1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include <dev/usb/usbdi_util.h> 74 #include "usbdevs.h" 75 76 #include <dev/usb/wlan/if_zydreg.h> 77 #include <dev/usb/wlan/if_zydfw.h> 78 79 #ifdef USB_DEBUG 80 static int zyd_debug = 0; 81 82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 84 "zyd debug level"); 85 86 enum { 87 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 88 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 89 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 90 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 91 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 92 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 93 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 94 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 95 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 96 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 97 ZYD_DEBUG_ANY = 0xffffffff 98 }; 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 if (zyd_debug & (m)) \ 101 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 102 } while (0) 103 #else 104 #define DPRINTF(sc, m, fmt, ...) do { \ 105 (void) sc; \ 106 } while (0) 107 #endif 108 109 #define zyd_do_request(sc,req,data) \ 110 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 111 112 static device_probe_t zyd_match; 113 static device_attach_t zyd_attach; 114 static device_detach_t zyd_detach; 115 116 static usb_callback_t zyd_intr_read_callback; 117 static usb_callback_t zyd_intr_write_callback; 118 static usb_callback_t zyd_bulk_read_callback; 119 static usb_callback_t zyd_bulk_write_callback; 120 121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 122 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 123 const uint8_t [IEEE80211_ADDR_LEN], 124 const uint8_t [IEEE80211_ADDR_LEN]); 125 static void zyd_vap_delete(struct ieee80211vap *); 126 static void zyd_tx_free(struct zyd_tx_data *, int); 127 static void zyd_setup_tx_list(struct zyd_softc *); 128 static void zyd_unsetup_tx_list(struct zyd_softc *); 129 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 130 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 131 void *, int, int); 132 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 133 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 134 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 135 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 136 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 137 static int zyd_lock_phy(struct zyd_softc *); 138 static int zyd_unlock_phy(struct zyd_softc *); 139 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 140 static const char *zyd_rf_name(uint8_t); 141 static int zyd_hw_init(struct zyd_softc *); 142 static int zyd_read_pod(struct zyd_softc *); 143 static int zyd_read_eeprom(struct zyd_softc *); 144 static int zyd_get_macaddr(struct zyd_softc *); 145 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 146 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 147 static int zyd_switch_radio(struct zyd_softc *, int); 148 static int zyd_set_led(struct zyd_softc *, int, int); 149 static void zyd_set_multi(struct zyd_softc *); 150 static void zyd_update_mcast(struct ieee80211com *); 151 static int zyd_set_rxfilter(struct zyd_softc *); 152 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 153 static int zyd_set_beacon_interval(struct zyd_softc *, int); 154 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 155 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 156 struct ieee80211_node *); 157 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 158 static void zyd_start(struct zyd_softc *); 159 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 160 const struct ieee80211_bpf_params *); 161 static void zyd_parent(struct ieee80211com *); 162 static void zyd_init_locked(struct zyd_softc *); 163 static void zyd_stop(struct zyd_softc *); 164 static int zyd_loadfirmware(struct zyd_softc *); 165 static void zyd_scan_start(struct ieee80211com *); 166 static void zyd_scan_end(struct ieee80211com *); 167 static void zyd_set_channel(struct ieee80211com *); 168 static int zyd_rfmd_init(struct zyd_rf *); 169 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 170 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_init(struct zyd_rf *); 172 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 173 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init_b(struct zyd_rf *); 176 static int zyd_al7230B_init(struct zyd_rf *); 177 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 178 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_al2210_init(struct zyd_rf *); 180 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 181 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_init(struct zyd_rf *); 183 static int zyd_gct_switch_radio(struct zyd_rf *, int); 184 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 185 static int zyd_gct_mode(struct zyd_rf *); 186 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 187 static int zyd_gct_write(struct zyd_rf *, uint16_t); 188 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 189 static int zyd_maxim2_init(struct zyd_rf *); 190 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 191 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 192 193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 195 196 /* various supported device vendors/products */ 197 #define ZYD_ZD1211 0 198 #define ZYD_ZD1211B 1 199 200 #define ZYD_ZD1211_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 202 #define ZYD_ZD1211B_DEV(v,p) \ 203 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 204 static const STRUCT_USB_HOST_ID zyd_devs[] = { 205 /* ZYD_ZD1211 */ 206 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 207 ZYD_ZD1211_DEV(ABOCOM, WL54), 208 ZYD_ZD1211_DEV(ASUS, WL159G), 209 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 210 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 215 ZYD_ZD1211_DEV(SAGEM, XG760A), 216 ZYD_ZD1211_DEV(SENAO, NUB8301), 217 ZYD_ZD1211_DEV(SITECOMEU, WL113), 218 ZYD_ZD1211_DEV(SWEEX, ZD1211), 219 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 222 ZYD_ZD1211_DEV(TWINMOS, G240), 223 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 226 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 227 ZYD_ZD1211_DEV(ZCOM, ZD1211), 228 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 229 ZYD_ZD1211_DEV(ZYXEL, AG225H), 230 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 231 ZYD_ZD1211_DEV(ZYXEL, G200V2), 232 /* ZYD_ZD1211B */ 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 235 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 236 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 237 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 238 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 239 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 240 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 241 ZYD_ZD1211B_DEV(MELCO, KG54L), 242 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 243 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 244 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 245 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 246 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 247 ZYD_ZD1211B_DEV(USR, USR5423), 248 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 249 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYXEL, M202), 252 ZYD_ZD1211B_DEV(ZYXEL, G202), 253 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 254 }; 255 256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 257 [ZYD_BULK_WR] = { 258 .type = UE_BULK, 259 .endpoint = UE_ADDR_ANY, 260 .direction = UE_DIR_OUT, 261 .bufsize = ZYD_MAX_TXBUFSZ, 262 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 263 .callback = zyd_bulk_write_callback, 264 .ep_index = 0, 265 .timeout = 10000, /* 10 seconds */ 266 }, 267 [ZYD_BULK_RD] = { 268 .type = UE_BULK, 269 .endpoint = UE_ADDR_ANY, 270 .direction = UE_DIR_IN, 271 .bufsize = ZYX_MAX_RXBUFSZ, 272 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 273 .callback = zyd_bulk_read_callback, 274 .ep_index = 0, 275 }, 276 [ZYD_INTR_WR] = { 277 .type = UE_BULK_INTR, 278 .endpoint = UE_ADDR_ANY, 279 .direction = UE_DIR_OUT, 280 .bufsize = sizeof(struct zyd_cmd), 281 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 282 .callback = zyd_intr_write_callback, 283 .timeout = 1000, /* 1 second */ 284 .ep_index = 1, 285 }, 286 [ZYD_INTR_RD] = { 287 .type = UE_INTERRUPT, 288 .endpoint = UE_ADDR_ANY, 289 .direction = UE_DIR_IN, 290 .bufsize = sizeof(struct zyd_cmd), 291 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 292 .callback = zyd_intr_read_callback, 293 }, 294 }; 295 #define zyd_read16_m(sc, val, data) do { \ 296 error = zyd_read16(sc, val, data); \ 297 if (error != 0) \ 298 goto fail; \ 299 } while (0) 300 #define zyd_write16_m(sc, val, data) do { \ 301 error = zyd_write16(sc, val, data); \ 302 if (error != 0) \ 303 goto fail; \ 304 } while (0) 305 #define zyd_read32_m(sc, val, data) do { \ 306 error = zyd_read32(sc, val, data); \ 307 if (error != 0) \ 308 goto fail; \ 309 } while (0) 310 #define zyd_write32_m(sc, val, data) do { \ 311 error = zyd_write32(sc, val, data); \ 312 if (error != 0) \ 313 goto fail; \ 314 } while (0) 315 316 static int 317 zyd_match(device_t dev) 318 { 319 struct usb_attach_arg *uaa = device_get_ivars(dev); 320 321 if (uaa->usb_mode != USB_MODE_HOST) 322 return (ENXIO); 323 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 324 return (ENXIO); 325 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 326 return (ENXIO); 327 328 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 329 } 330 331 static int 332 zyd_attach(device_t dev) 333 { 334 struct usb_attach_arg *uaa = device_get_ivars(dev); 335 struct zyd_softc *sc = device_get_softc(dev); 336 struct ieee80211com *ic = &sc->sc_ic; 337 uint8_t iface_index, bands; 338 int error; 339 340 if (uaa->info.bcdDevice < 0x4330) { 341 device_printf(dev, "device version mismatch: 0x%X " 342 "(only >= 43.30 supported)\n", 343 uaa->info.bcdDevice); 344 return (EINVAL); 345 } 346 347 device_set_usb_desc(dev); 348 sc->sc_dev = dev; 349 sc->sc_udev = uaa->device; 350 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 351 352 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 353 MTX_NETWORK_LOCK, MTX_DEF); 354 STAILQ_INIT(&sc->sc_rqh); 355 mbufq_init(&sc->sc_snd, ifqmaxlen); 356 357 iface_index = ZYD_IFACE_INDEX; 358 error = usbd_transfer_setup(uaa->device, 359 &iface_index, sc->sc_xfer, zyd_config, 360 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 361 if (error) { 362 device_printf(dev, "could not allocate USB transfers, " 363 "err=%s\n", usbd_errstr(error)); 364 goto detach; 365 } 366 367 ZYD_LOCK(sc); 368 if ((error = zyd_get_macaddr(sc)) != 0) { 369 device_printf(sc->sc_dev, "could not read EEPROM\n"); 370 ZYD_UNLOCK(sc); 371 goto detach; 372 } 373 ZYD_UNLOCK(sc); 374 375 ic->ic_softc = sc; 376 ic->ic_name = device_get_nameunit(dev); 377 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 378 ic->ic_opmode = IEEE80211_M_STA; 379 380 /* set device capabilities */ 381 ic->ic_caps = 382 IEEE80211_C_STA /* station mode */ 383 | IEEE80211_C_MONITOR /* monitor mode */ 384 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 385 | IEEE80211_C_SHSLOT /* short slot time supported */ 386 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 387 | IEEE80211_C_WPA /* 802.11i */ 388 ; 389 390 bands = 0; 391 setbit(&bands, IEEE80211_MODE_11B); 392 setbit(&bands, IEEE80211_MODE_11G); 393 ieee80211_init_channels(ic, NULL, &bands); 394 395 ieee80211_ifattach(ic); 396 ic->ic_raw_xmit = zyd_raw_xmit; 397 ic->ic_scan_start = zyd_scan_start; 398 ic->ic_scan_end = zyd_scan_end; 399 ic->ic_set_channel = zyd_set_channel; 400 ic->ic_vap_create = zyd_vap_create; 401 ic->ic_vap_delete = zyd_vap_delete; 402 ic->ic_update_mcast = zyd_update_mcast; 403 ic->ic_update_promisc = zyd_update_mcast; 404 ic->ic_parent = zyd_parent; 405 ic->ic_transmit = zyd_transmit; 406 407 ieee80211_radiotap_attach(ic, 408 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 409 ZYD_TX_RADIOTAP_PRESENT, 410 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 411 ZYD_RX_RADIOTAP_PRESENT); 412 413 if (bootverbose) 414 ieee80211_announce(ic); 415 416 return (0); 417 418 detach: 419 zyd_detach(dev); 420 return (ENXIO); /* failure */ 421 } 422 423 static int 424 zyd_detach(device_t dev) 425 { 426 struct zyd_softc *sc = device_get_softc(dev); 427 struct ieee80211com *ic = &sc->sc_ic; 428 unsigned int x; 429 430 /* 431 * Prevent further allocations from RX/TX data 432 * lists and ioctls: 433 */ 434 ZYD_LOCK(sc); 435 sc->sc_flags |= ZYD_FLAG_DETACHED; 436 STAILQ_INIT(&sc->tx_q); 437 STAILQ_INIT(&sc->tx_free); 438 ZYD_UNLOCK(sc); 439 440 /* drain USB transfers */ 441 for (x = 0; x != ZYD_N_TRANSFER; x++) 442 usbd_transfer_drain(sc->sc_xfer[x]); 443 444 /* free TX list, if any */ 445 ZYD_LOCK(sc); 446 zyd_unsetup_tx_list(sc); 447 ZYD_UNLOCK(sc); 448 449 /* free USB transfers and some data buffers */ 450 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 451 452 if (ic->ic_softc == sc) 453 ieee80211_ifdetach(ic); 454 mbufq_drain(&sc->sc_snd); 455 mtx_destroy(&sc->sc_mtx); 456 457 return (0); 458 } 459 460 static struct ieee80211vap * 461 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 462 enum ieee80211_opmode opmode, int flags, 463 const uint8_t bssid[IEEE80211_ADDR_LEN], 464 const uint8_t mac[IEEE80211_ADDR_LEN]) 465 { 466 struct zyd_vap *zvp; 467 struct ieee80211vap *vap; 468 469 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 470 return (NULL); 471 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 472 vap = &zvp->vap; 473 474 /* enable s/w bmiss handling for sta mode */ 475 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 476 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 477 /* out of memory */ 478 free(zvp, M_80211_VAP); 479 return (NULL); 480 } 481 482 /* override state transition machine */ 483 zvp->newstate = vap->iv_newstate; 484 vap->iv_newstate = zyd_newstate; 485 486 ieee80211_ratectl_init(vap); 487 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 488 489 /* complete setup */ 490 ieee80211_vap_attach(vap, ieee80211_media_change, 491 ieee80211_media_status, mac); 492 ic->ic_opmode = opmode; 493 return (vap); 494 } 495 496 static void 497 zyd_vap_delete(struct ieee80211vap *vap) 498 { 499 struct zyd_vap *zvp = ZYD_VAP(vap); 500 501 ieee80211_ratectl_deinit(vap); 502 ieee80211_vap_detach(vap); 503 free(zvp, M_80211_VAP); 504 } 505 506 static void 507 zyd_tx_free(struct zyd_tx_data *data, int txerr) 508 { 509 struct zyd_softc *sc = data->sc; 510 511 if (data->m != NULL) { 512 ieee80211_tx_complete(data->ni, data->m, txerr); 513 data->m = NULL; 514 data->ni = NULL; 515 } 516 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 517 sc->tx_nfree++; 518 } 519 520 static void 521 zyd_setup_tx_list(struct zyd_softc *sc) 522 { 523 struct zyd_tx_data *data; 524 int i; 525 526 sc->tx_nfree = 0; 527 STAILQ_INIT(&sc->tx_q); 528 STAILQ_INIT(&sc->tx_free); 529 530 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 531 data = &sc->tx_data[i]; 532 533 data->sc = sc; 534 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 535 sc->tx_nfree++; 536 } 537 } 538 539 static void 540 zyd_unsetup_tx_list(struct zyd_softc *sc) 541 { 542 struct zyd_tx_data *data; 543 int i; 544 545 /* make sure any subsequent use of the queues will fail */ 546 sc->tx_nfree = 0; 547 STAILQ_INIT(&sc->tx_q); 548 STAILQ_INIT(&sc->tx_free); 549 550 /* free up all node references and mbufs */ 551 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 552 data = &sc->tx_data[i]; 553 554 if (data->m != NULL) { 555 m_freem(data->m); 556 data->m = NULL; 557 } 558 if (data->ni != NULL) { 559 ieee80211_free_node(data->ni); 560 data->ni = NULL; 561 } 562 } 563 } 564 565 static int 566 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 567 { 568 struct zyd_vap *zvp = ZYD_VAP(vap); 569 struct ieee80211com *ic = vap->iv_ic; 570 struct zyd_softc *sc = ic->ic_softc; 571 int error; 572 573 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 574 ieee80211_state_name[vap->iv_state], 575 ieee80211_state_name[nstate]); 576 577 IEEE80211_UNLOCK(ic); 578 ZYD_LOCK(sc); 579 switch (nstate) { 580 case IEEE80211_S_AUTH: 581 zyd_set_chan(sc, ic->ic_curchan); 582 break; 583 case IEEE80211_S_RUN: 584 if (vap->iv_opmode == IEEE80211_M_MONITOR) 585 break; 586 587 /* turn link LED on */ 588 error = zyd_set_led(sc, ZYD_LED1, 1); 589 if (error != 0) 590 break; 591 592 /* make data LED blink upon Tx */ 593 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 594 595 IEEE80211_ADDR_COPY(ic->ic_macaddr, vap->iv_bss->ni_bssid); 596 zyd_set_bssid(sc, ic->ic_macaddr); 597 break; 598 default: 599 break; 600 } 601 fail: 602 ZYD_UNLOCK(sc); 603 IEEE80211_LOCK(ic); 604 return (zvp->newstate(vap, nstate, arg)); 605 } 606 607 /* 608 * Callback handler for interrupt transfer 609 */ 610 static void 611 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 612 { 613 struct zyd_softc *sc = usbd_xfer_softc(xfer); 614 struct ieee80211com *ic = &sc->sc_ic; 615 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 616 struct ieee80211_node *ni; 617 struct zyd_cmd *cmd = &sc->sc_ibuf; 618 struct usb_page_cache *pc; 619 int datalen; 620 int actlen; 621 622 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 623 624 switch (USB_GET_STATE(xfer)) { 625 case USB_ST_TRANSFERRED: 626 pc = usbd_xfer_get_frame(xfer, 0); 627 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 628 629 switch (le16toh(cmd->code)) { 630 case ZYD_NOTIF_RETRYSTATUS: 631 { 632 struct zyd_notif_retry *retry = 633 (struct zyd_notif_retry *)cmd->data; 634 635 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 636 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 637 le16toh(retry->rate), ether_sprintf(retry->macaddr), 638 le16toh(retry->count)&0xff, le16toh(retry->count)); 639 640 /* 641 * Find the node to which the packet was sent and 642 * update its retry statistics. In BSS mode, this node 643 * is the AP we're associated to so no lookup is 644 * actually needed. 645 */ 646 ni = ieee80211_find_txnode(vap, retry->macaddr); 647 if (ni != NULL) { 648 int retrycnt = 649 (int)(le16toh(retry->count) & 0xff); 650 651 ieee80211_ratectl_tx_complete(vap, ni, 652 IEEE80211_RATECTL_TX_FAILURE, 653 &retrycnt, NULL); 654 ieee80211_free_node(ni); 655 } 656 if (le16toh(retry->count) & 0x100) 657 /* too many retries */ 658 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 659 1); 660 break; 661 } 662 case ZYD_NOTIF_IORD: 663 { 664 struct zyd_rq *rqp; 665 666 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 667 break; /* HMAC interrupt */ 668 669 datalen = actlen - sizeof(cmd->code); 670 datalen -= 2; /* XXX: padding? */ 671 672 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 673 int i; 674 int count; 675 676 if (rqp->olen != datalen) 677 continue; 678 count = rqp->olen / sizeof(struct zyd_pair); 679 for (i = 0; i < count; i++) { 680 if (*(((const uint16_t *)rqp->idata) + i) != 681 (((struct zyd_pair *)cmd->data) + i)->reg) 682 break; 683 } 684 if (i != count) 685 continue; 686 /* copy answer into caller-supplied buffer */ 687 memcpy(rqp->odata, cmd->data, rqp->olen); 688 DPRINTF(sc, ZYD_DEBUG_CMD, 689 "command %p complete, data = %*D \n", 690 rqp, rqp->olen, (char *)rqp->odata, ":"); 691 wakeup(rqp); /* wakeup caller */ 692 break; 693 } 694 if (rqp == NULL) { 695 device_printf(sc->sc_dev, 696 "unexpected IORD notification %*D\n", 697 datalen, cmd->data, ":"); 698 } 699 break; 700 } 701 default: 702 device_printf(sc->sc_dev, "unknown notification %x\n", 703 le16toh(cmd->code)); 704 } 705 706 /* FALLTHROUGH */ 707 case USB_ST_SETUP: 708 tr_setup: 709 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 710 usbd_transfer_submit(xfer); 711 break; 712 713 default: /* Error */ 714 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 715 usbd_errstr(error)); 716 717 if (error != USB_ERR_CANCELLED) { 718 /* try to clear stall first */ 719 usbd_xfer_set_stall(xfer); 720 goto tr_setup; 721 } 722 break; 723 } 724 } 725 726 static void 727 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 728 { 729 struct zyd_softc *sc = usbd_xfer_softc(xfer); 730 struct zyd_rq *rqp, *cmd; 731 struct usb_page_cache *pc; 732 733 switch (USB_GET_STATE(xfer)) { 734 case USB_ST_TRANSFERRED: 735 cmd = usbd_xfer_get_priv(xfer); 736 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 737 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 738 /* Ensure the cached rq pointer is still valid */ 739 if (rqp == cmd && 740 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 741 wakeup(rqp); /* wakeup caller */ 742 } 743 744 /* FALLTHROUGH */ 745 case USB_ST_SETUP: 746 tr_setup: 747 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 748 if (rqp->flags & ZYD_CMD_FLAG_SENT) 749 continue; 750 751 pc = usbd_xfer_get_frame(xfer, 0); 752 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 753 754 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 755 usbd_xfer_set_priv(xfer, rqp); 756 rqp->flags |= ZYD_CMD_FLAG_SENT; 757 usbd_transfer_submit(xfer); 758 break; 759 } 760 break; 761 762 default: /* Error */ 763 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 764 usbd_errstr(error)); 765 766 if (error != USB_ERR_CANCELLED) { 767 /* try to clear stall first */ 768 usbd_xfer_set_stall(xfer); 769 goto tr_setup; 770 } 771 break; 772 } 773 } 774 775 static int 776 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 777 void *odata, int olen, int flags) 778 { 779 struct zyd_cmd cmd; 780 struct zyd_rq rq; 781 int error; 782 783 if (ilen > (int)sizeof(cmd.data)) 784 return (EINVAL); 785 786 cmd.code = htole16(code); 787 memcpy(cmd.data, idata, ilen); 788 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 789 &rq, ilen, idata, ":"); 790 791 rq.cmd = &cmd; 792 rq.idata = idata; 793 rq.odata = odata; 794 rq.ilen = sizeof(uint16_t) + ilen; 795 rq.olen = olen; 796 rq.flags = flags; 797 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 798 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 799 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 800 801 /* wait at most one second for command reply */ 802 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 803 if (error) 804 device_printf(sc->sc_dev, "command timeout\n"); 805 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 806 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 807 &rq, error); 808 809 return (error); 810 } 811 812 static int 813 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 814 { 815 struct zyd_pair tmp; 816 int error; 817 818 reg = htole16(reg); 819 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 820 ZYD_CMD_FLAG_READ); 821 if (error == 0) 822 *val = le16toh(tmp.val); 823 return (error); 824 } 825 826 static int 827 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 828 { 829 struct zyd_pair tmp[2]; 830 uint16_t regs[2]; 831 int error; 832 833 regs[0] = htole16(ZYD_REG32_HI(reg)); 834 regs[1] = htole16(ZYD_REG32_LO(reg)); 835 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 836 ZYD_CMD_FLAG_READ); 837 if (error == 0) 838 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 839 return (error); 840 } 841 842 static int 843 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 844 { 845 struct zyd_pair pair; 846 847 pair.reg = htole16(reg); 848 pair.val = htole16(val); 849 850 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 851 } 852 853 static int 854 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 855 { 856 struct zyd_pair pair[2]; 857 858 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 859 pair[0].val = htole16(val >> 16); 860 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 861 pair[1].val = htole16(val & 0xffff); 862 863 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 864 } 865 866 static int 867 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 868 { 869 struct zyd_rf *rf = &sc->sc_rf; 870 struct zyd_rfwrite_cmd req; 871 uint16_t cr203; 872 int error, i; 873 874 zyd_read16_m(sc, ZYD_CR203, &cr203); 875 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 876 877 req.code = htole16(2); 878 req.width = htole16(rf->width); 879 for (i = 0; i < rf->width; i++) { 880 req.bit[i] = htole16(cr203); 881 if (val & (1 << (rf->width - 1 - i))) 882 req.bit[i] |= htole16(ZYD_RF_DATA); 883 } 884 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 885 fail: 886 return (error); 887 } 888 889 static int 890 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 891 { 892 int error; 893 894 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 895 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 896 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 897 fail: 898 return (error); 899 } 900 901 static int 902 zyd_lock_phy(struct zyd_softc *sc) 903 { 904 int error; 905 uint32_t tmp; 906 907 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 908 tmp &= ~ZYD_UNLOCK_PHY_REGS; 909 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 910 fail: 911 return (error); 912 } 913 914 static int 915 zyd_unlock_phy(struct zyd_softc *sc) 916 { 917 int error; 918 uint32_t tmp; 919 920 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 921 tmp |= ZYD_UNLOCK_PHY_REGS; 922 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 923 fail: 924 return (error); 925 } 926 927 /* 928 * RFMD RF methods. 929 */ 930 static int 931 zyd_rfmd_init(struct zyd_rf *rf) 932 { 933 struct zyd_softc *sc = rf->rf_sc; 934 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 935 static const uint32_t rfini[] = ZYD_RFMD_RF; 936 int i, error; 937 938 /* init RF-dependent PHY registers */ 939 for (i = 0; i < nitems(phyini); i++) { 940 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 941 } 942 943 /* init RFMD radio */ 944 for (i = 0; i < nitems(rfini); i++) { 945 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 946 return (error); 947 } 948 fail: 949 return (error); 950 } 951 952 static int 953 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 954 { 955 int error; 956 struct zyd_softc *sc = rf->rf_sc; 957 958 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 959 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 960 fail: 961 return (error); 962 } 963 964 static int 965 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 966 { 967 int error; 968 struct zyd_softc *sc = rf->rf_sc; 969 static const struct { 970 uint32_t r1, r2; 971 } rfprog[] = ZYD_RFMD_CHANTABLE; 972 973 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 974 if (error != 0) 975 goto fail; 976 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 977 if (error != 0) 978 goto fail; 979 980 fail: 981 return (error); 982 } 983 984 /* 985 * AL2230 RF methods. 986 */ 987 static int 988 zyd_al2230_init(struct zyd_rf *rf) 989 { 990 struct zyd_softc *sc = rf->rf_sc; 991 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 992 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 993 static const struct zyd_phy_pair phypll[] = { 994 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 995 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 996 }; 997 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 998 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 999 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1000 int i, error; 1001 1002 /* init RF-dependent PHY registers */ 1003 for (i = 0; i < nitems(phyini); i++) 1004 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1005 1006 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1007 for (i = 0; i < nitems(phy2230s); i++) 1008 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1009 } 1010 1011 /* init AL2230 radio */ 1012 for (i = 0; i < nitems(rfini1); i++) { 1013 error = zyd_rfwrite(sc, rfini1[i]); 1014 if (error != 0) 1015 goto fail; 1016 } 1017 1018 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1019 error = zyd_rfwrite(sc, 0x000824); 1020 else 1021 error = zyd_rfwrite(sc, 0x0005a4); 1022 if (error != 0) 1023 goto fail; 1024 1025 for (i = 0; i < nitems(rfini2); i++) { 1026 error = zyd_rfwrite(sc, rfini2[i]); 1027 if (error != 0) 1028 goto fail; 1029 } 1030 1031 for (i = 0; i < nitems(phypll); i++) 1032 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1033 1034 for (i = 0; i < nitems(rfini3); i++) { 1035 error = zyd_rfwrite(sc, rfini3[i]); 1036 if (error != 0) 1037 goto fail; 1038 } 1039 fail: 1040 return (error); 1041 } 1042 1043 static int 1044 zyd_al2230_fini(struct zyd_rf *rf) 1045 { 1046 int error, i; 1047 struct zyd_softc *sc = rf->rf_sc; 1048 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1049 1050 for (i = 0; i < nitems(phy); i++) 1051 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1052 1053 if (sc->sc_newphy != 0) 1054 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1055 1056 zyd_write16_m(sc, ZYD_CR203, 0x6); 1057 fail: 1058 return (error); 1059 } 1060 1061 static int 1062 zyd_al2230_init_b(struct zyd_rf *rf) 1063 { 1064 struct zyd_softc *sc = rf->rf_sc; 1065 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1066 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1067 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1068 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1069 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1070 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1071 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1072 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1073 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1074 int i, error; 1075 1076 for (i = 0; i < nitems(phy1); i++) 1077 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1078 1079 /* init RF-dependent PHY registers */ 1080 for (i = 0; i < nitems(phyini); i++) 1081 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1082 1083 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1084 for (i = 0; i < nitems(phy2230s); i++) 1085 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1086 } 1087 1088 for (i = 0; i < 3; i++) { 1089 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1090 if (error != 0) 1091 return (error); 1092 } 1093 1094 for (i = 0; i < nitems(rfini_part1); i++) { 1095 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1096 if (error != 0) 1097 return (error); 1098 } 1099 1100 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1101 error = zyd_rfwrite(sc, 0x241000); 1102 else 1103 error = zyd_rfwrite(sc, 0x25a000); 1104 if (error != 0) 1105 goto fail; 1106 1107 for (i = 0; i < nitems(rfini_part2); i++) { 1108 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1109 if (error != 0) 1110 return (error); 1111 } 1112 1113 for (i = 0; i < nitems(phy2); i++) 1114 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1115 1116 for (i = 0; i < nitems(rfini_part3); i++) { 1117 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1118 if (error != 0) 1119 return (error); 1120 } 1121 1122 for (i = 0; i < nitems(phy3); i++) 1123 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1124 1125 error = zyd_al2230_fini(rf); 1126 fail: 1127 return (error); 1128 } 1129 1130 static int 1131 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1132 { 1133 struct zyd_softc *sc = rf->rf_sc; 1134 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1135 1136 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1137 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1138 fail: 1139 return (error); 1140 } 1141 1142 static int 1143 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1144 { 1145 int error, i; 1146 struct zyd_softc *sc = rf->rf_sc; 1147 static const struct zyd_phy_pair phy1[] = { 1148 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1149 }; 1150 static const struct { 1151 uint32_t r1, r2, r3; 1152 } rfprog[] = ZYD_AL2230_CHANTABLE; 1153 1154 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1155 if (error != 0) 1156 goto fail; 1157 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1158 if (error != 0) 1159 goto fail; 1160 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1161 if (error != 0) 1162 goto fail; 1163 1164 for (i = 0; i < nitems(phy1); i++) 1165 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1166 fail: 1167 return (error); 1168 } 1169 1170 static int 1171 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1172 { 1173 int error, i; 1174 struct zyd_softc *sc = rf->rf_sc; 1175 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1176 static const struct { 1177 uint32_t r1, r2, r3; 1178 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1179 1180 for (i = 0; i < nitems(phy1); i++) 1181 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1182 1183 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1184 if (error != 0) 1185 goto fail; 1186 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1187 if (error != 0) 1188 goto fail; 1189 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1190 if (error != 0) 1191 goto fail; 1192 error = zyd_al2230_fini(rf); 1193 fail: 1194 return (error); 1195 } 1196 1197 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1198 { \ 1199 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1200 { ZYD_CR47, 0x1e } \ 1201 } 1202 1203 static int 1204 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1205 { 1206 int error = 0, i; 1207 struct zyd_softc *sc = rf->rf_sc; 1208 struct ieee80211com *ic = &sc->sc_ic; 1209 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1210 int chan = ieee80211_chan2ieee(ic, c); 1211 1212 if (chan == 1 || chan == 11) 1213 r[0].val = 0x12; 1214 1215 for (i = 0; i < nitems(r); i++) 1216 zyd_write16_m(sc, r[i].reg, r[i].val); 1217 fail: 1218 return (error); 1219 } 1220 1221 /* 1222 * AL7230B RF methods. 1223 */ 1224 static int 1225 zyd_al7230B_init(struct zyd_rf *rf) 1226 { 1227 struct zyd_softc *sc = rf->rf_sc; 1228 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1229 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1230 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1231 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1232 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1233 int i, error; 1234 1235 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1236 1237 /* init RF-dependent PHY registers, part one */ 1238 for (i = 0; i < nitems(phyini_1); i++) 1239 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1240 1241 /* init AL7230B radio, part one */ 1242 for (i = 0; i < nitems(rfini_1); i++) { 1243 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1244 return (error); 1245 } 1246 /* init RF-dependent PHY registers, part two */ 1247 for (i = 0; i < nitems(phyini_2); i++) 1248 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1249 1250 /* init AL7230B radio, part two */ 1251 for (i = 0; i < nitems(rfini_2); i++) { 1252 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1253 return (error); 1254 } 1255 /* init RF-dependent PHY registers, part three */ 1256 for (i = 0; i < nitems(phyini_3); i++) 1257 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1258 fail: 1259 return (error); 1260 } 1261 1262 static int 1263 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1264 { 1265 int error; 1266 struct zyd_softc *sc = rf->rf_sc; 1267 1268 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1269 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1270 fail: 1271 return (error); 1272 } 1273 1274 static int 1275 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1276 { 1277 struct zyd_softc *sc = rf->rf_sc; 1278 static const struct { 1279 uint32_t r1, r2; 1280 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1281 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1282 int i, error; 1283 1284 zyd_write16_m(sc, ZYD_CR240, 0x57); 1285 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1286 1287 for (i = 0; i < nitems(rfsc); i++) { 1288 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1289 return (error); 1290 } 1291 1292 zyd_write16_m(sc, ZYD_CR128, 0x14); 1293 zyd_write16_m(sc, ZYD_CR129, 0x12); 1294 zyd_write16_m(sc, ZYD_CR130, 0x10); 1295 zyd_write16_m(sc, ZYD_CR38, 0x38); 1296 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1297 1298 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1299 if (error != 0) 1300 goto fail; 1301 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1302 if (error != 0) 1303 goto fail; 1304 error = zyd_rfwrite(sc, 0x3c9000); 1305 if (error != 0) 1306 goto fail; 1307 1308 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1309 zyd_write16_m(sc, ZYD_CR203, 0x06); 1310 zyd_write16_m(sc, ZYD_CR240, 0x08); 1311 fail: 1312 return (error); 1313 } 1314 1315 /* 1316 * AL2210 RF methods. 1317 */ 1318 static int 1319 zyd_al2210_init(struct zyd_rf *rf) 1320 { 1321 struct zyd_softc *sc = rf->rf_sc; 1322 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1323 static const uint32_t rfini[] = ZYD_AL2210_RF; 1324 uint32_t tmp; 1325 int i, error; 1326 1327 zyd_write32_m(sc, ZYD_CR18, 2); 1328 1329 /* init RF-dependent PHY registers */ 1330 for (i = 0; i < nitems(phyini); i++) 1331 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1332 1333 /* init AL2210 radio */ 1334 for (i = 0; i < nitems(rfini); i++) { 1335 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1336 return (error); 1337 } 1338 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1339 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1340 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1341 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1342 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1343 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1344 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1345 zyd_write32_m(sc, ZYD_CR18, 3); 1346 fail: 1347 return (error); 1348 } 1349 1350 static int 1351 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1352 { 1353 /* vendor driver does nothing for this RF chip */ 1354 1355 return (0); 1356 } 1357 1358 static int 1359 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1360 { 1361 int error; 1362 struct zyd_softc *sc = rf->rf_sc; 1363 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1364 uint32_t tmp; 1365 1366 zyd_write32_m(sc, ZYD_CR18, 2); 1367 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1368 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1369 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1370 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1371 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1372 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1373 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1374 1375 /* actually set the channel */ 1376 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1377 if (error != 0) 1378 goto fail; 1379 1380 zyd_write32_m(sc, ZYD_CR18, 3); 1381 fail: 1382 return (error); 1383 } 1384 1385 /* 1386 * GCT RF methods. 1387 */ 1388 static int 1389 zyd_gct_init(struct zyd_rf *rf) 1390 { 1391 #define ZYD_GCT_INTR_REG 0x85c1 1392 struct zyd_softc *sc = rf->rf_sc; 1393 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1394 static const uint32_t rfini[] = ZYD_GCT_RF; 1395 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1396 int i, idx = -1, error; 1397 uint16_t data; 1398 1399 /* init RF-dependent PHY registers */ 1400 for (i = 0; i < nitems(phyini); i++) 1401 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1402 1403 /* init cgt radio */ 1404 for (i = 0; i < nitems(rfini); i++) { 1405 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1406 return (error); 1407 } 1408 1409 error = zyd_gct_mode(rf); 1410 if (error != 0) 1411 return (error); 1412 1413 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1414 error = zyd_gct_set_channel_synth(rf, 1, 0); 1415 if (error != 0) 1416 goto fail; 1417 error = zyd_gct_write(rf, vco[i][0]); 1418 if (error != 0) 1419 goto fail; 1420 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1421 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1422 if ((data & 0xf) == 0) { 1423 idx = i; 1424 break; 1425 } 1426 } 1427 if (idx == -1) { 1428 error = zyd_gct_set_channel_synth(rf, 1, 1); 1429 if (error != 0) 1430 goto fail; 1431 error = zyd_gct_write(rf, 0x6662); 1432 if (error != 0) 1433 goto fail; 1434 } 1435 1436 rf->idx = idx; 1437 zyd_write16_m(sc, ZYD_CR203, 0x6); 1438 fail: 1439 return (error); 1440 #undef ZYD_GCT_INTR_REG 1441 } 1442 1443 static int 1444 zyd_gct_mode(struct zyd_rf *rf) 1445 { 1446 struct zyd_softc *sc = rf->rf_sc; 1447 static const uint32_t mode[] = { 1448 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1449 }; 1450 int i, error; 1451 1452 for (i = 0; i < nitems(mode); i++) { 1453 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1454 break; 1455 } 1456 return (error); 1457 } 1458 1459 static int 1460 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1461 { 1462 int error, idx = chan - 1; 1463 struct zyd_softc *sc = rf->rf_sc; 1464 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1465 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1466 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1467 1468 error = zyd_rfwrite(sc, 1469 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1470 if (error != 0) 1471 return (error); 1472 return zyd_rfwrite(sc, div_synth[idx]); 1473 } 1474 1475 static int 1476 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1477 { 1478 struct zyd_softc *sc = rf->rf_sc; 1479 1480 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1481 } 1482 1483 static int 1484 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1485 { 1486 int error; 1487 struct zyd_softc *sc = rf->rf_sc; 1488 1489 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1490 if (error != 0) 1491 return (error); 1492 1493 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1494 zyd_write16_m(sc, ZYD_CR251, 1495 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1496 fail: 1497 return (error); 1498 } 1499 1500 static int 1501 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1502 { 1503 int error, i; 1504 struct zyd_softc *sc = rf->rf_sc; 1505 static const struct zyd_phy_pair cmd[] = { 1506 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1507 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1508 }; 1509 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1510 1511 error = zyd_gct_set_channel_synth(rf, chan, 0); 1512 if (error != 0) 1513 goto fail; 1514 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1515 vco[rf->idx][((chan - 1) / 2)]); 1516 if (error != 0) 1517 goto fail; 1518 error = zyd_gct_mode(rf); 1519 if (error != 0) 1520 return (error); 1521 for (i = 0; i < nitems(cmd); i++) 1522 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1523 error = zyd_gct_txgain(rf, chan); 1524 if (error != 0) 1525 return (error); 1526 zyd_write16_m(sc, ZYD_CR203, 0x6); 1527 fail: 1528 return (error); 1529 } 1530 1531 static int 1532 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1533 { 1534 struct zyd_softc *sc = rf->rf_sc; 1535 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1536 uint8_t idx = sc->sc_pwrint[chan - 1]; 1537 1538 if (idx >= nitems(txgain)) { 1539 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1540 chan, idx); 1541 return 0; 1542 } 1543 1544 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1545 } 1546 1547 /* 1548 * Maxim2 RF methods. 1549 */ 1550 static int 1551 zyd_maxim2_init(struct zyd_rf *rf) 1552 { 1553 struct zyd_softc *sc = rf->rf_sc; 1554 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1555 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1556 uint16_t tmp; 1557 int i, error; 1558 1559 /* init RF-dependent PHY registers */ 1560 for (i = 0; i < nitems(phyini); i++) 1561 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1562 1563 zyd_read16_m(sc, ZYD_CR203, &tmp); 1564 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1565 1566 /* init maxim2 radio */ 1567 for (i = 0; i < nitems(rfini); i++) { 1568 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1569 return (error); 1570 } 1571 zyd_read16_m(sc, ZYD_CR203, &tmp); 1572 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1573 fail: 1574 return (error); 1575 } 1576 1577 static int 1578 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1579 { 1580 1581 /* vendor driver does nothing for this RF chip */ 1582 return (0); 1583 } 1584 1585 static int 1586 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1587 { 1588 struct zyd_softc *sc = rf->rf_sc; 1589 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1590 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1591 static const struct { 1592 uint32_t r1, r2; 1593 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1594 uint16_t tmp; 1595 int i, error; 1596 1597 /* 1598 * Do the same as we do when initializing it, except for the channel 1599 * values coming from the two channel tables. 1600 */ 1601 1602 /* init RF-dependent PHY registers */ 1603 for (i = 0; i < nitems(phyini); i++) 1604 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1605 1606 zyd_read16_m(sc, ZYD_CR203, &tmp); 1607 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1608 1609 /* first two values taken from the chantables */ 1610 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1611 if (error != 0) 1612 goto fail; 1613 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1614 if (error != 0) 1615 goto fail; 1616 1617 /* init maxim2 radio - skipping the two first values */ 1618 for (i = 2; i < nitems(rfini); i++) { 1619 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1620 return (error); 1621 } 1622 zyd_read16_m(sc, ZYD_CR203, &tmp); 1623 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1624 fail: 1625 return (error); 1626 } 1627 1628 static int 1629 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1630 { 1631 struct zyd_rf *rf = &sc->sc_rf; 1632 1633 rf->rf_sc = sc; 1634 rf->update_pwr = 1; 1635 1636 switch (type) { 1637 case ZYD_RF_RFMD: 1638 rf->init = zyd_rfmd_init; 1639 rf->switch_radio = zyd_rfmd_switch_radio; 1640 rf->set_channel = zyd_rfmd_set_channel; 1641 rf->width = 24; /* 24-bit RF values */ 1642 break; 1643 case ZYD_RF_AL2230: 1644 case ZYD_RF_AL2230S: 1645 if (sc->sc_macrev == ZYD_ZD1211B) { 1646 rf->init = zyd_al2230_init_b; 1647 rf->set_channel = zyd_al2230_set_channel_b; 1648 } else { 1649 rf->init = zyd_al2230_init; 1650 rf->set_channel = zyd_al2230_set_channel; 1651 } 1652 rf->switch_radio = zyd_al2230_switch_radio; 1653 rf->bandedge6 = zyd_al2230_bandedge6; 1654 rf->width = 24; /* 24-bit RF values */ 1655 break; 1656 case ZYD_RF_AL7230B: 1657 rf->init = zyd_al7230B_init; 1658 rf->switch_radio = zyd_al7230B_switch_radio; 1659 rf->set_channel = zyd_al7230B_set_channel; 1660 rf->width = 24; /* 24-bit RF values */ 1661 break; 1662 case ZYD_RF_AL2210: 1663 rf->init = zyd_al2210_init; 1664 rf->switch_radio = zyd_al2210_switch_radio; 1665 rf->set_channel = zyd_al2210_set_channel; 1666 rf->width = 24; /* 24-bit RF values */ 1667 break; 1668 case ZYD_RF_MAXIM_NEW: 1669 case ZYD_RF_GCT: 1670 rf->init = zyd_gct_init; 1671 rf->switch_radio = zyd_gct_switch_radio; 1672 rf->set_channel = zyd_gct_set_channel; 1673 rf->width = 24; /* 24-bit RF values */ 1674 rf->update_pwr = 0; 1675 break; 1676 case ZYD_RF_MAXIM_NEW2: 1677 rf->init = zyd_maxim2_init; 1678 rf->switch_radio = zyd_maxim2_switch_radio; 1679 rf->set_channel = zyd_maxim2_set_channel; 1680 rf->width = 18; /* 18-bit RF values */ 1681 break; 1682 default: 1683 device_printf(sc->sc_dev, 1684 "sorry, radio \"%s\" is not supported yet\n", 1685 zyd_rf_name(type)); 1686 return (EINVAL); 1687 } 1688 return (0); 1689 } 1690 1691 static const char * 1692 zyd_rf_name(uint8_t type) 1693 { 1694 static const char * const zyd_rfs[] = { 1695 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1696 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1697 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1698 "PHILIPS" 1699 }; 1700 1701 return zyd_rfs[(type > 15) ? 0 : type]; 1702 } 1703 1704 static int 1705 zyd_hw_init(struct zyd_softc *sc) 1706 { 1707 int error; 1708 const struct zyd_phy_pair *phyp; 1709 struct zyd_rf *rf = &sc->sc_rf; 1710 uint16_t val; 1711 1712 /* specify that the plug and play is finished */ 1713 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1714 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1715 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1716 sc->sc_fwbase); 1717 1718 /* retrieve firmware revision number */ 1719 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1720 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1721 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1722 /* set mandatory rates - XXX assumes 802.11b/g */ 1723 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1724 1725 /* disable interrupts */ 1726 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1727 1728 if ((error = zyd_read_pod(sc)) != 0) { 1729 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1730 goto fail; 1731 } 1732 1733 /* PHY init (resetting) */ 1734 error = zyd_lock_phy(sc); 1735 if (error != 0) 1736 goto fail; 1737 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1738 for (; phyp->reg != 0; phyp++) 1739 zyd_write16_m(sc, phyp->reg, phyp->val); 1740 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1741 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1742 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1743 } 1744 error = zyd_unlock_phy(sc); 1745 if (error != 0) 1746 goto fail; 1747 1748 /* HMAC init */ 1749 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1750 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1751 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1752 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1753 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1754 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1755 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1756 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1757 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1758 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1759 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1760 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1761 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1762 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1763 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1764 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1765 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1766 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1767 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1768 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1769 1770 if (sc->sc_macrev == ZYD_ZD1211) { 1771 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1772 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1773 } else { 1774 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1775 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1776 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1777 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1778 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1779 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1780 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1781 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1782 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1783 } 1784 1785 /* init beacon interval to 100ms */ 1786 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1787 goto fail; 1788 1789 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1790 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1791 sc->sc_rfrev); 1792 goto fail; 1793 } 1794 1795 /* RF chip init */ 1796 error = zyd_lock_phy(sc); 1797 if (error != 0) 1798 goto fail; 1799 error = (*rf->init)(rf); 1800 if (error != 0) { 1801 device_printf(sc->sc_dev, 1802 "radio initialization failed, error %d\n", error); 1803 goto fail; 1804 } 1805 error = zyd_unlock_phy(sc); 1806 if (error != 0) 1807 goto fail; 1808 1809 if ((error = zyd_read_eeprom(sc)) != 0) { 1810 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1811 goto fail; 1812 } 1813 1814 fail: return (error); 1815 } 1816 1817 static int 1818 zyd_read_pod(struct zyd_softc *sc) 1819 { 1820 int error; 1821 uint32_t tmp; 1822 1823 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1824 sc->sc_rfrev = tmp & 0x0f; 1825 sc->sc_ledtype = (tmp >> 4) & 0x01; 1826 sc->sc_al2230s = (tmp >> 7) & 0x01; 1827 sc->sc_cckgain = (tmp >> 8) & 0x01; 1828 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1829 sc->sc_parev = (tmp >> 16) & 0x0f; 1830 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1831 sc->sc_newphy = (tmp >> 31) & 0x01; 1832 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1833 fail: 1834 return (error); 1835 } 1836 1837 static int 1838 zyd_read_eeprom(struct zyd_softc *sc) 1839 { 1840 uint16_t val; 1841 int error, i; 1842 1843 /* read Tx power calibration tables */ 1844 for (i = 0; i < 7; i++) { 1845 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1846 sc->sc_pwrcal[i * 2] = val >> 8; 1847 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1848 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1849 sc->sc_pwrint[i * 2] = val >> 8; 1850 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1851 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1852 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1853 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1854 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1855 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1856 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1857 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1858 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1859 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1860 } 1861 fail: 1862 return (error); 1863 } 1864 1865 static int 1866 zyd_get_macaddr(struct zyd_softc *sc) 1867 { 1868 struct usb_device_request req; 1869 usb_error_t error; 1870 1871 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1872 req.bRequest = ZYD_READFWDATAREQ; 1873 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1874 USETW(req.wIndex, 0); 1875 USETW(req.wLength, IEEE80211_ADDR_LEN); 1876 1877 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1878 if (error != 0) { 1879 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1880 usbd_errstr(error)); 1881 } 1882 1883 return (error); 1884 } 1885 1886 static int 1887 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1888 { 1889 int error; 1890 uint32_t tmp; 1891 1892 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1893 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1894 tmp = addr[5] << 8 | addr[4]; 1895 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1896 fail: 1897 return (error); 1898 } 1899 1900 static int 1901 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1902 { 1903 int error; 1904 uint32_t tmp; 1905 1906 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1907 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1908 tmp = addr[5] << 8 | addr[4]; 1909 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1910 fail: 1911 return (error); 1912 } 1913 1914 static int 1915 zyd_switch_radio(struct zyd_softc *sc, int on) 1916 { 1917 struct zyd_rf *rf = &sc->sc_rf; 1918 int error; 1919 1920 error = zyd_lock_phy(sc); 1921 if (error != 0) 1922 goto fail; 1923 error = (*rf->switch_radio)(rf, on); 1924 if (error != 0) 1925 goto fail; 1926 error = zyd_unlock_phy(sc); 1927 fail: 1928 return (error); 1929 } 1930 1931 static int 1932 zyd_set_led(struct zyd_softc *sc, int which, int on) 1933 { 1934 int error; 1935 uint32_t tmp; 1936 1937 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1938 tmp &= ~which; 1939 if (on) 1940 tmp |= which; 1941 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1942 fail: 1943 return (error); 1944 } 1945 1946 static void 1947 zyd_set_multi(struct zyd_softc *sc) 1948 { 1949 struct ieee80211com *ic = &sc->sc_ic; 1950 uint32_t low, high; 1951 int error; 1952 1953 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1954 return; 1955 1956 low = 0x00000000; 1957 high = 0x80000000; 1958 1959 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1960 ic->ic_promisc > 0) { 1961 low = 0xffffffff; 1962 high = 0xffffffff; 1963 } else { 1964 struct ieee80211vap *vap; 1965 struct ifnet *ifp; 1966 struct ifmultiaddr *ifma; 1967 uint8_t v; 1968 1969 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1970 ifp = vap->iv_ifp; 1971 if_maddr_rlock(ifp); 1972 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1973 if (ifma->ifma_addr->sa_family != AF_LINK) 1974 continue; 1975 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 1976 ifma->ifma_addr))[5] >> 2; 1977 if (v < 32) 1978 low |= 1 << v; 1979 else 1980 high |= 1 << (v - 32); 1981 } 1982 if_maddr_runlock(ifp); 1983 } 1984 } 1985 1986 /* reprogram multicast global hash table */ 1987 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 1988 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 1989 fail: 1990 if (error != 0) 1991 device_printf(sc->sc_dev, 1992 "could not set multicast hash table\n"); 1993 } 1994 1995 static void 1996 zyd_update_mcast(struct ieee80211com *ic) 1997 { 1998 struct zyd_softc *sc = ic->ic_softc; 1999 2000 ZYD_LOCK(sc); 2001 zyd_set_multi(sc); 2002 ZYD_UNLOCK(sc); 2003 } 2004 2005 static int 2006 zyd_set_rxfilter(struct zyd_softc *sc) 2007 { 2008 struct ieee80211com *ic = &sc->sc_ic; 2009 uint32_t rxfilter; 2010 2011 switch (ic->ic_opmode) { 2012 case IEEE80211_M_STA: 2013 rxfilter = ZYD_FILTER_BSS; 2014 break; 2015 case IEEE80211_M_IBSS: 2016 case IEEE80211_M_HOSTAP: 2017 rxfilter = ZYD_FILTER_HOSTAP; 2018 break; 2019 case IEEE80211_M_MONITOR: 2020 rxfilter = ZYD_FILTER_MONITOR; 2021 break; 2022 default: 2023 /* should not get there */ 2024 return (EINVAL); 2025 } 2026 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2027 } 2028 2029 static void 2030 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2031 { 2032 int error; 2033 struct ieee80211com *ic = &sc->sc_ic; 2034 struct zyd_rf *rf = &sc->sc_rf; 2035 uint32_t tmp; 2036 int chan; 2037 2038 chan = ieee80211_chan2ieee(ic, c); 2039 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2040 /* XXX should NEVER happen */ 2041 device_printf(sc->sc_dev, 2042 "%s: invalid channel %x\n", __func__, chan); 2043 return; 2044 } 2045 2046 error = zyd_lock_phy(sc); 2047 if (error != 0) 2048 goto fail; 2049 2050 error = (*rf->set_channel)(rf, chan); 2051 if (error != 0) 2052 goto fail; 2053 2054 if (rf->update_pwr) { 2055 /* update Tx power */ 2056 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2057 2058 if (sc->sc_macrev == ZYD_ZD1211B) { 2059 zyd_write16_m(sc, ZYD_CR67, 2060 sc->sc_ofdm36_cal[chan - 1]); 2061 zyd_write16_m(sc, ZYD_CR66, 2062 sc->sc_ofdm48_cal[chan - 1]); 2063 zyd_write16_m(sc, ZYD_CR65, 2064 sc->sc_ofdm54_cal[chan - 1]); 2065 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2066 zyd_write16_m(sc, ZYD_CR69, 0x28); 2067 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2068 } 2069 } 2070 if (sc->sc_cckgain) { 2071 /* set CCK baseband gain from EEPROM */ 2072 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2073 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2074 } 2075 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2076 error = (*rf->bandedge6)(rf, c); 2077 if (error != 0) 2078 goto fail; 2079 } 2080 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2081 2082 error = zyd_unlock_phy(sc); 2083 if (error != 0) 2084 goto fail; 2085 2086 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2087 htole16(c->ic_freq); 2088 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2089 htole16(c->ic_flags); 2090 fail: 2091 return; 2092 } 2093 2094 static int 2095 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2096 { 2097 int error; 2098 uint32_t val; 2099 2100 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2101 sc->sc_atim_wnd = val; 2102 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2103 sc->sc_pre_tbtt = val; 2104 sc->sc_bcn_int = bintval; 2105 2106 if (sc->sc_bcn_int <= 5) 2107 sc->sc_bcn_int = 5; 2108 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2109 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2110 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2111 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2112 2113 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2114 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2115 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2116 fail: 2117 return (error); 2118 } 2119 2120 static void 2121 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2122 { 2123 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2124 struct ieee80211com *ic = &sc->sc_ic; 2125 struct zyd_plcphdr plcp; 2126 struct zyd_rx_stat stat; 2127 struct usb_page_cache *pc; 2128 struct mbuf *m; 2129 int rlen, rssi; 2130 2131 if (len < ZYD_MIN_FRAGSZ) { 2132 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2133 device_get_nameunit(sc->sc_dev), len); 2134 counter_u64_add(ic->ic_ierrors, 1); 2135 return; 2136 } 2137 pc = usbd_xfer_get_frame(xfer, 0); 2138 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2139 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2140 2141 if (stat.flags & ZYD_RX_ERROR) { 2142 DPRINTF(sc, ZYD_DEBUG_RECV, 2143 "%s: RX status indicated error (%x)\n", 2144 device_get_nameunit(sc->sc_dev), stat.flags); 2145 counter_u64_add(ic->ic_ierrors, 1); 2146 return; 2147 } 2148 2149 /* compute actual frame length */ 2150 rlen = len - sizeof(struct zyd_plcphdr) - 2151 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2152 2153 /* allocate a mbuf to store the frame */ 2154 if (rlen > (int)MCLBYTES) { 2155 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2156 device_get_nameunit(sc->sc_dev), rlen); 2157 counter_u64_add(ic->ic_ierrors, 1); 2158 return; 2159 } else if (rlen > (int)MHLEN) 2160 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2161 else 2162 m = m_gethdr(M_NOWAIT, MT_DATA); 2163 if (m == NULL) { 2164 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2165 device_get_nameunit(sc->sc_dev)); 2166 counter_u64_add(ic->ic_ierrors, 1); 2167 return; 2168 } 2169 m->m_pkthdr.len = m->m_len = rlen; 2170 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2171 2172 if (ieee80211_radiotap_active(ic)) { 2173 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2174 2175 tap->wr_flags = 0; 2176 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2177 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2178 /* XXX toss, no way to express errors */ 2179 if (stat.flags & ZYD_RX_DECRYPTERR) 2180 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2181 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2182 (stat.flags & ZYD_RX_OFDM) ? 2183 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2184 tap->wr_antsignal = stat.rssi + -95; 2185 tap->wr_antnoise = -95; /* XXX */ 2186 } 2187 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2188 2189 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2190 sc->sc_rx_data[sc->sc_rx_count].m = m; 2191 sc->sc_rx_count++; 2192 } 2193 2194 static void 2195 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2196 { 2197 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2198 struct ieee80211com *ic = &sc->sc_ic; 2199 struct ieee80211_node *ni; 2200 struct zyd_rx_desc desc; 2201 struct mbuf *m; 2202 struct usb_page_cache *pc; 2203 uint32_t offset; 2204 uint8_t rssi; 2205 int8_t nf; 2206 int i; 2207 int actlen; 2208 2209 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2210 2211 sc->sc_rx_count = 0; 2212 switch (USB_GET_STATE(xfer)) { 2213 case USB_ST_TRANSFERRED: 2214 pc = usbd_xfer_get_frame(xfer, 0); 2215 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2216 2217 offset = 0; 2218 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2219 DPRINTF(sc, ZYD_DEBUG_RECV, 2220 "%s: received multi-frame transfer\n", __func__); 2221 2222 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2223 uint16_t len16 = UGETW(desc.len[i]); 2224 2225 if (len16 == 0 || len16 > actlen) 2226 break; 2227 2228 zyd_rx_data(xfer, offset, len16); 2229 2230 /* next frame is aligned on a 32-bit boundary */ 2231 len16 = (len16 + 3) & ~3; 2232 offset += len16; 2233 if (len16 > actlen) 2234 break; 2235 actlen -= len16; 2236 } 2237 } else { 2238 DPRINTF(sc, ZYD_DEBUG_RECV, 2239 "%s: received single-frame transfer\n", __func__); 2240 2241 zyd_rx_data(xfer, 0, actlen); 2242 } 2243 /* FALLTHROUGH */ 2244 case USB_ST_SETUP: 2245 tr_setup: 2246 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2247 usbd_transfer_submit(xfer); 2248 2249 /* 2250 * At the end of a USB callback it is always safe to unlock 2251 * the private mutex of a device! That is why we do the 2252 * "ieee80211_input" here, and not some lines up! 2253 */ 2254 ZYD_UNLOCK(sc); 2255 for (i = 0; i < sc->sc_rx_count; i++) { 2256 rssi = sc->sc_rx_data[i].rssi; 2257 m = sc->sc_rx_data[i].m; 2258 sc->sc_rx_data[i].m = NULL; 2259 2260 nf = -95; /* XXX */ 2261 2262 ni = ieee80211_find_rxnode(ic, 2263 mtod(m, struct ieee80211_frame_min *)); 2264 if (ni != NULL) { 2265 (void)ieee80211_input(ni, m, rssi, nf); 2266 ieee80211_free_node(ni); 2267 } else 2268 (void)ieee80211_input_all(ic, m, rssi, nf); 2269 } 2270 ZYD_LOCK(sc); 2271 zyd_start(sc); 2272 break; 2273 2274 default: /* Error */ 2275 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2276 2277 if (error != USB_ERR_CANCELLED) { 2278 /* try to clear stall first */ 2279 usbd_xfer_set_stall(xfer); 2280 goto tr_setup; 2281 } 2282 break; 2283 } 2284 } 2285 2286 static uint8_t 2287 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2288 { 2289 switch (rate) { 2290 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2291 case 12: 2292 return (0xb); 2293 case 18: 2294 return (0xf); 2295 case 24: 2296 return (0xa); 2297 case 36: 2298 return (0xe); 2299 case 48: 2300 return (0x9); 2301 case 72: 2302 return (0xd); 2303 case 96: 2304 return (0x8); 2305 case 108: 2306 return (0xc); 2307 /* CCK rates (NB: not IEEE std, device-specific) */ 2308 case 2: 2309 return (0x0); 2310 case 4: 2311 return (0x1); 2312 case 11: 2313 return (0x2); 2314 case 22: 2315 return (0x3); 2316 } 2317 2318 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2319 return (0x0); 2320 } 2321 2322 static void 2323 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2324 { 2325 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2326 struct ieee80211vap *vap; 2327 struct zyd_tx_data *data; 2328 struct mbuf *m; 2329 struct usb_page_cache *pc; 2330 int actlen; 2331 2332 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2333 2334 switch (USB_GET_STATE(xfer)) { 2335 case USB_ST_TRANSFERRED: 2336 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2337 actlen); 2338 2339 /* free resources */ 2340 data = usbd_xfer_get_priv(xfer); 2341 zyd_tx_free(data, 0); 2342 usbd_xfer_set_priv(xfer, NULL); 2343 2344 /* FALLTHROUGH */ 2345 case USB_ST_SETUP: 2346 tr_setup: 2347 data = STAILQ_FIRST(&sc->tx_q); 2348 if (data) { 2349 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2350 m = data->m; 2351 2352 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2353 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2354 m->m_pkthdr.len); 2355 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2356 } 2357 pc = usbd_xfer_get_frame(xfer, 0); 2358 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2359 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2360 m->m_pkthdr.len); 2361 2362 vap = data->ni->ni_vap; 2363 if (ieee80211_radiotap_active_vap(vap)) { 2364 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2365 2366 tap->wt_flags = 0; 2367 tap->wt_rate = data->rate; 2368 2369 ieee80211_radiotap_tx(vap, m); 2370 } 2371 2372 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2373 usbd_xfer_set_priv(xfer, data); 2374 usbd_transfer_submit(xfer); 2375 } 2376 zyd_start(sc); 2377 break; 2378 2379 default: /* Error */ 2380 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2381 usbd_errstr(error)); 2382 2383 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2384 data = usbd_xfer_get_priv(xfer); 2385 usbd_xfer_set_priv(xfer, NULL); 2386 if (data != NULL) 2387 zyd_tx_free(data, error); 2388 2389 if (error != USB_ERR_CANCELLED) { 2390 if (error == USB_ERR_TIMEOUT) 2391 device_printf(sc->sc_dev, "device timeout\n"); 2392 2393 /* 2394 * Try to clear stall first, also if other 2395 * errors occur, hence clearing stall 2396 * introduces a 50 ms delay: 2397 */ 2398 usbd_xfer_set_stall(xfer); 2399 goto tr_setup; 2400 } 2401 break; 2402 } 2403 } 2404 2405 static int 2406 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2407 { 2408 struct ieee80211vap *vap = ni->ni_vap; 2409 struct ieee80211com *ic = ni->ni_ic; 2410 struct zyd_tx_desc *desc; 2411 struct zyd_tx_data *data; 2412 struct ieee80211_frame *wh; 2413 const struct ieee80211_txparam *tp; 2414 struct ieee80211_key *k; 2415 int rate, totlen; 2416 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2417 uint8_t phy; 2418 uint16_t pktlen; 2419 uint32_t bits; 2420 2421 wh = mtod(m0, struct ieee80211_frame *); 2422 data = STAILQ_FIRST(&sc->tx_free); 2423 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2424 sc->tx_nfree--; 2425 2426 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2427 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2428 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2429 rate = tp->mgmtrate; 2430 } else { 2431 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2432 /* for data frames */ 2433 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2434 rate = tp->mcastrate; 2435 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2436 rate = tp->ucastrate; 2437 else { 2438 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2439 rate = ni->ni_txrate; 2440 } 2441 } 2442 2443 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2444 k = ieee80211_crypto_encap(ni, m0); 2445 if (k == NULL) { 2446 m_freem(m0); 2447 return (ENOBUFS); 2448 } 2449 /* packet header may have moved, reset our local pointer */ 2450 wh = mtod(m0, struct ieee80211_frame *); 2451 } 2452 2453 data->ni = ni; 2454 data->m = m0; 2455 data->rate = rate; 2456 2457 /* fill Tx descriptor */ 2458 desc = &data->desc; 2459 phy = zyd_plcp_signal(sc, rate); 2460 desc->phy = phy; 2461 if (ZYD_RATE_IS_OFDM(rate)) { 2462 desc->phy |= ZYD_TX_PHY_OFDM; 2463 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2464 desc->phy |= ZYD_TX_PHY_5GHZ; 2465 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2466 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2467 2468 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2469 desc->len = htole16(totlen); 2470 2471 desc->flags = ZYD_TX_FLAG_BACKOFF; 2472 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2473 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2474 if (totlen > vap->iv_rtsthreshold) { 2475 desc->flags |= ZYD_TX_FLAG_RTS; 2476 } else if (ZYD_RATE_IS_OFDM(rate) && 2477 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2478 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2479 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2480 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2481 desc->flags |= ZYD_TX_FLAG_RTS; 2482 } 2483 } else 2484 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2485 if ((wh->i_fc[0] & 2486 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2487 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2488 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2489 2490 /* actual transmit length (XXX why +10?) */ 2491 pktlen = ZYD_TX_DESC_SIZE + 10; 2492 if (sc->sc_macrev == ZYD_ZD1211) 2493 pktlen += totlen; 2494 desc->pktlen = htole16(pktlen); 2495 2496 bits = (rate == 11) ? (totlen * 16) + 10 : 2497 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2498 desc->plcp_length = htole16(bits / ratediv[phy]); 2499 desc->plcp_service = 0; 2500 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2501 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2502 desc->nextlen = 0; 2503 2504 if (ieee80211_radiotap_active_vap(vap)) { 2505 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2506 2507 tap->wt_flags = 0; 2508 tap->wt_rate = rate; 2509 2510 ieee80211_radiotap_tx(vap, m0); 2511 } 2512 2513 DPRINTF(sc, ZYD_DEBUG_XMIT, 2514 "%s: sending data frame len=%zu rate=%u\n", 2515 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2516 rate); 2517 2518 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2519 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2520 2521 return (0); 2522 } 2523 2524 static int 2525 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2526 { 2527 struct zyd_softc *sc = ic->ic_softc; 2528 int error; 2529 2530 ZYD_LOCK(sc); 2531 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2532 ZYD_UNLOCK(sc); 2533 return (ENXIO); 2534 } 2535 error = mbufq_enqueue(&sc->sc_snd, m); 2536 if (error) { 2537 ZYD_UNLOCK(sc); 2538 return (error); 2539 } 2540 zyd_start(sc); 2541 ZYD_UNLOCK(sc); 2542 2543 return (0); 2544 } 2545 2546 static void 2547 zyd_start(struct zyd_softc *sc) 2548 { 2549 struct ieee80211_node *ni; 2550 struct mbuf *m; 2551 2552 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2553 2554 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2555 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2556 if (zyd_tx_start(sc, m, ni) != 0) { 2557 ieee80211_free_node(ni); 2558 if_inc_counter(ni->ni_vap->iv_ifp, 2559 IFCOUNTER_OERRORS, 1); 2560 break; 2561 } 2562 } 2563 } 2564 2565 static int 2566 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2567 const struct ieee80211_bpf_params *params) 2568 { 2569 struct ieee80211com *ic = ni->ni_ic; 2570 struct zyd_softc *sc = ic->ic_softc; 2571 2572 ZYD_LOCK(sc); 2573 /* prevent management frames from being sent if we're not ready */ 2574 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2575 ZYD_UNLOCK(sc); 2576 m_freem(m); 2577 ieee80211_free_node(ni); 2578 return (ENETDOWN); 2579 } 2580 if (sc->tx_nfree == 0) { 2581 ZYD_UNLOCK(sc); 2582 m_freem(m); 2583 ieee80211_free_node(ni); 2584 return (ENOBUFS); /* XXX */ 2585 } 2586 2587 /* 2588 * Legacy path; interpret frame contents to decide 2589 * precisely how to send the frame. 2590 * XXX raw path 2591 */ 2592 if (zyd_tx_start(sc, m, ni) != 0) { 2593 ZYD_UNLOCK(sc); 2594 ieee80211_free_node(ni); 2595 return (EIO); 2596 } 2597 ZYD_UNLOCK(sc); 2598 return (0); 2599 } 2600 2601 static void 2602 zyd_parent(struct ieee80211com *ic) 2603 { 2604 struct zyd_softc *sc = ic->ic_softc; 2605 int startall = 0; 2606 2607 ZYD_LOCK(sc); 2608 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2609 ZYD_UNLOCK(sc); 2610 return; 2611 } 2612 if (ic->ic_nrunning > 0) { 2613 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2614 zyd_init_locked(sc); 2615 startall = 1; 2616 } else 2617 zyd_set_multi(sc); 2618 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2619 zyd_stop(sc); 2620 ZYD_UNLOCK(sc); 2621 if (startall) 2622 ieee80211_start_all(ic); 2623 } 2624 2625 static void 2626 zyd_init_locked(struct zyd_softc *sc) 2627 { 2628 struct ieee80211com *ic = &sc->sc_ic; 2629 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2630 struct usb_config_descriptor *cd; 2631 int error; 2632 uint32_t val; 2633 2634 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2635 2636 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2637 error = zyd_loadfirmware(sc); 2638 if (error != 0) { 2639 device_printf(sc->sc_dev, 2640 "could not load firmware (error=%d)\n", error); 2641 goto fail; 2642 } 2643 2644 /* reset device */ 2645 cd = usbd_get_config_descriptor(sc->sc_udev); 2646 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2647 cd->bConfigurationValue); 2648 if (error) 2649 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2650 2651 error = zyd_hw_init(sc); 2652 if (error) { 2653 device_printf(sc->sc_dev, 2654 "hardware initialization failed\n"); 2655 goto fail; 2656 } 2657 2658 device_printf(sc->sc_dev, 2659 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2660 "BE%x NP%x Gain%x F%x\n", 2661 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2662 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2663 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2664 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2665 sc->sc_cckgain, sc->sc_fix_cr157); 2666 2667 /* read regulatory domain (currently unused) */ 2668 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2669 sc->sc_regdomain = val >> 16; 2670 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2671 sc->sc_regdomain); 2672 2673 /* we'll do software WEP decryption for now */ 2674 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2675 __func__); 2676 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2677 2678 sc->sc_flags |= ZYD_FLAG_INITONCE; 2679 } 2680 2681 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2682 zyd_stop(sc); 2683 2684 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2685 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2686 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2687 if (error != 0) 2688 return; 2689 2690 /* set basic rates */ 2691 if (ic->ic_curmode == IEEE80211_MODE_11B) 2692 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2693 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2694 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2695 else /* assumes 802.11b/g */ 2696 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2697 2698 /* promiscuous mode */ 2699 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2700 /* multicast setup */ 2701 zyd_set_multi(sc); 2702 /* set RX filter */ 2703 error = zyd_set_rxfilter(sc); 2704 if (error != 0) 2705 goto fail; 2706 2707 /* switch radio transmitter ON */ 2708 error = zyd_switch_radio(sc, 1); 2709 if (error != 0) 2710 goto fail; 2711 /* set default BSS channel */ 2712 zyd_set_chan(sc, ic->ic_curchan); 2713 2714 /* 2715 * Allocate Tx and Rx xfer queues. 2716 */ 2717 zyd_setup_tx_list(sc); 2718 2719 /* enable interrupts */ 2720 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2721 2722 sc->sc_flags |= ZYD_FLAG_RUNNING; 2723 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2724 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2725 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2726 2727 return; 2728 2729 fail: zyd_stop(sc); 2730 return; 2731 } 2732 2733 static void 2734 zyd_stop(struct zyd_softc *sc) 2735 { 2736 int error; 2737 2738 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2739 2740 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2741 2742 /* 2743 * Drain all the transfers, if not already drained: 2744 */ 2745 ZYD_UNLOCK(sc); 2746 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2747 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2748 ZYD_LOCK(sc); 2749 2750 zyd_unsetup_tx_list(sc); 2751 2752 /* Stop now if the device was never set up */ 2753 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2754 return; 2755 2756 /* switch radio transmitter OFF */ 2757 error = zyd_switch_radio(sc, 0); 2758 if (error != 0) 2759 goto fail; 2760 /* disable Rx */ 2761 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2762 /* disable interrupts */ 2763 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2764 2765 fail: 2766 return; 2767 } 2768 2769 static int 2770 zyd_loadfirmware(struct zyd_softc *sc) 2771 { 2772 struct usb_device_request req; 2773 size_t size; 2774 u_char *fw; 2775 uint8_t stat; 2776 uint16_t addr; 2777 2778 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2779 return (0); 2780 2781 if (sc->sc_macrev == ZYD_ZD1211) { 2782 fw = (u_char *)zd1211_firmware; 2783 size = sizeof(zd1211_firmware); 2784 } else { 2785 fw = (u_char *)zd1211b_firmware; 2786 size = sizeof(zd1211b_firmware); 2787 } 2788 2789 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2790 req.bRequest = ZYD_DOWNLOADREQ; 2791 USETW(req.wIndex, 0); 2792 2793 addr = ZYD_FIRMWARE_START_ADDR; 2794 while (size > 0) { 2795 /* 2796 * When the transfer size is 4096 bytes, it is not 2797 * likely to be able to transfer it. 2798 * The cause is port or machine or chip? 2799 */ 2800 const int mlen = min(size, 64); 2801 2802 DPRINTF(sc, ZYD_DEBUG_FW, 2803 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2804 2805 USETW(req.wValue, addr); 2806 USETW(req.wLength, mlen); 2807 if (zyd_do_request(sc, &req, fw) != 0) 2808 return (EIO); 2809 2810 addr += mlen / 2; 2811 fw += mlen; 2812 size -= mlen; 2813 } 2814 2815 /* check whether the upload succeeded */ 2816 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2817 req.bRequest = ZYD_DOWNLOADSTS; 2818 USETW(req.wValue, 0); 2819 USETW(req.wIndex, 0); 2820 USETW(req.wLength, sizeof(stat)); 2821 if (zyd_do_request(sc, &req, &stat) != 0) 2822 return (EIO); 2823 2824 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2825 2826 return (stat & 0x80) ? (EIO) : (0); 2827 } 2828 2829 static void 2830 zyd_scan_start(struct ieee80211com *ic) 2831 { 2832 struct zyd_softc *sc = ic->ic_softc; 2833 2834 ZYD_LOCK(sc); 2835 /* want broadcast address while scanning */ 2836 zyd_set_bssid(sc, ieee80211broadcastaddr); 2837 ZYD_UNLOCK(sc); 2838 } 2839 2840 static void 2841 zyd_scan_end(struct ieee80211com *ic) 2842 { 2843 struct zyd_softc *sc = ic->ic_softc; 2844 2845 ZYD_LOCK(sc); 2846 /* restore previous bssid */ 2847 zyd_set_bssid(sc, ic->ic_macaddr); 2848 ZYD_UNLOCK(sc); 2849 } 2850 2851 static void 2852 zyd_set_channel(struct ieee80211com *ic) 2853 { 2854 struct zyd_softc *sc = ic->ic_softc; 2855 2856 ZYD_LOCK(sc); 2857 zyd_set_chan(sc, ic->ic_curchan); 2858 ZYD_UNLOCK(sc); 2859 } 2860 2861 static device_method_t zyd_methods[] = { 2862 /* Device interface */ 2863 DEVMETHOD(device_probe, zyd_match), 2864 DEVMETHOD(device_attach, zyd_attach), 2865 DEVMETHOD(device_detach, zyd_detach), 2866 DEVMETHOD_END 2867 }; 2868 2869 static driver_t zyd_driver = { 2870 .name = "zyd", 2871 .methods = zyd_methods, 2872 .size = sizeof(struct zyd_softc) 2873 }; 2874 2875 static devclass_t zyd_devclass; 2876 2877 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2878 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2879 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2880 MODULE_VERSION(zyd, 1); 2881