1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include <dev/usb/usbdi_util.h> 74 #include "usbdevs.h" 75 76 #include <dev/usb/wlan/if_zydreg.h> 77 #include <dev/usb/wlan/if_zydfw.h> 78 79 #ifdef USB_DEBUG 80 static int zyd_debug = 0; 81 82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 84 "zyd debug level"); 85 86 enum { 87 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 88 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 89 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 90 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 91 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 92 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 93 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 94 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 95 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 96 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 97 ZYD_DEBUG_ANY = 0xffffffff 98 }; 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 if (zyd_debug & (m)) \ 101 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 102 } while (0) 103 #else 104 #define DPRINTF(sc, m, fmt, ...) do { \ 105 (void) sc; \ 106 } while (0) 107 #endif 108 109 #define zyd_do_request(sc,req,data) \ 110 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 111 112 static device_probe_t zyd_match; 113 static device_attach_t zyd_attach; 114 static device_detach_t zyd_detach; 115 116 static usb_callback_t zyd_intr_read_callback; 117 static usb_callback_t zyd_intr_write_callback; 118 static usb_callback_t zyd_bulk_read_callback; 119 static usb_callback_t zyd_bulk_write_callback; 120 121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 122 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 123 const uint8_t [IEEE80211_ADDR_LEN], 124 const uint8_t [IEEE80211_ADDR_LEN]); 125 static void zyd_vap_delete(struct ieee80211vap *); 126 static void zyd_tx_free(struct zyd_tx_data *, int); 127 static void zyd_setup_tx_list(struct zyd_softc *); 128 static void zyd_unsetup_tx_list(struct zyd_softc *); 129 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 130 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 131 void *, int, int); 132 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 133 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 134 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 135 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 136 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 137 static int zyd_lock_phy(struct zyd_softc *); 138 static int zyd_unlock_phy(struct zyd_softc *); 139 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 140 static const char *zyd_rf_name(uint8_t); 141 static int zyd_hw_init(struct zyd_softc *); 142 static int zyd_read_pod(struct zyd_softc *); 143 static int zyd_read_eeprom(struct zyd_softc *); 144 static int zyd_get_macaddr(struct zyd_softc *); 145 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 146 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 147 static int zyd_switch_radio(struct zyd_softc *, int); 148 static int zyd_set_led(struct zyd_softc *, int, int); 149 static void zyd_set_multi(struct zyd_softc *); 150 static void zyd_update_mcast(struct ieee80211com *); 151 static int zyd_set_rxfilter(struct zyd_softc *); 152 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 153 static int zyd_set_beacon_interval(struct zyd_softc *, int); 154 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 155 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 156 struct ieee80211_node *); 157 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 158 static void zyd_start(struct zyd_softc *); 159 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 160 const struct ieee80211_bpf_params *); 161 static void zyd_parent(struct ieee80211com *); 162 static void zyd_init_locked(struct zyd_softc *); 163 static void zyd_stop(struct zyd_softc *); 164 static int zyd_loadfirmware(struct zyd_softc *); 165 static void zyd_scan_start(struct ieee80211com *); 166 static void zyd_scan_end(struct ieee80211com *); 167 static void zyd_set_channel(struct ieee80211com *); 168 static int zyd_rfmd_init(struct zyd_rf *); 169 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 170 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_init(struct zyd_rf *); 172 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 173 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init_b(struct zyd_rf *); 176 static int zyd_al7230B_init(struct zyd_rf *); 177 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 178 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_al2210_init(struct zyd_rf *); 180 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 181 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_init(struct zyd_rf *); 183 static int zyd_gct_switch_radio(struct zyd_rf *, int); 184 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 185 static int zyd_gct_mode(struct zyd_rf *); 186 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 187 static int zyd_gct_write(struct zyd_rf *, uint16_t); 188 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 189 static int zyd_maxim2_init(struct zyd_rf *); 190 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 191 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 192 193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 195 196 /* various supported device vendors/products */ 197 #define ZYD_ZD1211 0 198 #define ZYD_ZD1211B 1 199 200 #define ZYD_ZD1211_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 202 #define ZYD_ZD1211B_DEV(v,p) \ 203 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 204 static const STRUCT_USB_HOST_ID zyd_devs[] = { 205 /* ZYD_ZD1211 */ 206 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 207 ZYD_ZD1211_DEV(ABOCOM, WL54), 208 ZYD_ZD1211_DEV(ASUS, WL159G), 209 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 210 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 215 ZYD_ZD1211_DEV(SAGEM, XG760A), 216 ZYD_ZD1211_DEV(SENAO, NUB8301), 217 ZYD_ZD1211_DEV(SITECOMEU, WL113), 218 ZYD_ZD1211_DEV(SWEEX, ZD1211), 219 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 222 ZYD_ZD1211_DEV(TWINMOS, G240), 223 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 226 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 227 ZYD_ZD1211_DEV(ZCOM, ZD1211), 228 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 229 ZYD_ZD1211_DEV(ZYXEL, AG225H), 230 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 231 ZYD_ZD1211_DEV(ZYXEL, G200V2), 232 /* ZYD_ZD1211B */ 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 235 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 236 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 237 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 238 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 239 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 240 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 241 ZYD_ZD1211B_DEV(MELCO, KG54L), 242 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 243 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 244 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 245 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 246 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 247 ZYD_ZD1211B_DEV(USR, USR5423), 248 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 249 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYXEL, M202), 252 ZYD_ZD1211B_DEV(ZYXEL, G202), 253 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 254 }; 255 256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 257 [ZYD_BULK_WR] = { 258 .type = UE_BULK, 259 .endpoint = UE_ADDR_ANY, 260 .direction = UE_DIR_OUT, 261 .bufsize = ZYD_MAX_TXBUFSZ, 262 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 263 .callback = zyd_bulk_write_callback, 264 .ep_index = 0, 265 .timeout = 10000, /* 10 seconds */ 266 }, 267 [ZYD_BULK_RD] = { 268 .type = UE_BULK, 269 .endpoint = UE_ADDR_ANY, 270 .direction = UE_DIR_IN, 271 .bufsize = ZYX_MAX_RXBUFSZ, 272 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 273 .callback = zyd_bulk_read_callback, 274 .ep_index = 0, 275 }, 276 [ZYD_INTR_WR] = { 277 .type = UE_BULK_INTR, 278 .endpoint = UE_ADDR_ANY, 279 .direction = UE_DIR_OUT, 280 .bufsize = sizeof(struct zyd_cmd), 281 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 282 .callback = zyd_intr_write_callback, 283 .timeout = 1000, /* 1 second */ 284 .ep_index = 1, 285 }, 286 [ZYD_INTR_RD] = { 287 .type = UE_INTERRUPT, 288 .endpoint = UE_ADDR_ANY, 289 .direction = UE_DIR_IN, 290 .bufsize = sizeof(struct zyd_cmd), 291 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 292 .callback = zyd_intr_read_callback, 293 }, 294 }; 295 #define zyd_read16_m(sc, val, data) do { \ 296 error = zyd_read16(sc, val, data); \ 297 if (error != 0) \ 298 goto fail; \ 299 } while (0) 300 #define zyd_write16_m(sc, val, data) do { \ 301 error = zyd_write16(sc, val, data); \ 302 if (error != 0) \ 303 goto fail; \ 304 } while (0) 305 #define zyd_read32_m(sc, val, data) do { \ 306 error = zyd_read32(sc, val, data); \ 307 if (error != 0) \ 308 goto fail; \ 309 } while (0) 310 #define zyd_write32_m(sc, val, data) do { \ 311 error = zyd_write32(sc, val, data); \ 312 if (error != 0) \ 313 goto fail; \ 314 } while (0) 315 316 static int 317 zyd_match(device_t dev) 318 { 319 struct usb_attach_arg *uaa = device_get_ivars(dev); 320 321 if (uaa->usb_mode != USB_MODE_HOST) 322 return (ENXIO); 323 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 324 return (ENXIO); 325 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 326 return (ENXIO); 327 328 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 329 } 330 331 static int 332 zyd_attach(device_t dev) 333 { 334 struct usb_attach_arg *uaa = device_get_ivars(dev); 335 struct zyd_softc *sc = device_get_softc(dev); 336 struct ieee80211com *ic = &sc->sc_ic; 337 uint8_t iface_index, bands; 338 int error; 339 340 if (uaa->info.bcdDevice < 0x4330) { 341 device_printf(dev, "device version mismatch: 0x%X " 342 "(only >= 43.30 supported)\n", 343 uaa->info.bcdDevice); 344 return (EINVAL); 345 } 346 347 device_set_usb_desc(dev); 348 sc->sc_dev = dev; 349 sc->sc_udev = uaa->device; 350 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 351 352 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 353 MTX_NETWORK_LOCK, MTX_DEF); 354 STAILQ_INIT(&sc->sc_rqh); 355 mbufq_init(&sc->sc_snd, ifqmaxlen); 356 357 iface_index = ZYD_IFACE_INDEX; 358 error = usbd_transfer_setup(uaa->device, 359 &iface_index, sc->sc_xfer, zyd_config, 360 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 361 if (error) { 362 device_printf(dev, "could not allocate USB transfers, " 363 "err=%s\n", usbd_errstr(error)); 364 goto detach; 365 } 366 367 ZYD_LOCK(sc); 368 if ((error = zyd_get_macaddr(sc)) != 0) { 369 device_printf(sc->sc_dev, "could not read EEPROM\n"); 370 ZYD_UNLOCK(sc); 371 goto detach; 372 } 373 ZYD_UNLOCK(sc); 374 375 ic->ic_softc = sc; 376 ic->ic_name = device_get_nameunit(dev); 377 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 378 ic->ic_opmode = IEEE80211_M_STA; 379 380 /* set device capabilities */ 381 ic->ic_caps = 382 IEEE80211_C_STA /* station mode */ 383 | IEEE80211_C_MONITOR /* monitor mode */ 384 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 385 | IEEE80211_C_SHSLOT /* short slot time supported */ 386 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 387 | IEEE80211_C_WPA /* 802.11i */ 388 ; 389 390 bands = 0; 391 setbit(&bands, IEEE80211_MODE_11B); 392 setbit(&bands, IEEE80211_MODE_11G); 393 ieee80211_init_channels(ic, NULL, &bands); 394 395 ieee80211_ifattach(ic); 396 ic->ic_raw_xmit = zyd_raw_xmit; 397 ic->ic_scan_start = zyd_scan_start; 398 ic->ic_scan_end = zyd_scan_end; 399 ic->ic_set_channel = zyd_set_channel; 400 ic->ic_vap_create = zyd_vap_create; 401 ic->ic_vap_delete = zyd_vap_delete; 402 ic->ic_update_mcast = zyd_update_mcast; 403 ic->ic_update_promisc = zyd_update_mcast; 404 ic->ic_parent = zyd_parent; 405 ic->ic_transmit = zyd_transmit; 406 407 ieee80211_radiotap_attach(ic, 408 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 409 ZYD_TX_RADIOTAP_PRESENT, 410 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 411 ZYD_RX_RADIOTAP_PRESENT); 412 413 if (bootverbose) 414 ieee80211_announce(ic); 415 416 return (0); 417 418 detach: 419 zyd_detach(dev); 420 return (ENXIO); /* failure */ 421 } 422 423 static int 424 zyd_detach(device_t dev) 425 { 426 struct zyd_softc *sc = device_get_softc(dev); 427 struct ieee80211com *ic = &sc->sc_ic; 428 unsigned int x; 429 430 /* 431 * Prevent further allocations from RX/TX data 432 * lists and ioctls: 433 */ 434 ZYD_LOCK(sc); 435 sc->sc_flags |= ZYD_FLAG_DETACHED; 436 STAILQ_INIT(&sc->tx_q); 437 STAILQ_INIT(&sc->tx_free); 438 ZYD_UNLOCK(sc); 439 440 /* drain USB transfers */ 441 for (x = 0; x != ZYD_N_TRANSFER; x++) 442 usbd_transfer_drain(sc->sc_xfer[x]); 443 444 /* free TX list, if any */ 445 ZYD_LOCK(sc); 446 zyd_unsetup_tx_list(sc); 447 ZYD_UNLOCK(sc); 448 449 /* free USB transfers and some data buffers */ 450 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 451 452 if (ic->ic_softc == sc) 453 ieee80211_ifdetach(ic); 454 mbufq_drain(&sc->sc_snd); 455 mtx_destroy(&sc->sc_mtx); 456 457 return (0); 458 } 459 460 static struct ieee80211vap * 461 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 462 enum ieee80211_opmode opmode, int flags, 463 const uint8_t bssid[IEEE80211_ADDR_LEN], 464 const uint8_t mac[IEEE80211_ADDR_LEN]) 465 { 466 struct zyd_vap *zvp; 467 struct ieee80211vap *vap; 468 469 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 470 return (NULL); 471 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 472 vap = &zvp->vap; 473 474 /* enable s/w bmiss handling for sta mode */ 475 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 476 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 477 /* out of memory */ 478 free(zvp, M_80211_VAP); 479 return (NULL); 480 } 481 482 /* override state transition machine */ 483 zvp->newstate = vap->iv_newstate; 484 vap->iv_newstate = zyd_newstate; 485 486 ieee80211_ratectl_init(vap); 487 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 488 489 /* complete setup */ 490 ieee80211_vap_attach(vap, ieee80211_media_change, 491 ieee80211_media_status, mac); 492 ic->ic_opmode = opmode; 493 return (vap); 494 } 495 496 static void 497 zyd_vap_delete(struct ieee80211vap *vap) 498 { 499 struct zyd_vap *zvp = ZYD_VAP(vap); 500 501 ieee80211_ratectl_deinit(vap); 502 ieee80211_vap_detach(vap); 503 free(zvp, M_80211_VAP); 504 } 505 506 static void 507 zyd_tx_free(struct zyd_tx_data *data, int txerr) 508 { 509 struct zyd_softc *sc = data->sc; 510 511 if (data->m != NULL) { 512 ieee80211_tx_complete(data->ni, data->m, txerr); 513 data->m = NULL; 514 data->ni = NULL; 515 } 516 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 517 sc->tx_nfree++; 518 } 519 520 static void 521 zyd_setup_tx_list(struct zyd_softc *sc) 522 { 523 struct zyd_tx_data *data; 524 int i; 525 526 sc->tx_nfree = 0; 527 STAILQ_INIT(&sc->tx_q); 528 STAILQ_INIT(&sc->tx_free); 529 530 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 531 data = &sc->tx_data[i]; 532 533 data->sc = sc; 534 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 535 sc->tx_nfree++; 536 } 537 } 538 539 static void 540 zyd_unsetup_tx_list(struct zyd_softc *sc) 541 { 542 struct zyd_tx_data *data; 543 int i; 544 545 /* make sure any subsequent use of the queues will fail */ 546 sc->tx_nfree = 0; 547 STAILQ_INIT(&sc->tx_q); 548 STAILQ_INIT(&sc->tx_free); 549 550 /* free up all node references and mbufs */ 551 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 552 data = &sc->tx_data[i]; 553 554 if (data->m != NULL) { 555 m_freem(data->m); 556 data->m = NULL; 557 } 558 if (data->ni != NULL) { 559 ieee80211_free_node(data->ni); 560 data->ni = NULL; 561 } 562 } 563 } 564 565 static int 566 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 567 { 568 struct zyd_vap *zvp = ZYD_VAP(vap); 569 struct ieee80211com *ic = vap->iv_ic; 570 struct zyd_softc *sc = ic->ic_softc; 571 int error; 572 573 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 574 ieee80211_state_name[vap->iv_state], 575 ieee80211_state_name[nstate]); 576 577 IEEE80211_UNLOCK(ic); 578 ZYD_LOCK(sc); 579 switch (nstate) { 580 case IEEE80211_S_AUTH: 581 zyd_set_chan(sc, ic->ic_curchan); 582 break; 583 case IEEE80211_S_RUN: 584 if (vap->iv_opmode == IEEE80211_M_MONITOR) 585 break; 586 587 /* turn link LED on */ 588 error = zyd_set_led(sc, ZYD_LED1, 1); 589 if (error != 0) 590 break; 591 592 /* make data LED blink upon Tx */ 593 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 594 595 IEEE80211_ADDR_COPY(ic->ic_macaddr, vap->iv_bss->ni_bssid); 596 zyd_set_bssid(sc, ic->ic_macaddr); 597 break; 598 default: 599 break; 600 } 601 fail: 602 ZYD_UNLOCK(sc); 603 IEEE80211_LOCK(ic); 604 return (zvp->newstate(vap, nstate, arg)); 605 } 606 607 /* 608 * Callback handler for interrupt transfer 609 */ 610 static void 611 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 612 { 613 struct zyd_softc *sc = usbd_xfer_softc(xfer); 614 struct ieee80211com *ic = &sc->sc_ic; 615 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 616 struct ieee80211_node *ni; 617 struct zyd_cmd *cmd = &sc->sc_ibuf; 618 struct usb_page_cache *pc; 619 int datalen; 620 int actlen; 621 622 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 623 624 switch (USB_GET_STATE(xfer)) { 625 case USB_ST_TRANSFERRED: 626 pc = usbd_xfer_get_frame(xfer, 0); 627 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 628 629 switch (le16toh(cmd->code)) { 630 case ZYD_NOTIF_RETRYSTATUS: 631 { 632 struct zyd_notif_retry *retry = 633 (struct zyd_notif_retry *)cmd->data; 634 635 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 636 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 637 le16toh(retry->rate), ether_sprintf(retry->macaddr), 638 le16toh(retry->count)&0xff, le16toh(retry->count)); 639 640 /* 641 * Find the node to which the packet was sent and 642 * update its retry statistics. In BSS mode, this node 643 * is the AP we're associated to so no lookup is 644 * actually needed. 645 */ 646 ni = ieee80211_find_txnode(vap, retry->macaddr); 647 if (ni != NULL) { 648 int retrycnt = 649 (int)(le16toh(retry->count) & 0xff); 650 651 ieee80211_ratectl_tx_complete(vap, ni, 652 IEEE80211_RATECTL_TX_FAILURE, 653 &retrycnt, NULL); 654 ieee80211_free_node(ni); 655 } 656 if (le16toh(retry->count) & 0x100) 657 /* too many retries */ 658 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 659 1); 660 break; 661 } 662 case ZYD_NOTIF_IORD: 663 { 664 struct zyd_rq *rqp; 665 666 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 667 break; /* HMAC interrupt */ 668 669 datalen = actlen - sizeof(cmd->code); 670 datalen -= 2; /* XXX: padding? */ 671 672 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 673 int i; 674 int count; 675 676 if (rqp->olen != datalen) 677 continue; 678 count = rqp->olen / sizeof(struct zyd_pair); 679 for (i = 0; i < count; i++) { 680 if (*(((const uint16_t *)rqp->idata) + i) != 681 (((struct zyd_pair *)cmd->data) + i)->reg) 682 break; 683 } 684 if (i != count) 685 continue; 686 /* copy answer into caller-supplied buffer */ 687 memcpy(rqp->odata, cmd->data, rqp->olen); 688 DPRINTF(sc, ZYD_DEBUG_CMD, 689 "command %p complete, data = %*D \n", 690 rqp, rqp->olen, (char *)rqp->odata, ":"); 691 wakeup(rqp); /* wakeup caller */ 692 break; 693 } 694 if (rqp == NULL) { 695 device_printf(sc->sc_dev, 696 "unexpected IORD notification %*D\n", 697 datalen, cmd->data, ":"); 698 } 699 break; 700 } 701 default: 702 device_printf(sc->sc_dev, "unknown notification %x\n", 703 le16toh(cmd->code)); 704 } 705 706 /* FALLTHROUGH */ 707 case USB_ST_SETUP: 708 tr_setup: 709 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 710 usbd_transfer_submit(xfer); 711 break; 712 713 default: /* Error */ 714 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 715 usbd_errstr(error)); 716 717 if (error != USB_ERR_CANCELLED) { 718 /* try to clear stall first */ 719 usbd_xfer_set_stall(xfer); 720 goto tr_setup; 721 } 722 break; 723 } 724 } 725 726 static void 727 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 728 { 729 struct zyd_softc *sc = usbd_xfer_softc(xfer); 730 struct zyd_rq *rqp, *cmd; 731 struct usb_page_cache *pc; 732 733 switch (USB_GET_STATE(xfer)) { 734 case USB_ST_TRANSFERRED: 735 cmd = usbd_xfer_get_priv(xfer); 736 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 737 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 738 /* Ensure the cached rq pointer is still valid */ 739 if (rqp == cmd && 740 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 741 wakeup(rqp); /* wakeup caller */ 742 } 743 744 /* FALLTHROUGH */ 745 case USB_ST_SETUP: 746 tr_setup: 747 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 748 if (rqp->flags & ZYD_CMD_FLAG_SENT) 749 continue; 750 751 pc = usbd_xfer_get_frame(xfer, 0); 752 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 753 754 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 755 usbd_xfer_set_priv(xfer, rqp); 756 rqp->flags |= ZYD_CMD_FLAG_SENT; 757 usbd_transfer_submit(xfer); 758 break; 759 } 760 break; 761 762 default: /* Error */ 763 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 764 usbd_errstr(error)); 765 766 if (error != USB_ERR_CANCELLED) { 767 /* try to clear stall first */ 768 usbd_xfer_set_stall(xfer); 769 goto tr_setup; 770 } 771 break; 772 } 773 } 774 775 static int 776 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 777 void *odata, int olen, int flags) 778 { 779 struct zyd_cmd cmd; 780 struct zyd_rq rq; 781 int error; 782 783 if (ilen > (int)sizeof(cmd.data)) 784 return (EINVAL); 785 786 cmd.code = htole16(code); 787 memcpy(cmd.data, idata, ilen); 788 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 789 &rq, ilen, idata, ":"); 790 791 rq.cmd = &cmd; 792 rq.idata = idata; 793 rq.odata = odata; 794 rq.ilen = sizeof(uint16_t) + ilen; 795 rq.olen = olen; 796 rq.flags = flags; 797 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 798 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 799 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 800 801 /* wait at most one second for command reply */ 802 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 803 if (error) 804 device_printf(sc->sc_dev, "command timeout\n"); 805 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 806 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 807 &rq, error); 808 809 return (error); 810 } 811 812 static int 813 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 814 { 815 struct zyd_pair tmp; 816 int error; 817 818 reg = htole16(reg); 819 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 820 ZYD_CMD_FLAG_READ); 821 if (error == 0) 822 *val = le16toh(tmp.val); 823 return (error); 824 } 825 826 static int 827 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 828 { 829 struct zyd_pair tmp[2]; 830 uint16_t regs[2]; 831 int error; 832 833 regs[0] = htole16(ZYD_REG32_HI(reg)); 834 regs[1] = htole16(ZYD_REG32_LO(reg)); 835 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 836 ZYD_CMD_FLAG_READ); 837 if (error == 0) 838 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 839 return (error); 840 } 841 842 static int 843 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 844 { 845 struct zyd_pair pair; 846 847 pair.reg = htole16(reg); 848 pair.val = htole16(val); 849 850 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 851 } 852 853 static int 854 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 855 { 856 struct zyd_pair pair[2]; 857 858 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 859 pair[0].val = htole16(val >> 16); 860 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 861 pair[1].val = htole16(val & 0xffff); 862 863 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 864 } 865 866 static int 867 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 868 { 869 struct zyd_rf *rf = &sc->sc_rf; 870 struct zyd_rfwrite_cmd req; 871 uint16_t cr203; 872 int error, i; 873 874 zyd_read16_m(sc, ZYD_CR203, &cr203); 875 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 876 877 req.code = htole16(2); 878 req.width = htole16(rf->width); 879 for (i = 0; i < rf->width; i++) { 880 req.bit[i] = htole16(cr203); 881 if (val & (1 << (rf->width - 1 - i))) 882 req.bit[i] |= htole16(ZYD_RF_DATA); 883 } 884 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 885 fail: 886 return (error); 887 } 888 889 static int 890 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 891 { 892 int error; 893 894 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 895 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 896 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 897 fail: 898 return (error); 899 } 900 901 static int 902 zyd_lock_phy(struct zyd_softc *sc) 903 { 904 int error; 905 uint32_t tmp; 906 907 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 908 tmp &= ~ZYD_UNLOCK_PHY_REGS; 909 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 910 fail: 911 return (error); 912 } 913 914 static int 915 zyd_unlock_phy(struct zyd_softc *sc) 916 { 917 int error; 918 uint32_t tmp; 919 920 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 921 tmp |= ZYD_UNLOCK_PHY_REGS; 922 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 923 fail: 924 return (error); 925 } 926 927 /* 928 * RFMD RF methods. 929 */ 930 static int 931 zyd_rfmd_init(struct zyd_rf *rf) 932 { 933 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 934 struct zyd_softc *sc = rf->rf_sc; 935 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 936 static const uint32_t rfini[] = ZYD_RFMD_RF; 937 int i, error; 938 939 /* init RF-dependent PHY registers */ 940 for (i = 0; i < N(phyini); i++) { 941 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 942 } 943 944 /* init RFMD radio */ 945 for (i = 0; i < N(rfini); i++) { 946 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 947 return (error); 948 } 949 fail: 950 return (error); 951 #undef N 952 } 953 954 static int 955 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 956 { 957 int error; 958 struct zyd_softc *sc = rf->rf_sc; 959 960 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 961 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 962 fail: 963 return (error); 964 } 965 966 static int 967 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 968 { 969 int error; 970 struct zyd_softc *sc = rf->rf_sc; 971 static const struct { 972 uint32_t r1, r2; 973 } rfprog[] = ZYD_RFMD_CHANTABLE; 974 975 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 976 if (error != 0) 977 goto fail; 978 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 979 if (error != 0) 980 goto fail; 981 982 fail: 983 return (error); 984 } 985 986 /* 987 * AL2230 RF methods. 988 */ 989 static int 990 zyd_al2230_init(struct zyd_rf *rf) 991 { 992 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 993 struct zyd_softc *sc = rf->rf_sc; 994 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 995 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 996 static const struct zyd_phy_pair phypll[] = { 997 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 998 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 999 }; 1000 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1001 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1002 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1003 int i, error; 1004 1005 /* init RF-dependent PHY registers */ 1006 for (i = 0; i < N(phyini); i++) 1007 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1008 1009 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1010 for (i = 0; i < N(phy2230s); i++) 1011 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1012 } 1013 1014 /* init AL2230 radio */ 1015 for (i = 0; i < N(rfini1); i++) { 1016 error = zyd_rfwrite(sc, rfini1[i]); 1017 if (error != 0) 1018 goto fail; 1019 } 1020 1021 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1022 error = zyd_rfwrite(sc, 0x000824); 1023 else 1024 error = zyd_rfwrite(sc, 0x0005a4); 1025 if (error != 0) 1026 goto fail; 1027 1028 for (i = 0; i < N(rfini2); i++) { 1029 error = zyd_rfwrite(sc, rfini2[i]); 1030 if (error != 0) 1031 goto fail; 1032 } 1033 1034 for (i = 0; i < N(phypll); i++) 1035 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1036 1037 for (i = 0; i < N(rfini3); i++) { 1038 error = zyd_rfwrite(sc, rfini3[i]); 1039 if (error != 0) 1040 goto fail; 1041 } 1042 fail: 1043 return (error); 1044 #undef N 1045 } 1046 1047 static int 1048 zyd_al2230_fini(struct zyd_rf *rf) 1049 { 1050 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1051 int error, i; 1052 struct zyd_softc *sc = rf->rf_sc; 1053 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1054 1055 for (i = 0; i < N(phy); i++) 1056 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1057 1058 if (sc->sc_newphy != 0) 1059 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1060 1061 zyd_write16_m(sc, ZYD_CR203, 0x6); 1062 fail: 1063 return (error); 1064 #undef N 1065 } 1066 1067 static int 1068 zyd_al2230_init_b(struct zyd_rf *rf) 1069 { 1070 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1071 struct zyd_softc *sc = rf->rf_sc; 1072 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1073 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1074 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1075 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1076 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1077 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1078 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1079 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1080 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1081 int i, error; 1082 1083 for (i = 0; i < N(phy1); i++) 1084 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1085 1086 /* init RF-dependent PHY registers */ 1087 for (i = 0; i < N(phyini); i++) 1088 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1089 1090 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1091 for (i = 0; i < N(phy2230s); i++) 1092 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1093 } 1094 1095 for (i = 0; i < 3; i++) { 1096 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1097 if (error != 0) 1098 return (error); 1099 } 1100 1101 for (i = 0; i < N(rfini_part1); i++) { 1102 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1103 if (error != 0) 1104 return (error); 1105 } 1106 1107 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1108 error = zyd_rfwrite(sc, 0x241000); 1109 else 1110 error = zyd_rfwrite(sc, 0x25a000); 1111 if (error != 0) 1112 goto fail; 1113 1114 for (i = 0; i < N(rfini_part2); i++) { 1115 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1116 if (error != 0) 1117 return (error); 1118 } 1119 1120 for (i = 0; i < N(phy2); i++) 1121 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1122 1123 for (i = 0; i < N(rfini_part3); i++) { 1124 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1125 if (error != 0) 1126 return (error); 1127 } 1128 1129 for (i = 0; i < N(phy3); i++) 1130 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1131 1132 error = zyd_al2230_fini(rf); 1133 fail: 1134 return (error); 1135 #undef N 1136 } 1137 1138 static int 1139 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1140 { 1141 struct zyd_softc *sc = rf->rf_sc; 1142 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1143 1144 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1145 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1146 fail: 1147 return (error); 1148 } 1149 1150 static int 1151 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1152 { 1153 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1154 int error, i; 1155 struct zyd_softc *sc = rf->rf_sc; 1156 static const struct zyd_phy_pair phy1[] = { 1157 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1158 }; 1159 static const struct { 1160 uint32_t r1, r2, r3; 1161 } rfprog[] = ZYD_AL2230_CHANTABLE; 1162 1163 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1164 if (error != 0) 1165 goto fail; 1166 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1167 if (error != 0) 1168 goto fail; 1169 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1170 if (error != 0) 1171 goto fail; 1172 1173 for (i = 0; i < N(phy1); i++) 1174 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1175 fail: 1176 return (error); 1177 #undef N 1178 } 1179 1180 static int 1181 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1182 { 1183 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1184 int error, i; 1185 struct zyd_softc *sc = rf->rf_sc; 1186 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1187 static const struct { 1188 uint32_t r1, r2, r3; 1189 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1190 1191 for (i = 0; i < N(phy1); i++) 1192 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1193 1194 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1195 if (error != 0) 1196 goto fail; 1197 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1198 if (error != 0) 1199 goto fail; 1200 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1201 if (error != 0) 1202 goto fail; 1203 error = zyd_al2230_fini(rf); 1204 fail: 1205 return (error); 1206 #undef N 1207 } 1208 1209 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1210 { \ 1211 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1212 { ZYD_CR47, 0x1e } \ 1213 } 1214 1215 static int 1216 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1217 { 1218 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1219 int error = 0, i; 1220 struct zyd_softc *sc = rf->rf_sc; 1221 struct ieee80211com *ic = &sc->sc_ic; 1222 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1223 int chan = ieee80211_chan2ieee(ic, c); 1224 1225 if (chan == 1 || chan == 11) 1226 r[0].val = 0x12; 1227 1228 for (i = 0; i < N(r); i++) 1229 zyd_write16_m(sc, r[i].reg, r[i].val); 1230 fail: 1231 return (error); 1232 #undef N 1233 } 1234 1235 /* 1236 * AL7230B RF methods. 1237 */ 1238 static int 1239 zyd_al7230B_init(struct zyd_rf *rf) 1240 { 1241 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1242 struct zyd_softc *sc = rf->rf_sc; 1243 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1244 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1245 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1246 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1247 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1248 int i, error; 1249 1250 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1251 1252 /* init RF-dependent PHY registers, part one */ 1253 for (i = 0; i < N(phyini_1); i++) 1254 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1255 1256 /* init AL7230B radio, part one */ 1257 for (i = 0; i < N(rfini_1); i++) { 1258 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1259 return (error); 1260 } 1261 /* init RF-dependent PHY registers, part two */ 1262 for (i = 0; i < N(phyini_2); i++) 1263 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1264 1265 /* init AL7230B radio, part two */ 1266 for (i = 0; i < N(rfini_2); i++) { 1267 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1268 return (error); 1269 } 1270 /* init RF-dependent PHY registers, part three */ 1271 for (i = 0; i < N(phyini_3); i++) 1272 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1273 fail: 1274 return (error); 1275 #undef N 1276 } 1277 1278 static int 1279 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1280 { 1281 int error; 1282 struct zyd_softc *sc = rf->rf_sc; 1283 1284 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1285 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1286 fail: 1287 return (error); 1288 } 1289 1290 static int 1291 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1292 { 1293 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1294 struct zyd_softc *sc = rf->rf_sc; 1295 static const struct { 1296 uint32_t r1, r2; 1297 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1298 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1299 int i, error; 1300 1301 zyd_write16_m(sc, ZYD_CR240, 0x57); 1302 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1303 1304 for (i = 0; i < N(rfsc); i++) { 1305 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1306 return (error); 1307 } 1308 1309 zyd_write16_m(sc, ZYD_CR128, 0x14); 1310 zyd_write16_m(sc, ZYD_CR129, 0x12); 1311 zyd_write16_m(sc, ZYD_CR130, 0x10); 1312 zyd_write16_m(sc, ZYD_CR38, 0x38); 1313 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1314 1315 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1316 if (error != 0) 1317 goto fail; 1318 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1319 if (error != 0) 1320 goto fail; 1321 error = zyd_rfwrite(sc, 0x3c9000); 1322 if (error != 0) 1323 goto fail; 1324 1325 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1326 zyd_write16_m(sc, ZYD_CR203, 0x06); 1327 zyd_write16_m(sc, ZYD_CR240, 0x08); 1328 fail: 1329 return (error); 1330 #undef N 1331 } 1332 1333 /* 1334 * AL2210 RF methods. 1335 */ 1336 static int 1337 zyd_al2210_init(struct zyd_rf *rf) 1338 { 1339 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1340 struct zyd_softc *sc = rf->rf_sc; 1341 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1342 static const uint32_t rfini[] = ZYD_AL2210_RF; 1343 uint32_t tmp; 1344 int i, error; 1345 1346 zyd_write32_m(sc, ZYD_CR18, 2); 1347 1348 /* init RF-dependent PHY registers */ 1349 for (i = 0; i < N(phyini); i++) 1350 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1351 1352 /* init AL2210 radio */ 1353 for (i = 0; i < N(rfini); i++) { 1354 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1355 return (error); 1356 } 1357 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1358 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1359 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1360 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1361 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1362 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1363 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1364 zyd_write32_m(sc, ZYD_CR18, 3); 1365 fail: 1366 return (error); 1367 #undef N 1368 } 1369 1370 static int 1371 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1372 { 1373 /* vendor driver does nothing for this RF chip */ 1374 1375 return (0); 1376 } 1377 1378 static int 1379 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1380 { 1381 int error; 1382 struct zyd_softc *sc = rf->rf_sc; 1383 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1384 uint32_t tmp; 1385 1386 zyd_write32_m(sc, ZYD_CR18, 2); 1387 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1388 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1389 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1390 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1391 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1392 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1393 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1394 1395 /* actually set the channel */ 1396 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1397 if (error != 0) 1398 goto fail; 1399 1400 zyd_write32_m(sc, ZYD_CR18, 3); 1401 fail: 1402 return (error); 1403 } 1404 1405 /* 1406 * GCT RF methods. 1407 */ 1408 static int 1409 zyd_gct_init(struct zyd_rf *rf) 1410 { 1411 #define ZYD_GCT_INTR_REG 0x85c1 1412 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1413 struct zyd_softc *sc = rf->rf_sc; 1414 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1415 static const uint32_t rfini[] = ZYD_GCT_RF; 1416 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1417 int i, idx = -1, error; 1418 uint16_t data; 1419 1420 /* init RF-dependent PHY registers */ 1421 for (i = 0; i < N(phyini); i++) 1422 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1423 1424 /* init cgt radio */ 1425 for (i = 0; i < N(rfini); i++) { 1426 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1427 return (error); 1428 } 1429 1430 error = zyd_gct_mode(rf); 1431 if (error != 0) 1432 return (error); 1433 1434 for (i = 0; i < (int)(N(vco) - 1); i++) { 1435 error = zyd_gct_set_channel_synth(rf, 1, 0); 1436 if (error != 0) 1437 goto fail; 1438 error = zyd_gct_write(rf, vco[i][0]); 1439 if (error != 0) 1440 goto fail; 1441 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1442 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1443 if ((data & 0xf) == 0) { 1444 idx = i; 1445 break; 1446 } 1447 } 1448 if (idx == -1) { 1449 error = zyd_gct_set_channel_synth(rf, 1, 1); 1450 if (error != 0) 1451 goto fail; 1452 error = zyd_gct_write(rf, 0x6662); 1453 if (error != 0) 1454 goto fail; 1455 } 1456 1457 rf->idx = idx; 1458 zyd_write16_m(sc, ZYD_CR203, 0x6); 1459 fail: 1460 return (error); 1461 #undef N 1462 #undef ZYD_GCT_INTR_REG 1463 } 1464 1465 static int 1466 zyd_gct_mode(struct zyd_rf *rf) 1467 { 1468 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1469 struct zyd_softc *sc = rf->rf_sc; 1470 static const uint32_t mode[] = { 1471 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1472 }; 1473 int i, error; 1474 1475 for (i = 0; i < N(mode); i++) { 1476 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1477 break; 1478 } 1479 return (error); 1480 #undef N 1481 } 1482 1483 static int 1484 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1485 { 1486 int error, idx = chan - 1; 1487 struct zyd_softc *sc = rf->rf_sc; 1488 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1489 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1490 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1491 1492 error = zyd_rfwrite(sc, 1493 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1494 if (error != 0) 1495 return (error); 1496 return zyd_rfwrite(sc, div_synth[idx]); 1497 } 1498 1499 static int 1500 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1501 { 1502 struct zyd_softc *sc = rf->rf_sc; 1503 1504 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1505 } 1506 1507 static int 1508 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1509 { 1510 int error; 1511 struct zyd_softc *sc = rf->rf_sc; 1512 1513 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1514 if (error != 0) 1515 return (error); 1516 1517 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1518 zyd_write16_m(sc, ZYD_CR251, 1519 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1520 fail: 1521 return (error); 1522 } 1523 1524 static int 1525 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1526 { 1527 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1528 int error, i; 1529 struct zyd_softc *sc = rf->rf_sc; 1530 static const struct zyd_phy_pair cmd[] = { 1531 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1532 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1533 }; 1534 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1535 1536 error = zyd_gct_set_channel_synth(rf, chan, 0); 1537 if (error != 0) 1538 goto fail; 1539 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1540 vco[rf->idx][((chan - 1) / 2)]); 1541 if (error != 0) 1542 goto fail; 1543 error = zyd_gct_mode(rf); 1544 if (error != 0) 1545 return (error); 1546 for (i = 0; i < N(cmd); i++) 1547 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1548 error = zyd_gct_txgain(rf, chan); 1549 if (error != 0) 1550 return (error); 1551 zyd_write16_m(sc, ZYD_CR203, 0x6); 1552 fail: 1553 return (error); 1554 #undef N 1555 } 1556 1557 static int 1558 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1559 { 1560 #define N(a) (sizeof(a) / sizeof((a)[0])) 1561 struct zyd_softc *sc = rf->rf_sc; 1562 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1563 uint8_t idx = sc->sc_pwrint[chan - 1]; 1564 1565 if (idx >= N(txgain)) { 1566 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1567 chan, idx); 1568 return 0; 1569 } 1570 1571 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1572 #undef N 1573 } 1574 1575 /* 1576 * Maxim2 RF methods. 1577 */ 1578 static int 1579 zyd_maxim2_init(struct zyd_rf *rf) 1580 { 1581 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1582 struct zyd_softc *sc = rf->rf_sc; 1583 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1584 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1585 uint16_t tmp; 1586 int i, error; 1587 1588 /* init RF-dependent PHY registers */ 1589 for (i = 0; i < N(phyini); i++) 1590 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1591 1592 zyd_read16_m(sc, ZYD_CR203, &tmp); 1593 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1594 1595 /* init maxim2 radio */ 1596 for (i = 0; i < N(rfini); i++) { 1597 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1598 return (error); 1599 } 1600 zyd_read16_m(sc, ZYD_CR203, &tmp); 1601 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1602 fail: 1603 return (error); 1604 #undef N 1605 } 1606 1607 static int 1608 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1609 { 1610 1611 /* vendor driver does nothing for this RF chip */ 1612 return (0); 1613 } 1614 1615 static int 1616 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1617 { 1618 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1619 struct zyd_softc *sc = rf->rf_sc; 1620 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1621 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1622 static const struct { 1623 uint32_t r1, r2; 1624 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1625 uint16_t tmp; 1626 int i, error; 1627 1628 /* 1629 * Do the same as we do when initializing it, except for the channel 1630 * values coming from the two channel tables. 1631 */ 1632 1633 /* init RF-dependent PHY registers */ 1634 for (i = 0; i < N(phyini); i++) 1635 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1636 1637 zyd_read16_m(sc, ZYD_CR203, &tmp); 1638 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1639 1640 /* first two values taken from the chantables */ 1641 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1642 if (error != 0) 1643 goto fail; 1644 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1645 if (error != 0) 1646 goto fail; 1647 1648 /* init maxim2 radio - skipping the two first values */ 1649 for (i = 2; i < N(rfini); i++) { 1650 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1651 return (error); 1652 } 1653 zyd_read16_m(sc, ZYD_CR203, &tmp); 1654 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1655 fail: 1656 return (error); 1657 #undef N 1658 } 1659 1660 static int 1661 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1662 { 1663 struct zyd_rf *rf = &sc->sc_rf; 1664 1665 rf->rf_sc = sc; 1666 rf->update_pwr = 1; 1667 1668 switch (type) { 1669 case ZYD_RF_RFMD: 1670 rf->init = zyd_rfmd_init; 1671 rf->switch_radio = zyd_rfmd_switch_radio; 1672 rf->set_channel = zyd_rfmd_set_channel; 1673 rf->width = 24; /* 24-bit RF values */ 1674 break; 1675 case ZYD_RF_AL2230: 1676 case ZYD_RF_AL2230S: 1677 if (sc->sc_macrev == ZYD_ZD1211B) { 1678 rf->init = zyd_al2230_init_b; 1679 rf->set_channel = zyd_al2230_set_channel_b; 1680 } else { 1681 rf->init = zyd_al2230_init; 1682 rf->set_channel = zyd_al2230_set_channel; 1683 } 1684 rf->switch_radio = zyd_al2230_switch_radio; 1685 rf->bandedge6 = zyd_al2230_bandedge6; 1686 rf->width = 24; /* 24-bit RF values */ 1687 break; 1688 case ZYD_RF_AL7230B: 1689 rf->init = zyd_al7230B_init; 1690 rf->switch_radio = zyd_al7230B_switch_radio; 1691 rf->set_channel = zyd_al7230B_set_channel; 1692 rf->width = 24; /* 24-bit RF values */ 1693 break; 1694 case ZYD_RF_AL2210: 1695 rf->init = zyd_al2210_init; 1696 rf->switch_radio = zyd_al2210_switch_radio; 1697 rf->set_channel = zyd_al2210_set_channel; 1698 rf->width = 24; /* 24-bit RF values */ 1699 break; 1700 case ZYD_RF_MAXIM_NEW: 1701 case ZYD_RF_GCT: 1702 rf->init = zyd_gct_init; 1703 rf->switch_radio = zyd_gct_switch_radio; 1704 rf->set_channel = zyd_gct_set_channel; 1705 rf->width = 24; /* 24-bit RF values */ 1706 rf->update_pwr = 0; 1707 break; 1708 case ZYD_RF_MAXIM_NEW2: 1709 rf->init = zyd_maxim2_init; 1710 rf->switch_radio = zyd_maxim2_switch_radio; 1711 rf->set_channel = zyd_maxim2_set_channel; 1712 rf->width = 18; /* 18-bit RF values */ 1713 break; 1714 default: 1715 device_printf(sc->sc_dev, 1716 "sorry, radio \"%s\" is not supported yet\n", 1717 zyd_rf_name(type)); 1718 return (EINVAL); 1719 } 1720 return (0); 1721 } 1722 1723 static const char * 1724 zyd_rf_name(uint8_t type) 1725 { 1726 static const char * const zyd_rfs[] = { 1727 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1728 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1729 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1730 "PHILIPS" 1731 }; 1732 1733 return zyd_rfs[(type > 15) ? 0 : type]; 1734 } 1735 1736 static int 1737 zyd_hw_init(struct zyd_softc *sc) 1738 { 1739 int error; 1740 const struct zyd_phy_pair *phyp; 1741 struct zyd_rf *rf = &sc->sc_rf; 1742 uint16_t val; 1743 1744 /* specify that the plug and play is finished */ 1745 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1746 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1747 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1748 sc->sc_fwbase); 1749 1750 /* retrieve firmware revision number */ 1751 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1752 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1753 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1754 /* set mandatory rates - XXX assumes 802.11b/g */ 1755 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1756 1757 /* disable interrupts */ 1758 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1759 1760 if ((error = zyd_read_pod(sc)) != 0) { 1761 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1762 goto fail; 1763 } 1764 1765 /* PHY init (resetting) */ 1766 error = zyd_lock_phy(sc); 1767 if (error != 0) 1768 goto fail; 1769 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1770 for (; phyp->reg != 0; phyp++) 1771 zyd_write16_m(sc, phyp->reg, phyp->val); 1772 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1773 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1774 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1775 } 1776 error = zyd_unlock_phy(sc); 1777 if (error != 0) 1778 goto fail; 1779 1780 /* HMAC init */ 1781 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1782 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1783 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1784 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1785 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1786 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1787 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1788 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1789 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1790 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1791 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1792 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1793 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1794 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1795 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1796 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1797 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1798 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1799 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1800 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1801 1802 if (sc->sc_macrev == ZYD_ZD1211) { 1803 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1804 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1805 } else { 1806 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1807 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1808 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1809 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1810 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1811 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1812 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1813 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1814 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1815 } 1816 1817 /* init beacon interval to 100ms */ 1818 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1819 goto fail; 1820 1821 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1822 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1823 sc->sc_rfrev); 1824 goto fail; 1825 } 1826 1827 /* RF chip init */ 1828 error = zyd_lock_phy(sc); 1829 if (error != 0) 1830 goto fail; 1831 error = (*rf->init)(rf); 1832 if (error != 0) { 1833 device_printf(sc->sc_dev, 1834 "radio initialization failed, error %d\n", error); 1835 goto fail; 1836 } 1837 error = zyd_unlock_phy(sc); 1838 if (error != 0) 1839 goto fail; 1840 1841 if ((error = zyd_read_eeprom(sc)) != 0) { 1842 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1843 goto fail; 1844 } 1845 1846 fail: return (error); 1847 } 1848 1849 static int 1850 zyd_read_pod(struct zyd_softc *sc) 1851 { 1852 int error; 1853 uint32_t tmp; 1854 1855 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1856 sc->sc_rfrev = tmp & 0x0f; 1857 sc->sc_ledtype = (tmp >> 4) & 0x01; 1858 sc->sc_al2230s = (tmp >> 7) & 0x01; 1859 sc->sc_cckgain = (tmp >> 8) & 0x01; 1860 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1861 sc->sc_parev = (tmp >> 16) & 0x0f; 1862 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1863 sc->sc_newphy = (tmp >> 31) & 0x01; 1864 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1865 fail: 1866 return (error); 1867 } 1868 1869 static int 1870 zyd_read_eeprom(struct zyd_softc *sc) 1871 { 1872 uint16_t val; 1873 int error, i; 1874 1875 /* read Tx power calibration tables */ 1876 for (i = 0; i < 7; i++) { 1877 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1878 sc->sc_pwrcal[i * 2] = val >> 8; 1879 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1880 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1881 sc->sc_pwrint[i * 2] = val >> 8; 1882 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1883 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1884 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1885 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1886 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1887 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1888 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1889 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1890 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1891 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1892 } 1893 fail: 1894 return (error); 1895 } 1896 1897 static int 1898 zyd_get_macaddr(struct zyd_softc *sc) 1899 { 1900 struct usb_device_request req; 1901 usb_error_t error; 1902 1903 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1904 req.bRequest = ZYD_READFWDATAREQ; 1905 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1906 USETW(req.wIndex, 0); 1907 USETW(req.wLength, IEEE80211_ADDR_LEN); 1908 1909 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1910 if (error != 0) { 1911 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1912 usbd_errstr(error)); 1913 } 1914 1915 return (error); 1916 } 1917 1918 static int 1919 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1920 { 1921 int error; 1922 uint32_t tmp; 1923 1924 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1925 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1926 tmp = addr[5] << 8 | addr[4]; 1927 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1928 fail: 1929 return (error); 1930 } 1931 1932 static int 1933 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1934 { 1935 int error; 1936 uint32_t tmp; 1937 1938 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1939 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1940 tmp = addr[5] << 8 | addr[4]; 1941 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1942 fail: 1943 return (error); 1944 } 1945 1946 static int 1947 zyd_switch_radio(struct zyd_softc *sc, int on) 1948 { 1949 struct zyd_rf *rf = &sc->sc_rf; 1950 int error; 1951 1952 error = zyd_lock_phy(sc); 1953 if (error != 0) 1954 goto fail; 1955 error = (*rf->switch_radio)(rf, on); 1956 if (error != 0) 1957 goto fail; 1958 error = zyd_unlock_phy(sc); 1959 fail: 1960 return (error); 1961 } 1962 1963 static int 1964 zyd_set_led(struct zyd_softc *sc, int which, int on) 1965 { 1966 int error; 1967 uint32_t tmp; 1968 1969 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1970 tmp &= ~which; 1971 if (on) 1972 tmp |= which; 1973 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1974 fail: 1975 return (error); 1976 } 1977 1978 static void 1979 zyd_set_multi(struct zyd_softc *sc) 1980 { 1981 struct ieee80211com *ic = &sc->sc_ic; 1982 uint32_t low, high; 1983 int error; 1984 1985 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1986 return; 1987 1988 low = 0x00000000; 1989 high = 0x80000000; 1990 1991 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1992 ic->ic_promisc > 0) { 1993 low = 0xffffffff; 1994 high = 0xffffffff; 1995 } else { 1996 struct ieee80211vap *vap; 1997 struct ifnet *ifp; 1998 struct ifmultiaddr *ifma; 1999 uint8_t v; 2000 2001 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2002 ifp = vap->iv_ifp; 2003 if_maddr_rlock(ifp); 2004 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2005 if (ifma->ifma_addr->sa_family != AF_LINK) 2006 continue; 2007 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2008 ifma->ifma_addr))[5] >> 2; 2009 if (v < 32) 2010 low |= 1 << v; 2011 else 2012 high |= 1 << (v - 32); 2013 } 2014 if_maddr_runlock(ifp); 2015 } 2016 } 2017 2018 /* reprogram multicast global hash table */ 2019 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2020 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2021 fail: 2022 if (error != 0) 2023 device_printf(sc->sc_dev, 2024 "could not set multicast hash table\n"); 2025 } 2026 2027 static void 2028 zyd_update_mcast(struct ieee80211com *ic) 2029 { 2030 struct zyd_softc *sc = ic->ic_softc; 2031 2032 ZYD_LOCK(sc); 2033 zyd_set_multi(sc); 2034 ZYD_UNLOCK(sc); 2035 } 2036 2037 static int 2038 zyd_set_rxfilter(struct zyd_softc *sc) 2039 { 2040 struct ieee80211com *ic = &sc->sc_ic; 2041 uint32_t rxfilter; 2042 2043 switch (ic->ic_opmode) { 2044 case IEEE80211_M_STA: 2045 rxfilter = ZYD_FILTER_BSS; 2046 break; 2047 case IEEE80211_M_IBSS: 2048 case IEEE80211_M_HOSTAP: 2049 rxfilter = ZYD_FILTER_HOSTAP; 2050 break; 2051 case IEEE80211_M_MONITOR: 2052 rxfilter = ZYD_FILTER_MONITOR; 2053 break; 2054 default: 2055 /* should not get there */ 2056 return (EINVAL); 2057 } 2058 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2059 } 2060 2061 static void 2062 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2063 { 2064 int error; 2065 struct ieee80211com *ic = &sc->sc_ic; 2066 struct zyd_rf *rf = &sc->sc_rf; 2067 uint32_t tmp; 2068 int chan; 2069 2070 chan = ieee80211_chan2ieee(ic, c); 2071 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2072 /* XXX should NEVER happen */ 2073 device_printf(sc->sc_dev, 2074 "%s: invalid channel %x\n", __func__, chan); 2075 return; 2076 } 2077 2078 error = zyd_lock_phy(sc); 2079 if (error != 0) 2080 goto fail; 2081 2082 error = (*rf->set_channel)(rf, chan); 2083 if (error != 0) 2084 goto fail; 2085 2086 if (rf->update_pwr) { 2087 /* update Tx power */ 2088 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2089 2090 if (sc->sc_macrev == ZYD_ZD1211B) { 2091 zyd_write16_m(sc, ZYD_CR67, 2092 sc->sc_ofdm36_cal[chan - 1]); 2093 zyd_write16_m(sc, ZYD_CR66, 2094 sc->sc_ofdm48_cal[chan - 1]); 2095 zyd_write16_m(sc, ZYD_CR65, 2096 sc->sc_ofdm54_cal[chan - 1]); 2097 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2098 zyd_write16_m(sc, ZYD_CR69, 0x28); 2099 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2100 } 2101 } 2102 if (sc->sc_cckgain) { 2103 /* set CCK baseband gain from EEPROM */ 2104 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2105 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2106 } 2107 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2108 error = (*rf->bandedge6)(rf, c); 2109 if (error != 0) 2110 goto fail; 2111 } 2112 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2113 2114 error = zyd_unlock_phy(sc); 2115 if (error != 0) 2116 goto fail; 2117 2118 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2119 htole16(c->ic_freq); 2120 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2121 htole16(c->ic_flags); 2122 fail: 2123 return; 2124 } 2125 2126 static int 2127 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2128 { 2129 int error; 2130 uint32_t val; 2131 2132 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2133 sc->sc_atim_wnd = val; 2134 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2135 sc->sc_pre_tbtt = val; 2136 sc->sc_bcn_int = bintval; 2137 2138 if (sc->sc_bcn_int <= 5) 2139 sc->sc_bcn_int = 5; 2140 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2141 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2142 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2143 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2144 2145 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2146 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2147 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2148 fail: 2149 return (error); 2150 } 2151 2152 static void 2153 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2154 { 2155 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2156 struct ieee80211com *ic = &sc->sc_ic; 2157 struct zyd_plcphdr plcp; 2158 struct zyd_rx_stat stat; 2159 struct usb_page_cache *pc; 2160 struct mbuf *m; 2161 int rlen, rssi; 2162 2163 if (len < ZYD_MIN_FRAGSZ) { 2164 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2165 device_get_nameunit(sc->sc_dev), len); 2166 counter_u64_add(ic->ic_ierrors, 1); 2167 return; 2168 } 2169 pc = usbd_xfer_get_frame(xfer, 0); 2170 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2171 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2172 2173 if (stat.flags & ZYD_RX_ERROR) { 2174 DPRINTF(sc, ZYD_DEBUG_RECV, 2175 "%s: RX status indicated error (%x)\n", 2176 device_get_nameunit(sc->sc_dev), stat.flags); 2177 counter_u64_add(ic->ic_ierrors, 1); 2178 return; 2179 } 2180 2181 /* compute actual frame length */ 2182 rlen = len - sizeof(struct zyd_plcphdr) - 2183 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2184 2185 /* allocate a mbuf to store the frame */ 2186 if (rlen > (int)MCLBYTES) { 2187 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2188 device_get_nameunit(sc->sc_dev), rlen); 2189 counter_u64_add(ic->ic_ierrors, 1); 2190 return; 2191 } else if (rlen > (int)MHLEN) 2192 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2193 else 2194 m = m_gethdr(M_NOWAIT, MT_DATA); 2195 if (m == NULL) { 2196 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2197 device_get_nameunit(sc->sc_dev)); 2198 counter_u64_add(ic->ic_ierrors, 1); 2199 return; 2200 } 2201 m->m_pkthdr.len = m->m_len = rlen; 2202 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2203 2204 if (ieee80211_radiotap_active(ic)) { 2205 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2206 2207 tap->wr_flags = 0; 2208 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2209 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2210 /* XXX toss, no way to express errors */ 2211 if (stat.flags & ZYD_RX_DECRYPTERR) 2212 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2213 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2214 (stat.flags & ZYD_RX_OFDM) ? 2215 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2216 tap->wr_antsignal = stat.rssi + -95; 2217 tap->wr_antnoise = -95; /* XXX */ 2218 } 2219 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2220 2221 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2222 sc->sc_rx_data[sc->sc_rx_count].m = m; 2223 sc->sc_rx_count++; 2224 } 2225 2226 static void 2227 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2228 { 2229 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2230 struct ieee80211com *ic = &sc->sc_ic; 2231 struct ieee80211_node *ni; 2232 struct zyd_rx_desc desc; 2233 struct mbuf *m; 2234 struct usb_page_cache *pc; 2235 uint32_t offset; 2236 uint8_t rssi; 2237 int8_t nf; 2238 int i; 2239 int actlen; 2240 2241 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2242 2243 sc->sc_rx_count = 0; 2244 switch (USB_GET_STATE(xfer)) { 2245 case USB_ST_TRANSFERRED: 2246 pc = usbd_xfer_get_frame(xfer, 0); 2247 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2248 2249 offset = 0; 2250 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2251 DPRINTF(sc, ZYD_DEBUG_RECV, 2252 "%s: received multi-frame transfer\n", __func__); 2253 2254 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2255 uint16_t len16 = UGETW(desc.len[i]); 2256 2257 if (len16 == 0 || len16 > actlen) 2258 break; 2259 2260 zyd_rx_data(xfer, offset, len16); 2261 2262 /* next frame is aligned on a 32-bit boundary */ 2263 len16 = (len16 + 3) & ~3; 2264 offset += len16; 2265 if (len16 > actlen) 2266 break; 2267 actlen -= len16; 2268 } 2269 } else { 2270 DPRINTF(sc, ZYD_DEBUG_RECV, 2271 "%s: received single-frame transfer\n", __func__); 2272 2273 zyd_rx_data(xfer, 0, actlen); 2274 } 2275 /* FALLTHROUGH */ 2276 case USB_ST_SETUP: 2277 tr_setup: 2278 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2279 usbd_transfer_submit(xfer); 2280 2281 /* 2282 * At the end of a USB callback it is always safe to unlock 2283 * the private mutex of a device! That is why we do the 2284 * "ieee80211_input" here, and not some lines up! 2285 */ 2286 ZYD_UNLOCK(sc); 2287 for (i = 0; i < sc->sc_rx_count; i++) { 2288 rssi = sc->sc_rx_data[i].rssi; 2289 m = sc->sc_rx_data[i].m; 2290 sc->sc_rx_data[i].m = NULL; 2291 2292 nf = -95; /* XXX */ 2293 2294 ni = ieee80211_find_rxnode(ic, 2295 mtod(m, struct ieee80211_frame_min *)); 2296 if (ni != NULL) { 2297 (void)ieee80211_input(ni, m, rssi, nf); 2298 ieee80211_free_node(ni); 2299 } else 2300 (void)ieee80211_input_all(ic, m, rssi, nf); 2301 } 2302 ZYD_LOCK(sc); 2303 zyd_start(sc); 2304 break; 2305 2306 default: /* Error */ 2307 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2308 2309 if (error != USB_ERR_CANCELLED) { 2310 /* try to clear stall first */ 2311 usbd_xfer_set_stall(xfer); 2312 goto tr_setup; 2313 } 2314 break; 2315 } 2316 } 2317 2318 static uint8_t 2319 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2320 { 2321 switch (rate) { 2322 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2323 case 12: 2324 return (0xb); 2325 case 18: 2326 return (0xf); 2327 case 24: 2328 return (0xa); 2329 case 36: 2330 return (0xe); 2331 case 48: 2332 return (0x9); 2333 case 72: 2334 return (0xd); 2335 case 96: 2336 return (0x8); 2337 case 108: 2338 return (0xc); 2339 /* CCK rates (NB: not IEEE std, device-specific) */ 2340 case 2: 2341 return (0x0); 2342 case 4: 2343 return (0x1); 2344 case 11: 2345 return (0x2); 2346 case 22: 2347 return (0x3); 2348 } 2349 2350 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2351 return (0x0); 2352 } 2353 2354 static void 2355 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2356 { 2357 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2358 struct ieee80211vap *vap; 2359 struct zyd_tx_data *data; 2360 struct mbuf *m; 2361 struct usb_page_cache *pc; 2362 int actlen; 2363 2364 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2365 2366 switch (USB_GET_STATE(xfer)) { 2367 case USB_ST_TRANSFERRED: 2368 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2369 actlen); 2370 2371 /* free resources */ 2372 data = usbd_xfer_get_priv(xfer); 2373 zyd_tx_free(data, 0); 2374 usbd_xfer_set_priv(xfer, NULL); 2375 2376 /* FALLTHROUGH */ 2377 case USB_ST_SETUP: 2378 tr_setup: 2379 data = STAILQ_FIRST(&sc->tx_q); 2380 if (data) { 2381 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2382 m = data->m; 2383 2384 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2385 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2386 m->m_pkthdr.len); 2387 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2388 } 2389 pc = usbd_xfer_get_frame(xfer, 0); 2390 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2391 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2392 m->m_pkthdr.len); 2393 2394 vap = data->ni->ni_vap; 2395 if (ieee80211_radiotap_active_vap(vap)) { 2396 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2397 2398 tap->wt_flags = 0; 2399 tap->wt_rate = data->rate; 2400 2401 ieee80211_radiotap_tx(vap, m); 2402 } 2403 2404 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2405 usbd_xfer_set_priv(xfer, data); 2406 usbd_transfer_submit(xfer); 2407 } 2408 zyd_start(sc); 2409 break; 2410 2411 default: /* Error */ 2412 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2413 usbd_errstr(error)); 2414 2415 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2416 data = usbd_xfer_get_priv(xfer); 2417 usbd_xfer_set_priv(xfer, NULL); 2418 if (data != NULL) 2419 zyd_tx_free(data, error); 2420 2421 if (error != USB_ERR_CANCELLED) { 2422 if (error == USB_ERR_TIMEOUT) 2423 device_printf(sc->sc_dev, "device timeout\n"); 2424 2425 /* 2426 * Try to clear stall first, also if other 2427 * errors occur, hence clearing stall 2428 * introduces a 50 ms delay: 2429 */ 2430 usbd_xfer_set_stall(xfer); 2431 goto tr_setup; 2432 } 2433 break; 2434 } 2435 } 2436 2437 static int 2438 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2439 { 2440 struct ieee80211vap *vap = ni->ni_vap; 2441 struct ieee80211com *ic = ni->ni_ic; 2442 struct zyd_tx_desc *desc; 2443 struct zyd_tx_data *data; 2444 struct ieee80211_frame *wh; 2445 const struct ieee80211_txparam *tp; 2446 struct ieee80211_key *k; 2447 int rate, totlen; 2448 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2449 uint8_t phy; 2450 uint16_t pktlen; 2451 uint32_t bits; 2452 2453 wh = mtod(m0, struct ieee80211_frame *); 2454 data = STAILQ_FIRST(&sc->tx_free); 2455 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2456 sc->tx_nfree--; 2457 2458 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2459 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2460 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2461 rate = tp->mgmtrate; 2462 } else { 2463 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2464 /* for data frames */ 2465 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2466 rate = tp->mcastrate; 2467 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2468 rate = tp->ucastrate; 2469 else { 2470 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2471 rate = ni->ni_txrate; 2472 } 2473 } 2474 2475 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2476 k = ieee80211_crypto_encap(ni, m0); 2477 if (k == NULL) { 2478 m_freem(m0); 2479 return (ENOBUFS); 2480 } 2481 /* packet header may have moved, reset our local pointer */ 2482 wh = mtod(m0, struct ieee80211_frame *); 2483 } 2484 2485 data->ni = ni; 2486 data->m = m0; 2487 data->rate = rate; 2488 2489 /* fill Tx descriptor */ 2490 desc = &data->desc; 2491 phy = zyd_plcp_signal(sc, rate); 2492 desc->phy = phy; 2493 if (ZYD_RATE_IS_OFDM(rate)) { 2494 desc->phy |= ZYD_TX_PHY_OFDM; 2495 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2496 desc->phy |= ZYD_TX_PHY_5GHZ; 2497 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2498 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2499 2500 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2501 desc->len = htole16(totlen); 2502 2503 desc->flags = ZYD_TX_FLAG_BACKOFF; 2504 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2505 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2506 if (totlen > vap->iv_rtsthreshold) { 2507 desc->flags |= ZYD_TX_FLAG_RTS; 2508 } else if (ZYD_RATE_IS_OFDM(rate) && 2509 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2510 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2511 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2512 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2513 desc->flags |= ZYD_TX_FLAG_RTS; 2514 } 2515 } else 2516 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2517 if ((wh->i_fc[0] & 2518 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2519 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2520 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2521 2522 /* actual transmit length (XXX why +10?) */ 2523 pktlen = ZYD_TX_DESC_SIZE + 10; 2524 if (sc->sc_macrev == ZYD_ZD1211) 2525 pktlen += totlen; 2526 desc->pktlen = htole16(pktlen); 2527 2528 bits = (rate == 11) ? (totlen * 16) + 10 : 2529 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2530 desc->plcp_length = htole16(bits / ratediv[phy]); 2531 desc->plcp_service = 0; 2532 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2533 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2534 desc->nextlen = 0; 2535 2536 if (ieee80211_radiotap_active_vap(vap)) { 2537 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2538 2539 tap->wt_flags = 0; 2540 tap->wt_rate = rate; 2541 2542 ieee80211_radiotap_tx(vap, m0); 2543 } 2544 2545 DPRINTF(sc, ZYD_DEBUG_XMIT, 2546 "%s: sending data frame len=%zu rate=%u\n", 2547 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2548 rate); 2549 2550 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2551 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2552 2553 return (0); 2554 } 2555 2556 static int 2557 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2558 { 2559 struct zyd_softc *sc = ic->ic_softc; 2560 int error; 2561 2562 ZYD_LOCK(sc); 2563 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2564 ZYD_UNLOCK(sc); 2565 return (ENXIO); 2566 } 2567 error = mbufq_enqueue(&sc->sc_snd, m); 2568 if (error) { 2569 ZYD_UNLOCK(sc); 2570 return (error); 2571 } 2572 zyd_start(sc); 2573 ZYD_UNLOCK(sc); 2574 2575 return (0); 2576 } 2577 2578 static void 2579 zyd_start(struct zyd_softc *sc) 2580 { 2581 struct ieee80211_node *ni; 2582 struct mbuf *m; 2583 2584 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2585 2586 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2587 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2588 if (zyd_tx_start(sc, m, ni) != 0) { 2589 ieee80211_free_node(ni); 2590 if_inc_counter(ni->ni_vap->iv_ifp, 2591 IFCOUNTER_OERRORS, 1); 2592 break; 2593 } 2594 } 2595 } 2596 2597 static int 2598 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2599 const struct ieee80211_bpf_params *params) 2600 { 2601 struct ieee80211com *ic = ni->ni_ic; 2602 struct zyd_softc *sc = ic->ic_softc; 2603 2604 ZYD_LOCK(sc); 2605 /* prevent management frames from being sent if we're not ready */ 2606 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2607 ZYD_UNLOCK(sc); 2608 m_freem(m); 2609 ieee80211_free_node(ni); 2610 return (ENETDOWN); 2611 } 2612 if (sc->tx_nfree == 0) { 2613 ZYD_UNLOCK(sc); 2614 m_freem(m); 2615 ieee80211_free_node(ni); 2616 return (ENOBUFS); /* XXX */ 2617 } 2618 2619 /* 2620 * Legacy path; interpret frame contents to decide 2621 * precisely how to send the frame. 2622 * XXX raw path 2623 */ 2624 if (zyd_tx_start(sc, m, ni) != 0) { 2625 ZYD_UNLOCK(sc); 2626 ieee80211_free_node(ni); 2627 return (EIO); 2628 } 2629 ZYD_UNLOCK(sc); 2630 return (0); 2631 } 2632 2633 static void 2634 zyd_parent(struct ieee80211com *ic) 2635 { 2636 struct zyd_softc *sc = ic->ic_softc; 2637 int startall = 0; 2638 2639 ZYD_LOCK(sc); 2640 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2641 ZYD_UNLOCK(sc); 2642 return; 2643 } 2644 if (ic->ic_nrunning > 0) { 2645 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2646 zyd_init_locked(sc); 2647 startall = 1; 2648 } else 2649 zyd_set_multi(sc); 2650 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2651 zyd_stop(sc); 2652 ZYD_UNLOCK(sc); 2653 if (startall) 2654 ieee80211_start_all(ic); 2655 } 2656 2657 static void 2658 zyd_init_locked(struct zyd_softc *sc) 2659 { 2660 struct ieee80211com *ic = &sc->sc_ic; 2661 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2662 struct usb_config_descriptor *cd; 2663 int error; 2664 uint32_t val; 2665 2666 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2667 2668 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2669 error = zyd_loadfirmware(sc); 2670 if (error != 0) { 2671 device_printf(sc->sc_dev, 2672 "could not load firmware (error=%d)\n", error); 2673 goto fail; 2674 } 2675 2676 /* reset device */ 2677 cd = usbd_get_config_descriptor(sc->sc_udev); 2678 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2679 cd->bConfigurationValue); 2680 if (error) 2681 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2682 2683 error = zyd_hw_init(sc); 2684 if (error) { 2685 device_printf(sc->sc_dev, 2686 "hardware initialization failed\n"); 2687 goto fail; 2688 } 2689 2690 device_printf(sc->sc_dev, 2691 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2692 "BE%x NP%x Gain%x F%x\n", 2693 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2694 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2695 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2696 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2697 sc->sc_cckgain, sc->sc_fix_cr157); 2698 2699 /* read regulatory domain (currently unused) */ 2700 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2701 sc->sc_regdomain = val >> 16; 2702 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2703 sc->sc_regdomain); 2704 2705 /* we'll do software WEP decryption for now */ 2706 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2707 __func__); 2708 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2709 2710 sc->sc_flags |= ZYD_FLAG_INITONCE; 2711 } 2712 2713 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2714 zyd_stop(sc); 2715 2716 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2717 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2718 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2719 if (error != 0) 2720 return; 2721 2722 /* set basic rates */ 2723 if (ic->ic_curmode == IEEE80211_MODE_11B) 2724 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2725 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2726 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2727 else /* assumes 802.11b/g */ 2728 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2729 2730 /* promiscuous mode */ 2731 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2732 /* multicast setup */ 2733 zyd_set_multi(sc); 2734 /* set RX filter */ 2735 error = zyd_set_rxfilter(sc); 2736 if (error != 0) 2737 goto fail; 2738 2739 /* switch radio transmitter ON */ 2740 error = zyd_switch_radio(sc, 1); 2741 if (error != 0) 2742 goto fail; 2743 /* set default BSS channel */ 2744 zyd_set_chan(sc, ic->ic_curchan); 2745 2746 /* 2747 * Allocate Tx and Rx xfer queues. 2748 */ 2749 zyd_setup_tx_list(sc); 2750 2751 /* enable interrupts */ 2752 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2753 2754 sc->sc_flags |= ZYD_FLAG_RUNNING; 2755 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2756 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2757 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2758 2759 return; 2760 2761 fail: zyd_stop(sc); 2762 return; 2763 } 2764 2765 static void 2766 zyd_stop(struct zyd_softc *sc) 2767 { 2768 int error; 2769 2770 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2771 2772 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2773 2774 /* 2775 * Drain all the transfers, if not already drained: 2776 */ 2777 ZYD_UNLOCK(sc); 2778 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2779 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2780 ZYD_LOCK(sc); 2781 2782 zyd_unsetup_tx_list(sc); 2783 2784 /* Stop now if the device was never set up */ 2785 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2786 return; 2787 2788 /* switch radio transmitter OFF */ 2789 error = zyd_switch_radio(sc, 0); 2790 if (error != 0) 2791 goto fail; 2792 /* disable Rx */ 2793 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2794 /* disable interrupts */ 2795 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2796 2797 fail: 2798 return; 2799 } 2800 2801 static int 2802 zyd_loadfirmware(struct zyd_softc *sc) 2803 { 2804 struct usb_device_request req; 2805 size_t size; 2806 u_char *fw; 2807 uint8_t stat; 2808 uint16_t addr; 2809 2810 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2811 return (0); 2812 2813 if (sc->sc_macrev == ZYD_ZD1211) { 2814 fw = (u_char *)zd1211_firmware; 2815 size = sizeof(zd1211_firmware); 2816 } else { 2817 fw = (u_char *)zd1211b_firmware; 2818 size = sizeof(zd1211b_firmware); 2819 } 2820 2821 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2822 req.bRequest = ZYD_DOWNLOADREQ; 2823 USETW(req.wIndex, 0); 2824 2825 addr = ZYD_FIRMWARE_START_ADDR; 2826 while (size > 0) { 2827 /* 2828 * When the transfer size is 4096 bytes, it is not 2829 * likely to be able to transfer it. 2830 * The cause is port or machine or chip? 2831 */ 2832 const int mlen = min(size, 64); 2833 2834 DPRINTF(sc, ZYD_DEBUG_FW, 2835 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2836 2837 USETW(req.wValue, addr); 2838 USETW(req.wLength, mlen); 2839 if (zyd_do_request(sc, &req, fw) != 0) 2840 return (EIO); 2841 2842 addr += mlen / 2; 2843 fw += mlen; 2844 size -= mlen; 2845 } 2846 2847 /* check whether the upload succeeded */ 2848 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2849 req.bRequest = ZYD_DOWNLOADSTS; 2850 USETW(req.wValue, 0); 2851 USETW(req.wIndex, 0); 2852 USETW(req.wLength, sizeof(stat)); 2853 if (zyd_do_request(sc, &req, &stat) != 0) 2854 return (EIO); 2855 2856 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2857 2858 return (stat & 0x80) ? (EIO) : (0); 2859 } 2860 2861 static void 2862 zyd_scan_start(struct ieee80211com *ic) 2863 { 2864 struct zyd_softc *sc = ic->ic_softc; 2865 2866 ZYD_LOCK(sc); 2867 /* want broadcast address while scanning */ 2868 zyd_set_bssid(sc, ieee80211broadcastaddr); 2869 ZYD_UNLOCK(sc); 2870 } 2871 2872 static void 2873 zyd_scan_end(struct ieee80211com *ic) 2874 { 2875 struct zyd_softc *sc = ic->ic_softc; 2876 2877 ZYD_LOCK(sc); 2878 /* restore previous bssid */ 2879 zyd_set_bssid(sc, ic->ic_macaddr); 2880 ZYD_UNLOCK(sc); 2881 } 2882 2883 static void 2884 zyd_set_channel(struct ieee80211com *ic) 2885 { 2886 struct zyd_softc *sc = ic->ic_softc; 2887 2888 ZYD_LOCK(sc); 2889 zyd_set_chan(sc, ic->ic_curchan); 2890 ZYD_UNLOCK(sc); 2891 } 2892 2893 static device_method_t zyd_methods[] = { 2894 /* Device interface */ 2895 DEVMETHOD(device_probe, zyd_match), 2896 DEVMETHOD(device_attach, zyd_attach), 2897 DEVMETHOD(device_detach, zyd_detach), 2898 DEVMETHOD_END 2899 }; 2900 2901 static driver_t zyd_driver = { 2902 .name = "zyd", 2903 .methods = zyd_methods, 2904 .size = sizeof(struct zyd_softc) 2905 }; 2906 2907 static devclass_t zyd_devclass; 2908 2909 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2910 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2911 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2912 MODULE_VERSION(zyd, 1); 2913