1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 /* 23 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 24 */ 25 26 #include "opt_wlan.h" 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/sysctl.h> 31 #include <sys/lock.h> 32 #include <sys/mutex.h> 33 #include <sys/condvar.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #ifdef INET 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/if_ether.h> 58 #include <netinet/ip.h> 59 #endif 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_regdomain.h> 63 #include <net80211/ieee80211_radiotap.h> 64 #include <net80211/ieee80211_ratectl.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdi_util.h> 69 #include "usbdevs.h" 70 71 #include <dev/usb/wlan/if_zydreg.h> 72 #include <dev/usb/wlan/if_zydfw.h> 73 74 #ifdef USB_DEBUG 75 static int zyd_debug = 0; 76 77 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 78 "USB zyd"); 79 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 80 "zyd debug level"); 81 82 enum { 83 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 84 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 85 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 86 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 87 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 88 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 89 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 90 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 91 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 92 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 93 ZYD_DEBUG_ANY = 0xffffffff 94 }; 95 #define DPRINTF(sc, m, fmt, ...) do { \ 96 if (zyd_debug & (m)) \ 97 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 98 } while (0) 99 #else 100 #define DPRINTF(sc, m, fmt, ...) do { \ 101 (void) sc; \ 102 } while (0) 103 #endif 104 105 #define zyd_do_request(sc,req,data) \ 106 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 107 108 static device_probe_t zyd_match; 109 static device_attach_t zyd_attach; 110 static device_detach_t zyd_detach; 111 112 static usb_callback_t zyd_intr_read_callback; 113 static usb_callback_t zyd_intr_write_callback; 114 static usb_callback_t zyd_bulk_read_callback; 115 static usb_callback_t zyd_bulk_write_callback; 116 117 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 118 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 119 const uint8_t [IEEE80211_ADDR_LEN], 120 const uint8_t [IEEE80211_ADDR_LEN]); 121 static void zyd_vap_delete(struct ieee80211vap *); 122 static void zyd_tx_free(struct zyd_tx_data *, int); 123 static void zyd_setup_tx_list(struct zyd_softc *); 124 static void zyd_unsetup_tx_list(struct zyd_softc *); 125 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 126 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 127 void *, int, int); 128 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 129 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 130 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 131 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 132 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 133 static int zyd_lock_phy(struct zyd_softc *); 134 static int zyd_unlock_phy(struct zyd_softc *); 135 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 136 static const char *zyd_rf_name(uint8_t); 137 static int zyd_hw_init(struct zyd_softc *); 138 static int zyd_read_pod(struct zyd_softc *); 139 static int zyd_read_eeprom(struct zyd_softc *); 140 static int zyd_get_macaddr(struct zyd_softc *); 141 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 142 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 143 static int zyd_switch_radio(struct zyd_softc *, int); 144 static int zyd_set_led(struct zyd_softc *, int, int); 145 static void zyd_set_multi(struct zyd_softc *); 146 static void zyd_update_mcast(struct ieee80211com *); 147 static int zyd_set_rxfilter(struct zyd_softc *); 148 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 149 static int zyd_set_beacon_interval(struct zyd_softc *, int); 150 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 151 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 152 struct ieee80211_node *); 153 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 154 static void zyd_start(struct zyd_softc *); 155 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 156 const struct ieee80211_bpf_params *); 157 static void zyd_parent(struct ieee80211com *); 158 static void zyd_init_locked(struct zyd_softc *); 159 static void zyd_stop(struct zyd_softc *); 160 static int zyd_loadfirmware(struct zyd_softc *); 161 static void zyd_scan_start(struct ieee80211com *); 162 static void zyd_scan_end(struct ieee80211com *); 163 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 164 struct ieee80211_channel[]); 165 static void zyd_set_channel(struct ieee80211com *); 166 static int zyd_rfmd_init(struct zyd_rf *); 167 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 168 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 169 static int zyd_al2230_init(struct zyd_rf *); 170 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 171 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 172 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 173 static int zyd_al2230_init_b(struct zyd_rf *); 174 static int zyd_al7230B_init(struct zyd_rf *); 175 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 176 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 177 static int zyd_al2210_init(struct zyd_rf *); 178 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 179 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 180 static int zyd_gct_init(struct zyd_rf *); 181 static int zyd_gct_switch_radio(struct zyd_rf *, int); 182 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 183 static int zyd_gct_mode(struct zyd_rf *); 184 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 185 static int zyd_gct_write(struct zyd_rf *, uint16_t); 186 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 187 static int zyd_maxim2_init(struct zyd_rf *); 188 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 189 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 190 191 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 192 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 193 194 /* various supported device vendors/products */ 195 #define ZYD_ZD1211 0 196 #define ZYD_ZD1211B 1 197 198 #define ZYD_ZD1211_DEV(v,p) \ 199 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 200 #define ZYD_ZD1211B_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 202 static const STRUCT_USB_HOST_ID zyd_devs[] = { 203 /* ZYD_ZD1211 */ 204 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 205 ZYD_ZD1211_DEV(ABOCOM, WL54), 206 ZYD_ZD1211_DEV(ASUS, WL159G), 207 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 208 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 209 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 210 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 211 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 212 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 213 ZYD_ZD1211_DEV(SAGEM, XG760A), 214 ZYD_ZD1211_DEV(SENAO, NUB8301), 215 ZYD_ZD1211_DEV(SITECOMEU, WL113), 216 ZYD_ZD1211_DEV(SWEEX, ZD1211), 217 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 218 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 219 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 220 ZYD_ZD1211_DEV(TWINMOS, G240), 221 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 222 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 223 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 224 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 225 ZYD_ZD1211_DEV(ZCOM, ZD1211), 226 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 227 ZYD_ZD1211_DEV(ZYXEL, AG225H), 228 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 229 ZYD_ZD1211_DEV(ZYXEL, G200V2), 230 /* ZYD_ZD1211B */ 231 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 232 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 233 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 234 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 235 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 236 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 237 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 238 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 239 ZYD_ZD1211B_DEV(MELCO, KG54L), 240 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 241 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 242 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 243 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 244 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 245 ZYD_ZD1211B_DEV(USR, USR5423), 246 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 247 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 248 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 249 ZYD_ZD1211B_DEV(ZYXEL, M202), 250 ZYD_ZD1211B_DEV(ZYXEL, G202), 251 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 252 }; 253 254 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 255 [ZYD_BULK_WR] = { 256 .type = UE_BULK, 257 .endpoint = UE_ADDR_ANY, 258 .direction = UE_DIR_OUT, 259 .bufsize = ZYD_MAX_TXBUFSZ, 260 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 261 .callback = zyd_bulk_write_callback, 262 .ep_index = 0, 263 .timeout = 10000, /* 10 seconds */ 264 }, 265 [ZYD_BULK_RD] = { 266 .type = UE_BULK, 267 .endpoint = UE_ADDR_ANY, 268 .direction = UE_DIR_IN, 269 .bufsize = ZYX_MAX_RXBUFSZ, 270 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 271 .callback = zyd_bulk_read_callback, 272 .ep_index = 0, 273 }, 274 [ZYD_INTR_WR] = { 275 .type = UE_BULK_INTR, 276 .endpoint = UE_ADDR_ANY, 277 .direction = UE_DIR_OUT, 278 .bufsize = sizeof(struct zyd_cmd), 279 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 280 .callback = zyd_intr_write_callback, 281 .timeout = 1000, /* 1 second */ 282 .ep_index = 1, 283 }, 284 [ZYD_INTR_RD] = { 285 .type = UE_INTERRUPT, 286 .endpoint = UE_ADDR_ANY, 287 .direction = UE_DIR_IN, 288 .bufsize = sizeof(struct zyd_cmd), 289 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 290 .callback = zyd_intr_read_callback, 291 }, 292 }; 293 #define zyd_read16_m(sc, val, data) do { \ 294 error = zyd_read16(sc, val, data); \ 295 if (error != 0) \ 296 goto fail; \ 297 } while (0) 298 #define zyd_write16_m(sc, val, data) do { \ 299 error = zyd_write16(sc, val, data); \ 300 if (error != 0) \ 301 goto fail; \ 302 } while (0) 303 #define zyd_read32_m(sc, val, data) do { \ 304 error = zyd_read32(sc, val, data); \ 305 if (error != 0) \ 306 goto fail; \ 307 } while (0) 308 #define zyd_write32_m(sc, val, data) do { \ 309 error = zyd_write32(sc, val, data); \ 310 if (error != 0) \ 311 goto fail; \ 312 } while (0) 313 314 static int 315 zyd_match(device_t dev) 316 { 317 struct usb_attach_arg *uaa = device_get_ivars(dev); 318 319 if (uaa->usb_mode != USB_MODE_HOST) 320 return (ENXIO); 321 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 322 return (ENXIO); 323 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 324 return (ENXIO); 325 326 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 327 } 328 329 static int 330 zyd_attach(device_t dev) 331 { 332 struct usb_attach_arg *uaa = device_get_ivars(dev); 333 struct zyd_softc *sc = device_get_softc(dev); 334 struct ieee80211com *ic = &sc->sc_ic; 335 uint8_t iface_index; 336 int error; 337 338 if (uaa->info.bcdDevice < 0x4330) { 339 device_printf(dev, "device version mismatch: 0x%X " 340 "(only >= 43.30 supported)\n", 341 uaa->info.bcdDevice); 342 return (EINVAL); 343 } 344 345 device_set_usb_desc(dev); 346 sc->sc_dev = dev; 347 sc->sc_udev = uaa->device; 348 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 349 350 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 351 MTX_NETWORK_LOCK, MTX_DEF); 352 STAILQ_INIT(&sc->sc_rqh); 353 mbufq_init(&sc->sc_snd, ifqmaxlen); 354 355 iface_index = ZYD_IFACE_INDEX; 356 error = usbd_transfer_setup(uaa->device, 357 &iface_index, sc->sc_xfer, zyd_config, 358 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 359 if (error) { 360 device_printf(dev, "could not allocate USB transfers, " 361 "err=%s\n", usbd_errstr(error)); 362 goto detach; 363 } 364 365 ZYD_LOCK(sc); 366 if ((error = zyd_get_macaddr(sc)) != 0) { 367 device_printf(sc->sc_dev, "could not read EEPROM\n"); 368 ZYD_UNLOCK(sc); 369 goto detach; 370 } 371 ZYD_UNLOCK(sc); 372 373 ic->ic_softc = sc; 374 ic->ic_name = device_get_nameunit(dev); 375 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 376 ic->ic_opmode = IEEE80211_M_STA; 377 378 /* set device capabilities */ 379 ic->ic_caps = 380 IEEE80211_C_STA /* station mode */ 381 | IEEE80211_C_MONITOR /* monitor mode */ 382 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 383 | IEEE80211_C_SHSLOT /* short slot time supported */ 384 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 385 | IEEE80211_C_WPA /* 802.11i */ 386 ; 387 388 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 389 ic->ic_channels); 390 391 ieee80211_ifattach(ic); 392 ic->ic_raw_xmit = zyd_raw_xmit; 393 ic->ic_scan_start = zyd_scan_start; 394 ic->ic_scan_end = zyd_scan_end; 395 ic->ic_getradiocaps = zyd_getradiocaps; 396 ic->ic_set_channel = zyd_set_channel; 397 ic->ic_vap_create = zyd_vap_create; 398 ic->ic_vap_delete = zyd_vap_delete; 399 ic->ic_update_mcast = zyd_update_mcast; 400 ic->ic_update_promisc = zyd_update_mcast; 401 ic->ic_parent = zyd_parent; 402 ic->ic_transmit = zyd_transmit; 403 404 ieee80211_radiotap_attach(ic, 405 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 406 ZYD_TX_RADIOTAP_PRESENT, 407 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 408 ZYD_RX_RADIOTAP_PRESENT); 409 410 if (bootverbose) 411 ieee80211_announce(ic); 412 413 return (0); 414 415 detach: 416 zyd_detach(dev); 417 return (ENXIO); /* failure */ 418 } 419 420 static void 421 zyd_drain_mbufq(struct zyd_softc *sc) 422 { 423 struct mbuf *m; 424 struct ieee80211_node *ni; 425 426 ZYD_LOCK_ASSERT(sc, MA_OWNED); 427 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 428 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 429 m->m_pkthdr.rcvif = NULL; 430 ieee80211_free_node(ni); 431 m_freem(m); 432 } 433 } 434 435 static int 436 zyd_detach(device_t dev) 437 { 438 struct zyd_softc *sc = device_get_softc(dev); 439 struct ieee80211com *ic = &sc->sc_ic; 440 unsigned x; 441 442 /* 443 * Prevent further allocations from RX/TX data 444 * lists and ioctls: 445 */ 446 ZYD_LOCK(sc); 447 sc->sc_flags |= ZYD_FLAG_DETACHED; 448 zyd_drain_mbufq(sc); 449 STAILQ_INIT(&sc->tx_q); 450 STAILQ_INIT(&sc->tx_free); 451 ZYD_UNLOCK(sc); 452 453 /* drain USB transfers */ 454 for (x = 0; x != ZYD_N_TRANSFER; x++) 455 usbd_transfer_drain(sc->sc_xfer[x]); 456 457 /* free TX list, if any */ 458 ZYD_LOCK(sc); 459 zyd_unsetup_tx_list(sc); 460 ZYD_UNLOCK(sc); 461 462 /* free USB transfers and some data buffers */ 463 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 464 465 if (ic->ic_softc == sc) 466 ieee80211_ifdetach(ic); 467 mtx_destroy(&sc->sc_mtx); 468 469 return (0); 470 } 471 472 static struct ieee80211vap * 473 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 474 enum ieee80211_opmode opmode, int flags, 475 const uint8_t bssid[IEEE80211_ADDR_LEN], 476 const uint8_t mac[IEEE80211_ADDR_LEN]) 477 { 478 struct zyd_vap *zvp; 479 struct ieee80211vap *vap; 480 481 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 482 return (NULL); 483 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 484 vap = &zvp->vap; 485 486 /* enable s/w bmiss handling for sta mode */ 487 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 488 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 489 /* out of memory */ 490 free(zvp, M_80211_VAP); 491 return (NULL); 492 } 493 494 /* override state transition machine */ 495 zvp->newstate = vap->iv_newstate; 496 vap->iv_newstate = zyd_newstate; 497 498 ieee80211_ratectl_init(vap); 499 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 500 501 /* complete setup */ 502 ieee80211_vap_attach(vap, ieee80211_media_change, 503 ieee80211_media_status, mac); 504 ic->ic_opmode = opmode; 505 return (vap); 506 } 507 508 static void 509 zyd_vap_delete(struct ieee80211vap *vap) 510 { 511 struct zyd_vap *zvp = ZYD_VAP(vap); 512 513 ieee80211_ratectl_deinit(vap); 514 ieee80211_vap_detach(vap); 515 free(zvp, M_80211_VAP); 516 } 517 518 static void 519 zyd_tx_free(struct zyd_tx_data *data, int txerr) 520 { 521 struct zyd_softc *sc = data->sc; 522 523 if (data->m != NULL) { 524 ieee80211_tx_complete(data->ni, data->m, txerr); 525 data->m = NULL; 526 data->ni = NULL; 527 } 528 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 529 sc->tx_nfree++; 530 } 531 532 static void 533 zyd_setup_tx_list(struct zyd_softc *sc) 534 { 535 struct zyd_tx_data *data; 536 int i; 537 538 sc->tx_nfree = 0; 539 STAILQ_INIT(&sc->tx_q); 540 STAILQ_INIT(&sc->tx_free); 541 542 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 543 data = &sc->tx_data[i]; 544 545 data->sc = sc; 546 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 547 sc->tx_nfree++; 548 } 549 } 550 551 static void 552 zyd_unsetup_tx_list(struct zyd_softc *sc) 553 { 554 struct zyd_tx_data *data; 555 int i; 556 557 /* make sure any subsequent use of the queues will fail */ 558 sc->tx_nfree = 0; 559 STAILQ_INIT(&sc->tx_q); 560 STAILQ_INIT(&sc->tx_free); 561 562 /* free up all node references and mbufs */ 563 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 564 data = &sc->tx_data[i]; 565 566 if (data->m != NULL) { 567 m_freem(data->m); 568 data->m = NULL; 569 } 570 if (data->ni != NULL) { 571 ieee80211_free_node(data->ni); 572 data->ni = NULL; 573 } 574 } 575 } 576 577 static int 578 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 579 { 580 struct zyd_vap *zvp = ZYD_VAP(vap); 581 struct ieee80211com *ic = vap->iv_ic; 582 struct zyd_softc *sc = ic->ic_softc; 583 int error; 584 585 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 586 ieee80211_state_name[vap->iv_state], 587 ieee80211_state_name[nstate]); 588 589 IEEE80211_UNLOCK(ic); 590 ZYD_LOCK(sc); 591 switch (nstate) { 592 case IEEE80211_S_AUTH: 593 zyd_set_chan(sc, ic->ic_curchan); 594 break; 595 case IEEE80211_S_RUN: 596 if (vap->iv_opmode == IEEE80211_M_MONITOR) 597 break; 598 599 /* turn link LED on */ 600 error = zyd_set_led(sc, ZYD_LED1, 1); 601 if (error != 0) 602 break; 603 604 /* make data LED blink upon Tx */ 605 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 606 607 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 608 zyd_set_bssid(sc, sc->sc_bssid); 609 break; 610 default: 611 break; 612 } 613 fail: 614 ZYD_UNLOCK(sc); 615 IEEE80211_LOCK(ic); 616 return (zvp->newstate(vap, nstate, arg)); 617 } 618 619 /* 620 * Callback handler for interrupt transfer 621 */ 622 static void 623 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 624 { 625 struct zyd_softc *sc = usbd_xfer_softc(xfer); 626 struct ieee80211com *ic = &sc->sc_ic; 627 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 628 struct ieee80211_node *ni; 629 struct zyd_cmd *cmd = &sc->sc_ibuf; 630 struct usb_page_cache *pc; 631 int datalen; 632 int actlen; 633 634 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 635 636 switch (USB_GET_STATE(xfer)) { 637 case USB_ST_TRANSFERRED: 638 pc = usbd_xfer_get_frame(xfer, 0); 639 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 640 641 switch (le16toh(cmd->code)) { 642 case ZYD_NOTIF_RETRYSTATUS: 643 { 644 struct zyd_notif_retry *retry = 645 (struct zyd_notif_retry *)cmd->data; 646 uint16_t count = le16toh(retry->count); 647 648 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 649 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 650 le16toh(retry->rate), ether_sprintf(retry->macaddr), 651 count & 0xff, count); 652 653 /* 654 * Find the node to which the packet was sent and 655 * update its retry statistics. In BSS mode, this node 656 * is the AP we're associated to so no lookup is 657 * actually needed. 658 */ 659 ni = ieee80211_find_txnode(vap, retry->macaddr); 660 if (ni != NULL) { 661 struct ieee80211_ratectl_tx_status *txs = 662 &sc->sc_txs; 663 int retrycnt = count & 0xff; 664 665 txs->flags = 666 IEEE80211_RATECTL_STATUS_LONG_RETRY; 667 txs->long_retries = retrycnt; 668 if (count & 0x100) { 669 txs->status = 670 IEEE80211_RATECTL_TX_FAIL_LONG; 671 } else { 672 txs->status = 673 IEEE80211_RATECTL_TX_SUCCESS; 674 } 675 676 ieee80211_ratectl_tx_complete(ni, txs); 677 ieee80211_free_node(ni); 678 } 679 if (count & 0x100) 680 /* too many retries */ 681 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 682 1); 683 break; 684 } 685 case ZYD_NOTIF_IORD: 686 { 687 struct zyd_rq *rqp; 688 689 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 690 break; /* HMAC interrupt */ 691 692 datalen = actlen - sizeof(cmd->code); 693 datalen -= 2; /* XXX: padding? */ 694 695 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 696 int i; 697 int count; 698 699 if (rqp->olen != datalen) 700 continue; 701 count = rqp->olen / sizeof(struct zyd_pair); 702 for (i = 0; i < count; i++) { 703 if (*(((const uint16_t *)rqp->idata) + i) != 704 (((struct zyd_pair *)cmd->data) + i)->reg) 705 break; 706 } 707 if (i != count) 708 continue; 709 /* copy answer into caller-supplied buffer */ 710 memcpy(rqp->odata, cmd->data, rqp->olen); 711 DPRINTF(sc, ZYD_DEBUG_CMD, 712 "command %p complete, data = %*D \n", 713 rqp, rqp->olen, (char *)rqp->odata, ":"); 714 wakeup(rqp); /* wakeup caller */ 715 break; 716 } 717 if (rqp == NULL) { 718 device_printf(sc->sc_dev, 719 "unexpected IORD notification %*D\n", 720 datalen, cmd->data, ":"); 721 } 722 break; 723 } 724 default: 725 device_printf(sc->sc_dev, "unknown notification %x\n", 726 le16toh(cmd->code)); 727 } 728 729 /* FALLTHROUGH */ 730 case USB_ST_SETUP: 731 tr_setup: 732 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 733 usbd_transfer_submit(xfer); 734 break; 735 736 default: /* Error */ 737 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 738 usbd_errstr(error)); 739 740 if (error != USB_ERR_CANCELLED) { 741 /* try to clear stall first */ 742 usbd_xfer_set_stall(xfer); 743 goto tr_setup; 744 } 745 break; 746 } 747 } 748 749 static void 750 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 751 { 752 struct zyd_softc *sc = usbd_xfer_softc(xfer); 753 struct zyd_rq *rqp, *cmd; 754 struct usb_page_cache *pc; 755 756 switch (USB_GET_STATE(xfer)) { 757 case USB_ST_TRANSFERRED: 758 cmd = usbd_xfer_get_priv(xfer); 759 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 760 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 761 /* Ensure the cached rq pointer is still valid */ 762 if (rqp == cmd && 763 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 764 wakeup(rqp); /* wakeup caller */ 765 } 766 767 /* FALLTHROUGH */ 768 case USB_ST_SETUP: 769 tr_setup: 770 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 771 if (rqp->flags & ZYD_CMD_FLAG_SENT) 772 continue; 773 774 pc = usbd_xfer_get_frame(xfer, 0); 775 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 776 777 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 778 usbd_xfer_set_priv(xfer, rqp); 779 rqp->flags |= ZYD_CMD_FLAG_SENT; 780 usbd_transfer_submit(xfer); 781 break; 782 } 783 break; 784 785 default: /* Error */ 786 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 787 usbd_errstr(error)); 788 789 if (error != USB_ERR_CANCELLED) { 790 /* try to clear stall first */ 791 usbd_xfer_set_stall(xfer); 792 goto tr_setup; 793 } 794 break; 795 } 796 } 797 798 static int 799 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 800 void *odata, int olen, int flags) 801 { 802 struct zyd_cmd cmd; 803 struct zyd_rq rq; 804 int error; 805 806 if (ilen > (int)sizeof(cmd.data)) 807 return (EINVAL); 808 809 cmd.code = htole16(code); 810 memcpy(cmd.data, idata, ilen); 811 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 812 &rq, ilen, idata, ":"); 813 814 rq.cmd = &cmd; 815 rq.idata = idata; 816 rq.odata = odata; 817 rq.ilen = sizeof(uint16_t) + ilen; 818 rq.olen = olen; 819 rq.flags = flags; 820 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 821 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 822 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 823 824 /* wait at most one second for command reply */ 825 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 826 if (error) 827 device_printf(sc->sc_dev, "command timeout\n"); 828 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 829 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 830 &rq, error); 831 832 return (error); 833 } 834 835 static int 836 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 837 { 838 struct zyd_pair tmp; 839 int error; 840 841 reg = htole16(reg); 842 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 843 ZYD_CMD_FLAG_READ); 844 if (error == 0) 845 *val = le16toh(tmp.val); 846 return (error); 847 } 848 849 static int 850 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 851 { 852 struct zyd_pair tmp[2]; 853 uint16_t regs[2]; 854 int error; 855 856 regs[0] = htole16(ZYD_REG32_HI(reg)); 857 regs[1] = htole16(ZYD_REG32_LO(reg)); 858 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 859 ZYD_CMD_FLAG_READ); 860 if (error == 0) 861 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 862 return (error); 863 } 864 865 static int 866 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 867 { 868 struct zyd_pair pair; 869 870 pair.reg = htole16(reg); 871 pair.val = htole16(val); 872 873 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 874 } 875 876 static int 877 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 878 { 879 struct zyd_pair pair[2]; 880 881 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 882 pair[0].val = htole16(val >> 16); 883 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 884 pair[1].val = htole16(val & 0xffff); 885 886 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 887 } 888 889 static int 890 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 891 { 892 struct zyd_rf *rf = &sc->sc_rf; 893 struct zyd_rfwrite_cmd req; 894 uint16_t cr203; 895 int error, i; 896 897 zyd_read16_m(sc, ZYD_CR203, &cr203); 898 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 899 900 req.code = htole16(2); 901 req.width = htole16(rf->width); 902 for (i = 0; i < rf->width; i++) { 903 req.bit[i] = htole16(cr203); 904 if (val & (1 << (rf->width - 1 - i))) 905 req.bit[i] |= htole16(ZYD_RF_DATA); 906 } 907 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 908 fail: 909 return (error); 910 } 911 912 static int 913 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 914 { 915 int error; 916 917 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 918 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 919 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 920 fail: 921 return (error); 922 } 923 924 static int 925 zyd_lock_phy(struct zyd_softc *sc) 926 { 927 int error; 928 uint32_t tmp; 929 930 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 931 tmp &= ~ZYD_UNLOCK_PHY_REGS; 932 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 933 fail: 934 return (error); 935 } 936 937 static int 938 zyd_unlock_phy(struct zyd_softc *sc) 939 { 940 int error; 941 uint32_t tmp; 942 943 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 944 tmp |= ZYD_UNLOCK_PHY_REGS; 945 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 946 fail: 947 return (error); 948 } 949 950 /* 951 * RFMD RF methods. 952 */ 953 static int 954 zyd_rfmd_init(struct zyd_rf *rf) 955 { 956 struct zyd_softc *sc = rf->rf_sc; 957 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 958 static const uint32_t rfini[] = ZYD_RFMD_RF; 959 int i, error; 960 961 /* init RF-dependent PHY registers */ 962 for (i = 0; i < nitems(phyini); i++) { 963 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 964 } 965 966 /* init RFMD radio */ 967 for (i = 0; i < nitems(rfini); i++) { 968 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 969 return (error); 970 } 971 fail: 972 return (error); 973 } 974 975 static int 976 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 977 { 978 int error; 979 struct zyd_softc *sc = rf->rf_sc; 980 981 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 982 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 983 fail: 984 return (error); 985 } 986 987 static int 988 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 989 { 990 int error; 991 struct zyd_softc *sc = rf->rf_sc; 992 static const struct { 993 uint32_t r1, r2; 994 } rfprog[] = ZYD_RFMD_CHANTABLE; 995 996 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 997 if (error != 0) 998 goto fail; 999 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1000 if (error != 0) 1001 goto fail; 1002 1003 fail: 1004 return (error); 1005 } 1006 1007 /* 1008 * AL2230 RF methods. 1009 */ 1010 static int 1011 zyd_al2230_init(struct zyd_rf *rf) 1012 { 1013 struct zyd_softc *sc = rf->rf_sc; 1014 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1015 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1016 static const struct zyd_phy_pair phypll[] = { 1017 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1018 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1019 }; 1020 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1021 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1022 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1023 int i, error; 1024 1025 /* init RF-dependent PHY registers */ 1026 for (i = 0; i < nitems(phyini); i++) 1027 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1028 1029 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1030 for (i = 0; i < nitems(phy2230s); i++) 1031 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1032 } 1033 1034 /* init AL2230 radio */ 1035 for (i = 0; i < nitems(rfini1); i++) { 1036 error = zyd_rfwrite(sc, rfini1[i]); 1037 if (error != 0) 1038 goto fail; 1039 } 1040 1041 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1042 error = zyd_rfwrite(sc, 0x000824); 1043 else 1044 error = zyd_rfwrite(sc, 0x0005a4); 1045 if (error != 0) 1046 goto fail; 1047 1048 for (i = 0; i < nitems(rfini2); i++) { 1049 error = zyd_rfwrite(sc, rfini2[i]); 1050 if (error != 0) 1051 goto fail; 1052 } 1053 1054 for (i = 0; i < nitems(phypll); i++) 1055 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1056 1057 for (i = 0; i < nitems(rfini3); i++) { 1058 error = zyd_rfwrite(sc, rfini3[i]); 1059 if (error != 0) 1060 goto fail; 1061 } 1062 fail: 1063 return (error); 1064 } 1065 1066 static int 1067 zyd_al2230_fini(struct zyd_rf *rf) 1068 { 1069 int error, i; 1070 struct zyd_softc *sc = rf->rf_sc; 1071 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1072 1073 for (i = 0; i < nitems(phy); i++) 1074 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1075 1076 if (sc->sc_newphy != 0) 1077 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1078 1079 zyd_write16_m(sc, ZYD_CR203, 0x6); 1080 fail: 1081 return (error); 1082 } 1083 1084 static int 1085 zyd_al2230_init_b(struct zyd_rf *rf) 1086 { 1087 struct zyd_softc *sc = rf->rf_sc; 1088 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1089 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1090 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1091 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1092 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1093 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1094 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1095 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1096 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1097 int i, error; 1098 1099 for (i = 0; i < nitems(phy1); i++) 1100 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1101 1102 /* init RF-dependent PHY registers */ 1103 for (i = 0; i < nitems(phyini); i++) 1104 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1105 1106 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1107 for (i = 0; i < nitems(phy2230s); i++) 1108 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1109 } 1110 1111 for (i = 0; i < 3; i++) { 1112 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1113 if (error != 0) 1114 return (error); 1115 } 1116 1117 for (i = 0; i < nitems(rfini_part1); i++) { 1118 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1119 if (error != 0) 1120 return (error); 1121 } 1122 1123 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1124 error = zyd_rfwrite(sc, 0x241000); 1125 else 1126 error = zyd_rfwrite(sc, 0x25a000); 1127 if (error != 0) 1128 goto fail; 1129 1130 for (i = 0; i < nitems(rfini_part2); i++) { 1131 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1132 if (error != 0) 1133 return (error); 1134 } 1135 1136 for (i = 0; i < nitems(phy2); i++) 1137 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1138 1139 for (i = 0; i < nitems(rfini_part3); i++) { 1140 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1141 if (error != 0) 1142 return (error); 1143 } 1144 1145 for (i = 0; i < nitems(phy3); i++) 1146 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1147 1148 error = zyd_al2230_fini(rf); 1149 fail: 1150 return (error); 1151 } 1152 1153 static int 1154 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1155 { 1156 struct zyd_softc *sc = rf->rf_sc; 1157 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1158 1159 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1160 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1161 fail: 1162 return (error); 1163 } 1164 1165 static int 1166 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1167 { 1168 int error, i; 1169 struct zyd_softc *sc = rf->rf_sc; 1170 static const struct zyd_phy_pair phy1[] = { 1171 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1172 }; 1173 static const struct { 1174 uint32_t r1, r2, r3; 1175 } rfprog[] = ZYD_AL2230_CHANTABLE; 1176 1177 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1178 if (error != 0) 1179 goto fail; 1180 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1181 if (error != 0) 1182 goto fail; 1183 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1184 if (error != 0) 1185 goto fail; 1186 1187 for (i = 0; i < nitems(phy1); i++) 1188 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1189 fail: 1190 return (error); 1191 } 1192 1193 static int 1194 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1195 { 1196 int error, i; 1197 struct zyd_softc *sc = rf->rf_sc; 1198 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1199 static const struct { 1200 uint32_t r1, r2, r3; 1201 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1202 1203 for (i = 0; i < nitems(phy1); i++) 1204 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1205 1206 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1207 if (error != 0) 1208 goto fail; 1209 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1210 if (error != 0) 1211 goto fail; 1212 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1213 if (error != 0) 1214 goto fail; 1215 error = zyd_al2230_fini(rf); 1216 fail: 1217 return (error); 1218 } 1219 1220 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1221 { \ 1222 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1223 { ZYD_CR47, 0x1e } \ 1224 } 1225 1226 static int 1227 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1228 { 1229 int error = 0, i; 1230 struct zyd_softc *sc = rf->rf_sc; 1231 struct ieee80211com *ic = &sc->sc_ic; 1232 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1233 int chan = ieee80211_chan2ieee(ic, c); 1234 1235 if (chan == 1 || chan == 11) 1236 r[0].val = 0x12; 1237 1238 for (i = 0; i < nitems(r); i++) 1239 zyd_write16_m(sc, r[i].reg, r[i].val); 1240 fail: 1241 return (error); 1242 } 1243 1244 /* 1245 * AL7230B RF methods. 1246 */ 1247 static int 1248 zyd_al7230B_init(struct zyd_rf *rf) 1249 { 1250 struct zyd_softc *sc = rf->rf_sc; 1251 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1252 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1253 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1254 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1255 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1256 int i, error; 1257 1258 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1259 1260 /* init RF-dependent PHY registers, part one */ 1261 for (i = 0; i < nitems(phyini_1); i++) 1262 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1263 1264 /* init AL7230B radio, part one */ 1265 for (i = 0; i < nitems(rfini_1); i++) { 1266 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1267 return (error); 1268 } 1269 /* init RF-dependent PHY registers, part two */ 1270 for (i = 0; i < nitems(phyini_2); i++) 1271 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1272 1273 /* init AL7230B radio, part two */ 1274 for (i = 0; i < nitems(rfini_2); i++) { 1275 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1276 return (error); 1277 } 1278 /* init RF-dependent PHY registers, part three */ 1279 for (i = 0; i < nitems(phyini_3); i++) 1280 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1281 fail: 1282 return (error); 1283 } 1284 1285 static int 1286 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1287 { 1288 int error; 1289 struct zyd_softc *sc = rf->rf_sc; 1290 1291 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1292 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1293 fail: 1294 return (error); 1295 } 1296 1297 static int 1298 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1299 { 1300 struct zyd_softc *sc = rf->rf_sc; 1301 static const struct { 1302 uint32_t r1, r2; 1303 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1304 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1305 int i, error; 1306 1307 zyd_write16_m(sc, ZYD_CR240, 0x57); 1308 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1309 1310 for (i = 0; i < nitems(rfsc); i++) { 1311 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1312 return (error); 1313 } 1314 1315 zyd_write16_m(sc, ZYD_CR128, 0x14); 1316 zyd_write16_m(sc, ZYD_CR129, 0x12); 1317 zyd_write16_m(sc, ZYD_CR130, 0x10); 1318 zyd_write16_m(sc, ZYD_CR38, 0x38); 1319 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1320 1321 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1322 if (error != 0) 1323 goto fail; 1324 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1325 if (error != 0) 1326 goto fail; 1327 error = zyd_rfwrite(sc, 0x3c9000); 1328 if (error != 0) 1329 goto fail; 1330 1331 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1332 zyd_write16_m(sc, ZYD_CR203, 0x06); 1333 zyd_write16_m(sc, ZYD_CR240, 0x08); 1334 fail: 1335 return (error); 1336 } 1337 1338 /* 1339 * AL2210 RF methods. 1340 */ 1341 static int 1342 zyd_al2210_init(struct zyd_rf *rf) 1343 { 1344 struct zyd_softc *sc = rf->rf_sc; 1345 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1346 static const uint32_t rfini[] = ZYD_AL2210_RF; 1347 uint32_t tmp; 1348 int i, error; 1349 1350 zyd_write32_m(sc, ZYD_CR18, 2); 1351 1352 /* init RF-dependent PHY registers */ 1353 for (i = 0; i < nitems(phyini); i++) 1354 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1355 1356 /* init AL2210 radio */ 1357 for (i = 0; i < nitems(rfini); i++) { 1358 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1359 return (error); 1360 } 1361 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1362 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1363 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1364 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1365 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1366 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1367 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1368 zyd_write32_m(sc, ZYD_CR18, 3); 1369 fail: 1370 return (error); 1371 } 1372 1373 static int 1374 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1375 { 1376 /* vendor driver does nothing for this RF chip */ 1377 1378 return (0); 1379 } 1380 1381 static int 1382 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1383 { 1384 int error; 1385 struct zyd_softc *sc = rf->rf_sc; 1386 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1387 uint32_t tmp; 1388 1389 zyd_write32_m(sc, ZYD_CR18, 2); 1390 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1391 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1392 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1393 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1394 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1395 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1396 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1397 1398 /* actually set the channel */ 1399 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1400 if (error != 0) 1401 goto fail; 1402 1403 zyd_write32_m(sc, ZYD_CR18, 3); 1404 fail: 1405 return (error); 1406 } 1407 1408 /* 1409 * GCT RF methods. 1410 */ 1411 static int 1412 zyd_gct_init(struct zyd_rf *rf) 1413 { 1414 #define ZYD_GCT_INTR_REG 0x85c1 1415 struct zyd_softc *sc = rf->rf_sc; 1416 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1417 static const uint32_t rfini[] = ZYD_GCT_RF; 1418 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1419 int i, idx = -1, error; 1420 uint16_t data; 1421 1422 /* init RF-dependent PHY registers */ 1423 for (i = 0; i < nitems(phyini); i++) 1424 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1425 1426 /* init cgt radio */ 1427 for (i = 0; i < nitems(rfini); i++) { 1428 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1429 return (error); 1430 } 1431 1432 error = zyd_gct_mode(rf); 1433 if (error != 0) 1434 return (error); 1435 1436 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1437 error = zyd_gct_set_channel_synth(rf, 1, 0); 1438 if (error != 0) 1439 goto fail; 1440 error = zyd_gct_write(rf, vco[i][0]); 1441 if (error != 0) 1442 goto fail; 1443 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1444 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1445 if ((data & 0xf) == 0) { 1446 idx = i; 1447 break; 1448 } 1449 } 1450 if (idx == -1) { 1451 error = zyd_gct_set_channel_synth(rf, 1, 1); 1452 if (error != 0) 1453 goto fail; 1454 error = zyd_gct_write(rf, 0x6662); 1455 if (error != 0) 1456 goto fail; 1457 } 1458 1459 rf->idx = idx; 1460 zyd_write16_m(sc, ZYD_CR203, 0x6); 1461 fail: 1462 return (error); 1463 #undef ZYD_GCT_INTR_REG 1464 } 1465 1466 static int 1467 zyd_gct_mode(struct zyd_rf *rf) 1468 { 1469 struct zyd_softc *sc = rf->rf_sc; 1470 static const uint32_t mode[] = { 1471 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1472 }; 1473 int i, error; 1474 1475 for (i = 0; i < nitems(mode); i++) { 1476 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1477 break; 1478 } 1479 return (error); 1480 } 1481 1482 static int 1483 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1484 { 1485 int error, idx = chan - 1; 1486 struct zyd_softc *sc = rf->rf_sc; 1487 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1488 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1489 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1490 1491 error = zyd_rfwrite(sc, 1492 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1493 if (error != 0) 1494 return (error); 1495 return zyd_rfwrite(sc, div_synth[idx]); 1496 } 1497 1498 static int 1499 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1500 { 1501 struct zyd_softc *sc = rf->rf_sc; 1502 1503 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1504 } 1505 1506 static int 1507 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1508 { 1509 int error; 1510 struct zyd_softc *sc = rf->rf_sc; 1511 1512 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1513 if (error != 0) 1514 return (error); 1515 1516 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1517 zyd_write16_m(sc, ZYD_CR251, 1518 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1519 fail: 1520 return (error); 1521 } 1522 1523 static int 1524 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1525 { 1526 int error, i; 1527 struct zyd_softc *sc = rf->rf_sc; 1528 static const struct zyd_phy_pair cmd[] = { 1529 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1530 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1531 }; 1532 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1533 1534 error = zyd_gct_set_channel_synth(rf, chan, 0); 1535 if (error != 0) 1536 goto fail; 1537 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1538 vco[rf->idx][((chan - 1) / 2)]); 1539 if (error != 0) 1540 goto fail; 1541 error = zyd_gct_mode(rf); 1542 if (error != 0) 1543 return (error); 1544 for (i = 0; i < nitems(cmd); i++) 1545 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1546 error = zyd_gct_txgain(rf, chan); 1547 if (error != 0) 1548 return (error); 1549 zyd_write16_m(sc, ZYD_CR203, 0x6); 1550 fail: 1551 return (error); 1552 } 1553 1554 static int 1555 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1556 { 1557 struct zyd_softc *sc = rf->rf_sc; 1558 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1559 uint8_t idx = sc->sc_pwrint[chan - 1]; 1560 1561 if (idx >= nitems(txgain)) { 1562 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1563 chan, idx); 1564 return 0; 1565 } 1566 1567 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1568 } 1569 1570 /* 1571 * Maxim2 RF methods. 1572 */ 1573 static int 1574 zyd_maxim2_init(struct zyd_rf *rf) 1575 { 1576 struct zyd_softc *sc = rf->rf_sc; 1577 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1578 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1579 uint16_t tmp; 1580 int i, error; 1581 1582 /* init RF-dependent PHY registers */ 1583 for (i = 0; i < nitems(phyini); i++) 1584 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1585 1586 zyd_read16_m(sc, ZYD_CR203, &tmp); 1587 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1588 1589 /* init maxim2 radio */ 1590 for (i = 0; i < nitems(rfini); i++) { 1591 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1592 return (error); 1593 } 1594 zyd_read16_m(sc, ZYD_CR203, &tmp); 1595 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1596 fail: 1597 return (error); 1598 } 1599 1600 static int 1601 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1602 { 1603 1604 /* vendor driver does nothing for this RF chip */ 1605 return (0); 1606 } 1607 1608 static int 1609 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1610 { 1611 struct zyd_softc *sc = rf->rf_sc; 1612 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1613 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1614 static const struct { 1615 uint32_t r1, r2; 1616 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1617 uint16_t tmp; 1618 int i, error; 1619 1620 /* 1621 * Do the same as we do when initializing it, except for the channel 1622 * values coming from the two channel tables. 1623 */ 1624 1625 /* init RF-dependent PHY registers */ 1626 for (i = 0; i < nitems(phyini); i++) 1627 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1628 1629 zyd_read16_m(sc, ZYD_CR203, &tmp); 1630 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1631 1632 /* first two values taken from the chantables */ 1633 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1634 if (error != 0) 1635 goto fail; 1636 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1637 if (error != 0) 1638 goto fail; 1639 1640 /* init maxim2 radio - skipping the two first values */ 1641 for (i = 2; i < nitems(rfini); i++) { 1642 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1643 return (error); 1644 } 1645 zyd_read16_m(sc, ZYD_CR203, &tmp); 1646 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1647 fail: 1648 return (error); 1649 } 1650 1651 static int 1652 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1653 { 1654 struct zyd_rf *rf = &sc->sc_rf; 1655 1656 rf->rf_sc = sc; 1657 rf->update_pwr = 1; 1658 1659 switch (type) { 1660 case ZYD_RF_RFMD: 1661 rf->init = zyd_rfmd_init; 1662 rf->switch_radio = zyd_rfmd_switch_radio; 1663 rf->set_channel = zyd_rfmd_set_channel; 1664 rf->width = 24; /* 24-bit RF values */ 1665 break; 1666 case ZYD_RF_AL2230: 1667 case ZYD_RF_AL2230S: 1668 if (sc->sc_macrev == ZYD_ZD1211B) { 1669 rf->init = zyd_al2230_init_b; 1670 rf->set_channel = zyd_al2230_set_channel_b; 1671 } else { 1672 rf->init = zyd_al2230_init; 1673 rf->set_channel = zyd_al2230_set_channel; 1674 } 1675 rf->switch_radio = zyd_al2230_switch_radio; 1676 rf->bandedge6 = zyd_al2230_bandedge6; 1677 rf->width = 24; /* 24-bit RF values */ 1678 break; 1679 case ZYD_RF_AL7230B: 1680 rf->init = zyd_al7230B_init; 1681 rf->switch_radio = zyd_al7230B_switch_radio; 1682 rf->set_channel = zyd_al7230B_set_channel; 1683 rf->width = 24; /* 24-bit RF values */ 1684 break; 1685 case ZYD_RF_AL2210: 1686 rf->init = zyd_al2210_init; 1687 rf->switch_radio = zyd_al2210_switch_radio; 1688 rf->set_channel = zyd_al2210_set_channel; 1689 rf->width = 24; /* 24-bit RF values */ 1690 break; 1691 case ZYD_RF_MAXIM_NEW: 1692 case ZYD_RF_GCT: 1693 rf->init = zyd_gct_init; 1694 rf->switch_radio = zyd_gct_switch_radio; 1695 rf->set_channel = zyd_gct_set_channel; 1696 rf->width = 24; /* 24-bit RF values */ 1697 rf->update_pwr = 0; 1698 break; 1699 case ZYD_RF_MAXIM_NEW2: 1700 rf->init = zyd_maxim2_init; 1701 rf->switch_radio = zyd_maxim2_switch_radio; 1702 rf->set_channel = zyd_maxim2_set_channel; 1703 rf->width = 18; /* 18-bit RF values */ 1704 break; 1705 default: 1706 device_printf(sc->sc_dev, 1707 "sorry, radio \"%s\" is not supported yet\n", 1708 zyd_rf_name(type)); 1709 return (EINVAL); 1710 } 1711 return (0); 1712 } 1713 1714 static const char * 1715 zyd_rf_name(uint8_t type) 1716 { 1717 static const char * const zyd_rfs[] = { 1718 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1719 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1720 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1721 "PHILIPS" 1722 }; 1723 1724 return zyd_rfs[(type > 15) ? 0 : type]; 1725 } 1726 1727 static int 1728 zyd_hw_init(struct zyd_softc *sc) 1729 { 1730 int error; 1731 const struct zyd_phy_pair *phyp; 1732 struct zyd_rf *rf = &sc->sc_rf; 1733 uint16_t val; 1734 1735 /* specify that the plug and play is finished */ 1736 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1737 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1738 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1739 sc->sc_fwbase); 1740 1741 /* retrieve firmware revision number */ 1742 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1743 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1744 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1745 /* set mandatory rates - XXX assumes 802.11b/g */ 1746 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1747 1748 /* disable interrupts */ 1749 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1750 1751 if ((error = zyd_read_pod(sc)) != 0) { 1752 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1753 goto fail; 1754 } 1755 1756 /* PHY init (resetting) */ 1757 error = zyd_lock_phy(sc); 1758 if (error != 0) 1759 goto fail; 1760 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1761 for (; phyp->reg != 0; phyp++) 1762 zyd_write16_m(sc, phyp->reg, phyp->val); 1763 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1764 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1765 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1766 } 1767 error = zyd_unlock_phy(sc); 1768 if (error != 0) 1769 goto fail; 1770 1771 /* HMAC init */ 1772 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1773 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1774 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1775 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1776 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1777 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1778 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1779 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1780 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1781 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1782 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1783 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1784 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1785 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1786 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1787 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1788 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1789 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1790 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1791 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1792 1793 if (sc->sc_macrev == ZYD_ZD1211) { 1794 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1795 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1796 } else { 1797 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1798 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1799 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1800 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1801 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1802 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1803 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1804 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1805 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1806 } 1807 1808 /* init beacon interval to 100ms */ 1809 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1810 goto fail; 1811 1812 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1813 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1814 sc->sc_rfrev); 1815 goto fail; 1816 } 1817 1818 /* RF chip init */ 1819 error = zyd_lock_phy(sc); 1820 if (error != 0) 1821 goto fail; 1822 error = (*rf->init)(rf); 1823 if (error != 0) { 1824 device_printf(sc->sc_dev, 1825 "radio initialization failed, error %d\n", error); 1826 goto fail; 1827 } 1828 error = zyd_unlock_phy(sc); 1829 if (error != 0) 1830 goto fail; 1831 1832 if ((error = zyd_read_eeprom(sc)) != 0) { 1833 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1834 goto fail; 1835 } 1836 1837 fail: return (error); 1838 } 1839 1840 static int 1841 zyd_read_pod(struct zyd_softc *sc) 1842 { 1843 int error; 1844 uint32_t tmp; 1845 1846 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1847 sc->sc_rfrev = tmp & 0x0f; 1848 sc->sc_ledtype = (tmp >> 4) & 0x01; 1849 sc->sc_al2230s = (tmp >> 7) & 0x01; 1850 sc->sc_cckgain = (tmp >> 8) & 0x01; 1851 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1852 sc->sc_parev = (tmp >> 16) & 0x0f; 1853 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1854 sc->sc_newphy = (tmp >> 31) & 0x01; 1855 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1856 fail: 1857 return (error); 1858 } 1859 1860 static int 1861 zyd_read_eeprom(struct zyd_softc *sc) 1862 { 1863 uint16_t val; 1864 int error, i; 1865 1866 /* read Tx power calibration tables */ 1867 for (i = 0; i < 7; i++) { 1868 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1869 sc->sc_pwrcal[i * 2] = val >> 8; 1870 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1871 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1872 sc->sc_pwrint[i * 2] = val >> 8; 1873 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1874 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1875 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1876 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1877 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1878 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1879 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1880 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1881 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1882 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1883 } 1884 fail: 1885 return (error); 1886 } 1887 1888 static int 1889 zyd_get_macaddr(struct zyd_softc *sc) 1890 { 1891 struct usb_device_request req; 1892 usb_error_t error; 1893 1894 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1895 req.bRequest = ZYD_READFWDATAREQ; 1896 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1897 USETW(req.wIndex, 0); 1898 USETW(req.wLength, IEEE80211_ADDR_LEN); 1899 1900 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1901 if (error != 0) { 1902 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1903 usbd_errstr(error)); 1904 } 1905 1906 return (error); 1907 } 1908 1909 static int 1910 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1911 { 1912 int error; 1913 uint32_t tmp; 1914 1915 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1916 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1917 tmp = addr[5] << 8 | addr[4]; 1918 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1919 fail: 1920 return (error); 1921 } 1922 1923 static int 1924 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1925 { 1926 int error; 1927 uint32_t tmp; 1928 1929 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1930 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1931 tmp = addr[5] << 8 | addr[4]; 1932 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1933 fail: 1934 return (error); 1935 } 1936 1937 static int 1938 zyd_switch_radio(struct zyd_softc *sc, int on) 1939 { 1940 struct zyd_rf *rf = &sc->sc_rf; 1941 int error; 1942 1943 error = zyd_lock_phy(sc); 1944 if (error != 0) 1945 goto fail; 1946 error = (*rf->switch_radio)(rf, on); 1947 if (error != 0) 1948 goto fail; 1949 error = zyd_unlock_phy(sc); 1950 fail: 1951 return (error); 1952 } 1953 1954 static int 1955 zyd_set_led(struct zyd_softc *sc, int which, int on) 1956 { 1957 int error; 1958 uint32_t tmp; 1959 1960 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1961 tmp &= ~which; 1962 if (on) 1963 tmp |= which; 1964 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1965 fail: 1966 return (error); 1967 } 1968 1969 static u_int 1970 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1971 { 1972 uint32_t *hash = arg; 1973 uint8_t v; 1974 1975 v = ((uint8_t *)LLADDR(sdl))[5] >> 2; 1976 if (v < 32) 1977 hash[0] |= 1 << v; 1978 else 1979 hash[1] |= 1 << (v - 32); 1980 1981 return (1); 1982 } 1983 1984 static void 1985 zyd_set_multi(struct zyd_softc *sc) 1986 { 1987 struct ieee80211com *ic = &sc->sc_ic; 1988 uint32_t hash[2]; 1989 int error; 1990 1991 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1992 return; 1993 1994 hash[0] = 0x00000000; 1995 hash[1] = 0x80000000; 1996 1997 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1998 ic->ic_promisc > 0) { 1999 hash[0] = 0xffffffff; 2000 hash[1] = 0xffffffff; 2001 } else { 2002 struct ieee80211vap *vap; 2003 2004 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2005 if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash); 2006 } 2007 2008 /* reprogram multicast global hash table */ 2009 zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]); 2010 zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]); 2011 fail: 2012 if (error != 0) 2013 device_printf(sc->sc_dev, 2014 "could not set multicast hash table\n"); 2015 } 2016 2017 static void 2018 zyd_update_mcast(struct ieee80211com *ic) 2019 { 2020 struct zyd_softc *sc = ic->ic_softc; 2021 2022 ZYD_LOCK(sc); 2023 zyd_set_multi(sc); 2024 ZYD_UNLOCK(sc); 2025 } 2026 2027 static int 2028 zyd_set_rxfilter(struct zyd_softc *sc) 2029 { 2030 struct ieee80211com *ic = &sc->sc_ic; 2031 uint32_t rxfilter; 2032 2033 switch (ic->ic_opmode) { 2034 case IEEE80211_M_STA: 2035 rxfilter = ZYD_FILTER_BSS; 2036 break; 2037 case IEEE80211_M_IBSS: 2038 case IEEE80211_M_HOSTAP: 2039 rxfilter = ZYD_FILTER_HOSTAP; 2040 break; 2041 case IEEE80211_M_MONITOR: 2042 rxfilter = ZYD_FILTER_MONITOR; 2043 break; 2044 default: 2045 /* should not get there */ 2046 return (EINVAL); 2047 } 2048 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2049 } 2050 2051 static void 2052 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2053 { 2054 int error; 2055 struct ieee80211com *ic = &sc->sc_ic; 2056 struct zyd_rf *rf = &sc->sc_rf; 2057 uint32_t tmp; 2058 int chan; 2059 2060 chan = ieee80211_chan2ieee(ic, c); 2061 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2062 /* XXX should NEVER happen */ 2063 device_printf(sc->sc_dev, 2064 "%s: invalid channel %x\n", __func__, chan); 2065 return; 2066 } 2067 2068 error = zyd_lock_phy(sc); 2069 if (error != 0) 2070 goto fail; 2071 2072 error = (*rf->set_channel)(rf, chan); 2073 if (error != 0) 2074 goto fail; 2075 2076 if (rf->update_pwr) { 2077 /* update Tx power */ 2078 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2079 2080 if (sc->sc_macrev == ZYD_ZD1211B) { 2081 zyd_write16_m(sc, ZYD_CR67, 2082 sc->sc_ofdm36_cal[chan - 1]); 2083 zyd_write16_m(sc, ZYD_CR66, 2084 sc->sc_ofdm48_cal[chan - 1]); 2085 zyd_write16_m(sc, ZYD_CR65, 2086 sc->sc_ofdm54_cal[chan - 1]); 2087 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2088 zyd_write16_m(sc, ZYD_CR69, 0x28); 2089 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2090 } 2091 } 2092 if (sc->sc_cckgain) { 2093 /* set CCK baseband gain from EEPROM */ 2094 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2095 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2096 } 2097 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2098 error = (*rf->bandedge6)(rf, c); 2099 if (error != 0) 2100 goto fail; 2101 } 2102 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2103 2104 error = zyd_unlock_phy(sc); 2105 if (error != 0) 2106 goto fail; 2107 2108 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2109 htole16(c->ic_freq); 2110 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2111 htole16(c->ic_flags); 2112 fail: 2113 return; 2114 } 2115 2116 static int 2117 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2118 { 2119 int error; 2120 uint32_t val; 2121 2122 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2123 sc->sc_atim_wnd = val; 2124 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2125 sc->sc_pre_tbtt = val; 2126 sc->sc_bcn_int = bintval; 2127 2128 if (sc->sc_bcn_int <= 5) 2129 sc->sc_bcn_int = 5; 2130 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2131 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2132 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2133 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2134 2135 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2136 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2137 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2138 fail: 2139 return (error); 2140 } 2141 2142 static void 2143 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2144 { 2145 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2146 struct ieee80211com *ic = &sc->sc_ic; 2147 struct zyd_plcphdr plcp; 2148 struct zyd_rx_stat stat; 2149 struct usb_page_cache *pc; 2150 struct mbuf *m; 2151 int rlen, rssi; 2152 2153 if (len < ZYD_MIN_FRAGSZ) { 2154 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2155 device_get_nameunit(sc->sc_dev), len); 2156 counter_u64_add(ic->ic_ierrors, 1); 2157 return; 2158 } 2159 pc = usbd_xfer_get_frame(xfer, 0); 2160 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2161 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2162 2163 if (stat.flags & ZYD_RX_ERROR) { 2164 DPRINTF(sc, ZYD_DEBUG_RECV, 2165 "%s: RX status indicated error (%x)\n", 2166 device_get_nameunit(sc->sc_dev), stat.flags); 2167 counter_u64_add(ic->ic_ierrors, 1); 2168 return; 2169 } 2170 2171 /* compute actual frame length */ 2172 rlen = len - sizeof(struct zyd_plcphdr) - 2173 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2174 2175 /* allocate a mbuf to store the frame */ 2176 if (rlen > (int)MCLBYTES) { 2177 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2178 device_get_nameunit(sc->sc_dev), rlen); 2179 counter_u64_add(ic->ic_ierrors, 1); 2180 return; 2181 } else if (rlen > (int)MHLEN) 2182 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2183 else 2184 m = m_gethdr(M_NOWAIT, MT_DATA); 2185 if (m == NULL) { 2186 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2187 device_get_nameunit(sc->sc_dev)); 2188 counter_u64_add(ic->ic_ierrors, 1); 2189 return; 2190 } 2191 m->m_pkthdr.len = m->m_len = rlen; 2192 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2193 2194 if (ieee80211_radiotap_active(ic)) { 2195 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2196 2197 tap->wr_flags = 0; 2198 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2199 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2200 /* XXX toss, no way to express errors */ 2201 if (stat.flags & ZYD_RX_DECRYPTERR) 2202 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2203 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2204 (stat.flags & ZYD_RX_OFDM) ? 2205 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2206 tap->wr_antsignal = stat.rssi + -95; 2207 tap->wr_antnoise = -95; /* XXX */ 2208 } 2209 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2210 2211 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2212 sc->sc_rx_data[sc->sc_rx_count].m = m; 2213 sc->sc_rx_count++; 2214 } 2215 2216 static void 2217 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2218 { 2219 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2220 struct ieee80211com *ic = &sc->sc_ic; 2221 struct ieee80211_node *ni; 2222 struct zyd_rx_desc desc; 2223 struct mbuf *m; 2224 struct usb_page_cache *pc; 2225 uint32_t offset; 2226 uint8_t rssi; 2227 int8_t nf; 2228 int i; 2229 int actlen; 2230 2231 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2232 2233 sc->sc_rx_count = 0; 2234 switch (USB_GET_STATE(xfer)) { 2235 case USB_ST_TRANSFERRED: 2236 pc = usbd_xfer_get_frame(xfer, 0); 2237 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2238 2239 offset = 0; 2240 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2241 DPRINTF(sc, ZYD_DEBUG_RECV, 2242 "%s: received multi-frame transfer\n", __func__); 2243 2244 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2245 uint16_t len16 = UGETW(desc.len[i]); 2246 2247 if (len16 == 0 || len16 > actlen) 2248 break; 2249 2250 zyd_rx_data(xfer, offset, len16); 2251 2252 /* next frame is aligned on a 32-bit boundary */ 2253 len16 = (len16 + 3) & ~3; 2254 offset += len16; 2255 if (len16 > actlen) 2256 break; 2257 actlen -= len16; 2258 } 2259 } else { 2260 DPRINTF(sc, ZYD_DEBUG_RECV, 2261 "%s: received single-frame transfer\n", __func__); 2262 2263 zyd_rx_data(xfer, 0, actlen); 2264 } 2265 /* FALLTHROUGH */ 2266 case USB_ST_SETUP: 2267 tr_setup: 2268 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2269 usbd_transfer_submit(xfer); 2270 2271 /* 2272 * At the end of a USB callback it is always safe to unlock 2273 * the private mutex of a device! That is why we do the 2274 * "ieee80211_input" here, and not some lines up! 2275 */ 2276 ZYD_UNLOCK(sc); 2277 for (i = 0; i < sc->sc_rx_count; i++) { 2278 rssi = sc->sc_rx_data[i].rssi; 2279 m = sc->sc_rx_data[i].m; 2280 sc->sc_rx_data[i].m = NULL; 2281 2282 nf = -95; /* XXX */ 2283 2284 ni = ieee80211_find_rxnode(ic, 2285 mtod(m, struct ieee80211_frame_min *)); 2286 if (ni != NULL) { 2287 (void)ieee80211_input(ni, m, rssi, nf); 2288 ieee80211_free_node(ni); 2289 } else 2290 (void)ieee80211_input_all(ic, m, rssi, nf); 2291 } 2292 ZYD_LOCK(sc); 2293 zyd_start(sc); 2294 break; 2295 2296 default: /* Error */ 2297 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2298 2299 if (error != USB_ERR_CANCELLED) { 2300 /* try to clear stall first */ 2301 usbd_xfer_set_stall(xfer); 2302 goto tr_setup; 2303 } 2304 break; 2305 } 2306 } 2307 2308 static uint8_t 2309 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2310 { 2311 switch (rate) { 2312 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2313 case 12: 2314 return (0xb); 2315 case 18: 2316 return (0xf); 2317 case 24: 2318 return (0xa); 2319 case 36: 2320 return (0xe); 2321 case 48: 2322 return (0x9); 2323 case 72: 2324 return (0xd); 2325 case 96: 2326 return (0x8); 2327 case 108: 2328 return (0xc); 2329 /* CCK rates (NB: not IEEE std, device-specific) */ 2330 case 2: 2331 return (0x0); 2332 case 4: 2333 return (0x1); 2334 case 11: 2335 return (0x2); 2336 case 22: 2337 return (0x3); 2338 } 2339 2340 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2341 return (0x0); 2342 } 2343 2344 static void 2345 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2346 { 2347 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2348 struct ieee80211vap *vap; 2349 struct zyd_tx_data *data; 2350 struct mbuf *m; 2351 struct usb_page_cache *pc; 2352 int actlen; 2353 2354 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2355 2356 switch (USB_GET_STATE(xfer)) { 2357 case USB_ST_TRANSFERRED: 2358 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2359 actlen); 2360 2361 /* free resources */ 2362 data = usbd_xfer_get_priv(xfer); 2363 zyd_tx_free(data, 0); 2364 usbd_xfer_set_priv(xfer, NULL); 2365 2366 /* FALLTHROUGH */ 2367 case USB_ST_SETUP: 2368 tr_setup: 2369 data = STAILQ_FIRST(&sc->tx_q); 2370 if (data) { 2371 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2372 m = data->m; 2373 2374 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2375 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2376 m->m_pkthdr.len); 2377 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2378 } 2379 pc = usbd_xfer_get_frame(xfer, 0); 2380 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2381 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2382 m->m_pkthdr.len); 2383 2384 vap = data->ni->ni_vap; 2385 if (ieee80211_radiotap_active_vap(vap)) { 2386 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2387 2388 tap->wt_flags = 0; 2389 tap->wt_rate = data->rate; 2390 2391 ieee80211_radiotap_tx(vap, m); 2392 } 2393 2394 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2395 usbd_xfer_set_priv(xfer, data); 2396 usbd_transfer_submit(xfer); 2397 } 2398 zyd_start(sc); 2399 break; 2400 2401 default: /* Error */ 2402 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2403 usbd_errstr(error)); 2404 2405 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2406 data = usbd_xfer_get_priv(xfer); 2407 usbd_xfer_set_priv(xfer, NULL); 2408 if (data != NULL) 2409 zyd_tx_free(data, error); 2410 2411 if (error != USB_ERR_CANCELLED) { 2412 if (error == USB_ERR_TIMEOUT) 2413 device_printf(sc->sc_dev, "device timeout\n"); 2414 2415 /* 2416 * Try to clear stall first, also if other 2417 * errors occur, hence clearing stall 2418 * introduces a 50 ms delay: 2419 */ 2420 usbd_xfer_set_stall(xfer); 2421 goto tr_setup; 2422 } 2423 break; 2424 } 2425 } 2426 2427 static int 2428 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2429 { 2430 struct ieee80211vap *vap = ni->ni_vap; 2431 struct ieee80211com *ic = ni->ni_ic; 2432 struct zyd_tx_desc *desc; 2433 struct zyd_tx_data *data; 2434 struct ieee80211_frame *wh; 2435 const struct ieee80211_txparam *tp = ni->ni_txparms; 2436 struct ieee80211_key *k; 2437 int rate, totlen, type, ismcast; 2438 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2439 uint8_t phy; 2440 uint16_t pktlen; 2441 uint32_t bits; 2442 2443 wh = mtod(m0, struct ieee80211_frame *); 2444 data = STAILQ_FIRST(&sc->tx_free); 2445 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2446 sc->tx_nfree--; 2447 2448 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2449 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2450 2451 if (type == IEEE80211_FC0_TYPE_MGT || 2452 type == IEEE80211_FC0_TYPE_CTL || 2453 (m0->m_flags & M_EAPOL) != 0) { 2454 rate = tp->mgmtrate; 2455 } else { 2456 /* for data frames */ 2457 if (ismcast) 2458 rate = tp->mcastrate; 2459 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2460 rate = tp->ucastrate; 2461 else { 2462 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2463 rate = ni->ni_txrate; 2464 } 2465 } 2466 2467 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2468 k = ieee80211_crypto_encap(ni, m0); 2469 if (k == NULL) { 2470 return (ENOBUFS); 2471 } 2472 /* packet header may have moved, reset our local pointer */ 2473 wh = mtod(m0, struct ieee80211_frame *); 2474 } 2475 2476 data->ni = ni; 2477 data->m = m0; 2478 data->rate = rate; 2479 2480 /* fill Tx descriptor */ 2481 desc = &data->desc; 2482 phy = zyd_plcp_signal(sc, rate); 2483 desc->phy = phy; 2484 if (ZYD_RATE_IS_OFDM(rate)) { 2485 desc->phy |= ZYD_TX_PHY_OFDM; 2486 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2487 desc->phy |= ZYD_TX_PHY_5GHZ; 2488 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2489 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2490 2491 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2492 desc->len = htole16(totlen); 2493 2494 desc->flags = ZYD_TX_FLAG_BACKOFF; 2495 if (!ismcast) { 2496 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2497 if (totlen > vap->iv_rtsthreshold) { 2498 desc->flags |= ZYD_TX_FLAG_RTS; 2499 } else if (ZYD_RATE_IS_OFDM(rate) && 2500 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2501 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2502 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2503 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2504 desc->flags |= ZYD_TX_FLAG_RTS; 2505 } 2506 } else 2507 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2508 if (IEEE80211_IS_CTL_PS_POLL(wh)) 2509 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2510 2511 /* actual transmit length (XXX why +10?) */ 2512 pktlen = ZYD_TX_DESC_SIZE + 10; 2513 if (sc->sc_macrev == ZYD_ZD1211) 2514 pktlen += totlen; 2515 desc->pktlen = htole16(pktlen); 2516 2517 bits = (rate == 11) ? (totlen * 16) + 10 : 2518 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2519 desc->plcp_length = htole16(bits / ratediv[phy]); 2520 desc->plcp_service = 0; 2521 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2522 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2523 desc->nextlen = 0; 2524 2525 if (ieee80211_radiotap_active_vap(vap)) { 2526 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2527 2528 tap->wt_flags = 0; 2529 tap->wt_rate = rate; 2530 2531 ieee80211_radiotap_tx(vap, m0); 2532 } 2533 2534 DPRINTF(sc, ZYD_DEBUG_XMIT, 2535 "%s: sending data frame len=%zu rate=%u\n", 2536 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2537 rate); 2538 2539 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2540 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2541 2542 return (0); 2543 } 2544 2545 static int 2546 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2547 { 2548 struct zyd_softc *sc = ic->ic_softc; 2549 int error; 2550 2551 ZYD_LOCK(sc); 2552 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2553 ZYD_UNLOCK(sc); 2554 return (ENXIO); 2555 } 2556 error = mbufq_enqueue(&sc->sc_snd, m); 2557 if (error) { 2558 ZYD_UNLOCK(sc); 2559 return (error); 2560 } 2561 zyd_start(sc); 2562 ZYD_UNLOCK(sc); 2563 2564 return (0); 2565 } 2566 2567 static void 2568 zyd_start(struct zyd_softc *sc) 2569 { 2570 struct ieee80211_node *ni; 2571 struct mbuf *m; 2572 2573 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2574 2575 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2576 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2577 if (zyd_tx_start(sc, m, ni) != 0) { 2578 m_freem(m); 2579 if_inc_counter(ni->ni_vap->iv_ifp, 2580 IFCOUNTER_OERRORS, 1); 2581 ieee80211_free_node(ni); 2582 break; 2583 } 2584 } 2585 } 2586 2587 static int 2588 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2589 const struct ieee80211_bpf_params *params) 2590 { 2591 struct ieee80211com *ic = ni->ni_ic; 2592 struct zyd_softc *sc = ic->ic_softc; 2593 2594 ZYD_LOCK(sc); 2595 /* prevent management frames from being sent if we're not ready */ 2596 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2597 ZYD_UNLOCK(sc); 2598 m_freem(m); 2599 return (ENETDOWN); 2600 } 2601 if (sc->tx_nfree == 0) { 2602 ZYD_UNLOCK(sc); 2603 m_freem(m); 2604 return (ENOBUFS); /* XXX */ 2605 } 2606 2607 /* 2608 * Legacy path; interpret frame contents to decide 2609 * precisely how to send the frame. 2610 * XXX raw path 2611 */ 2612 if (zyd_tx_start(sc, m, ni) != 0) { 2613 ZYD_UNLOCK(sc); 2614 m_freem(m); 2615 return (EIO); 2616 } 2617 ZYD_UNLOCK(sc); 2618 return (0); 2619 } 2620 2621 static void 2622 zyd_parent(struct ieee80211com *ic) 2623 { 2624 struct zyd_softc *sc = ic->ic_softc; 2625 int startall = 0; 2626 2627 ZYD_LOCK(sc); 2628 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2629 ZYD_UNLOCK(sc); 2630 return; 2631 } 2632 if (ic->ic_nrunning > 0) { 2633 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2634 zyd_init_locked(sc); 2635 startall = 1; 2636 } else 2637 zyd_set_multi(sc); 2638 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2639 zyd_stop(sc); 2640 ZYD_UNLOCK(sc); 2641 if (startall) 2642 ieee80211_start_all(ic); 2643 } 2644 2645 static void 2646 zyd_init_locked(struct zyd_softc *sc) 2647 { 2648 struct ieee80211com *ic = &sc->sc_ic; 2649 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2650 struct usb_config_descriptor *cd; 2651 int error; 2652 uint32_t val; 2653 2654 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2655 2656 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2657 error = zyd_loadfirmware(sc); 2658 if (error != 0) { 2659 device_printf(sc->sc_dev, 2660 "could not load firmware (error=%d)\n", error); 2661 goto fail; 2662 } 2663 2664 /* reset device */ 2665 cd = usbd_get_config_descriptor(sc->sc_udev); 2666 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2667 cd->bConfigurationValue); 2668 if (error) 2669 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2670 2671 error = zyd_hw_init(sc); 2672 if (error) { 2673 device_printf(sc->sc_dev, 2674 "hardware initialization failed\n"); 2675 goto fail; 2676 } 2677 2678 device_printf(sc->sc_dev, 2679 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2680 "BE%x NP%x Gain%x F%x\n", 2681 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2682 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2683 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2684 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2685 sc->sc_cckgain, sc->sc_fix_cr157); 2686 2687 /* read regulatory domain (currently unused) */ 2688 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2689 sc->sc_regdomain = val >> 16; 2690 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2691 sc->sc_regdomain); 2692 2693 /* we'll do software WEP decryption for now */ 2694 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2695 __func__); 2696 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2697 2698 sc->sc_flags |= ZYD_FLAG_INITONCE; 2699 } 2700 2701 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2702 zyd_stop(sc); 2703 2704 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2705 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2706 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2707 if (error != 0) 2708 return; 2709 2710 /* set basic rates */ 2711 if (ic->ic_curmode == IEEE80211_MODE_11B) 2712 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2713 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2714 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2715 else /* assumes 802.11b/g */ 2716 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2717 2718 /* promiscuous mode */ 2719 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2720 /* multicast setup */ 2721 zyd_set_multi(sc); 2722 /* set RX filter */ 2723 error = zyd_set_rxfilter(sc); 2724 if (error != 0) 2725 goto fail; 2726 2727 /* switch radio transmitter ON */ 2728 error = zyd_switch_radio(sc, 1); 2729 if (error != 0) 2730 goto fail; 2731 /* set default BSS channel */ 2732 zyd_set_chan(sc, ic->ic_curchan); 2733 2734 /* 2735 * Allocate Tx and Rx xfer queues. 2736 */ 2737 zyd_setup_tx_list(sc); 2738 2739 /* enable interrupts */ 2740 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2741 2742 sc->sc_flags |= ZYD_FLAG_RUNNING; 2743 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2744 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2745 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2746 2747 return; 2748 2749 fail: zyd_stop(sc); 2750 return; 2751 } 2752 2753 static void 2754 zyd_stop(struct zyd_softc *sc) 2755 { 2756 int error; 2757 2758 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2759 2760 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2761 zyd_drain_mbufq(sc); 2762 2763 /* 2764 * Drain all the transfers, if not already drained: 2765 */ 2766 ZYD_UNLOCK(sc); 2767 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2768 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2769 ZYD_LOCK(sc); 2770 2771 zyd_unsetup_tx_list(sc); 2772 2773 /* Stop now if the device was never set up */ 2774 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2775 return; 2776 2777 /* switch radio transmitter OFF */ 2778 error = zyd_switch_radio(sc, 0); 2779 if (error != 0) 2780 goto fail; 2781 /* disable Rx */ 2782 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2783 /* disable interrupts */ 2784 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2785 2786 fail: 2787 return; 2788 } 2789 2790 static int 2791 zyd_loadfirmware(struct zyd_softc *sc) 2792 { 2793 struct usb_device_request req; 2794 size_t size; 2795 u_char *fw; 2796 uint8_t stat; 2797 uint16_t addr; 2798 2799 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2800 return (0); 2801 2802 if (sc->sc_macrev == ZYD_ZD1211) { 2803 fw = (u_char *)zd1211_firmware; 2804 size = sizeof(zd1211_firmware); 2805 } else { 2806 fw = (u_char *)zd1211b_firmware; 2807 size = sizeof(zd1211b_firmware); 2808 } 2809 2810 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2811 req.bRequest = ZYD_DOWNLOADREQ; 2812 USETW(req.wIndex, 0); 2813 2814 addr = ZYD_FIRMWARE_START_ADDR; 2815 while (size > 0) { 2816 /* 2817 * When the transfer size is 4096 bytes, it is not 2818 * likely to be able to transfer it. 2819 * The cause is port or machine or chip? 2820 */ 2821 const int mlen = min(size, 64); 2822 2823 DPRINTF(sc, ZYD_DEBUG_FW, 2824 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2825 2826 USETW(req.wValue, addr); 2827 USETW(req.wLength, mlen); 2828 if (zyd_do_request(sc, &req, fw) != 0) 2829 return (EIO); 2830 2831 addr += mlen / 2; 2832 fw += mlen; 2833 size -= mlen; 2834 } 2835 2836 /* check whether the upload succeeded */ 2837 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2838 req.bRequest = ZYD_DOWNLOADSTS; 2839 USETW(req.wValue, 0); 2840 USETW(req.wIndex, 0); 2841 USETW(req.wLength, sizeof(stat)); 2842 if (zyd_do_request(sc, &req, &stat) != 0) 2843 return (EIO); 2844 2845 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2846 2847 return (stat & 0x80) ? (EIO) : (0); 2848 } 2849 2850 static void 2851 zyd_scan_start(struct ieee80211com *ic) 2852 { 2853 struct zyd_softc *sc = ic->ic_softc; 2854 2855 ZYD_LOCK(sc); 2856 /* want broadcast address while scanning */ 2857 zyd_set_bssid(sc, ieee80211broadcastaddr); 2858 ZYD_UNLOCK(sc); 2859 } 2860 2861 static void 2862 zyd_scan_end(struct ieee80211com *ic) 2863 { 2864 struct zyd_softc *sc = ic->ic_softc; 2865 2866 ZYD_LOCK(sc); 2867 /* restore previous bssid */ 2868 zyd_set_bssid(sc, sc->sc_bssid); 2869 ZYD_UNLOCK(sc); 2870 } 2871 2872 static void 2873 zyd_getradiocaps(struct ieee80211com *ic, 2874 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2875 { 2876 uint8_t bands[IEEE80211_MODE_BYTES]; 2877 2878 memset(bands, 0, sizeof(bands)); 2879 setbit(bands, IEEE80211_MODE_11B); 2880 setbit(bands, IEEE80211_MODE_11G); 2881 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 2882 } 2883 2884 static void 2885 zyd_set_channel(struct ieee80211com *ic) 2886 { 2887 struct zyd_softc *sc = ic->ic_softc; 2888 2889 ZYD_LOCK(sc); 2890 zyd_set_chan(sc, ic->ic_curchan); 2891 ZYD_UNLOCK(sc); 2892 } 2893 2894 static device_method_t zyd_methods[] = { 2895 /* Device interface */ 2896 DEVMETHOD(device_probe, zyd_match), 2897 DEVMETHOD(device_attach, zyd_attach), 2898 DEVMETHOD(device_detach, zyd_detach), 2899 DEVMETHOD_END 2900 }; 2901 2902 static driver_t zyd_driver = { 2903 .name = "zyd", 2904 .methods = zyd_methods, 2905 .size = sizeof(struct zyd_softc) 2906 }; 2907 2908 DRIVER_MODULE(zyd, uhub, zyd_driver, NULL, NULL); 2909 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2910 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2911 MODULE_VERSION(zyd, 1); 2912 USB_PNP_HOST_INFO(zyd_devs); 2913