1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include <dev/usb/usbdi_util.h> 74 #include "usbdevs.h" 75 76 #include <dev/usb/wlan/if_zydreg.h> 77 #include <dev/usb/wlan/if_zydfw.h> 78 79 #ifdef USB_DEBUG 80 static int zyd_debug = 0; 81 82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 84 "zyd debug level"); 85 86 enum { 87 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 88 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 89 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 90 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 91 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 92 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 93 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 94 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 95 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 96 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 97 ZYD_DEBUG_ANY = 0xffffffff 98 }; 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 if (zyd_debug & (m)) \ 101 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 102 } while (0) 103 #else 104 #define DPRINTF(sc, m, fmt, ...) do { \ 105 (void) sc; \ 106 } while (0) 107 #endif 108 109 #define zyd_do_request(sc,req,data) \ 110 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 111 112 static device_probe_t zyd_match; 113 static device_attach_t zyd_attach; 114 static device_detach_t zyd_detach; 115 116 static usb_callback_t zyd_intr_read_callback; 117 static usb_callback_t zyd_intr_write_callback; 118 static usb_callback_t zyd_bulk_read_callback; 119 static usb_callback_t zyd_bulk_write_callback; 120 121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 122 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 123 const uint8_t [IEEE80211_ADDR_LEN], 124 const uint8_t [IEEE80211_ADDR_LEN]); 125 static void zyd_vap_delete(struct ieee80211vap *); 126 static void zyd_tx_free(struct zyd_tx_data *, int); 127 static void zyd_setup_tx_list(struct zyd_softc *); 128 static void zyd_unsetup_tx_list(struct zyd_softc *); 129 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 130 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 131 void *, int, int); 132 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 133 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 134 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 135 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 136 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 137 static int zyd_lock_phy(struct zyd_softc *); 138 static int zyd_unlock_phy(struct zyd_softc *); 139 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 140 static const char *zyd_rf_name(uint8_t); 141 static int zyd_hw_init(struct zyd_softc *); 142 static int zyd_read_pod(struct zyd_softc *); 143 static int zyd_read_eeprom(struct zyd_softc *); 144 static int zyd_get_macaddr(struct zyd_softc *); 145 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 146 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 147 static int zyd_switch_radio(struct zyd_softc *, int); 148 static int zyd_set_led(struct zyd_softc *, int, int); 149 static void zyd_set_multi(struct zyd_softc *); 150 static void zyd_update_mcast(struct ieee80211com *); 151 static int zyd_set_rxfilter(struct zyd_softc *); 152 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 153 static int zyd_set_beacon_interval(struct zyd_softc *, int); 154 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 155 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 156 struct ieee80211_node *); 157 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 158 static void zyd_start(struct zyd_softc *); 159 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 160 const struct ieee80211_bpf_params *); 161 static void zyd_parent(struct ieee80211com *); 162 static void zyd_init_locked(struct zyd_softc *); 163 static void zyd_stop(struct zyd_softc *); 164 static int zyd_loadfirmware(struct zyd_softc *); 165 static void zyd_scan_start(struct ieee80211com *); 166 static void zyd_scan_end(struct ieee80211com *); 167 static void zyd_set_channel(struct ieee80211com *); 168 static int zyd_rfmd_init(struct zyd_rf *); 169 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 170 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_init(struct zyd_rf *); 172 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 173 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init_b(struct zyd_rf *); 176 static int zyd_al7230B_init(struct zyd_rf *); 177 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 178 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_al2210_init(struct zyd_rf *); 180 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 181 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_init(struct zyd_rf *); 183 static int zyd_gct_switch_radio(struct zyd_rf *, int); 184 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 185 static int zyd_gct_mode(struct zyd_rf *); 186 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 187 static int zyd_gct_write(struct zyd_rf *, uint16_t); 188 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 189 static int zyd_maxim2_init(struct zyd_rf *); 190 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 191 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 192 193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 195 196 /* various supported device vendors/products */ 197 #define ZYD_ZD1211 0 198 #define ZYD_ZD1211B 1 199 200 #define ZYD_ZD1211_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 202 #define ZYD_ZD1211B_DEV(v,p) \ 203 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 204 static const STRUCT_USB_HOST_ID zyd_devs[] = { 205 /* ZYD_ZD1211 */ 206 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 207 ZYD_ZD1211_DEV(ABOCOM, WL54), 208 ZYD_ZD1211_DEV(ASUS, WL159G), 209 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 210 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 215 ZYD_ZD1211_DEV(SAGEM, XG760A), 216 ZYD_ZD1211_DEV(SENAO, NUB8301), 217 ZYD_ZD1211_DEV(SITECOMEU, WL113), 218 ZYD_ZD1211_DEV(SWEEX, ZD1211), 219 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 222 ZYD_ZD1211_DEV(TWINMOS, G240), 223 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 226 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 227 ZYD_ZD1211_DEV(ZCOM, ZD1211), 228 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 229 ZYD_ZD1211_DEV(ZYXEL, AG225H), 230 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 231 ZYD_ZD1211_DEV(ZYXEL, G200V2), 232 /* ZYD_ZD1211B */ 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 235 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 236 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 237 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 238 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 239 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 240 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 241 ZYD_ZD1211B_DEV(MELCO, KG54L), 242 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 243 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 244 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 245 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 246 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 247 ZYD_ZD1211B_DEV(USR, USR5423), 248 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 249 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYXEL, M202), 252 ZYD_ZD1211B_DEV(ZYXEL, G202), 253 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 254 }; 255 256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 257 [ZYD_BULK_WR] = { 258 .type = UE_BULK, 259 .endpoint = UE_ADDR_ANY, 260 .direction = UE_DIR_OUT, 261 .bufsize = ZYD_MAX_TXBUFSZ, 262 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 263 .callback = zyd_bulk_write_callback, 264 .ep_index = 0, 265 .timeout = 10000, /* 10 seconds */ 266 }, 267 [ZYD_BULK_RD] = { 268 .type = UE_BULK, 269 .endpoint = UE_ADDR_ANY, 270 .direction = UE_DIR_IN, 271 .bufsize = ZYX_MAX_RXBUFSZ, 272 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 273 .callback = zyd_bulk_read_callback, 274 .ep_index = 0, 275 }, 276 [ZYD_INTR_WR] = { 277 .type = UE_BULK_INTR, 278 .endpoint = UE_ADDR_ANY, 279 .direction = UE_DIR_OUT, 280 .bufsize = sizeof(struct zyd_cmd), 281 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 282 .callback = zyd_intr_write_callback, 283 .timeout = 1000, /* 1 second */ 284 .ep_index = 1, 285 }, 286 [ZYD_INTR_RD] = { 287 .type = UE_INTERRUPT, 288 .endpoint = UE_ADDR_ANY, 289 .direction = UE_DIR_IN, 290 .bufsize = sizeof(struct zyd_cmd), 291 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 292 .callback = zyd_intr_read_callback, 293 }, 294 }; 295 #define zyd_read16_m(sc, val, data) do { \ 296 error = zyd_read16(sc, val, data); \ 297 if (error != 0) \ 298 goto fail; \ 299 } while (0) 300 #define zyd_write16_m(sc, val, data) do { \ 301 error = zyd_write16(sc, val, data); \ 302 if (error != 0) \ 303 goto fail; \ 304 } while (0) 305 #define zyd_read32_m(sc, val, data) do { \ 306 error = zyd_read32(sc, val, data); \ 307 if (error != 0) \ 308 goto fail; \ 309 } while (0) 310 #define zyd_write32_m(sc, val, data) do { \ 311 error = zyd_write32(sc, val, data); \ 312 if (error != 0) \ 313 goto fail; \ 314 } while (0) 315 316 static int 317 zyd_match(device_t dev) 318 { 319 struct usb_attach_arg *uaa = device_get_ivars(dev); 320 321 if (uaa->usb_mode != USB_MODE_HOST) 322 return (ENXIO); 323 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 324 return (ENXIO); 325 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 326 return (ENXIO); 327 328 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 329 } 330 331 static int 332 zyd_attach(device_t dev) 333 { 334 struct usb_attach_arg *uaa = device_get_ivars(dev); 335 struct zyd_softc *sc = device_get_softc(dev); 336 struct ieee80211com *ic = &sc->sc_ic; 337 uint8_t iface_index, bands; 338 int error; 339 340 if (uaa->info.bcdDevice < 0x4330) { 341 device_printf(dev, "device version mismatch: 0x%X " 342 "(only >= 43.30 supported)\n", 343 uaa->info.bcdDevice); 344 return (EINVAL); 345 } 346 347 device_set_usb_desc(dev); 348 sc->sc_dev = dev; 349 sc->sc_udev = uaa->device; 350 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 351 352 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 353 MTX_NETWORK_LOCK, MTX_DEF); 354 STAILQ_INIT(&sc->sc_rqh); 355 mbufq_init(&sc->sc_snd, ifqmaxlen); 356 357 iface_index = ZYD_IFACE_INDEX; 358 error = usbd_transfer_setup(uaa->device, 359 &iface_index, sc->sc_xfer, zyd_config, 360 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 361 if (error) { 362 device_printf(dev, "could not allocate USB transfers, " 363 "err=%s\n", usbd_errstr(error)); 364 goto detach; 365 } 366 367 ZYD_LOCK(sc); 368 if ((error = zyd_get_macaddr(sc)) != 0) { 369 device_printf(sc->sc_dev, "could not read EEPROM\n"); 370 ZYD_UNLOCK(sc); 371 goto detach; 372 } 373 ZYD_UNLOCK(sc); 374 375 ic->ic_softc = sc; 376 ic->ic_name = device_get_nameunit(dev); 377 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 378 ic->ic_opmode = IEEE80211_M_STA; 379 380 /* set device capabilities */ 381 ic->ic_caps = 382 IEEE80211_C_STA /* station mode */ 383 | IEEE80211_C_MONITOR /* monitor mode */ 384 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 385 | IEEE80211_C_SHSLOT /* short slot time supported */ 386 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 387 | IEEE80211_C_WPA /* 802.11i */ 388 ; 389 390 bands = 0; 391 setbit(&bands, IEEE80211_MODE_11B); 392 setbit(&bands, IEEE80211_MODE_11G); 393 ieee80211_init_channels(ic, NULL, &bands); 394 395 ieee80211_ifattach(ic); 396 ic->ic_raw_xmit = zyd_raw_xmit; 397 ic->ic_scan_start = zyd_scan_start; 398 ic->ic_scan_end = zyd_scan_end; 399 ic->ic_set_channel = zyd_set_channel; 400 ic->ic_vap_create = zyd_vap_create; 401 ic->ic_vap_delete = zyd_vap_delete; 402 ic->ic_update_mcast = zyd_update_mcast; 403 ic->ic_update_promisc = zyd_update_mcast; 404 ic->ic_parent = zyd_parent; 405 ic->ic_transmit = zyd_transmit; 406 407 ieee80211_radiotap_attach(ic, 408 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 409 ZYD_TX_RADIOTAP_PRESENT, 410 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 411 ZYD_RX_RADIOTAP_PRESENT); 412 413 if (bootverbose) 414 ieee80211_announce(ic); 415 416 return (0); 417 418 detach: 419 zyd_detach(dev); 420 return (ENXIO); /* failure */ 421 } 422 423 static void 424 zyd_drain_mbufq(struct zyd_softc *sc) 425 { 426 struct mbuf *m; 427 struct ieee80211_node *ni; 428 429 ZYD_LOCK_ASSERT(sc, MA_OWNED); 430 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 431 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 432 m->m_pkthdr.rcvif = NULL; 433 ieee80211_free_node(ni); 434 m_freem(m); 435 } 436 } 437 438 439 static int 440 zyd_detach(device_t dev) 441 { 442 struct zyd_softc *sc = device_get_softc(dev); 443 struct ieee80211com *ic = &sc->sc_ic; 444 unsigned int x; 445 446 /* 447 * Prevent further allocations from RX/TX data 448 * lists and ioctls: 449 */ 450 ZYD_LOCK(sc); 451 sc->sc_flags |= ZYD_FLAG_DETACHED; 452 zyd_drain_mbufq(sc); 453 STAILQ_INIT(&sc->tx_q); 454 STAILQ_INIT(&sc->tx_free); 455 ZYD_UNLOCK(sc); 456 457 /* drain USB transfers */ 458 for (x = 0; x != ZYD_N_TRANSFER; x++) 459 usbd_transfer_drain(sc->sc_xfer[x]); 460 461 /* free TX list, if any */ 462 ZYD_LOCK(sc); 463 zyd_unsetup_tx_list(sc); 464 ZYD_UNLOCK(sc); 465 466 /* free USB transfers and some data buffers */ 467 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 468 469 if (ic->ic_softc == sc) 470 ieee80211_ifdetach(ic); 471 mtx_destroy(&sc->sc_mtx); 472 473 return (0); 474 } 475 476 static struct ieee80211vap * 477 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 478 enum ieee80211_opmode opmode, int flags, 479 const uint8_t bssid[IEEE80211_ADDR_LEN], 480 const uint8_t mac[IEEE80211_ADDR_LEN]) 481 { 482 struct zyd_vap *zvp; 483 struct ieee80211vap *vap; 484 485 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 486 return (NULL); 487 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 488 vap = &zvp->vap; 489 490 /* enable s/w bmiss handling for sta mode */ 491 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 492 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 493 /* out of memory */ 494 free(zvp, M_80211_VAP); 495 return (NULL); 496 } 497 498 /* override state transition machine */ 499 zvp->newstate = vap->iv_newstate; 500 vap->iv_newstate = zyd_newstate; 501 502 ieee80211_ratectl_init(vap); 503 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 504 505 /* complete setup */ 506 ieee80211_vap_attach(vap, ieee80211_media_change, 507 ieee80211_media_status, mac); 508 ic->ic_opmode = opmode; 509 return (vap); 510 } 511 512 static void 513 zyd_vap_delete(struct ieee80211vap *vap) 514 { 515 struct zyd_vap *zvp = ZYD_VAP(vap); 516 517 ieee80211_ratectl_deinit(vap); 518 ieee80211_vap_detach(vap); 519 free(zvp, M_80211_VAP); 520 } 521 522 static void 523 zyd_tx_free(struct zyd_tx_data *data, int txerr) 524 { 525 struct zyd_softc *sc = data->sc; 526 527 if (data->m != NULL) { 528 ieee80211_tx_complete(data->ni, data->m, txerr); 529 data->m = NULL; 530 data->ni = NULL; 531 } 532 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 533 sc->tx_nfree++; 534 } 535 536 static void 537 zyd_setup_tx_list(struct zyd_softc *sc) 538 { 539 struct zyd_tx_data *data; 540 int i; 541 542 sc->tx_nfree = 0; 543 STAILQ_INIT(&sc->tx_q); 544 STAILQ_INIT(&sc->tx_free); 545 546 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 547 data = &sc->tx_data[i]; 548 549 data->sc = sc; 550 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 551 sc->tx_nfree++; 552 } 553 } 554 555 static void 556 zyd_unsetup_tx_list(struct zyd_softc *sc) 557 { 558 struct zyd_tx_data *data; 559 int i; 560 561 /* make sure any subsequent use of the queues will fail */ 562 sc->tx_nfree = 0; 563 STAILQ_INIT(&sc->tx_q); 564 STAILQ_INIT(&sc->tx_free); 565 566 /* free up all node references and mbufs */ 567 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 568 data = &sc->tx_data[i]; 569 570 if (data->m != NULL) { 571 m_freem(data->m); 572 data->m = NULL; 573 } 574 if (data->ni != NULL) { 575 ieee80211_free_node(data->ni); 576 data->ni = NULL; 577 } 578 } 579 } 580 581 static int 582 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 583 { 584 struct zyd_vap *zvp = ZYD_VAP(vap); 585 struct ieee80211com *ic = vap->iv_ic; 586 struct zyd_softc *sc = ic->ic_softc; 587 int error; 588 589 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 590 ieee80211_state_name[vap->iv_state], 591 ieee80211_state_name[nstate]); 592 593 IEEE80211_UNLOCK(ic); 594 ZYD_LOCK(sc); 595 switch (nstate) { 596 case IEEE80211_S_AUTH: 597 zyd_set_chan(sc, ic->ic_curchan); 598 break; 599 case IEEE80211_S_RUN: 600 if (vap->iv_opmode == IEEE80211_M_MONITOR) 601 break; 602 603 /* turn link LED on */ 604 error = zyd_set_led(sc, ZYD_LED1, 1); 605 if (error != 0) 606 break; 607 608 /* make data LED blink upon Tx */ 609 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 610 611 IEEE80211_ADDR_COPY(ic->ic_macaddr, vap->iv_bss->ni_bssid); 612 zyd_set_bssid(sc, ic->ic_macaddr); 613 break; 614 default: 615 break; 616 } 617 fail: 618 ZYD_UNLOCK(sc); 619 IEEE80211_LOCK(ic); 620 return (zvp->newstate(vap, nstate, arg)); 621 } 622 623 /* 624 * Callback handler for interrupt transfer 625 */ 626 static void 627 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 628 { 629 struct zyd_softc *sc = usbd_xfer_softc(xfer); 630 struct ieee80211com *ic = &sc->sc_ic; 631 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 632 struct ieee80211_node *ni; 633 struct zyd_cmd *cmd = &sc->sc_ibuf; 634 struct usb_page_cache *pc; 635 int datalen; 636 int actlen; 637 638 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 639 640 switch (USB_GET_STATE(xfer)) { 641 case USB_ST_TRANSFERRED: 642 pc = usbd_xfer_get_frame(xfer, 0); 643 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 644 645 switch (le16toh(cmd->code)) { 646 case ZYD_NOTIF_RETRYSTATUS: 647 { 648 struct zyd_notif_retry *retry = 649 (struct zyd_notif_retry *)cmd->data; 650 651 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 652 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 653 le16toh(retry->rate), ether_sprintf(retry->macaddr), 654 le16toh(retry->count)&0xff, le16toh(retry->count)); 655 656 /* 657 * Find the node to which the packet was sent and 658 * update its retry statistics. In BSS mode, this node 659 * is the AP we're associated to so no lookup is 660 * actually needed. 661 */ 662 ni = ieee80211_find_txnode(vap, retry->macaddr); 663 if (ni != NULL) { 664 int retrycnt = 665 (int)(le16toh(retry->count) & 0xff); 666 667 ieee80211_ratectl_tx_complete(vap, ni, 668 IEEE80211_RATECTL_TX_FAILURE, 669 &retrycnt, NULL); 670 ieee80211_free_node(ni); 671 } 672 if (le16toh(retry->count) & 0x100) 673 /* too many retries */ 674 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 675 1); 676 break; 677 } 678 case ZYD_NOTIF_IORD: 679 { 680 struct zyd_rq *rqp; 681 682 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 683 break; /* HMAC interrupt */ 684 685 datalen = actlen - sizeof(cmd->code); 686 datalen -= 2; /* XXX: padding? */ 687 688 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 689 int i; 690 int count; 691 692 if (rqp->olen != datalen) 693 continue; 694 count = rqp->olen / sizeof(struct zyd_pair); 695 for (i = 0; i < count; i++) { 696 if (*(((const uint16_t *)rqp->idata) + i) != 697 (((struct zyd_pair *)cmd->data) + i)->reg) 698 break; 699 } 700 if (i != count) 701 continue; 702 /* copy answer into caller-supplied buffer */ 703 memcpy(rqp->odata, cmd->data, rqp->olen); 704 DPRINTF(sc, ZYD_DEBUG_CMD, 705 "command %p complete, data = %*D \n", 706 rqp, rqp->olen, (char *)rqp->odata, ":"); 707 wakeup(rqp); /* wakeup caller */ 708 break; 709 } 710 if (rqp == NULL) { 711 device_printf(sc->sc_dev, 712 "unexpected IORD notification %*D\n", 713 datalen, cmd->data, ":"); 714 } 715 break; 716 } 717 default: 718 device_printf(sc->sc_dev, "unknown notification %x\n", 719 le16toh(cmd->code)); 720 } 721 722 /* FALLTHROUGH */ 723 case USB_ST_SETUP: 724 tr_setup: 725 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 726 usbd_transfer_submit(xfer); 727 break; 728 729 default: /* Error */ 730 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 731 usbd_errstr(error)); 732 733 if (error != USB_ERR_CANCELLED) { 734 /* try to clear stall first */ 735 usbd_xfer_set_stall(xfer); 736 goto tr_setup; 737 } 738 break; 739 } 740 } 741 742 static void 743 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 744 { 745 struct zyd_softc *sc = usbd_xfer_softc(xfer); 746 struct zyd_rq *rqp, *cmd; 747 struct usb_page_cache *pc; 748 749 switch (USB_GET_STATE(xfer)) { 750 case USB_ST_TRANSFERRED: 751 cmd = usbd_xfer_get_priv(xfer); 752 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 753 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 754 /* Ensure the cached rq pointer is still valid */ 755 if (rqp == cmd && 756 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 757 wakeup(rqp); /* wakeup caller */ 758 } 759 760 /* FALLTHROUGH */ 761 case USB_ST_SETUP: 762 tr_setup: 763 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 764 if (rqp->flags & ZYD_CMD_FLAG_SENT) 765 continue; 766 767 pc = usbd_xfer_get_frame(xfer, 0); 768 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 769 770 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 771 usbd_xfer_set_priv(xfer, rqp); 772 rqp->flags |= ZYD_CMD_FLAG_SENT; 773 usbd_transfer_submit(xfer); 774 break; 775 } 776 break; 777 778 default: /* Error */ 779 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 780 usbd_errstr(error)); 781 782 if (error != USB_ERR_CANCELLED) { 783 /* try to clear stall first */ 784 usbd_xfer_set_stall(xfer); 785 goto tr_setup; 786 } 787 break; 788 } 789 } 790 791 static int 792 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 793 void *odata, int olen, int flags) 794 { 795 struct zyd_cmd cmd; 796 struct zyd_rq rq; 797 int error; 798 799 if (ilen > (int)sizeof(cmd.data)) 800 return (EINVAL); 801 802 cmd.code = htole16(code); 803 memcpy(cmd.data, idata, ilen); 804 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 805 &rq, ilen, idata, ":"); 806 807 rq.cmd = &cmd; 808 rq.idata = idata; 809 rq.odata = odata; 810 rq.ilen = sizeof(uint16_t) + ilen; 811 rq.olen = olen; 812 rq.flags = flags; 813 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 814 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 815 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 816 817 /* wait at most one second for command reply */ 818 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 819 if (error) 820 device_printf(sc->sc_dev, "command timeout\n"); 821 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 822 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 823 &rq, error); 824 825 return (error); 826 } 827 828 static int 829 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 830 { 831 struct zyd_pair tmp; 832 int error; 833 834 reg = htole16(reg); 835 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 836 ZYD_CMD_FLAG_READ); 837 if (error == 0) 838 *val = le16toh(tmp.val); 839 return (error); 840 } 841 842 static int 843 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 844 { 845 struct zyd_pair tmp[2]; 846 uint16_t regs[2]; 847 int error; 848 849 regs[0] = htole16(ZYD_REG32_HI(reg)); 850 regs[1] = htole16(ZYD_REG32_LO(reg)); 851 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 852 ZYD_CMD_FLAG_READ); 853 if (error == 0) 854 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 855 return (error); 856 } 857 858 static int 859 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 860 { 861 struct zyd_pair pair; 862 863 pair.reg = htole16(reg); 864 pair.val = htole16(val); 865 866 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 867 } 868 869 static int 870 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 871 { 872 struct zyd_pair pair[2]; 873 874 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 875 pair[0].val = htole16(val >> 16); 876 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 877 pair[1].val = htole16(val & 0xffff); 878 879 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 880 } 881 882 static int 883 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 884 { 885 struct zyd_rf *rf = &sc->sc_rf; 886 struct zyd_rfwrite_cmd req; 887 uint16_t cr203; 888 int error, i; 889 890 zyd_read16_m(sc, ZYD_CR203, &cr203); 891 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 892 893 req.code = htole16(2); 894 req.width = htole16(rf->width); 895 for (i = 0; i < rf->width; i++) { 896 req.bit[i] = htole16(cr203); 897 if (val & (1 << (rf->width - 1 - i))) 898 req.bit[i] |= htole16(ZYD_RF_DATA); 899 } 900 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 901 fail: 902 return (error); 903 } 904 905 static int 906 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 907 { 908 int error; 909 910 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 911 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 912 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 913 fail: 914 return (error); 915 } 916 917 static int 918 zyd_lock_phy(struct zyd_softc *sc) 919 { 920 int error; 921 uint32_t tmp; 922 923 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 924 tmp &= ~ZYD_UNLOCK_PHY_REGS; 925 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 926 fail: 927 return (error); 928 } 929 930 static int 931 zyd_unlock_phy(struct zyd_softc *sc) 932 { 933 int error; 934 uint32_t tmp; 935 936 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 937 tmp |= ZYD_UNLOCK_PHY_REGS; 938 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 939 fail: 940 return (error); 941 } 942 943 /* 944 * RFMD RF methods. 945 */ 946 static int 947 zyd_rfmd_init(struct zyd_rf *rf) 948 { 949 struct zyd_softc *sc = rf->rf_sc; 950 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 951 static const uint32_t rfini[] = ZYD_RFMD_RF; 952 int i, error; 953 954 /* init RF-dependent PHY registers */ 955 for (i = 0; i < nitems(phyini); i++) { 956 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 957 } 958 959 /* init RFMD radio */ 960 for (i = 0; i < nitems(rfini); i++) { 961 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 962 return (error); 963 } 964 fail: 965 return (error); 966 } 967 968 static int 969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 970 { 971 int error; 972 struct zyd_softc *sc = rf->rf_sc; 973 974 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 975 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 976 fail: 977 return (error); 978 } 979 980 static int 981 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 982 { 983 int error; 984 struct zyd_softc *sc = rf->rf_sc; 985 static const struct { 986 uint32_t r1, r2; 987 } rfprog[] = ZYD_RFMD_CHANTABLE; 988 989 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 990 if (error != 0) 991 goto fail; 992 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 993 if (error != 0) 994 goto fail; 995 996 fail: 997 return (error); 998 } 999 1000 /* 1001 * AL2230 RF methods. 1002 */ 1003 static int 1004 zyd_al2230_init(struct zyd_rf *rf) 1005 { 1006 struct zyd_softc *sc = rf->rf_sc; 1007 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1008 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1009 static const struct zyd_phy_pair phypll[] = { 1010 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1011 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1012 }; 1013 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1014 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1015 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1016 int i, error; 1017 1018 /* init RF-dependent PHY registers */ 1019 for (i = 0; i < nitems(phyini); i++) 1020 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1021 1022 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1023 for (i = 0; i < nitems(phy2230s); i++) 1024 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1025 } 1026 1027 /* init AL2230 radio */ 1028 for (i = 0; i < nitems(rfini1); i++) { 1029 error = zyd_rfwrite(sc, rfini1[i]); 1030 if (error != 0) 1031 goto fail; 1032 } 1033 1034 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1035 error = zyd_rfwrite(sc, 0x000824); 1036 else 1037 error = zyd_rfwrite(sc, 0x0005a4); 1038 if (error != 0) 1039 goto fail; 1040 1041 for (i = 0; i < nitems(rfini2); i++) { 1042 error = zyd_rfwrite(sc, rfini2[i]); 1043 if (error != 0) 1044 goto fail; 1045 } 1046 1047 for (i = 0; i < nitems(phypll); i++) 1048 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1049 1050 for (i = 0; i < nitems(rfini3); i++) { 1051 error = zyd_rfwrite(sc, rfini3[i]); 1052 if (error != 0) 1053 goto fail; 1054 } 1055 fail: 1056 return (error); 1057 } 1058 1059 static int 1060 zyd_al2230_fini(struct zyd_rf *rf) 1061 { 1062 int error, i; 1063 struct zyd_softc *sc = rf->rf_sc; 1064 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1065 1066 for (i = 0; i < nitems(phy); i++) 1067 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1068 1069 if (sc->sc_newphy != 0) 1070 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1071 1072 zyd_write16_m(sc, ZYD_CR203, 0x6); 1073 fail: 1074 return (error); 1075 } 1076 1077 static int 1078 zyd_al2230_init_b(struct zyd_rf *rf) 1079 { 1080 struct zyd_softc *sc = rf->rf_sc; 1081 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1082 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1083 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1084 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1085 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1086 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1087 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1088 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1089 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1090 int i, error; 1091 1092 for (i = 0; i < nitems(phy1); i++) 1093 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1094 1095 /* init RF-dependent PHY registers */ 1096 for (i = 0; i < nitems(phyini); i++) 1097 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1098 1099 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1100 for (i = 0; i < nitems(phy2230s); i++) 1101 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1102 } 1103 1104 for (i = 0; i < 3; i++) { 1105 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1106 if (error != 0) 1107 return (error); 1108 } 1109 1110 for (i = 0; i < nitems(rfini_part1); i++) { 1111 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1112 if (error != 0) 1113 return (error); 1114 } 1115 1116 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1117 error = zyd_rfwrite(sc, 0x241000); 1118 else 1119 error = zyd_rfwrite(sc, 0x25a000); 1120 if (error != 0) 1121 goto fail; 1122 1123 for (i = 0; i < nitems(rfini_part2); i++) { 1124 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1125 if (error != 0) 1126 return (error); 1127 } 1128 1129 for (i = 0; i < nitems(phy2); i++) 1130 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1131 1132 for (i = 0; i < nitems(rfini_part3); i++) { 1133 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1134 if (error != 0) 1135 return (error); 1136 } 1137 1138 for (i = 0; i < nitems(phy3); i++) 1139 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1140 1141 error = zyd_al2230_fini(rf); 1142 fail: 1143 return (error); 1144 } 1145 1146 static int 1147 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1148 { 1149 struct zyd_softc *sc = rf->rf_sc; 1150 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1151 1152 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1153 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1154 fail: 1155 return (error); 1156 } 1157 1158 static int 1159 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1160 { 1161 int error, i; 1162 struct zyd_softc *sc = rf->rf_sc; 1163 static const struct zyd_phy_pair phy1[] = { 1164 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1165 }; 1166 static const struct { 1167 uint32_t r1, r2, r3; 1168 } rfprog[] = ZYD_AL2230_CHANTABLE; 1169 1170 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1171 if (error != 0) 1172 goto fail; 1173 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1174 if (error != 0) 1175 goto fail; 1176 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1177 if (error != 0) 1178 goto fail; 1179 1180 for (i = 0; i < nitems(phy1); i++) 1181 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1182 fail: 1183 return (error); 1184 } 1185 1186 static int 1187 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1188 { 1189 int error, i; 1190 struct zyd_softc *sc = rf->rf_sc; 1191 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1192 static const struct { 1193 uint32_t r1, r2, r3; 1194 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1195 1196 for (i = 0; i < nitems(phy1); i++) 1197 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1198 1199 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1200 if (error != 0) 1201 goto fail; 1202 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1203 if (error != 0) 1204 goto fail; 1205 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1206 if (error != 0) 1207 goto fail; 1208 error = zyd_al2230_fini(rf); 1209 fail: 1210 return (error); 1211 } 1212 1213 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1214 { \ 1215 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1216 { ZYD_CR47, 0x1e } \ 1217 } 1218 1219 static int 1220 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1221 { 1222 int error = 0, i; 1223 struct zyd_softc *sc = rf->rf_sc; 1224 struct ieee80211com *ic = &sc->sc_ic; 1225 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1226 int chan = ieee80211_chan2ieee(ic, c); 1227 1228 if (chan == 1 || chan == 11) 1229 r[0].val = 0x12; 1230 1231 for (i = 0; i < nitems(r); i++) 1232 zyd_write16_m(sc, r[i].reg, r[i].val); 1233 fail: 1234 return (error); 1235 } 1236 1237 /* 1238 * AL7230B RF methods. 1239 */ 1240 static int 1241 zyd_al7230B_init(struct zyd_rf *rf) 1242 { 1243 struct zyd_softc *sc = rf->rf_sc; 1244 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1245 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1246 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1247 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1248 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1249 int i, error; 1250 1251 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1252 1253 /* init RF-dependent PHY registers, part one */ 1254 for (i = 0; i < nitems(phyini_1); i++) 1255 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1256 1257 /* init AL7230B radio, part one */ 1258 for (i = 0; i < nitems(rfini_1); i++) { 1259 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1260 return (error); 1261 } 1262 /* init RF-dependent PHY registers, part two */ 1263 for (i = 0; i < nitems(phyini_2); i++) 1264 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1265 1266 /* init AL7230B radio, part two */ 1267 for (i = 0; i < nitems(rfini_2); i++) { 1268 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1269 return (error); 1270 } 1271 /* init RF-dependent PHY registers, part three */ 1272 for (i = 0; i < nitems(phyini_3); i++) 1273 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1274 fail: 1275 return (error); 1276 } 1277 1278 static int 1279 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1280 { 1281 int error; 1282 struct zyd_softc *sc = rf->rf_sc; 1283 1284 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1285 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1286 fail: 1287 return (error); 1288 } 1289 1290 static int 1291 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1292 { 1293 struct zyd_softc *sc = rf->rf_sc; 1294 static const struct { 1295 uint32_t r1, r2; 1296 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1297 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1298 int i, error; 1299 1300 zyd_write16_m(sc, ZYD_CR240, 0x57); 1301 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1302 1303 for (i = 0; i < nitems(rfsc); i++) { 1304 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1305 return (error); 1306 } 1307 1308 zyd_write16_m(sc, ZYD_CR128, 0x14); 1309 zyd_write16_m(sc, ZYD_CR129, 0x12); 1310 zyd_write16_m(sc, ZYD_CR130, 0x10); 1311 zyd_write16_m(sc, ZYD_CR38, 0x38); 1312 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1313 1314 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1315 if (error != 0) 1316 goto fail; 1317 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1318 if (error != 0) 1319 goto fail; 1320 error = zyd_rfwrite(sc, 0x3c9000); 1321 if (error != 0) 1322 goto fail; 1323 1324 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1325 zyd_write16_m(sc, ZYD_CR203, 0x06); 1326 zyd_write16_m(sc, ZYD_CR240, 0x08); 1327 fail: 1328 return (error); 1329 } 1330 1331 /* 1332 * AL2210 RF methods. 1333 */ 1334 static int 1335 zyd_al2210_init(struct zyd_rf *rf) 1336 { 1337 struct zyd_softc *sc = rf->rf_sc; 1338 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1339 static const uint32_t rfini[] = ZYD_AL2210_RF; 1340 uint32_t tmp; 1341 int i, error; 1342 1343 zyd_write32_m(sc, ZYD_CR18, 2); 1344 1345 /* init RF-dependent PHY registers */ 1346 for (i = 0; i < nitems(phyini); i++) 1347 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1348 1349 /* init AL2210 radio */ 1350 for (i = 0; i < nitems(rfini); i++) { 1351 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1352 return (error); 1353 } 1354 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1355 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1356 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1357 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1358 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1359 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1360 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1361 zyd_write32_m(sc, ZYD_CR18, 3); 1362 fail: 1363 return (error); 1364 } 1365 1366 static int 1367 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1368 { 1369 /* vendor driver does nothing for this RF chip */ 1370 1371 return (0); 1372 } 1373 1374 static int 1375 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1376 { 1377 int error; 1378 struct zyd_softc *sc = rf->rf_sc; 1379 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1380 uint32_t tmp; 1381 1382 zyd_write32_m(sc, ZYD_CR18, 2); 1383 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1384 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1385 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1386 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1387 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1388 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1389 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1390 1391 /* actually set the channel */ 1392 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1393 if (error != 0) 1394 goto fail; 1395 1396 zyd_write32_m(sc, ZYD_CR18, 3); 1397 fail: 1398 return (error); 1399 } 1400 1401 /* 1402 * GCT RF methods. 1403 */ 1404 static int 1405 zyd_gct_init(struct zyd_rf *rf) 1406 { 1407 #define ZYD_GCT_INTR_REG 0x85c1 1408 struct zyd_softc *sc = rf->rf_sc; 1409 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1410 static const uint32_t rfini[] = ZYD_GCT_RF; 1411 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1412 int i, idx = -1, error; 1413 uint16_t data; 1414 1415 /* init RF-dependent PHY registers */ 1416 for (i = 0; i < nitems(phyini); i++) 1417 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1418 1419 /* init cgt radio */ 1420 for (i = 0; i < nitems(rfini); i++) { 1421 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1422 return (error); 1423 } 1424 1425 error = zyd_gct_mode(rf); 1426 if (error != 0) 1427 return (error); 1428 1429 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1430 error = zyd_gct_set_channel_synth(rf, 1, 0); 1431 if (error != 0) 1432 goto fail; 1433 error = zyd_gct_write(rf, vco[i][0]); 1434 if (error != 0) 1435 goto fail; 1436 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1437 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1438 if ((data & 0xf) == 0) { 1439 idx = i; 1440 break; 1441 } 1442 } 1443 if (idx == -1) { 1444 error = zyd_gct_set_channel_synth(rf, 1, 1); 1445 if (error != 0) 1446 goto fail; 1447 error = zyd_gct_write(rf, 0x6662); 1448 if (error != 0) 1449 goto fail; 1450 } 1451 1452 rf->idx = idx; 1453 zyd_write16_m(sc, ZYD_CR203, 0x6); 1454 fail: 1455 return (error); 1456 #undef ZYD_GCT_INTR_REG 1457 } 1458 1459 static int 1460 zyd_gct_mode(struct zyd_rf *rf) 1461 { 1462 struct zyd_softc *sc = rf->rf_sc; 1463 static const uint32_t mode[] = { 1464 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1465 }; 1466 int i, error; 1467 1468 for (i = 0; i < nitems(mode); i++) { 1469 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1470 break; 1471 } 1472 return (error); 1473 } 1474 1475 static int 1476 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1477 { 1478 int error, idx = chan - 1; 1479 struct zyd_softc *sc = rf->rf_sc; 1480 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1481 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1482 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1483 1484 error = zyd_rfwrite(sc, 1485 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1486 if (error != 0) 1487 return (error); 1488 return zyd_rfwrite(sc, div_synth[idx]); 1489 } 1490 1491 static int 1492 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1493 { 1494 struct zyd_softc *sc = rf->rf_sc; 1495 1496 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1497 } 1498 1499 static int 1500 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1501 { 1502 int error; 1503 struct zyd_softc *sc = rf->rf_sc; 1504 1505 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1506 if (error != 0) 1507 return (error); 1508 1509 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1510 zyd_write16_m(sc, ZYD_CR251, 1511 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1512 fail: 1513 return (error); 1514 } 1515 1516 static int 1517 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1518 { 1519 int error, i; 1520 struct zyd_softc *sc = rf->rf_sc; 1521 static const struct zyd_phy_pair cmd[] = { 1522 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1523 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1524 }; 1525 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1526 1527 error = zyd_gct_set_channel_synth(rf, chan, 0); 1528 if (error != 0) 1529 goto fail; 1530 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1531 vco[rf->idx][((chan - 1) / 2)]); 1532 if (error != 0) 1533 goto fail; 1534 error = zyd_gct_mode(rf); 1535 if (error != 0) 1536 return (error); 1537 for (i = 0; i < nitems(cmd); i++) 1538 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1539 error = zyd_gct_txgain(rf, chan); 1540 if (error != 0) 1541 return (error); 1542 zyd_write16_m(sc, ZYD_CR203, 0x6); 1543 fail: 1544 return (error); 1545 } 1546 1547 static int 1548 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1549 { 1550 struct zyd_softc *sc = rf->rf_sc; 1551 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1552 uint8_t idx = sc->sc_pwrint[chan - 1]; 1553 1554 if (idx >= nitems(txgain)) { 1555 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1556 chan, idx); 1557 return 0; 1558 } 1559 1560 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1561 } 1562 1563 /* 1564 * Maxim2 RF methods. 1565 */ 1566 static int 1567 zyd_maxim2_init(struct zyd_rf *rf) 1568 { 1569 struct zyd_softc *sc = rf->rf_sc; 1570 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1571 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1572 uint16_t tmp; 1573 int i, error; 1574 1575 /* init RF-dependent PHY registers */ 1576 for (i = 0; i < nitems(phyini); i++) 1577 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1578 1579 zyd_read16_m(sc, ZYD_CR203, &tmp); 1580 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1581 1582 /* init maxim2 radio */ 1583 for (i = 0; i < nitems(rfini); i++) { 1584 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1585 return (error); 1586 } 1587 zyd_read16_m(sc, ZYD_CR203, &tmp); 1588 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1589 fail: 1590 return (error); 1591 } 1592 1593 static int 1594 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1595 { 1596 1597 /* vendor driver does nothing for this RF chip */ 1598 return (0); 1599 } 1600 1601 static int 1602 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1603 { 1604 struct zyd_softc *sc = rf->rf_sc; 1605 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1606 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1607 static const struct { 1608 uint32_t r1, r2; 1609 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1610 uint16_t tmp; 1611 int i, error; 1612 1613 /* 1614 * Do the same as we do when initializing it, except for the channel 1615 * values coming from the two channel tables. 1616 */ 1617 1618 /* init RF-dependent PHY registers */ 1619 for (i = 0; i < nitems(phyini); i++) 1620 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1621 1622 zyd_read16_m(sc, ZYD_CR203, &tmp); 1623 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1624 1625 /* first two values taken from the chantables */ 1626 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1627 if (error != 0) 1628 goto fail; 1629 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1630 if (error != 0) 1631 goto fail; 1632 1633 /* init maxim2 radio - skipping the two first values */ 1634 for (i = 2; i < nitems(rfini); i++) { 1635 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1636 return (error); 1637 } 1638 zyd_read16_m(sc, ZYD_CR203, &tmp); 1639 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1640 fail: 1641 return (error); 1642 } 1643 1644 static int 1645 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1646 { 1647 struct zyd_rf *rf = &sc->sc_rf; 1648 1649 rf->rf_sc = sc; 1650 rf->update_pwr = 1; 1651 1652 switch (type) { 1653 case ZYD_RF_RFMD: 1654 rf->init = zyd_rfmd_init; 1655 rf->switch_radio = zyd_rfmd_switch_radio; 1656 rf->set_channel = zyd_rfmd_set_channel; 1657 rf->width = 24; /* 24-bit RF values */ 1658 break; 1659 case ZYD_RF_AL2230: 1660 case ZYD_RF_AL2230S: 1661 if (sc->sc_macrev == ZYD_ZD1211B) { 1662 rf->init = zyd_al2230_init_b; 1663 rf->set_channel = zyd_al2230_set_channel_b; 1664 } else { 1665 rf->init = zyd_al2230_init; 1666 rf->set_channel = zyd_al2230_set_channel; 1667 } 1668 rf->switch_radio = zyd_al2230_switch_radio; 1669 rf->bandedge6 = zyd_al2230_bandedge6; 1670 rf->width = 24; /* 24-bit RF values */ 1671 break; 1672 case ZYD_RF_AL7230B: 1673 rf->init = zyd_al7230B_init; 1674 rf->switch_radio = zyd_al7230B_switch_radio; 1675 rf->set_channel = zyd_al7230B_set_channel; 1676 rf->width = 24; /* 24-bit RF values */ 1677 break; 1678 case ZYD_RF_AL2210: 1679 rf->init = zyd_al2210_init; 1680 rf->switch_radio = zyd_al2210_switch_radio; 1681 rf->set_channel = zyd_al2210_set_channel; 1682 rf->width = 24; /* 24-bit RF values */ 1683 break; 1684 case ZYD_RF_MAXIM_NEW: 1685 case ZYD_RF_GCT: 1686 rf->init = zyd_gct_init; 1687 rf->switch_radio = zyd_gct_switch_radio; 1688 rf->set_channel = zyd_gct_set_channel; 1689 rf->width = 24; /* 24-bit RF values */ 1690 rf->update_pwr = 0; 1691 break; 1692 case ZYD_RF_MAXIM_NEW2: 1693 rf->init = zyd_maxim2_init; 1694 rf->switch_radio = zyd_maxim2_switch_radio; 1695 rf->set_channel = zyd_maxim2_set_channel; 1696 rf->width = 18; /* 18-bit RF values */ 1697 break; 1698 default: 1699 device_printf(sc->sc_dev, 1700 "sorry, radio \"%s\" is not supported yet\n", 1701 zyd_rf_name(type)); 1702 return (EINVAL); 1703 } 1704 return (0); 1705 } 1706 1707 static const char * 1708 zyd_rf_name(uint8_t type) 1709 { 1710 static const char * const zyd_rfs[] = { 1711 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1712 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1713 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1714 "PHILIPS" 1715 }; 1716 1717 return zyd_rfs[(type > 15) ? 0 : type]; 1718 } 1719 1720 static int 1721 zyd_hw_init(struct zyd_softc *sc) 1722 { 1723 int error; 1724 const struct zyd_phy_pair *phyp; 1725 struct zyd_rf *rf = &sc->sc_rf; 1726 uint16_t val; 1727 1728 /* specify that the plug and play is finished */ 1729 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1730 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1731 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1732 sc->sc_fwbase); 1733 1734 /* retrieve firmware revision number */ 1735 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1736 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1737 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1738 /* set mandatory rates - XXX assumes 802.11b/g */ 1739 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1740 1741 /* disable interrupts */ 1742 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1743 1744 if ((error = zyd_read_pod(sc)) != 0) { 1745 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1746 goto fail; 1747 } 1748 1749 /* PHY init (resetting) */ 1750 error = zyd_lock_phy(sc); 1751 if (error != 0) 1752 goto fail; 1753 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1754 for (; phyp->reg != 0; phyp++) 1755 zyd_write16_m(sc, phyp->reg, phyp->val); 1756 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1757 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1758 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1759 } 1760 error = zyd_unlock_phy(sc); 1761 if (error != 0) 1762 goto fail; 1763 1764 /* HMAC init */ 1765 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1766 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1767 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1768 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1769 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1770 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1771 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1772 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1773 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1774 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1775 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1776 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1777 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1778 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1779 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1780 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1781 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1782 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1783 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1784 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1785 1786 if (sc->sc_macrev == ZYD_ZD1211) { 1787 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1788 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1789 } else { 1790 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1791 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1792 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1793 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1794 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1795 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1796 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1797 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1798 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1799 } 1800 1801 /* init beacon interval to 100ms */ 1802 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1803 goto fail; 1804 1805 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1806 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1807 sc->sc_rfrev); 1808 goto fail; 1809 } 1810 1811 /* RF chip init */ 1812 error = zyd_lock_phy(sc); 1813 if (error != 0) 1814 goto fail; 1815 error = (*rf->init)(rf); 1816 if (error != 0) { 1817 device_printf(sc->sc_dev, 1818 "radio initialization failed, error %d\n", error); 1819 goto fail; 1820 } 1821 error = zyd_unlock_phy(sc); 1822 if (error != 0) 1823 goto fail; 1824 1825 if ((error = zyd_read_eeprom(sc)) != 0) { 1826 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1827 goto fail; 1828 } 1829 1830 fail: return (error); 1831 } 1832 1833 static int 1834 zyd_read_pod(struct zyd_softc *sc) 1835 { 1836 int error; 1837 uint32_t tmp; 1838 1839 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1840 sc->sc_rfrev = tmp & 0x0f; 1841 sc->sc_ledtype = (tmp >> 4) & 0x01; 1842 sc->sc_al2230s = (tmp >> 7) & 0x01; 1843 sc->sc_cckgain = (tmp >> 8) & 0x01; 1844 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1845 sc->sc_parev = (tmp >> 16) & 0x0f; 1846 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1847 sc->sc_newphy = (tmp >> 31) & 0x01; 1848 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1849 fail: 1850 return (error); 1851 } 1852 1853 static int 1854 zyd_read_eeprom(struct zyd_softc *sc) 1855 { 1856 uint16_t val; 1857 int error, i; 1858 1859 /* read Tx power calibration tables */ 1860 for (i = 0; i < 7; i++) { 1861 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1862 sc->sc_pwrcal[i * 2] = val >> 8; 1863 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1864 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1865 sc->sc_pwrint[i * 2] = val >> 8; 1866 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1867 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1868 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1869 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1870 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1871 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1872 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1873 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1874 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1875 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1876 } 1877 fail: 1878 return (error); 1879 } 1880 1881 static int 1882 zyd_get_macaddr(struct zyd_softc *sc) 1883 { 1884 struct usb_device_request req; 1885 usb_error_t error; 1886 1887 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1888 req.bRequest = ZYD_READFWDATAREQ; 1889 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1890 USETW(req.wIndex, 0); 1891 USETW(req.wLength, IEEE80211_ADDR_LEN); 1892 1893 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1894 if (error != 0) { 1895 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1896 usbd_errstr(error)); 1897 } 1898 1899 return (error); 1900 } 1901 1902 static int 1903 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1904 { 1905 int error; 1906 uint32_t tmp; 1907 1908 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1909 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1910 tmp = addr[5] << 8 | addr[4]; 1911 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1912 fail: 1913 return (error); 1914 } 1915 1916 static int 1917 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1918 { 1919 int error; 1920 uint32_t tmp; 1921 1922 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1923 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1924 tmp = addr[5] << 8 | addr[4]; 1925 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1926 fail: 1927 return (error); 1928 } 1929 1930 static int 1931 zyd_switch_radio(struct zyd_softc *sc, int on) 1932 { 1933 struct zyd_rf *rf = &sc->sc_rf; 1934 int error; 1935 1936 error = zyd_lock_phy(sc); 1937 if (error != 0) 1938 goto fail; 1939 error = (*rf->switch_radio)(rf, on); 1940 if (error != 0) 1941 goto fail; 1942 error = zyd_unlock_phy(sc); 1943 fail: 1944 return (error); 1945 } 1946 1947 static int 1948 zyd_set_led(struct zyd_softc *sc, int which, int on) 1949 { 1950 int error; 1951 uint32_t tmp; 1952 1953 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1954 tmp &= ~which; 1955 if (on) 1956 tmp |= which; 1957 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1958 fail: 1959 return (error); 1960 } 1961 1962 static void 1963 zyd_set_multi(struct zyd_softc *sc) 1964 { 1965 struct ieee80211com *ic = &sc->sc_ic; 1966 uint32_t low, high; 1967 int error; 1968 1969 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1970 return; 1971 1972 low = 0x00000000; 1973 high = 0x80000000; 1974 1975 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1976 ic->ic_promisc > 0) { 1977 low = 0xffffffff; 1978 high = 0xffffffff; 1979 } else { 1980 struct ieee80211vap *vap; 1981 struct ifnet *ifp; 1982 struct ifmultiaddr *ifma; 1983 uint8_t v; 1984 1985 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1986 ifp = vap->iv_ifp; 1987 if_maddr_rlock(ifp); 1988 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1989 if (ifma->ifma_addr->sa_family != AF_LINK) 1990 continue; 1991 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 1992 ifma->ifma_addr))[5] >> 2; 1993 if (v < 32) 1994 low |= 1 << v; 1995 else 1996 high |= 1 << (v - 32); 1997 } 1998 if_maddr_runlock(ifp); 1999 } 2000 } 2001 2002 /* reprogram multicast global hash table */ 2003 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2004 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2005 fail: 2006 if (error != 0) 2007 device_printf(sc->sc_dev, 2008 "could not set multicast hash table\n"); 2009 } 2010 2011 static void 2012 zyd_update_mcast(struct ieee80211com *ic) 2013 { 2014 struct zyd_softc *sc = ic->ic_softc; 2015 2016 ZYD_LOCK(sc); 2017 zyd_set_multi(sc); 2018 ZYD_UNLOCK(sc); 2019 } 2020 2021 static int 2022 zyd_set_rxfilter(struct zyd_softc *sc) 2023 { 2024 struct ieee80211com *ic = &sc->sc_ic; 2025 uint32_t rxfilter; 2026 2027 switch (ic->ic_opmode) { 2028 case IEEE80211_M_STA: 2029 rxfilter = ZYD_FILTER_BSS; 2030 break; 2031 case IEEE80211_M_IBSS: 2032 case IEEE80211_M_HOSTAP: 2033 rxfilter = ZYD_FILTER_HOSTAP; 2034 break; 2035 case IEEE80211_M_MONITOR: 2036 rxfilter = ZYD_FILTER_MONITOR; 2037 break; 2038 default: 2039 /* should not get there */ 2040 return (EINVAL); 2041 } 2042 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2043 } 2044 2045 static void 2046 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2047 { 2048 int error; 2049 struct ieee80211com *ic = &sc->sc_ic; 2050 struct zyd_rf *rf = &sc->sc_rf; 2051 uint32_t tmp; 2052 int chan; 2053 2054 chan = ieee80211_chan2ieee(ic, c); 2055 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2056 /* XXX should NEVER happen */ 2057 device_printf(sc->sc_dev, 2058 "%s: invalid channel %x\n", __func__, chan); 2059 return; 2060 } 2061 2062 error = zyd_lock_phy(sc); 2063 if (error != 0) 2064 goto fail; 2065 2066 error = (*rf->set_channel)(rf, chan); 2067 if (error != 0) 2068 goto fail; 2069 2070 if (rf->update_pwr) { 2071 /* update Tx power */ 2072 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2073 2074 if (sc->sc_macrev == ZYD_ZD1211B) { 2075 zyd_write16_m(sc, ZYD_CR67, 2076 sc->sc_ofdm36_cal[chan - 1]); 2077 zyd_write16_m(sc, ZYD_CR66, 2078 sc->sc_ofdm48_cal[chan - 1]); 2079 zyd_write16_m(sc, ZYD_CR65, 2080 sc->sc_ofdm54_cal[chan - 1]); 2081 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2082 zyd_write16_m(sc, ZYD_CR69, 0x28); 2083 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2084 } 2085 } 2086 if (sc->sc_cckgain) { 2087 /* set CCK baseband gain from EEPROM */ 2088 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2089 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2090 } 2091 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2092 error = (*rf->bandedge6)(rf, c); 2093 if (error != 0) 2094 goto fail; 2095 } 2096 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2097 2098 error = zyd_unlock_phy(sc); 2099 if (error != 0) 2100 goto fail; 2101 2102 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2103 htole16(c->ic_freq); 2104 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2105 htole16(c->ic_flags); 2106 fail: 2107 return; 2108 } 2109 2110 static int 2111 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2112 { 2113 int error; 2114 uint32_t val; 2115 2116 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2117 sc->sc_atim_wnd = val; 2118 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2119 sc->sc_pre_tbtt = val; 2120 sc->sc_bcn_int = bintval; 2121 2122 if (sc->sc_bcn_int <= 5) 2123 sc->sc_bcn_int = 5; 2124 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2125 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2126 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2127 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2128 2129 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2130 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2131 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2132 fail: 2133 return (error); 2134 } 2135 2136 static void 2137 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2138 { 2139 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2140 struct ieee80211com *ic = &sc->sc_ic; 2141 struct zyd_plcphdr plcp; 2142 struct zyd_rx_stat stat; 2143 struct usb_page_cache *pc; 2144 struct mbuf *m; 2145 int rlen, rssi; 2146 2147 if (len < ZYD_MIN_FRAGSZ) { 2148 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2149 device_get_nameunit(sc->sc_dev), len); 2150 counter_u64_add(ic->ic_ierrors, 1); 2151 return; 2152 } 2153 pc = usbd_xfer_get_frame(xfer, 0); 2154 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2155 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2156 2157 if (stat.flags & ZYD_RX_ERROR) { 2158 DPRINTF(sc, ZYD_DEBUG_RECV, 2159 "%s: RX status indicated error (%x)\n", 2160 device_get_nameunit(sc->sc_dev), stat.flags); 2161 counter_u64_add(ic->ic_ierrors, 1); 2162 return; 2163 } 2164 2165 /* compute actual frame length */ 2166 rlen = len - sizeof(struct zyd_plcphdr) - 2167 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2168 2169 /* allocate a mbuf to store the frame */ 2170 if (rlen > (int)MCLBYTES) { 2171 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2172 device_get_nameunit(sc->sc_dev), rlen); 2173 counter_u64_add(ic->ic_ierrors, 1); 2174 return; 2175 } else if (rlen > (int)MHLEN) 2176 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2177 else 2178 m = m_gethdr(M_NOWAIT, MT_DATA); 2179 if (m == NULL) { 2180 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2181 device_get_nameunit(sc->sc_dev)); 2182 counter_u64_add(ic->ic_ierrors, 1); 2183 return; 2184 } 2185 m->m_pkthdr.len = m->m_len = rlen; 2186 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2187 2188 if (ieee80211_radiotap_active(ic)) { 2189 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2190 2191 tap->wr_flags = 0; 2192 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2193 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2194 /* XXX toss, no way to express errors */ 2195 if (stat.flags & ZYD_RX_DECRYPTERR) 2196 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2197 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2198 (stat.flags & ZYD_RX_OFDM) ? 2199 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2200 tap->wr_antsignal = stat.rssi + -95; 2201 tap->wr_antnoise = -95; /* XXX */ 2202 } 2203 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2204 2205 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2206 sc->sc_rx_data[sc->sc_rx_count].m = m; 2207 sc->sc_rx_count++; 2208 } 2209 2210 static void 2211 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2212 { 2213 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2214 struct ieee80211com *ic = &sc->sc_ic; 2215 struct ieee80211_node *ni; 2216 struct zyd_rx_desc desc; 2217 struct mbuf *m; 2218 struct usb_page_cache *pc; 2219 uint32_t offset; 2220 uint8_t rssi; 2221 int8_t nf; 2222 int i; 2223 int actlen; 2224 2225 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2226 2227 sc->sc_rx_count = 0; 2228 switch (USB_GET_STATE(xfer)) { 2229 case USB_ST_TRANSFERRED: 2230 pc = usbd_xfer_get_frame(xfer, 0); 2231 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2232 2233 offset = 0; 2234 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2235 DPRINTF(sc, ZYD_DEBUG_RECV, 2236 "%s: received multi-frame transfer\n", __func__); 2237 2238 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2239 uint16_t len16 = UGETW(desc.len[i]); 2240 2241 if (len16 == 0 || len16 > actlen) 2242 break; 2243 2244 zyd_rx_data(xfer, offset, len16); 2245 2246 /* next frame is aligned on a 32-bit boundary */ 2247 len16 = (len16 + 3) & ~3; 2248 offset += len16; 2249 if (len16 > actlen) 2250 break; 2251 actlen -= len16; 2252 } 2253 } else { 2254 DPRINTF(sc, ZYD_DEBUG_RECV, 2255 "%s: received single-frame transfer\n", __func__); 2256 2257 zyd_rx_data(xfer, 0, actlen); 2258 } 2259 /* FALLTHROUGH */ 2260 case USB_ST_SETUP: 2261 tr_setup: 2262 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2263 usbd_transfer_submit(xfer); 2264 2265 /* 2266 * At the end of a USB callback it is always safe to unlock 2267 * the private mutex of a device! That is why we do the 2268 * "ieee80211_input" here, and not some lines up! 2269 */ 2270 ZYD_UNLOCK(sc); 2271 for (i = 0; i < sc->sc_rx_count; i++) { 2272 rssi = sc->sc_rx_data[i].rssi; 2273 m = sc->sc_rx_data[i].m; 2274 sc->sc_rx_data[i].m = NULL; 2275 2276 nf = -95; /* XXX */ 2277 2278 ni = ieee80211_find_rxnode(ic, 2279 mtod(m, struct ieee80211_frame_min *)); 2280 if (ni != NULL) { 2281 (void)ieee80211_input(ni, m, rssi, nf); 2282 ieee80211_free_node(ni); 2283 } else 2284 (void)ieee80211_input_all(ic, m, rssi, nf); 2285 } 2286 ZYD_LOCK(sc); 2287 zyd_start(sc); 2288 break; 2289 2290 default: /* Error */ 2291 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2292 2293 if (error != USB_ERR_CANCELLED) { 2294 /* try to clear stall first */ 2295 usbd_xfer_set_stall(xfer); 2296 goto tr_setup; 2297 } 2298 break; 2299 } 2300 } 2301 2302 static uint8_t 2303 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2304 { 2305 switch (rate) { 2306 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2307 case 12: 2308 return (0xb); 2309 case 18: 2310 return (0xf); 2311 case 24: 2312 return (0xa); 2313 case 36: 2314 return (0xe); 2315 case 48: 2316 return (0x9); 2317 case 72: 2318 return (0xd); 2319 case 96: 2320 return (0x8); 2321 case 108: 2322 return (0xc); 2323 /* CCK rates (NB: not IEEE std, device-specific) */ 2324 case 2: 2325 return (0x0); 2326 case 4: 2327 return (0x1); 2328 case 11: 2329 return (0x2); 2330 case 22: 2331 return (0x3); 2332 } 2333 2334 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2335 return (0x0); 2336 } 2337 2338 static void 2339 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2340 { 2341 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2342 struct ieee80211vap *vap; 2343 struct zyd_tx_data *data; 2344 struct mbuf *m; 2345 struct usb_page_cache *pc; 2346 int actlen; 2347 2348 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2349 2350 switch (USB_GET_STATE(xfer)) { 2351 case USB_ST_TRANSFERRED: 2352 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2353 actlen); 2354 2355 /* free resources */ 2356 data = usbd_xfer_get_priv(xfer); 2357 zyd_tx_free(data, 0); 2358 usbd_xfer_set_priv(xfer, NULL); 2359 2360 /* FALLTHROUGH */ 2361 case USB_ST_SETUP: 2362 tr_setup: 2363 data = STAILQ_FIRST(&sc->tx_q); 2364 if (data) { 2365 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2366 m = data->m; 2367 2368 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2369 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2370 m->m_pkthdr.len); 2371 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2372 } 2373 pc = usbd_xfer_get_frame(xfer, 0); 2374 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2375 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2376 m->m_pkthdr.len); 2377 2378 vap = data->ni->ni_vap; 2379 if (ieee80211_radiotap_active_vap(vap)) { 2380 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2381 2382 tap->wt_flags = 0; 2383 tap->wt_rate = data->rate; 2384 2385 ieee80211_radiotap_tx(vap, m); 2386 } 2387 2388 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2389 usbd_xfer_set_priv(xfer, data); 2390 usbd_transfer_submit(xfer); 2391 } 2392 zyd_start(sc); 2393 break; 2394 2395 default: /* Error */ 2396 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2397 usbd_errstr(error)); 2398 2399 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2400 data = usbd_xfer_get_priv(xfer); 2401 usbd_xfer_set_priv(xfer, NULL); 2402 if (data != NULL) 2403 zyd_tx_free(data, error); 2404 2405 if (error != USB_ERR_CANCELLED) { 2406 if (error == USB_ERR_TIMEOUT) 2407 device_printf(sc->sc_dev, "device timeout\n"); 2408 2409 /* 2410 * Try to clear stall first, also if other 2411 * errors occur, hence clearing stall 2412 * introduces a 50 ms delay: 2413 */ 2414 usbd_xfer_set_stall(xfer); 2415 goto tr_setup; 2416 } 2417 break; 2418 } 2419 } 2420 2421 static int 2422 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2423 { 2424 struct ieee80211vap *vap = ni->ni_vap; 2425 struct ieee80211com *ic = ni->ni_ic; 2426 struct zyd_tx_desc *desc; 2427 struct zyd_tx_data *data; 2428 struct ieee80211_frame *wh; 2429 const struct ieee80211_txparam *tp; 2430 struct ieee80211_key *k; 2431 int rate, totlen; 2432 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2433 uint8_t phy; 2434 uint16_t pktlen; 2435 uint32_t bits; 2436 2437 wh = mtod(m0, struct ieee80211_frame *); 2438 data = STAILQ_FIRST(&sc->tx_free); 2439 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2440 sc->tx_nfree--; 2441 2442 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2443 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2444 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2445 rate = tp->mgmtrate; 2446 } else { 2447 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2448 /* for data frames */ 2449 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2450 rate = tp->mcastrate; 2451 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2452 rate = tp->ucastrate; 2453 else { 2454 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2455 rate = ni->ni_txrate; 2456 } 2457 } 2458 2459 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2460 k = ieee80211_crypto_encap(ni, m0); 2461 if (k == NULL) { 2462 return (ENOBUFS); 2463 } 2464 /* packet header may have moved, reset our local pointer */ 2465 wh = mtod(m0, struct ieee80211_frame *); 2466 } 2467 2468 data->ni = ni; 2469 data->m = m0; 2470 data->rate = rate; 2471 2472 /* fill Tx descriptor */ 2473 desc = &data->desc; 2474 phy = zyd_plcp_signal(sc, rate); 2475 desc->phy = phy; 2476 if (ZYD_RATE_IS_OFDM(rate)) { 2477 desc->phy |= ZYD_TX_PHY_OFDM; 2478 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2479 desc->phy |= ZYD_TX_PHY_5GHZ; 2480 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2481 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2482 2483 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2484 desc->len = htole16(totlen); 2485 2486 desc->flags = ZYD_TX_FLAG_BACKOFF; 2487 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2488 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2489 if (totlen > vap->iv_rtsthreshold) { 2490 desc->flags |= ZYD_TX_FLAG_RTS; 2491 } else if (ZYD_RATE_IS_OFDM(rate) && 2492 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2493 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2494 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2495 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2496 desc->flags |= ZYD_TX_FLAG_RTS; 2497 } 2498 } else 2499 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2500 if ((wh->i_fc[0] & 2501 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2502 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2503 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2504 2505 /* actual transmit length (XXX why +10?) */ 2506 pktlen = ZYD_TX_DESC_SIZE + 10; 2507 if (sc->sc_macrev == ZYD_ZD1211) 2508 pktlen += totlen; 2509 desc->pktlen = htole16(pktlen); 2510 2511 bits = (rate == 11) ? (totlen * 16) + 10 : 2512 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2513 desc->plcp_length = htole16(bits / ratediv[phy]); 2514 desc->plcp_service = 0; 2515 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2516 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2517 desc->nextlen = 0; 2518 2519 if (ieee80211_radiotap_active_vap(vap)) { 2520 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2521 2522 tap->wt_flags = 0; 2523 tap->wt_rate = rate; 2524 2525 ieee80211_radiotap_tx(vap, m0); 2526 } 2527 2528 DPRINTF(sc, ZYD_DEBUG_XMIT, 2529 "%s: sending data frame len=%zu rate=%u\n", 2530 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2531 rate); 2532 2533 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2534 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2535 2536 return (0); 2537 } 2538 2539 static int 2540 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2541 { 2542 struct zyd_softc *sc = ic->ic_softc; 2543 int error; 2544 2545 ZYD_LOCK(sc); 2546 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2547 ZYD_UNLOCK(sc); 2548 return (ENXIO); 2549 } 2550 error = mbufq_enqueue(&sc->sc_snd, m); 2551 if (error) { 2552 ZYD_UNLOCK(sc); 2553 return (error); 2554 } 2555 zyd_start(sc); 2556 ZYD_UNLOCK(sc); 2557 2558 return (0); 2559 } 2560 2561 static void 2562 zyd_start(struct zyd_softc *sc) 2563 { 2564 struct ieee80211_node *ni; 2565 struct mbuf *m; 2566 2567 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2568 2569 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2570 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2571 if (zyd_tx_start(sc, m, ni) != 0) { 2572 ieee80211_free_node(ni); 2573 m_freem(m); 2574 if_inc_counter(ni->ni_vap->iv_ifp, 2575 IFCOUNTER_OERRORS, 1); 2576 break; 2577 } 2578 } 2579 } 2580 2581 static int 2582 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2583 const struct ieee80211_bpf_params *params) 2584 { 2585 struct ieee80211com *ic = ni->ni_ic; 2586 struct zyd_softc *sc = ic->ic_softc; 2587 2588 ZYD_LOCK(sc); 2589 /* prevent management frames from being sent if we're not ready */ 2590 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2591 ZYD_UNLOCK(sc); 2592 m_freem(m); 2593 ieee80211_free_node(ni); 2594 return (ENETDOWN); 2595 } 2596 if (sc->tx_nfree == 0) { 2597 ZYD_UNLOCK(sc); 2598 m_freem(m); 2599 ieee80211_free_node(ni); 2600 return (ENOBUFS); /* XXX */ 2601 } 2602 2603 /* 2604 * Legacy path; interpret frame contents to decide 2605 * precisely how to send the frame. 2606 * XXX raw path 2607 */ 2608 if (zyd_tx_start(sc, m, ni) != 0) { 2609 ZYD_UNLOCK(sc); 2610 ieee80211_free_node(ni); 2611 m_freem(m); 2612 return (EIO); 2613 } 2614 ZYD_UNLOCK(sc); 2615 return (0); 2616 } 2617 2618 static void 2619 zyd_parent(struct ieee80211com *ic) 2620 { 2621 struct zyd_softc *sc = ic->ic_softc; 2622 int startall = 0; 2623 2624 ZYD_LOCK(sc); 2625 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2626 ZYD_UNLOCK(sc); 2627 return; 2628 } 2629 if (ic->ic_nrunning > 0) { 2630 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2631 zyd_init_locked(sc); 2632 startall = 1; 2633 } else 2634 zyd_set_multi(sc); 2635 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2636 zyd_stop(sc); 2637 ZYD_UNLOCK(sc); 2638 if (startall) 2639 ieee80211_start_all(ic); 2640 } 2641 2642 static void 2643 zyd_init_locked(struct zyd_softc *sc) 2644 { 2645 struct ieee80211com *ic = &sc->sc_ic; 2646 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2647 struct usb_config_descriptor *cd; 2648 int error; 2649 uint32_t val; 2650 2651 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2652 2653 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2654 error = zyd_loadfirmware(sc); 2655 if (error != 0) { 2656 device_printf(sc->sc_dev, 2657 "could not load firmware (error=%d)\n", error); 2658 goto fail; 2659 } 2660 2661 /* reset device */ 2662 cd = usbd_get_config_descriptor(sc->sc_udev); 2663 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2664 cd->bConfigurationValue); 2665 if (error) 2666 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2667 2668 error = zyd_hw_init(sc); 2669 if (error) { 2670 device_printf(sc->sc_dev, 2671 "hardware initialization failed\n"); 2672 goto fail; 2673 } 2674 2675 device_printf(sc->sc_dev, 2676 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2677 "BE%x NP%x Gain%x F%x\n", 2678 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2679 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2680 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2681 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2682 sc->sc_cckgain, sc->sc_fix_cr157); 2683 2684 /* read regulatory domain (currently unused) */ 2685 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2686 sc->sc_regdomain = val >> 16; 2687 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2688 sc->sc_regdomain); 2689 2690 /* we'll do software WEP decryption for now */ 2691 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2692 __func__); 2693 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2694 2695 sc->sc_flags |= ZYD_FLAG_INITONCE; 2696 } 2697 2698 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2699 zyd_stop(sc); 2700 2701 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2702 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2703 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2704 if (error != 0) 2705 return; 2706 2707 /* set basic rates */ 2708 if (ic->ic_curmode == IEEE80211_MODE_11B) 2709 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2710 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2711 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2712 else /* assumes 802.11b/g */ 2713 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2714 2715 /* promiscuous mode */ 2716 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2717 /* multicast setup */ 2718 zyd_set_multi(sc); 2719 /* set RX filter */ 2720 error = zyd_set_rxfilter(sc); 2721 if (error != 0) 2722 goto fail; 2723 2724 /* switch radio transmitter ON */ 2725 error = zyd_switch_radio(sc, 1); 2726 if (error != 0) 2727 goto fail; 2728 /* set default BSS channel */ 2729 zyd_set_chan(sc, ic->ic_curchan); 2730 2731 /* 2732 * Allocate Tx and Rx xfer queues. 2733 */ 2734 zyd_setup_tx_list(sc); 2735 2736 /* enable interrupts */ 2737 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2738 2739 sc->sc_flags |= ZYD_FLAG_RUNNING; 2740 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2741 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2742 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2743 2744 return; 2745 2746 fail: zyd_stop(sc); 2747 return; 2748 } 2749 2750 static void 2751 zyd_stop(struct zyd_softc *sc) 2752 { 2753 int error; 2754 2755 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2756 2757 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2758 zyd_drain_mbufq(sc); 2759 2760 /* 2761 * Drain all the transfers, if not already drained: 2762 */ 2763 ZYD_UNLOCK(sc); 2764 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2765 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2766 ZYD_LOCK(sc); 2767 2768 zyd_unsetup_tx_list(sc); 2769 2770 /* Stop now if the device was never set up */ 2771 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2772 return; 2773 2774 /* switch radio transmitter OFF */ 2775 error = zyd_switch_radio(sc, 0); 2776 if (error != 0) 2777 goto fail; 2778 /* disable Rx */ 2779 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2780 /* disable interrupts */ 2781 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2782 2783 fail: 2784 return; 2785 } 2786 2787 static int 2788 zyd_loadfirmware(struct zyd_softc *sc) 2789 { 2790 struct usb_device_request req; 2791 size_t size; 2792 u_char *fw; 2793 uint8_t stat; 2794 uint16_t addr; 2795 2796 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2797 return (0); 2798 2799 if (sc->sc_macrev == ZYD_ZD1211) { 2800 fw = (u_char *)zd1211_firmware; 2801 size = sizeof(zd1211_firmware); 2802 } else { 2803 fw = (u_char *)zd1211b_firmware; 2804 size = sizeof(zd1211b_firmware); 2805 } 2806 2807 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2808 req.bRequest = ZYD_DOWNLOADREQ; 2809 USETW(req.wIndex, 0); 2810 2811 addr = ZYD_FIRMWARE_START_ADDR; 2812 while (size > 0) { 2813 /* 2814 * When the transfer size is 4096 bytes, it is not 2815 * likely to be able to transfer it. 2816 * The cause is port or machine or chip? 2817 */ 2818 const int mlen = min(size, 64); 2819 2820 DPRINTF(sc, ZYD_DEBUG_FW, 2821 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2822 2823 USETW(req.wValue, addr); 2824 USETW(req.wLength, mlen); 2825 if (zyd_do_request(sc, &req, fw) != 0) 2826 return (EIO); 2827 2828 addr += mlen / 2; 2829 fw += mlen; 2830 size -= mlen; 2831 } 2832 2833 /* check whether the upload succeeded */ 2834 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2835 req.bRequest = ZYD_DOWNLOADSTS; 2836 USETW(req.wValue, 0); 2837 USETW(req.wIndex, 0); 2838 USETW(req.wLength, sizeof(stat)); 2839 if (zyd_do_request(sc, &req, &stat) != 0) 2840 return (EIO); 2841 2842 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2843 2844 return (stat & 0x80) ? (EIO) : (0); 2845 } 2846 2847 static void 2848 zyd_scan_start(struct ieee80211com *ic) 2849 { 2850 struct zyd_softc *sc = ic->ic_softc; 2851 2852 ZYD_LOCK(sc); 2853 /* want broadcast address while scanning */ 2854 zyd_set_bssid(sc, ieee80211broadcastaddr); 2855 ZYD_UNLOCK(sc); 2856 } 2857 2858 static void 2859 zyd_scan_end(struct ieee80211com *ic) 2860 { 2861 struct zyd_softc *sc = ic->ic_softc; 2862 2863 ZYD_LOCK(sc); 2864 /* restore previous bssid */ 2865 zyd_set_bssid(sc, ic->ic_macaddr); 2866 ZYD_UNLOCK(sc); 2867 } 2868 2869 static void 2870 zyd_set_channel(struct ieee80211com *ic) 2871 { 2872 struct zyd_softc *sc = ic->ic_softc; 2873 2874 ZYD_LOCK(sc); 2875 zyd_set_chan(sc, ic->ic_curchan); 2876 ZYD_UNLOCK(sc); 2877 } 2878 2879 static device_method_t zyd_methods[] = { 2880 /* Device interface */ 2881 DEVMETHOD(device_probe, zyd_match), 2882 DEVMETHOD(device_attach, zyd_attach), 2883 DEVMETHOD(device_detach, zyd_detach), 2884 DEVMETHOD_END 2885 }; 2886 2887 static driver_t zyd_driver = { 2888 .name = "zyd", 2889 .methods = zyd_methods, 2890 .size = sizeof(struct zyd_softc) 2891 }; 2892 2893 static devclass_t zyd_devclass; 2894 2895 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2896 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2897 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2898 MODULE_VERSION(zyd, 1); 2899