(phyini); i++)
1426 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1427 
1428 	/* init cgt radio */
1429 	for (i = 0; i < N(rfini); i++) {
1430 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1431 			return (error);
1432 	}
1433 
1434 	error = zyd_gct_mode(rf);
1435 	if (error != 0)
1436 		return (error);
1437 
1438 	for (i = 0; i < N(vco) - 1; i++) {
1439 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1440 		if (error != 0)
1441 			goto fail;
1442 		error = zyd_gct_write(rf, vco[i][0]);
1443 		if (error != 0)
1444 			goto fail;
1445 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1446 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1447 		if ((data & 0xf) == 0) {
1448 			idx = i;
1449 			break;
1450 		}
1451 	}
1452 	if (idx == -1) {
1453 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1454 		if (error != 0)
1455 			goto fail;
1456 		error = zyd_gct_write(rf, 0x6662);
1457 		if (error != 0)
1458 			goto fail;
1459 	}
1460 
1461 	rf->idx = idx;
1462 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1463 fail:
1464 	return (error);
1465 #undef N
1466 #undef ZYD_GCT_INTR_REG
1467 }
1468 
1469 static int
1470 zyd_gct_mode(struct zyd_rf *rf)
1471 {
1472 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1473 	struct zyd_softc *sc = rf->rf_sc;
1474 	static const uint32_t mode[] = {
1475 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1476 	};
1477 	int i, error;
1478 
1479 	for (i = 0; i < N(mode); i++) {
1480 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1481 			break;
1482 	}
1483 	return (error);
1484 #undef N
1485 }
1486 
1487 static int
1488 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1489 {
1490 	int error, idx = chan - 1;
1491 	struct zyd_softc *sc = rf->rf_sc;
1492 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1493 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1494 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1495 
1496 	error = zyd_rfwrite(sc,
1497 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1498 	if (error != 0)
1499 		return (error);
1500 	return zyd_rfwrite(sc, div_synth[idx]);
1501 }
1502 
1503 static int
1504 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1505 {
1506 	struct zyd_softc *sc = rf->rf_sc;
1507 
1508 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1509 }
1510 
1511 static int
1512 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1513 {
1514 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1515 	int error;
1516 	struct zyd_softc *sc = rf->rf_sc;
1517 
1518 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1519 	if (error != 0)
1520 		return (error);
1521 
1522 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1523 	zyd_write16_m(sc, ZYD_CR251,
1524 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1525 fail:
1526 	return (error);
1527 }
1528 
1529 static int
1530 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1531 {
1532 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1533 	int error, i;
1534 	struct zyd_softc *sc = rf->rf_sc;
1535 	static const struct zyd_phy_pair cmd[] = {
1536 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1537 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1538 	};
1539 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1540 
1541 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1542 	if (error != 0)
1543 		goto fail;
1544 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1545 	    vco[rf->idx][((chan - 1) / 2)]);
1546 	if (error != 0)
1547 		goto fail;
1548 	error = zyd_gct_mode(rf);
1549 	if (error != 0)
1550 		return (error);
1551 	for (i = 0; i < N(cmd); i++)
1552 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1553 	error = zyd_gct_txgain(rf, chan);
1554 	if (error != 0)
1555 		return (error);
1556 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1557 fail:
1558 	return (error);
1559 #undef N
1560 }
1561 
1562 static int
1563 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1564 {
1565 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1566 	struct zyd_softc *sc = rf->rf_sc;
1567 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1568 	uint8_t idx = sc->sc_pwrint[chan - 1];
1569 
1570 	if (idx >= N(txgain)) {
1571 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1572 		    chan, idx);
1573 		return 0;
1574 	}
1575 
1576 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1577 #undef N
1578 }
1579 
1580 /*
1581  * Maxim2 RF methods.
1582  */
1583 static int
1584 zyd_maxim2_init(struct zyd_rf *rf)
1585 {
1586 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1587 	struct zyd_softc *sc = rf->rf_sc;
1588 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1589 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1590 	uint16_t tmp;
1591 	int i, error;
1592 
1593 	/* init RF-dependent PHY registers */
1594 	for (i = 0; i < N(phyini); i++)
1595 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1596 
1597 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1598 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1599 
1600 	/* init maxim2 radio */
1601 	for (i = 0; i < N(rfini); i++) {
1602 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1603 			return (error);
1604 	}
1605 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1606 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1607 fail:
1608 	return (error);
1609 #undef N
1610 }
1611 
1612 static int
1613 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1614 {
1615 
1616 	/* vendor driver does nothing for this RF chip */
1617 	return (0);
1618 }
1619 
1620 static int
1621 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1622 {
1623 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1624 	struct zyd_softc *sc = rf->rf_sc;
1625 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1626 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1627 	static const struct {
1628 		uint32_t	r1, r2;
1629 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1630 	uint16_t tmp;
1631 	int i, error;
1632 
1633 	/*
1634 	 * Do the same as we do when initializing it, except for the channel
1635 	 * values coming from the two channel tables.
1636 	 */
1637 
1638 	/* init RF-dependent PHY registers */
1639 	for (i = 0; i < N(phyini); i++)
1640 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1641 
1642 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1643 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1644 
1645 	/* first two values taken from the chantables */
1646 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1647 	if (error != 0)
1648 		goto fail;
1649 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1650 	if (error != 0)
1651 		goto fail;
1652 
1653 	/* init maxim2 radio - skipping the two first values */
1654 	for (i = 2; i < N(rfini); i++) {
1655 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1656 			return (error);
1657 	}
1658 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1659 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1660 fail:
1661 	return (error);
1662 #undef N
1663 }
1664 
1665 static int
1666 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1667 {
1668 	struct zyd_rf *rf = &sc->sc_rf;
1669 
1670 	rf->rf_sc = sc;
1671 	rf->update_pwr = 1;
1672 
1673 	switch (type) {
1674 	case ZYD_RF_RFMD:
1675 		rf->init         = zyd_rfmd_init;
1676 		rf->switch_radio = zyd_rfmd_switch_radio;
1677 		rf->set_channel  = zyd_rfmd_set_channel;
1678 		rf->width        = 24;	/* 24-bit RF values */
1679 		break;
1680 	case ZYD_RF_AL2230:
1681 	case ZYD_RF_AL2230S:
1682 		if (sc->sc_macrev == ZYD_ZD1211B) {
1683 			rf->init = zyd_al2230_init_b;
1684 			rf->set_channel = zyd_al2230_set_channel_b;
1685 		} else {
1686 			rf->init = zyd_al2230_init;
1687 			rf->set_channel = zyd_al2230_set_channel;
1688 		}
1689 		rf->switch_radio = zyd_al2230_switch_radio;
1690 		rf->bandedge6	 = zyd_al2230_bandedge6;
1691 		rf->width        = 24;	/* 24-bit RF values */
1692 		break;
1693 	case ZYD_RF_AL7230B:
1694 		rf->init         = zyd_al7230B_init;
1695 		rf->switch_radio = zyd_al7230B_switch_radio;
1696 		rf->set_channel  = zyd_al7230B_set_channel;
1697 		rf->width        = 24;	/* 24-bit RF values */
1698 		break;
1699 	case ZYD_RF_AL2210:
1700 		rf->init         = zyd_al2210_init;
1701 		rf->switch_radio = zyd_al2210_switch_radio;
1702 		rf->set_channel  = zyd_al2210_set_channel;
1703 		rf->width        = 24;	/* 24-bit RF values */
1704 		break;
1705 	case ZYD_RF_MAXIM_NEW:
1706 	case ZYD_RF_GCT:
1707 		rf->init         = zyd_gct_init;
1708 		rf->switch_radio = zyd_gct_switch_radio;
1709 		rf->set_channel  = zyd_gct_set_channel;
1710 		rf->width        = 24;	/* 24-bit RF values */
1711 		rf->update_pwr   = 0;
1712 		break;
1713 	case ZYD_RF_MAXIM_NEW2:
1714 		rf->init         = zyd_maxim2_init;
1715 		rf->switch_radio = zyd_maxim2_switch_radio;
1716 		rf->set_channel  = zyd_maxim2_set_channel;
1717 		rf->width        = 18;	/* 18-bit RF values */
1718 		break;
1719 	default:
1720 		device_printf(sc->sc_dev,
1721 		    "sorry, radio \"%s\" is not supported yet\n",
1722 		    zyd_rf_name(type));
1723 		return (EINVAL);
1724 	}
1725 	return (0);
1726 }
1727 
1728 static const char *
1729 zyd_rf_name(uint8_t type)
1730 {
1731 	static const char * const zyd_rfs[] = {
1732 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1733 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1734 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1735 		"PHILIPS"
1736 	};
1737 
1738 	return zyd_rfs[(type > 15) ? 0 : type];
1739 }
1740 
1741 static int
1742 zyd_hw_init(struct zyd_softc *sc)
1743 {
1744 	int error;
1745 	const struct zyd_phy_pair *phyp;
1746 	struct zyd_rf *rf = &sc->sc_rf;
1747 	uint16_t val;
1748 
1749 	/* specify that the plug and play is finished */
1750 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1751 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1752 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1753 	    sc->sc_fwbase);
1754 
1755 	/* retrieve firmware revision number */
1756 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1757 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1758 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1759 	/* set mandatory rates - XXX assumes 802.11b/g */
1760 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1761 
1762 	/* disable interrupts */
1763 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1764 
1765 	if ((error = zyd_read_pod(sc)) != 0) {
1766 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1767 		goto fail;
1768 	}
1769 
1770 	/* PHY init (resetting) */
1771 	error = zyd_lock_phy(sc);
1772 	if (error != 0)
1773 		goto fail;
1774 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1775 	for (; phyp->reg != 0; phyp++)
1776 		zyd_write16_m(sc, phyp->reg, phyp->val);
1777 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1778 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1779 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1780 	}
1781 	error = zyd_unlock_phy(sc);
1782 	if (error != 0)
1783 		goto fail;
1784 
1785 	/* HMAC init */
1786 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1787 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1788 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1789 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1790 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1791 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1792 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1793 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1794 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1795 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1796 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1797 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1798 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1799 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1800 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1801 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1802 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1803 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1804 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1805 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1806 
1807 	if (sc->sc_macrev == ZYD_ZD1211) {
1808 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1809 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1810 	} else {
1811 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1812 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1813 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1814 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1815 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1816 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1817 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1818 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1819 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1820 	}
1821 
1822 	/* init beacon interval to 100ms */
1823 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1824 		goto fail;
1825 
1826 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1827 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1828 		    sc->sc_rfrev);
1829 		goto fail;
1830 	}
1831 
1832 	/* RF chip init */
1833 	error = zyd_lock_phy(sc);
1834 	if (error != 0)
1835 		goto fail;
1836 	error = (*rf->init)(rf);
1837 	if (error != 0) {
1838 		device_printf(sc->sc_dev,
1839 		    "radio initialization failed, error %d\n", error);
1840 		goto fail;
1841 	}
1842 	error = zyd_unlock_phy(sc);
1843 	if (error != 0)
1844 		goto fail;
1845 
1846 	if ((error = zyd_read_eeprom(sc)) != 0) {
1847 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1848 		goto fail;
1849 	}
1850 
1851 fail:	return (error);
1852 }
1853 
1854 static int
1855 zyd_read_pod(struct zyd_softc *sc)
1856 {
1857 	int error;
1858 	uint32_t tmp;
1859 
1860 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1861 	sc->sc_rfrev     = tmp & 0x0f;
1862 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1863 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1864 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1865 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1866 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1867 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1868 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1869 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1870 fail:
1871 	return (error);
1872 }
1873 
1874 static int
1875 zyd_read_eeprom(struct zyd_softc *sc)
1876 {
1877 	uint16_t val;
1878 	int error, i;
1879 
1880 	/* read Tx power calibration tables */
1881 	for (i = 0; i < 7; i++) {
1882 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1883 		sc->sc_pwrcal[i * 2] = val >> 8;
1884 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1885 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1886 		sc->sc_pwrint[i * 2] = val >> 8;
1887 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1888 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1889 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1890 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1891 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1892 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1893 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1894 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1895 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1896 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1897 	}
1898 fail:
1899 	return (error);
1900 }
1901 
1902 static int
1903 zyd_get_macaddr(struct zyd_softc *sc)
1904 {
1905 	struct usb_device_request req;
1906 	usb_error_t error;
1907 
1908 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1909 	req.bRequest = ZYD_READFWDATAREQ;
1910 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1911 	USETW(req.wIndex, 0);
1912 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1913 
1914 	error = zyd_do_request(sc, &req, sc->sc_bssid);
1915 	if (error != 0) {
1916 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1917 		    usbd_errstr(error));
1918 	}
1919 
1920 	return (error);
1921 }
1922 
1923 static int
1924 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1925 {
1926 	int error;
1927 	uint32_t tmp;
1928 
1929 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1930 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1931 	tmp = addr[5] << 8 | addr[4];
1932 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1933 fail:
1934 	return (error);
1935 }
1936 
1937 static int
1938 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1939 {
1940 	int error;
1941 	uint32_t tmp;
1942 
1943 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1944 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1945 	tmp = addr[5] << 8 | addr[4];
1946 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1947 fail:
1948 	return (error);
1949 }
1950 
1951 static int
1952 zyd_switch_radio(struct zyd_softc *sc, int on)
1953 {
1954 	struct zyd_rf *rf = &sc->sc_rf;
1955 	int error;
1956 
1957 	error = zyd_lock_phy(sc);
1958 	if (error != 0)
1959 		goto fail;
1960 	error = (*rf->switch_radio)(rf, on);
1961 	if (error != 0)
1962 		goto fail;
1963 	error = zyd_unlock_phy(sc);
1964 fail:
1965 	return (error);
1966 }
1967 
1968 static int
1969 zyd_set_led(struct zyd_softc *sc, int which, int on)
1970 {
1971 	int error;
1972 	uint32_t tmp;
1973 
1974 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1975 	tmp &= ~which;
1976 	if (on)
1977 		tmp |= which;
1978 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1979 fail:
1980 	return (error);
1981 }
1982 
1983 static void
1984 zyd_set_multi(struct zyd_softc *sc)
1985 {
1986 	int error;
1987 	struct ifnet *ifp = sc->sc_ifp;
1988 	struct ieee80211com *ic = ifp->if_l2com;
1989 	struct ifmultiaddr *ifma;
1990 	uint32_t low, high;
1991 	uint8_t v;
1992 
1993 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1994 		return;
1995 
1996 	low = 0x00000000;
1997 	high = 0x80000000;
1998 
1999 	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
2000 	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
2001 		low = 0xffffffff;
2002 		high = 0xffffffff;
2003 	} else {
2004 		if_maddr_rlock(ifp);
2005 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2006 			if (ifma->ifma_addr->sa_family != AF_LINK)
2007 				continue;
2008 			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
2009 			    ifma->ifma_addr))[5] >> 2;
2010 			if (v < 32)
2011 				low |= 1 << v;
2012 			else
2013 				high |= 1 << (v - 32);
2014 		}
2015 		if_maddr_runlock(ifp);
2016 	}
2017 
2018 	/* reprogram multicast global hash table */
2019 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2020 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2021 fail:
2022 	if (error != 0)
2023 		device_printf(sc->sc_dev,
2024 		    "could not set multicast hash table\n");
2025 }
2026 
2027 static void
2028 zyd_update_mcast(struct ifnet *ifp)
2029 {
2030 	struct zyd_softc *sc = ifp->if_softc;
2031 
2032 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2033 		return;
2034 
2035 	ZYD_LOCK(sc);
2036 	zyd_set_multi(sc);
2037 	ZYD_UNLOCK(sc);
2038 }
2039 
2040 static int
2041 zyd_set_rxfilter(struct zyd_softc *sc)
2042 {
2043 	struct ifnet *ifp = sc->sc_ifp;
2044 	struct ieee80211com *ic = ifp->if_l2com;
2045 	uint32_t rxfilter;
2046 
2047 	switch (ic->ic_opmode) {
2048 	case IEEE80211_M_STA:
2049 		rxfilter = ZYD_FILTER_BSS;
2050 		break;
2051 	case IEEE80211_M_IBSS:
2052 	case IEEE80211_M_HOSTAP:
2053 		rxfilter = ZYD_FILTER_HOSTAP;
2054 		break;
2055 	case IEEE80211_M_MONITOR:
2056 		rxfilter = ZYD_FILTER_MONITOR;
2057 		break;
2058 	default:
2059 		/* should not get there */
2060 		return (EINVAL);
2061 	}
2062 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2063 }
2064 
2065 static void
2066 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2067 {
2068 	int error;
2069 	struct ifnet *ifp = sc->sc_ifp;
2070 	struct ieee80211com *ic = ifp->if_l2com;
2071 	struct zyd_rf *rf = &sc->sc_rf;
2072 	uint32_t tmp;
2073 	int chan;
2074 
2075 	chan = ieee80211_chan2ieee(ic, c);
2076 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2077 		/* XXX should NEVER happen */
2078 		device_printf(sc->sc_dev,
2079 		    "%s: invalid channel %x\n", __func__, chan);
2080 		return;
2081 	}
2082 
2083 	error = zyd_lock_phy(sc);
2084 	if (error != 0)
2085 		goto fail;
2086 
2087 	error = (*rf->set_channel)(rf, chan);
2088 	if (error != 0)
2089 		goto fail;
2090 
2091 	if (rf->update_pwr) {
2092 		/* update Tx power */
2093 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2094 
2095 		if (sc->sc_macrev == ZYD_ZD1211B) {
2096 			zyd_write16_m(sc, ZYD_CR67,
2097 			    sc->sc_ofdm36_cal[chan - 1]);
2098 			zyd_write16_m(sc, ZYD_CR66,
2099 			    sc->sc_ofdm48_cal[chan - 1]);
2100 			zyd_write16_m(sc, ZYD_CR65,
2101 			    sc->sc_ofdm54_cal[chan - 1]);
2102 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2103 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2104 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2105 		}
2106 	}
2107 	if (sc->sc_cckgain) {
2108 		/* set CCK baseband gain from EEPROM */
2109 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2110 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2111 	}
2112 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2113 		error = (*rf->bandedge6)(rf, c);
2114 		if (error != 0)
2115 			goto fail;
2116 	}
2117 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2118 
2119 	error = zyd_unlock_phy(sc);
2120 	if (error != 0)
2121 		goto fail;
2122 
2123 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2124 	    htole16(c->ic_freq);
2125 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2126 	    htole16(c->ic_flags);
2127 fail:
2128 	return;
2129 }
2130 
2131 static int
2132 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2133 {
2134 	int error;
2135 	uint32_t val;
2136 
2137 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2138 	sc->sc_atim_wnd = val;
2139 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2140 	sc->sc_pre_tbtt = val;
2141 	sc->sc_bcn_int = bintval;
2142 
2143 	if (sc->sc_bcn_int <= 5)
2144 		sc->sc_bcn_int = 5;
2145 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2146 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2147 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2148 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2149 
2150 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2151 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2152 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2153 fail:
2154 	return (error);
2155 }
2156 
2157 static void
2158 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2159 {
2160 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2161 	struct ifnet *ifp = sc->sc_ifp;
2162 	struct ieee80211com *ic = ifp->if_l2com;
2163 	struct zyd_plcphdr plcp;
2164 	struct zyd_rx_stat stat;
2165 	struct usb_page_cache *pc;
2166 	struct mbuf *m;
2167 	int rlen, rssi;
2168 
2169 	if (len < ZYD_MIN_FRAGSZ) {
2170 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2171 		    device_get_nameunit(sc->sc_dev), len);
2172 		ifp->if_ierrors++;
2173 		return;
2174 	}
2175 	pc = usbd_xfer_get_frame(xfer, 0);
2176 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2177 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2178 
2179 	if (stat.flags & ZYD_RX_ERROR) {
2180 		DPRINTF(sc, ZYD_DEBUG_RECV,
2181 		    "%s: RX status indicated error (%x)\n",
2182 		    device_get_nameunit(sc->sc_dev), stat.flags);
2183 		ifp->if_ierrors++;
2184 		return;
2185 	}
2186 
2187 	/* compute actual frame length */
2188 	rlen = len - sizeof(struct zyd_plcphdr) -
2189 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2190 
2191 	/* allocate a mbuf to store the frame */
2192 	if (rlen > MCLBYTES) {
2193 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2194 		    device_get_nameunit(sc->sc_dev), rlen);
2195 		ifp->if_ierrors++;
2196 		return;
2197 	} else if (rlen > MHLEN)
2198 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2199 	else
2200 		m = m_gethdr(M_DONTWAIT, MT_DATA);
2201 	if (m == NULL) {
2202 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2203 		    device_get_nameunit(sc->sc_dev));
2204 		ifp->if_ierrors++;
2205 		return;
2206 	}
2207 	m->m_pkthdr.rcvif = ifp;
2208 	m->m_pkthdr.len = m->m_len = rlen;
2209 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2210 
2211 	if (ieee80211_radiotap_active(ic)) {
2212 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2213 
2214 		tap->wr_flags = 0;
2215 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2216 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2217 		/* XXX toss, no way to express errors */
2218 		if (stat.flags & ZYD_RX_DECRYPTERR)
2219 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2220 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2221 		    (stat.flags & ZYD_RX_OFDM) ?
2222 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2223 		tap->wr_antsignal = stat.rssi + -95;
2224 		tap->wr_antnoise = -95;	/* XXX */
2225 	}
2226 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2227 
2228 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2229 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2230 	sc->sc_rx_count++;
2231 }
2232 
2233 static void
2234 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2235 {
2236 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2237 	struct ifnet *ifp = sc->sc_ifp;
2238 	struct ieee80211com *ic = ifp->if_l2com;
2239 	struct ieee80211_node *ni;
2240 	struct zyd_rx_desc desc;
2241 	struct mbuf *m;
2242 	struct usb_page_cache *pc;
2243 	uint32_t offset;
2244 	uint8_t rssi;
2245 	int8_t nf;
2246 	int i;
2247 	int actlen;
2248 
2249 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2250 
2251 	sc->sc_rx_count = 0;
2252 	switch (USB_GET_STATE(xfer)) {
2253 	case USB_ST_TRANSFERRED:
2254 		pc = usbd_xfer_get_frame(xfer, 0);
2255 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2256 
2257 		offset = 0;
2258 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2259 			DPRINTF(sc, ZYD_DEBUG_RECV,
2260 			    "%s: received multi-frame transfer\n", __func__);
2261 
2262 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2263 				uint16_t len16 = UGETW(desc.len[i]);
2264 
2265 				if (len16 == 0 || len16 > actlen)
2266 					break;
2267 
2268 				zyd_rx_data(xfer, offset, len16);
2269 
2270 				/* next frame is aligned on a 32-bit boundary */
2271 				len16 = (len16 + 3) & ~3;
2272 				offset += len16;
2273 				if (len16 > actlen)
2274 					break;
2275 				actlen -= len16;
2276 			}
2277 		} else {
2278 			DPRINTF(sc, ZYD_DEBUG_RECV,
2279 			    "%s: received single-frame transfer\n", __func__);
2280 
2281 			zyd_rx_data(xfer, 0, actlen);
2282 		}
2283 		/* FALLTHROUGH */
2284 	case USB_ST_SETUP:
2285 tr_setup:
2286 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2287 		usbd_transfer_submit(xfer);
2288 
2289 		/*
2290 		 * At the end of a USB callback it is always safe to unlock
2291 		 * the private mutex of a device! That is why we do the
2292 		 * "ieee80211_input" here, and not some lines up!
2293 		 */
2294 		ZYD_UNLOCK(sc);
2295 		for (i = 0; i < sc->sc_rx_count; i++) {
2296 			rssi = sc->sc_rx_data[i].rssi;
2297 			m = sc->sc_rx_data[i].m;
2298 			sc->sc_rx_data[i].m = NULL;
2299 
2300 			nf = -95;	/* XXX */
2301 
2302 			ni = ieee80211_find_rxnode(ic,
2303 			    mtod(m, struct ieee80211_frame_min *));
2304 			if (ni != NULL) {
2305 				(void)ieee80211_input(ni, m, rssi, nf);
2306 				ieee80211_free_node(ni);
2307 			} else
2308 				(void)ieee80211_input_all(ic, m, rssi, nf);
2309 		}
2310 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2311 		    !IFQ_IS_EMPTY(&ifp->if_snd))
2312 			zyd_start(ifp);
2313 		ZYD_LOCK(sc);
2314 		break;
2315 
2316 	default:			/* Error */
2317 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2318 
2319 		if (error != USB_ERR_CANCELLED) {
2320 			/* try to clear stall first */
2321 			usbd_xfer_set_stall(xfer);
2322 			goto tr_setup;
2323 		}
2324 		break;
2325 	}
2326 }
2327 
2328 static uint8_t
2329 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2330 {
2331 	switch (rate) {
2332 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2333 	case 12:
2334 		return (0xb);
2335 	case 18:
2336 		return (0xf);
2337 	case 24:
2338 		return (0xa);
2339 	case 36:
2340 		return (0xe);
2341 	case 48:
2342 		return (0x9);
2343 	case 72:
2344 		return (0xd);
2345 	case 96:
2346 		return (0x8);
2347 	case 108:
2348 		return (0xc);
2349 	/* CCK rates (NB: not IEEE std, device-specific) */
2350 	case 2:
2351 		return (0x0);
2352 	case 4:
2353 		return (0x1);
2354 	case 11:
2355 		return (0x2);
2356 	case 22:
2357 		return (0x3);
2358 	}
2359 
2360 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2361 	return (0x0);
2362 }
2363 
2364 static void
2365 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2366 {
2367 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2368 	struct ifnet *ifp = sc->sc_ifp;
2369 	struct ieee80211vap *vap;
2370 	struct zyd_tx_data *data;
2371 	struct mbuf *m;
2372 	struct usb_page_cache *pc;
2373 	int actlen;
2374 
2375 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2376 
2377 	switch (USB_GET_STATE(xfer)) {
2378 	case USB_ST_TRANSFERRED:
2379 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2380 		    actlen);
2381 
2382 		/* free resources */
2383 		data = usbd_xfer_get_priv(xfer);
2384 		zyd_tx_free(data, 0);
2385 		usbd_xfer_set_priv(xfer, NULL);
2386 
2387 		ifp->if_opackets++;
2388 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2389 
2390 		/* FALLTHROUGH */
2391 	case USB_ST_SETUP:
2392 tr_setup:
2393 		data = STAILQ_FIRST(&sc->tx_q);
2394 		if (data) {
2395 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2396 			m = data->m;
2397 
2398 			if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) {
2399 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2400 				    m->m_pkthdr.len);
2401 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2402 			}
2403 			pc = usbd_xfer_get_frame(xfer, 0);
2404 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2405 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2406 			    m->m_pkthdr.len);
2407 
2408 			vap = data->ni->ni_vap;
2409 			if (ieee80211_radiotap_active_vap(vap)) {
2410 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2411 
2412 				tap->wt_flags = 0;
2413 				tap->wt_rate = data->rate;
2414 
2415 				ieee80211_radiotap_tx(vap, m);
2416 			}
2417 
2418 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2419 			usbd_xfer_set_priv(xfer, data);
2420 			usbd_transfer_submit(xfer);
2421 		}
2422 		ZYD_UNLOCK(sc);
2423 		zyd_start(ifp);
2424 		ZYD_LOCK(sc);
2425 		break;
2426 
2427 	default:			/* Error */
2428 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2429 		    usbd_errstr(error));
2430 
2431 		ifp->if_oerrors++;
2432 		data = usbd_xfer_get_priv(xfer);
2433 		usbd_xfer_set_priv(xfer, NULL);
2434 		if (data != NULL)
2435 			zyd_tx_free(data, error);
2436 
2437 		if (error != USB_ERR_CANCELLED) {
2438 			if (error == USB_ERR_TIMEOUT)
2439 				device_printf(sc->sc_dev, "device timeout\n");
2440 
2441 			/*
2442 			 * Try to clear stall first, also if other
2443 			 * errors occur, hence clearing stall
2444 			 * introduces a 50 ms delay:
2445 			 */
2446 			usbd_xfer_set_stall(xfer);
2447 			goto tr_setup;
2448 		}
2449 		break;
2450 	}
2451 }
2452 
2453 static int
2454 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2455 {
2456 	struct ieee80211vap *vap = ni->ni_vap;
2457 	struct ieee80211com *ic = ni->ni_ic;
2458 	struct zyd_tx_desc *desc;
2459 	struct zyd_tx_data *data;
2460 	struct ieee80211_frame *wh;
2461 	const struct ieee80211_txparam *tp;
2462 	struct ieee80211_key *k;
2463 	int rate, totlen;
2464 	static uint8_t ratediv[] = ZYD_TX_RATEDIV;
2465 	uint8_t phy;
2466 	uint16_t pktlen;
2467 	uint32_t bits;
2468 
2469 	wh = mtod(m0, struct ieee80211_frame *);
2470 	data = STAILQ_FIRST(&sc->tx_free);
2471 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2472 	sc->tx_nfree--;
2473 
2474 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT ||
2475 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2476 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2477 		rate = tp->mgmtrate;
2478 	} else {
2479 		tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2480 		/* for data frames */
2481 		if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2482 			rate = tp->mcastrate;
2483 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2484 			rate = tp->ucastrate;
2485 		else {
2486 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2487 			rate = ni->ni_txrate;
2488 		}
2489 	}
2490 
2491 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2492 		k = ieee80211_crypto_encap(ni, m0);
2493 		if (k == NULL) {
2494 			m_freem(m0);
2495 			return (ENOBUFS);
2496 		}
2497 		/* packet header may have moved, reset our local pointer */
2498 		wh = mtod(m0, struct ieee80211_frame *);
2499 	}
2500 
2501 	data->ni = ni;
2502 	data->m = m0;
2503 	data->rate = rate;
2504 
2505 	/* fill Tx descriptor */
2506 	desc = &data->desc;
2507 	phy = zyd_plcp_signal(sc, rate);
2508 	desc->phy = phy;
2509 	if (ZYD_RATE_IS_OFDM(rate)) {
2510 		desc->phy |= ZYD_TX_PHY_OFDM;
2511 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2512 			desc->phy |= ZYD_TX_PHY_5GHZ;
2513 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2514 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2515 
2516 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2517 	desc->len = htole16(totlen);
2518 
2519 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2520 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2521 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2522 		if (totlen > vap->iv_rtsthreshold) {
2523 			desc->flags |= ZYD_TX_FLAG_RTS;
2524 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2525 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2526 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2527 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2528 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2529 				desc->flags |= ZYD_TX_FLAG_RTS;
2530 		}
2531 	} else
2532 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2533 	if ((wh->i_fc[0] &
2534 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2535 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2536 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2537 
2538 	/* actual transmit length (XXX why +10?) */
2539 	pktlen = ZYD_TX_DESC_SIZE + 10;
2540 	if (sc->sc_macrev == ZYD_ZD1211)
2541 		pktlen += totlen;
2542 	desc->pktlen = htole16(pktlen);
2543 
2544 	bits = (rate == 11) ? (totlen * 16) + 10 :
2545 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2546 	desc->plcp_length = htole16(bits / ratediv[phy]);
2547 	desc->plcp_service = 0;
2548 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2549 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2550 	desc->nextlen = 0;
2551 
2552 	if (ieee80211_radiotap_active_vap(vap)) {
2553 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2554 
2555 		tap->wt_flags = 0;
2556 		tap->wt_rate = rate;
2557 
2558 		ieee80211_radiotap_tx(vap, m0);
2559 	}
2560 
2561 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2562 	    "%s: sending data frame len=%zu rate=%u\n",
2563 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2564 		rate);
2565 
2566 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2567 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2568 
2569 	return (0);
2570 }
2571 
2572 static void
2573 zyd_start(struct ifnet *ifp)
2574 {
2575 	struct zyd_softc *sc = ifp->if_softc;
2576 	struct ieee80211_node *ni;
2577 	struct mbuf *m;
2578 
2579 	ZYD_LOCK(sc);
2580 	for (;;) {
2581 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2582 		if (m == NULL)
2583 			break;
2584 		if (sc->tx_nfree == 0) {
2585 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2586 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2587 			break;
2588 		}
2589 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2590 		if (zyd_tx_start(sc, m, ni) != 0) {
2591 			ieee80211_free_node(ni);
2592 			ifp->if_oerrors++;
2593 			break;
2594 		}
2595 	}
2596 	ZYD_UNLOCK(sc);
2597 }
2598 
2599 static int
2600 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2601 	const struct ieee80211_bpf_params *params)
2602 {
2603 	struct ieee80211com *ic = ni->ni_ic;
2604 	struct ifnet *ifp = ic->ic_ifp;
2605 	struct zyd_softc *sc = ifp->if_softc;
2606 
2607 	ZYD_LOCK(sc);
2608 	/* prevent management frames from being sent if we're not ready */
2609 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2610 		ZYD_UNLOCK(sc);
2611 		m_freem(m);
2612 		ieee80211_free_node(ni);
2613 		return (ENETDOWN);
2614 	}
2615 	if (sc->tx_nfree == 0) {
2616 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2617 		ZYD_UNLOCK(sc);
2618 		m_freem(m);
2619 		ieee80211_free_node(ni);
2620 		return (ENOBUFS);		/* XXX */
2621 	}
2622 
2623 	/*
2624 	 * Legacy path; interpret frame contents to decide
2625 	 * precisely how to send the frame.
2626 	 * XXX raw path
2627 	 */
2628 	if (zyd_tx_start(sc, m, ni) != 0) {
2629 		ZYD_UNLOCK(sc);
2630 		ifp->if_oerrors++;
2631 		ieee80211_free_node(ni);
2632 		return (EIO);
2633 	}
2634 	ZYD_UNLOCK(sc);
2635 	return (0);
2636 }
2637 
2638 static int
2639 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2640 {
2641 	struct zyd_softc *sc = ifp->if_softc;
2642 	struct ieee80211com *ic = ifp->if_l2com;
2643 	struct ifreq *ifr = (struct ifreq *) data;
2644 	int error = 0, startall = 0;
2645 
2646 	switch (cmd) {
2647 	case SIOCSIFFLAGS:
2648 		ZYD_LOCK(sc);
2649 		if (ifp->if_flags & IFF_UP) {
2650 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2651 				zyd_init_locked(sc);
2652 				startall = 1;
2653 			} else
2654 				zyd_set_multi(sc);
2655 		} else {
2656 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2657 				zyd_stop(sc);
2658 		}
2659 		ZYD_UNLOCK(sc);
2660 		if (startall)
2661 			ieee80211_start_all(ic);
2662 		break;
2663 	case SIOCGIFMEDIA:
2664 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2665 		break;
2666 	case SIOCGIFADDR:
2667 		error = ether_ioctl(ifp, cmd, data);
2668 		break;
2669 	default:
2670 		error = EINVAL;
2671 		break;
2672 	}
2673 	return (error);
2674 }
2675 
2676 static void
2677 zyd_init_locked(struct zyd_softc *sc)
2678 {
2679 	struct ifnet *ifp = sc->sc_ifp;
2680 	struct ieee80211com *ic = ifp->if_l2com;
2681 	struct usb_config_descriptor *cd;
2682 	int error;
2683 	uint32_t val;
2684 
2685 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2686 
2687 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2688 		error = zyd_loadfirmware(sc);
2689 		if (error != 0) {
2690 			device_printf(sc->sc_dev,
2691 			    "could not load firmware (error=%d)\n", error);
2692 			goto fail;
2693 		}
2694 
2695 		/* reset device */
2696 		cd = usbd_get_config_descriptor(sc->sc_udev);
2697 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2698 		    cd->bConfigurationValue);
2699 		if (error)
2700 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2701 
2702 		error = zyd_hw_init(sc);
2703 		if (error) {
2704 			device_printf(sc->sc_dev,
2705 			    "hardware initialization failed\n");
2706 			goto fail;
2707 		}
2708 
2709 		device_printf(sc->sc_dev,
2710 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2711 		    "BE%x NP%x Gain%x F%x\n",
2712 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2713 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2714 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2715 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2716 		    sc->sc_cckgain, sc->sc_fix_cr157);
2717 
2718 		/* read regulatory domain (currently unused) */
2719 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2720 		sc->sc_regdomain = val >> 16;
2721 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2722 		    sc->sc_regdomain);
2723 
2724 		/* we'll do software WEP decryption for now */
2725 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2726 		    __func__);
2727 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2728 
2729 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2730 	}
2731 
2732 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2733 		zyd_stop(sc);
2734 
2735 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2736 	    IF_LLADDR(ifp), ":");
2737 	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2738 	if (error != 0)
2739 		return;
2740 
2741 	/* set basic rates */
2742 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2743 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2744 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2745 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2746 	else	/* assumes 802.11b/g */
2747 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2748 
2749 	/* promiscuous mode */
2750 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2751 	/* multicast setup */
2752 	zyd_set_multi(sc);
2753 	/* set RX filter  */
2754 	error = zyd_set_rxfilter(sc);
2755 	if (error != 0)
2756 		goto fail;
2757 
2758 	/* switch radio transmitter ON */
2759 	error = zyd_switch_radio(sc, 1);
2760 	if (error != 0)
2761 		goto fail;
2762 	/* set default BSS channel */
2763 	zyd_set_chan(sc, ic->ic_curchan);
2764 
2765 	/*
2766 	 * Allocate Tx and Rx xfer queues.
2767 	 */
2768 	zyd_setup_tx_list(sc);
2769 
2770 	/* enable interrupts */
2771 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2772 
2773 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2774 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2775 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2776 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2777 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2778 
2779 	return;
2780 
2781 fail:	zyd_stop(sc);
2782 	return;
2783 }
2784 
2785 static void
2786 zyd_init(void *priv)
2787 {
2788 	struct zyd_softc *sc = priv;
2789 	struct ifnet *ifp = sc->sc_ifp;
2790 	struct ieee80211com *ic = ifp->if_l2com;
2791 
2792 	ZYD_LOCK(sc);
2793 	zyd_init_locked(sc);
2794 	ZYD_UNLOCK(sc);
2795 
2796 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2797 		ieee80211_start_all(ic);		/* start all vap's */
2798 }
2799 
2800 static void
2801 zyd_stop(struct zyd_softc *sc)
2802 {
2803 	struct ifnet *ifp = sc->sc_ifp;
2804 	int error;
2805 
2806 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2807 
2808 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2809 
2810 	/*
2811 	 * Drain all the transfers, if not already drained:
2812 	 */
2813 	ZYD_UNLOCK(sc);
2814 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2815 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2816 	ZYD_LOCK(sc);
2817 
2818 	zyd_unsetup_tx_list(sc);
2819 
2820 	/* Stop now if the device was never set up */
2821 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2822 		return;
2823 
2824 	/* switch radio transmitter OFF */
2825 	error = zyd_switch_radio(sc, 0);
2826 	if (error != 0)
2827 		goto fail;
2828 	/* disable Rx */
2829 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2830 	/* disable interrupts */
2831 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2832 
2833 fail:
2834 	return;
2835 }
2836 
2837 static int
2838 zyd_loadfirmware(struct zyd_softc *sc)
2839 {
2840 	struct usb_device_request req;
2841 	size_t size;
2842 	u_char *fw;
2843 	uint8_t stat;
2844 	uint16_t addr;
2845 
2846 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2847 		return (0);
2848 
2849 	if (sc->sc_macrev == ZYD_ZD1211) {
2850 		fw = (u_char *)zd1211_firmware;
2851 		size = sizeof(zd1211_firmware);
2852 	} else {
2853 		fw = (u_char *)zd1211b_firmware;
2854 		size = sizeof(zd1211b_firmware);
2855 	}
2856 
2857 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2858 	req.bRequest = ZYD_DOWNLOADREQ;
2859 	USETW(req.wIndex, 0);
2860 
2861 	addr = ZYD_FIRMWARE_START_ADDR;
2862 	while (size > 0) {
2863 		/*
2864 		 * When the transfer size is 4096 bytes, it is not
2865 		 * likely to be able to transfer it.
2866 		 * The cause is port or machine or chip?
2867 		 */
2868 		const int mlen = min(size, 64);
2869 
2870 		DPRINTF(sc, ZYD_DEBUG_FW,
2871 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2872 
2873 		USETW(req.wValue, addr);
2874 		USETW(req.wLength, mlen);
2875 		if (zyd_do_request(sc, &req, fw) != 0)
2876 			return (EIO);
2877 
2878 		addr += mlen / 2;
2879 		fw   += mlen;
2880 		size -= mlen;
2881 	}
2882 
2883 	/* check whether the upload succeeded */
2884 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2885 	req.bRequest = ZYD_DOWNLOADSTS;
2886 	USETW(req.wValue, 0);
2887 	USETW(req.wIndex, 0);
2888 	USETW(req.wLength, sizeof(stat));
2889 	if (zyd_do_request(sc, &req, &stat) != 0)
2890 		return (EIO);
2891 
2892 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2893 
2894 	return (stat & 0x80) ? (EIO) : (0);
2895 }
2896 
2897 static void
2898 zyd_scan_start(struct ieee80211com *ic)
2899 {
2900 	struct ifnet *ifp = ic->ic_ifp;
2901 	struct zyd_softc *sc = ifp->if_softc;
2902 
2903 	ZYD_LOCK(sc);
2904 	/* want broadcast address while scanning */
2905 	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2906 	ZYD_UNLOCK(sc);
2907 }
2908 
2909 static void
2910 zyd_scan_end(struct ieee80211com *ic)
2911 {
2912 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2913 
2914 	ZYD_LOCK(sc);
2915 	/* restore previous bssid */
2916 	zyd_set_bssid(sc, sc->sc_bssid);
2917 	ZYD_UNLOCK(sc);
2918 }
2919 
2920 static void
2921 zyd_set_channel(struct ieee80211com *ic)
2922 {
2923 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2924 
2925 	ZYD_LOCK(sc);
2926 	zyd_set_chan(sc, ic->ic_curchan);
2927 	ZYD_UNLOCK(sc);
2928 }
2929 
2930 static device_method_t zyd_methods[] = {
2931         /* Device interface */
2932         DEVMETHOD(device_probe, zyd_match),
2933         DEVMETHOD(device_attach, zyd_attach),
2934         DEVMETHOD(device_detach, zyd_detach),
2935 
2936 	{ 0, 0 }
2937 };
2938 
2939 static driver_t zyd_driver = {
2940         "zyd",
2941         zyd_methods,
2942         sizeof(struct zyd_softc)
2943 };
2944 
2945 static devclass_t zyd_devclass;
2946 
2947 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2948 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2949 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2950